Telex Car Amplifier MR J2S B User Manual

General-Purpose AC Servo  
J2-Super Series  
SSCNET Compatible  
MODEL  
MR-J2S- B  
SERVO AMPLIFIER  
INSTRUCTION MANUAL  
E
1. To prevent electric shock, note the following:  
WARNING  
Before wiring or inspection, switch power off and wait for more than 10 minutes. Then, confirm the voltage  
is safe with voltage tester. Otherwise, you may get an electric shock.  
Connect the servo amplifier and servo motor to ground.  
Any person who is involved in wiring and inspection should be fully competent to do the work.  
Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, you  
may get an electric shock.  
Operate the switches with dry hand to prevent an electric shock.  
The cables should not be damaged, stressed, loaded, or pinched. Otherwise, you may get an electric shock.  
During power-on or operation, do not open the front cover of the servo amplifier. You may get an electric  
shock.  
Do not operate the servo amplifier with the front cover removed. High-voltage terminals and charging area  
are exposed and you may get an electric shock.  
Except for wiring or periodic inspection, do not remove the front cover even of the servo amplifier if the  
power is off. The servo amplifier is charged and you may get an electric shock.  
2. To prevent fire, note the following:  
CAUTION  
Do not install the servo amplifier, servo motor and regenerative brake resistor on or near combustibles.  
Otherwise a fire may cause.  
When the servo amplifier has become faulty, switch off the main servo amplifier power side. Continuous  
flow of a large current may cause a fire.  
When a regenerative brake resistor is used, use an alarm signal to switch main power off. Otherwise, a  
regenerative brake transistor fault or the like may overheat the regenerative brake resistor, causing a fire.  
3. To prevent injury, note the follow  
CAUTION  
Only the voltage specified in the Instruction Manual should be applied to each terminal. Otherwise, a burst,  
damage, etc. may occur.  
Connect the terminals correctly to prevent a burst, damage, etc.  
Ensure that polarity ( , ) is correct. Otherwise, a burst, damage, etc. may occur.  
Take safety measures, e.g. provide covers, to prevent accidental contact of hands and parts (cables, etc.)  
with the servo amplifier heat sink, regenerative brake resistor, servo motor, etc.since they may be hot  
while power is on or for some time after power-off. Their temperatures may be high and you may get burnt  
or a parts may damaged.  
During operation, never touch the rotating parts of the servo motor. Doing so can cause injury.  
A - 2  
4. Additional instructions  
The following instructions should also be fully noted. Incorrect handling may cause a fault, injury, electric  
shock, etc.  
(1) Transportation and installation  
CAUTION  
Transport the products correctly according to their weights.  
Stacking in excess of the specified number of products is not allowed.  
Do not carry the servo motor by the cables, shaft or encoder.  
Do not hold the front cover to transport the servo amplifier. The servo amplifier may drop.  
Install the servo amplifier in a load-bearing place in accordance with the Instruction Manual.  
Do not climb or stand on servo equipment. Do not put heavy objects on equipment.  
The servo amplifier and servo motor must be installed in the specified direction.  
Leave specified clearances between the servo amplifier and control enclosure walls or other equipment.  
Do not install or operate the servo amplifier and servo motor which has been damaged or has any parts  
missing.  
Provide adequate protection to prevent screws and other conductive matter, oil and other combustible  
matter from entering the servo amplifier.  
Do not drop or strike servo amplifier or servo motor. Isolate from all impact loads.  
When you keep or use it, please fulfill the following environmental conditions.  
Conditions  
Environment  
Servo amplifier  
0 to 55 (non-freezing)  
32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
Servo motor  
0 to 40 (non-freezing)  
32 to 104 (non-freezing)  
15 to 70 (non-freezing)  
5 to 158 (non-freezing)  
[
[
[
[
]
]
]
]
During  
operation  
Ambient  
temperature  
In storage  
During  
operation  
In storage  
90%RH or less (non-condensing)  
80%RH or less (non-condensing)  
Ambient  
humidity  
90%RH or less (non-condensing)  
Ambience  
Altitude  
Indoors (no direct sunlight) Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280 ft) above sea level  
HC-KFS Series  
HC-MFS Series  
HC-UFS13 to 73  
HC-SFS81  
X
Y : 49  
HC-SFS52 to 152  
HC-SFS53 to 153  
HC-RFS Series  
HC-UFS 72 152  
HC-SFS121 201  
HC-SFS202 352  
HC-SFS203 353  
HC-UFS202 to 502  
HC-SFS301  
X
Y : 24.5  
[m/s2]  
5.9 or less  
X : 24.5  
Y : 49  
X : 24.5  
Y : 29.4  
X : 11.7  
Y : 29.4  
HC-SFS502 to 702  
HA-LFS11K2 to 22K2  
(Note)  
Vibration  
HC-KFS Series  
HC-MFS Series  
HC-UFS 13 to 73  
HC-SFS81  
X
Y : 161  
HC-SFS52 to 152  
HC-SFS53 to 153  
HC-RFS Series  
HC-UFS 72 152  
HC-SFS121 201  
HC-SFS202 352  
HC-SFS203 353  
HC-UFS202 to 502  
HC-SFS301  
X
Y : 80  
[ft/s2]  
19.4 or less  
X : 80  
Y : 161  
X : 80  
Y : 96  
X : 38  
Y : 96  
HC-SFS502 to 702  
HA-LFS11K2 to 22K2  
Note. Except the servo motor with reduction gear.  
A - 3  
CAUTION  
Securely attach the servo motor to the machine. If attach insecurely, the servo motor may come off during  
operation.  
The servo motor with reduction gear must be installed in the specified direction to prevent oil leakage.  
Take safety measures, e.g. provide covers, to prevent accidental access to the rotating parts of the servo  
motor during operation.  
Never hit the servo motor or shaft, especially when coupling the servo motor to the machine. The encoder  
may become faulty.  
Do not subject the servo motor shaft to more than the permissible load. Otherwise, the shaft may break.  
When the equipment has been stored for an extended period of time, consult Mitsubishi.  
(2) Wiring  
CAUTION  
Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate.  
Do not install a power capacitor, surge absorber or radio noise filter (FR-BIF option) between the servo  
motor and servo amplifier.  
Connect the output terminals (U, V, W) correctly. Otherwise, the servo motor will operate improperly.  
Do not connect AC power directly to the servo motor. Otherwise, a fault may occur.  
The surge absorbing diode installed on the DC output signal relay of the servo amplifier must be wired in  
the specified direction. Otherwise, the forced stop (EM1) and other protective circuits may not operate.  
Servo  
Servo  
Amplifier  
Amplifier  
COM  
COM  
(24VDC)  
(24VDC)  
Control  
output  
signal  
Control  
output  
signal  
RA  
RA  
(3) Test run adjustment  
CAUTION  
Before operation, check the parameter settings. Improper settings may cause some machines to perform  
unexpected operation.  
The parameter settings must not be changed excessively. Operation will be insatiable.  
A - 4  
(4) Usage  
CAUTION  
Provide a forced stop circuit to ensure that operation can be stopped and power switched off immediately.  
Any person who is involved in disassembly and repair should be fully competent to do the work.  
Before resetting an alarm, make sure that the run signal of the servo amplifier is off to prevent an  
accident. A sudden restart is made if an alarm is reset with the run signal on.  
Do not modify the equipment.  
Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be caused by  
electronic equipment used near the servo amplifier.  
Use the servo amplifier with the specified servo motor.  
The electromagnetic brake on the servo motor is designed to hold the motor shaft and should not be used  
for ordinary braking.  
For such reasons as service life and mechanical structure (e.g. where a ballscrew and the servo motor  
are coupled via a timing belt), the electromagnetic brake may not hold the motor shaft. To ensure safety,  
install a stopper on the machine side.  
(5) Corrective actions  
CAUTION  
When it is assumed that a hazardous condition may take place at the occur due to a power failure or a  
product fault, use a servo motor with electromagnetic brake or an external brake mechanism for the  
purpose of prevention.  
Configure the electromagnetic brake circuit so that it is activated not only by the interface unit signals but  
also by a forced stop (EM1).  
Contacts must be open when  
servo-off, when an alarm occurrence  
and when an electromagnetic brake  
interlock (MBR).  
Circuit must be  
opened during  
forced stop (EM1).  
Servo motor  
RA EM1  
24VDC  
Electromagnetic brake  
When any alarm has occurred, eliminate its cause, ensure safety, and deactivate the alarm before  
restarting operation.  
When power is restored after an instantaneous power failure, keep away from the machine because the  
machine may be restarted suddenly (design the machine so that it is secured against hazard if restarted).  
A - 5  
(6) Maintenance, inspection and parts replacement  
CAUTION  
With age, the electrolytic capacitor of the servo amplifier will deteriorate. To prevent a secondary accident  
due to a fault, it is recommended to replace the electrolytic capacitor every 10 years when used in general  
environment.  
Please consult our sales representative.  
(7) General instruction  
To illustrate details, the equipment in the diagrams of this Instruction Manual may have been drawn  
without covers and safety guards. When the equipment is operated, the covers and safety guards must  
be installed as specified. Operation must be performed in accordance with this Instruction Manual.  
About processing of waste  
When you discard servo amplifier, a battery (primary battery), and other option articles, please follow the law of  
each country (area).  
FOR MAXIMUM SAFETY  
This product is not designed or manufactured to be used in equipment or systems in situations that can  
affect or endanger human life.  
When considering this product for operation in special applications such as machinery or systems used in  
passenger transportation, medical, aerospace, atomic power, electric power, or submarine repeating  
applications, please contact your nearest Mitsubishi sales representative.  
Although this product was manufactured under conditions of strict quality control, you are strongly advised  
to install safety devices to forestall serious accidents when it is used in facilities where a breakdown in the  
product is likely to cause a serious accident.  
EEP-ROM life  
The number of write times to the EEP-ROM, which stores parameter settings, etc., is limited to 100,000. If  
the total number of the following operations exceeds 100,000, the servo amplifier and/or converter unit may  
fail when the EEP-ROM reaches the end of its useful life.  
Write to the EEP-ROM due to parameter setting changes  
A - 6  
COMPLIANCE WITH EC DIRECTIVES  
1. WHAT ARE EC DIRECTIVES?  
The EC directives were issued to standardize the regulations of the EU countries and ensure smooth  
distribution of safety-guaranteed products. In the EU countries, the machinery directive (effective in  
January, 1995), EMC directive (effective in January, 1996) and low voltage directive (effective in January,  
1997) of the EC directives require that products to be sold should meet their fundamental safety  
requirements and carry the CE marks (CE marking). CE marking applies to machines and equipment  
into which servo amplifiers have been installed.  
(1) EMC directive  
The EMC directive applies not to the servo units alone but to servo-incorporated machines and  
equipment. This requires the EMC filters to be used with the servo-incorporated machines and  
equipment to comply with the EMC directive. For specific EMC directive conforming methods, refer to  
the EMC Installation Guidelines (IB(NA)67310).  
(2) Low voltage directive  
The low voltage directive applies also to servo units alone. Hence, they are designed to comply with  
the low voltage directive.  
This servo is certified by TUV, third-party assessment organization, to comply with the low voltage  
directive.  
(3) Machine directive  
Not being machines, the servo amplifiers need not comply with this directive.  
2. PRECAUTIONS FOR COMPLIANCE  
(1) Servo amplifiers and servo motors used  
Use the servo amplifiers and servo motors which comply with the standard model.  
Servo amplifier  
Servo motor  
:MR-J2S-10B to MR-J2S-22KB  
MR-J2S-10B1 to MR-J2S-40B1  
:HC-KFS  
HC-MFS  
HC-SFS  
HC-RFS  
HC-UFS  
HA-LFS  
HC-LFS  
(2) Configuration  
Control box  
Reinforced  
insulating type  
(Note)  
Reinforced  
insulating  
24VDC  
power  
supply  
No-fuse  
breaker  
Magnetic  
contactor  
transformer  
Servo  
motor  
Servo  
amplifier  
MC  
M
NFB  
Note. The insulating transformer is not required for the 11kW or more servo amplifier.  
(3) Environment  
Operate the servo amplifier at or above the contamination level 2 set forth in IEC60664-1. For this  
purpose, install the servo amplifier in a control box which is protected against water, oil, carbon, dust,  
dirt, etc. (IP54).  
A - 7  
(4) Power supply  
(a) Operate the servo amplifier 7kW or less to meet the requirements of the overvoltage category II set  
forth in IEC60664-1. For this purpose, a reinforced insulating transformer conforming to the IEC  
or EN standard should be used in the power input section.  
Since the 11kW or more servo amplifier can be used under the conditions of the overvoltage  
category III set forth in IE644, a reinforced insulating transformer is not required in the power  
input section.  
(b) When supplying interface power from external, use a 24VDC power supply which has been  
insulation-reinforced in I/O.  
(5) Grounding  
(a) To prevent an electric shock, always connect the protective earth (PE) terminals (marked ) of the  
servo amplifier to the protective earth (PE) of the control box.  
(b) Do not connect two ground cables to the same protective earth (PE) terminal Always connect the  
cables to the terminals one-to-one.  
PE terminals  
PE terminals  
(c) If a leakage current breaker is used to prevent an electric shock, the protective earth (PE)  
terminals of the servo amplifier must be connected to the corresponding earth terminals.  
(6) Wiring  
(a) The cables to be connected to the terminal block of the servo amplifier must have crimping  
terminals provided with insulating tubes to prevent contact with adjacent terminals.  
Crimping terminal  
Insulating tube  
Cable  
(b) Use the servo motor side power connector which complies with the EN Standard. The EN Standard  
compliant power connector sets are available from us as options.  
(7) Auxiliary equipment and options  
(a) The no-fuse breaker and magnetic contactor used should be the EN or IEC standard-compliant  
products of the models described in Section 12.2.2.  
(b) The sizes of the cables described in Section 12.2.1 meet the following requirements. To meet the  
other requirements, follow Table 5 and Appendix C in EN60204-1.  
Ambient temperature: 40 (104) [  
Sheath: PVC (polyvinyl chloride)  
(
)]  
Installed on wall surface or open table tray  
(c) Use the EMC filter for noise reduction.  
(8) Performing EMC tests  
When EMC tests are run on a machine/device into which the servo amplifier has been installed, it  
must conform to the electromagnetic compatibility (immunity/emission) standards after it has  
satisfied the operating environment/electrical equipment specifications.  
For the other EMC directive guidelines on the servo amplifier, refer to the EMC Installation  
Guidelines(IB(NA)67310).  
A - 8  
CONFORMANCE WITH UL/C-UL STANDARD  
(1) Servo amplifiers and servo motors used  
Use the servo amplifiers and servo motors which comply with the standard model.  
Servo amplifier  
Servo motor  
:MR-J2S-10B to MR-J2S-22KB  
MR-J2S-10B1 to MR-J2S-40B1  
:HC-KFS  
HC-MFS  
HC-SFS  
HC-RFS  
HC-UFS  
HA-LFS  
HC-LFS  
(2) Installation  
Install a fan of 100CFM (2.8m3/min) air flow 4 in (10.16 cm) above the servo amplifier or provide  
cooling of at least equivalent capability.  
(3) Short circuit rating  
This servo amplifier conforms to the circuit whose peak current is limited to 5000A or less. Having  
been subjected to the short-circuit tests of the UL in the alternating-current circuit, the servo  
amplifier conforms to the above circuit.  
(4) Capacitor discharge time  
The capacitor discharge time is as listed below. To ensure safety, do not touch the charging section for  
10 minutes after power-off.  
Discharge time  
Servo amplifier  
[min]  
MR-J2S-10B(1) 20B(1)  
MR-J2S-40B(1) 60B  
MR-J2S-70B to 350B  
MR-J2S-500B 700B  
MR-J2S-11KB  
1
2
3
5
4
6
8
MR-J2S-15KB  
MR-J2S-22KB  
(5) Options and auxiliary equipment  
Use UL/C-UL standard-compliant products.  
(6) Attachment of a servo motor  
For the flange size of the machine side where the servo motor is installed, refer to “CONFORMANCE  
WITH UL/C-UL STANDARD” in the Servo Motor Instruction Manual.  
(7) About wiring protection  
For installation in United States, branch circuit protection must be provided, in accordance with the  
National Electrical Code and any applicable local codes.  
For installation in Canada, branch circuit protection must be provided, in accordance with the Canada  
Electrical Code and any applicable provincial codes.  
A - 9  
<<About the manuals>>  
This Instruction Manual and the MELSERVO Servo Motor Instruction Manual are required if you use  
the General-Purpose AC servo MR-J2S-B for the first time. Always purchase them and use the MR-  
J2S-B safely.  
Also read the manual of the servo system controller.  
Relevant manuals  
Manual name  
Manual No.  
MELSERVO-J2-Super Series To Use the AC Servo Safely  
(Packed with the servo amplifier)  
IB(NA)0300010  
MELSERVO Servo Motor Instruction Manual  
EMC Installation Guidelines  
SH(NA)3181  
IB(NA)67310  
A - 10  
CONTENTS  
1. FUNCTIONS AND CONFIGURATION  
1- 1 to 1-22  
1.1 Introduction.............................................................................................................................................. 1- 1  
1.2 Function block diagram .......................................................................................................................... 1- 2  
1.3 Servo amplifier standard specifications................................................................................................ 1- 5  
1.4 Function list ............................................................................................................................................. 1- 6  
1.5 Model code definition .............................................................................................................................. 1- 7  
1.6 Combination with servo motor............................................................................................................... 1- 8  
1.7 Structure................................................................................................................................................... 1- 9  
1.7.1 Parts identification........................................................................................................................... 1- 9  
1.7.2 Removal and reinstallation of the front cover .............................................................................. 1-14  
1.8 Servo system with auxiliary equipment............................................................................................... 1-17  
2. INSTALLATION  
2- 1 to 2- 4  
2.1 Environmental conditions....................................................................................................................... 2- 1  
2.2 Installation direction and clearances .................................................................................................... 2- 2  
2.3 Keep out foreign materials ..................................................................................................................... 2- 3  
2.4 Cable stress.............................................................................................................................................. 2- 4  
3. SIGNALS AND WIRING  
3- 1 to 3-32  
3.1 Connection example of control signal system....................................................................................... 3- 2  
3.1.1 MR-J2S-700B or less ........................................................................................................................ 3- 2  
3.1.2 MR-J2S-11KB or more ..................................................................................................................... 3- 4  
3.2 I/O signals................................................................................................................................................. 3- 6  
3.2.1 Connectors and signal arrangements............................................................................................. 3- 6  
3.2.2 Signal explanations .......................................................................................................................... 3- 8  
3.3 Alarm occurrence timing chart .............................................................................................................. 3- 9  
3.4 Interfaces................................................................................................................................................. 3-10  
3.4.1 Common line .................................................................................................................................... 3-10  
3.4.2 Detailed description of the interfaces............................................................................................ 3-11  
3.5 Power line circuit.................................................................................................................................... 3-14  
3.5.1 Connection example......................................................................................................................... 3-14  
3.5.2 Terminals.......................................................................................................................................... 3-16  
3.5.3 Power-on sequence........................................................................................................................... 3-17  
3.6 Connection of servo amplifier and servo motor ................................................................................... 3-18  
3.6.1 Connection instructions .................................................................................................................. 3-18  
3.6.2 Connection diagram......................................................................................................................... 3-18  
3.6.3 I/O terminals .................................................................................................................................... 3-20  
3.7 Servo motor with electromagnetic brake ............................................................................................. 3-22  
3.8 Grounding................................................................................................................................................ 3-25  
3.9 Servo amplifier terminal block (TE2) wiring method......................................................................... 3-26  
3.10 Instructions for the 3M connector....................................................................................................... 3-27  
3.11 Control axis selection ........................................................................................................................... 3-28  
1
3.12 Power line circuit of the MR-J2S-11KB to MR-J2S-22KB............................................................... 3-29  
3.12.1 Connection example ...................................................................................................................... 3-29  
3.12.2 Servo amplifier terminals............................................................................................................. 3-30  
3.12.3 Servo motor terminals................................................................................................................... 3-31  
4. OPERATION AND DISPLAY  
4- 1 to 4- 8  
4.1 When switching power on for the first time.......................................................................................... 4- 1  
4.2 Start up..................................................................................................................................................... 4- 2  
4.3 Servo amplifier display ........................................................................................................................... 4- 4  
4.4 Test operation mode................................................................................................................................ 4- 6  
5. PARAMETERS  
5- 1 to 5-18  
5.1 Parameter write inhibit.......................................................................................................................... 5- 1  
5.2 Lists........................................................................................................................................................... 5- 1  
5.3 Analog monitor ....................................................................................................................................... 5-11  
5.4 Replacement of MR-J2- B by MR-J2S- B....................................................................................... 5-14  
5.4.1 Main modifications made to the parameters................................................................................ 5-14  
5.4.2 Explanation of the modified parameters....................................................................................... 5-15  
6. GENERAL GAIN ADJUSTMENT  
6- 1 to 6-12  
6.1 Different adjustment methods ............................................................................................................... 6- 1  
6.1.1 Adjustment on a single servo amplifier.......................................................................................... 6- 1  
6.1.2 Adjustment using MR Configurator (servo configuration software)........................................... 6- 3  
6.2 Auto tuning .............................................................................................................................................. 6- 4  
6.2.1 Auto tuning mode ............................................................................................................................. 6- 4  
6.2.2 Auto tuning mode operation............................................................................................................ 6- 5  
6.2.3 Adjustment procedure by auto tuning............................................................................................ 6- 6  
6.2.4 Response level setting in auto tuning mode................................................................................... 6- 7  
6.3 Manual mode 1 (simple manual adjustment)....................................................................................... 6- 8  
6.3.1 Operation of manual mode 1 ........................................................................................................... 6- 8  
6.3.2 Adjustment by manual mode 1 ....................................................................................................... 6- 8  
6.4 Interpolation mode ................................................................................................................................. 6-11  
6.5 Differences in auto tuning between MELSERVO-J2 and MELSERVO-J2-Super.......................... 6-12  
6.5.1 Response level setting ..................................................................................................................... 6-12  
6.5.2 Auto tuning selection....................................................................................................................... 6-12  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7- 1 to 7- 4  
7.1 Function block diagram .......................................................................................................................... 7- 1  
7.2 Machine resonance suppression filter................................................................................................... 7- 1  
7.3 Adaptive vibration suppression control................................................................................................. 7- 3  
7.4 Low-pass filter ......................................................................................................................................... 7- 4  
8. INSPECTION  
8- 1 to 8- 2  
2
9. TROUBLESHOOTING  
9- 1 to 9- 8  
9.1 Alarms and warning list ......................................................................................................................... 9- 1  
9.2 Remedies for alarms................................................................................................................................ 9- 2  
9.3 Remedies for warnings............................................................................................................................ 9- 8  
10. OUTLINE DIMENSION DRAWINGS  
10- 1 to 10-10  
10.1 Servo amplifiers...................................................................................................................................10- 1  
10.2 Connectors............................................................................................................................................10- 8  
11. CHARACTERISTICS  
11- 1 to 11- 8  
11.1 Overload protection characteristics...................................................................................................11- 1  
11.2 Power supply equipment capacity and generated loss ....................................................................11- 2  
11.3 Dynamic brake characteristics...........................................................................................................11- 5  
11.4 Encoder cable flexing life....................................................................................................................11- 7  
11.5 Inrush currents at power-on of main circuit and control circuit ....................................................11- 8  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12- 1 to 12-56  
12.1 Options..................................................................................................................................................12- 1  
12.1.1 Regenerative brake options .........................................................................................................12- 1  
12.1.2 Brake unit.....................................................................................................................................12-10  
12.1.3 Power regeneration converter ....................................................................................................12-12  
12.1.4 External dynamic brake..............................................................................................................12-15  
12.1.5 Cables and connectors.................................................................................................................12-18  
12.1.6 Maintenance junction card (MR-J2CN3TM) ............................................................................12-31  
12.1.7 Battery (MR-BAT, A6BAT).........................................................................................................12-32  
12.1.8 MR Configurator (servo configurations software)....................................................................12-33  
12.1.9 Power regeneration common converter.....................................................................................12-34  
12.1.10 Heat sink outside mounting attachment (MR-JACN)...........................................................12-38  
12.2 Auxiliary equipment ..........................................................................................................................12-41  
12.2.1 Recommended wires....................................................................................................................12-41  
12.2.2 No-fuse breakers, fuses, magnetic contactors...........................................................................12-44  
12.2.3 Power factor improving reactors................................................................................................12-44  
12.2.4 Power factor improving DC reactors..........................................................................................12-45  
12.2.5 Relays............................................................................................................................................12-46  
12.2.6 Surge absorbers ...........................................................................................................................12-46  
12.2.7 Noise reduction techniques.........................................................................................................12-46  
12.2.8 Leakage current breaker.............................................................................................................12-52  
12.2.9 EMC filter.....................................................................................................................................12-54  
13. ABSOLUTE POSITION DETECTION SYSTEM  
13- 1 to 13- 4  
13.1 Features................................................................................................................................................13- 1  
13.2 Specifications .......................................................................................................................................13- 2  
13.3 Battery installation procedure...........................................................................................................13- 3  
13.4 Confirmation of absolute position detection data.............................................................................13- 4  
3
Appendix  
App- 1 to App- 2  
App. Combination of servo amplifier and servo motor ......................................................................... App- 1  
4
Optional Servo Motor Instruction Manual CONTENTS  
The rough table of contents of the optional MELSERVO Servo Motor Instruction Manual is introduced  
here for your reference. Note that the contents of the Servo Motor Instruction Manual are not included in  
the Servo Amplifier Instruction Manual.  
1. INTRODUCTION  
2. INSTALLATION  
3. CONNECTORS USED FOR SERVO MOTOR WIRING  
4. INSPECTION  
5. SPECIFICATIONS  
6. CHARACTERISTICS  
7. OUTLINE DIMENSION DRAWINGS  
8. CALCULATION METHODS FOR DESIGNING  
5
MEMO  
6
1. FUNCTIONS AND CONFIGURATION  
1. FUNCTIONS AND CONFIGURATION  
1.1 Introduction  
The Mitsubishi MELSERVO-J2-Super series general-purpose AC servo is based on the MELSERVO-J2  
series and has further higher performance and higher functions.  
It is connected with a servo system controller or similar device via a serial bus (SSCNET) and the servo  
amplifier reads position data directly to perform operation.  
Data from a command unit controls the speed and rotation direction of the servo motor and executes  
precision positioning.  
A torque limit is imposed on the servo amplifier by the clamp circuit to protect the power transistor in the  
main circuit from overcurrent due to sudden acceleration/deceleration or overload. The torque limit value  
can be changed to any value with an external analog input or the parameter.  
As this new series has the RS-232C serial communication function, a MR Configurator (servo  
configuration software)-installed personal computer or the like can be used to perform parameter setting,  
test operation, status display monitoring, gain adjustment, etc.  
With real-time auto tuning, you can automatically adjust the servo gains according to the machine.  
The MELSERVO-J2-Super series servo motor is equipped with an absolute position encoder which has  
the resolution of 131072 pulses/rev to ensure more accurate control as compared to the MELSERVO-J2  
series. Simply adding a battery to the servo amplifier makes up an absolute position detection system.  
This makes home position return unnecessary at power-on or alarm occurrence by setting a home position  
once.  
1 - 1  
1. FUNCTIONS AND CONFIGURATION  
1.2 Function block diagram  
The function block diagram of this servo is shown below.  
(1) MR-J2S-350B or less  
Regenerative brake option  
Servo amplifier  
Servo motor  
U
P
D
C
(Note 2)  
Power  
(Note 1)  
DS  
RA  
NFB MC  
U
V
L1  
L2  
L3  
supply  
3-phase  
200 to  
230VAC,  
1-phase  
V
Current  
detector  
M
W
W
Regenerative  
TR  
CHARGE  
lamp  
230VAC or  
1-phase  
100to120VAC  
Dynamic  
brake  
Fan  
(MR-J2S-200B or more)  
E1  
Control  
circuit  
power  
supply  
Electro-  
magnetic  
brake  
L11  
L21  
E2  
Base amplifier  
Voltage  
detection  
Overcurrent Current  
protection detection  
Regenerative  
brake  
Encoder  
Virtual  
encoder  
Position command  
input  
Model position  
Model speed  
control  
control  
Virtual  
motor  
Model  
position  
Model  
speed  
Model  
torque  
Actual position  
control  
Actual speed  
control  
Current  
control  
MR-BAT  
I/F Control  
Optional battery  
(for absolute position  
detection system)  
RS-232C  
CN3  
D/A  
CN1A  
CN1B  
Analog monitor  
(2 channels)  
Controller  
or  
Servo amplifier  
or  
Servo amplifier  
termination  
connector  
Personal computer  
Note:1. The built-in regenerative brake resistor is not provided for the MR-J2S-10B(1).  
2. For 1-phase 230VAC, connect the power supply to L1,L2 and leave L3 open.  
L3 is not provided for a 1-phase 100to120VAC power supply.  
1 - 2  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J2S-500B, MR-J2S-700B  
Regenerative brake option  
Servo amplifier  
Servo motor  
U
P
C N  
DS  
L1  
RA  
Power  
NFB MC  
U
V
supply  
3-phase  
200 to  
V
Current  
detector  
L2  
L3  
M
W
W
Regenerative  
TR  
230VAC  
CHARGE  
lamp  
Dynamic  
brake  
Fan  
E1  
Control  
Electro-  
magnetic  
brake  
L11  
L21  
circuit  
power  
supply  
E2  
Base amplifier  
Voltage  
detection  
Overcurrent Current  
protection detection  
Regenerative  
brake  
Encoder  
Virtual  
encoder  
Position command  
input  
Model position  
Model speed  
control  
control  
Virtual  
motor  
Model  
position  
Model  
speed  
Model  
torque  
Actual position  
control  
Actual speed  
control  
Current  
control  
MR-BAT  
I/F Control  
Optional battery  
(for absolute position  
detection system)  
RS-232C  
CN3  
D/A  
CN1A  
CN1B  
Analog monitor  
(2 channels)  
Controller  
or  
Servo amplifier  
or  
Servo amplifier  
termination  
connector  
Personal computer  
1 - 3  
1. FUNCTIONS AND CONFIGURATION  
(3) MR-J2S-11KB or more  
Regenerative brake option  
Servo amplifier  
Servo motor  
U
P1  
P
C
N
NFB  
MC  
DS  
L1  
U
V
Power  
supply  
3-phase  
200 to  
CHAR-  
GE  
lamp  
Current  
detector  
L2  
L3  
V
M
Rege-  
nrative  
TR  
W
W
230VAC,  
1-phase  
230VAC  
Fan  
Control  
circuit  
power  
supply  
L11  
L21  
Electro-  
magnetic  
brake  
E1  
E2  
Regenerative  
brake  
Base  
amplifier  
Voltage Overcurrent Current  
detection protection detection  
Encoder  
Virtual  
motor encoder  
Virtual  
Position command  
input  
Model position  
Model speed  
control  
control  
Model  
position  
Model  
speed  
Model  
torque  
Actual position  
control  
Actual speed  
control  
Current  
control  
MR-BAT  
I/F Control  
D/A  
RS-232C  
CN3  
Optional battery  
(for absolute position  
detection system)  
CN1A  
CN1B  
CN4  
Analog monitor  
(2 channels)  
Servo amplifier  
or  
termination  
connector  
Controller  
or  
Servo amplifier  
Personal  
computer  
1 - 4  
1. FUNCTIONS AND CONFIGURATION  
1.3 Servo amplifier standard specifications  
Servo Amplifier  
MR-J2S- 10B 20B 40B 60B 70B 100B 200B 350B 500B 700B 11KB 15KB 22KB 10B1 20B1 40B1  
Item  
3-phase 200 to 230VAC,  
1-phase 100 to  
Voltage/frequency  
50/60Hz or 1-phase 230VAC, 3-phase 200 to 230VAC, 50/60Hz  
120VAC 50/60Hz  
50/60Hz  
3-phase 200 to 230VAC:170  
Permissible voltage  
fluctuation  
to 253VAC  
1-phase 85 to  
127VAC  
3-phase 170 to 253VAC  
1-phase 230VAC: 207 to  
253VAC  
Permissible frequency  
fluctuation  
Within 5%  
Power supply capacity  
Inrush current  
Refer to Section 11.2  
Refer to Section 11.5  
Control system  
Dynamic brake  
Sine-wave PWM control, current control system  
Built-in  
Overcurrent shut-off, regenerative overvoltage shut-off, overload shut-off (electronic thermal  
relay), servo motor overheat protection, encoder fault protection, regenerative fault protection,  
undervoltage, instantaneous power failure protection, overspeed protection, excessive error  
protection  
Protective functions  
Structure  
Force-cooling, open  
(IP00)  
Self-cooled,  
open(IP00)  
Self-cooled, open (IP00)  
External  
[
[
[
[
]
]
]
]
0 to 55 (non-freezing)  
During  
operation  
32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
Ambient  
temperature  
In storage  
During  
Ambient  
humidity  
operation  
In storage  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Ambient  
Altitude  
Vibration  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280ft) above sea level  
5.9 [m/s2] or less  
19.4 [ft/s2] or less  
[kg] 0.7 0.7 1.1 1.1 1.7 1.7 2.0 2.0 4.9 7.2 16  
16  
20 0.7 0.7 1.1  
Mass  
[lb] 1.5 1.5 2.4 2.4 3.75 3.75 4.4 4.4 10.8 15.9 35.3 35.3 44.1 1.5 1.5 2.4  
1 - 5  
1. FUNCTIONS AND CONFIGURATION  
1.4 Function list  
The following table lists the functions of this servo. For details of the functions, refer to the reference field.  
Function  
Description  
Reference  
High-resolution encoder  
Absolute position detection  
system  
High-resolution encoder of 131072 pulses/rev is used as a servo motor encoder.  
Merely setting a home position once makes home position return unnecessary  
at every power-on.  
Chapter 13  
Adaptive vibration  
suppression control  
Servo amplifier detects mechanical resonance and sets filter characteristics  
automatically to suppress mechanical vibration.  
Section 7.3  
Section 7.4  
Suppresses high-frequency resonance which occurs as servo system response is  
increased.  
Low-pass filter  
Analyzes the frequency characteristic of the mechanical system by simply  
connecting a MR Configurator (servo configuration software)-installed personal  
computer and servo amplifier.  
Machine analyzer function  
Can simulate machine motions on a personal computer screen on the basis of  
the machine analyzer results. The MR Configurator (servo configuration  
software) is required.  
Machine simulation  
Gain search function  
Personal computer changes gains automatically and searches for overshoot-  
free gains in a short time. The MR Configurator (servo configuration software)  
is required.  
Slight vibration suppression  
control  
Suppresses vibration of 1 pulse produced at a servo motor stop.  
Parameter No.24  
Automatically adjusts the gain to optimum value if load applied to the servo  
Auto tuning  
motor shaft varies. Higher in performance than MELSERVO-J2 series servo Chapter 6  
amplifier.  
Used when the built-in regenerative brake resistor of the servo amplifier does  
not have sufficient regenerative capability for the regenerative power Section 12.1.1  
generated.  
Regenerative brake option  
Brake unit  
Used when the regenerative brake option cannot provide enough regenerative  
power.  
Section 12.1.2  
Section 12.1.3  
Can be used with the MR-J2S-500B to MR-J2S-22KB.  
Used when the regenerative brake option cannot provide enough regenerative  
power.  
Return converter  
Torque limit  
Can be used with the MR-J2S-500B to MR-J2S-22KB.  
Parameters  
No.10, 11  
Servo motor torque can be limited to any value.  
Forced stop signal automatic  
ON  
Forced stop (EM1) can be automatically switched on internally to invalidate it. Parameter No.23  
Output signal (DO) forced  
output  
Output signal can be forced on/off independently of the servo status.  
Use this function for output signal wiring check, etc.  
Section 4.4  
(1) (e)  
Test operation mode  
Analog monitor output  
MR Configurator  
JOG operation positioning operation motor-less operation DO forced output Section 4.4  
Servo status is output in terms of voltage in real time.  
Parameter No. 22  
Using a personal computer, parameter setting, test operation, status display,  
Section 12.1.8  
(Servo configuration software) etc. can be performed.  
1 - 6  
1. FUNCTIONS AND CONFIGURATION  
1.5 Model code definition  
(1) Rating plate  
AC SERVO  
MITSUBISHI  
Model  
MODEL  
MR-J2S-60B  
Capacity  
POWER : 600W  
INPUT : 3.2A 3PH 1PH200-230V 50Hz  
3PH 1PH200-230V 60Hz  
5.5A 1PH 230V 50/60Hz  
Applicable power supply  
OUTPUT : 170V 0-360Hz 3.6A  
SERIAL : A5  
Rated output current  
Serial number  
TC3 AAAAG52  
PASSED  
MITSUBISHI ELECTRIC CORPORATION  
MADE IN JAPAN  
(2) Model  
MR–J2S–  
B
MR–J2S–100B or less  
MR–J2S–200B 350B  
With no regenerative resistor  
Series  
Symbol  
Description  
Indicates a servo amplifier  
of 11 to 22kw that does not  
use a regenerative resistor  
as standard accessory.  
–PX  
Rating plate  
Power Supply  
Symbol  
Rating plate  
Power supply  
3-phase 200 to 230VAC  
(Note2) 1-phase 230VAC  
MR-J2S-500B  
MR-J2S-700B  
None  
(Note1)  
1
1-phase 100V to 120VAC  
Note:1. Not supplied to the servo amplifier  
of MR-J2S-60B or more.  
2. Not supplied to the servo amplifier  
of MR-J2S-100B or more.  
SSCNET compatible  
Rated output  
Rating plate  
MR-J2S-11KB 15KB  
Rating plate  
Rated  
output [kW]  
Rated  
output [kW]  
Symbol  
Symbol  
MR-J2S-22KB  
10  
20  
40  
60  
70  
0.1  
0.2  
0.4  
0.6  
0.75  
1
350  
500  
700  
11k  
15k  
22k  
3.5  
5
7
11  
15  
22  
100  
200  
2
Rating plate  
Rating plate  
1 - 7  
1. FUNCTIONS AND CONFIGURATION  
1.6 Combination with servo motor  
The following table lists combinations of servo amplifiers and servo motors. The same combinations apply  
to the models with electromagnetic brakes and the models with reduction gears.  
Servo motors  
HC-SFS  
HC-UFS  
Servo amplifier  
HC-KFS  
HC-MFS  
HC-RFS  
1000r/min 2000r/min 3000r/min  
2000r/min  
3000r/min  
MR-J2S-10B(1)  
MR-J2S-20B(1)  
MR-J2S-40B(1)  
MR-J2S-60B  
053 13  
23  
053 13  
23  
13  
23  
43  
43  
43  
52  
53  
MR-J2S-70B  
(Note) 73  
73  
72  
73  
MR-J2S-100B  
MR-J2S-200B  
MR-J2S-350B  
81  
102  
103  
121 201 152 202 153 203  
103 153  
152  
301  
352  
353  
(Note 1) 203 (Note1)202  
(Note1)  
(Note1)  
MR-J2S-500B  
MR-J2S-700B  
(Note1)502  
(Note1)702  
353 503  
352 502  
Servo motors  
Servo amplifier  
HA-LFS  
(Note1)  
HC-LFS  
1000r/min  
1500r/min  
2000r/min  
MR-J2S-60B  
MR-J2S-100B  
MR-J2S-200B  
MR-J2S-350B  
MR-J2S-500B  
MR-J2S-700B  
52  
102  
152  
202  
302  
(Note1)502  
(Note2)601 (Note2)701M (Note1)702  
(Note1)  
(Note1)  
11K1M  
(Note1)  
15K1M  
(Note1)  
22K1M  
(Note1)  
11K2  
MR-J2S-11KB  
MR-J2S-15KB  
MR-J2S-22KB  
801 12K1  
(Note1)  
15K2  
(Note1)15K1  
(Note1)  
(Note1)  
22K2  
20K1 25K1  
Note1: These servo motors may not be connected depending on the production time of the servo amplifier. Please refer to app.  
2: Consult us since the servo amplifier to be used with any of these servo motors is optional.  
1 - 8  
1. FUNCTIONS AND CONFIGURATION  
1.7 Structure  
1.7.1 Parts identification  
(1) MR-J2S-100B or less  
Name/Application  
Reference  
Battery holder  
Contains the battery for absolute position data backup.  
Section13.3  
Battery connector (CON1)  
Used to connect the battery for absolute position data  
backup.  
Section13.3  
Chapter4  
Display  
The two-digit, seven-segment LED shows the servo  
status and alarm number.  
Axis select switch (CS1)  
CS1  
Used to set the axis number of the  
8
servo amplifier.  
0
Section3.11  
Bus cable connector (CN1A)  
Used to connect the servo system controller or  
preceding axis servo amplifier.  
Section3.2  
Section3.2  
Bus cable connector (CN1B)  
Used to connect the subsequent axis servo amplifier  
or termination connector (MR-A-TM).  
Communication connector (CN3)  
Used to connect a personal computer (RS-232C) or  
output analog monitor data.  
Section3.2  
Section12.1.5  
Name plate  
Section1.5  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Encoder connector (CN2)  
Section3.2  
Connector for connection of the servo motor encoder. Section12.1.5  
Main circuit terminal block (TE1)  
Used to connect the input power supply and servo  
motor.  
Section3.5.2  
Section10.1  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply and  
regenerative brake option.  
Section3.5.2  
Section10.1  
Section12.1.1  
Section3.8  
Section10.1  
Protective earth (PE) terminal (  
Ground terminal.  
)
1 - 9  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J2S-200B MR-J2S-350B  
POINT  
The servo amplifier is shown without the front cover. For removal of the  
front cover, refer to Section 1.7.2.  
Name/Application  
Reference  
Battery holder  
Contains the battery for absolute position data backup.  
Section13.3  
Battery connector (CON1)  
Used to connect the battery for absolute position data  
backup.  
Section13.3  
Chapter4  
Display  
The two-digit, seven-segment LED shows the servo  
status and alarm number.  
Axis select switch (CS1)  
CS1  
Used to set the axis number of  
8
the servo amplifier.  
0
Section3.11  
Bus cable connector (CN1A)  
Used to connect the servo system controller or  
preceding axis servo amplifier.  
Section3.2  
Section3.2  
Bus cable connector (CN1B)  
Used to connect the subsequent axis servo amplifier  
or termination connector (MR-A-TM).  
Communication connector (CN3)  
Used to connect a personal computer (RS-232C) or  
output analog monitor data.  
Section3.2  
Section12.1.5  
Name plate  
Section1.5  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Encoder connector (CN2)  
Section3.2  
Connector for connection of the servo motor encoder. Section12.1.5  
Main circuit terminal block (TE1)  
Section3.5.2  
Used to connect the input power supply and servo  
Section10.1  
motor.  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply and  
regenerative brake option.  
Section3.5.2  
Section10.1  
Section12.1.1  
Cooling fan  
Section3.8  
Section10.1  
Protective earth (PE) terminal (  
Ground terminal.  
)
Installation notch  
(4 places)  
1 - 10  
1. FUNCTIONS AND CONFIGURATION  
(3) MR-J2S-500B  
POINT  
The servo amplifier is shown without the front cover. For removal of the  
front cover, refer to Section 1.7.2.  
Name/Application  
Battery connector (CON1)  
Reference  
Used to connect the battery for absolute position data Section13.3  
backup.  
Battery holder  
Contains the battery for absolute position data backup.  
Section13.3  
Display  
The two-digit, seven-segment LED shows the servo  
status and alarm number.  
Chapter4  
Axis select switch (CS1)  
CS1  
Used to set the axis number of the  
8
servo amplifier.  
0
Section3.11  
Installation notch  
(4 places)  
Bus cable connector (CN1A)  
Used to connect the servo system controller or  
preceding axis servo amplifier.  
Section3.2  
Section3.2  
Bus cable connector (CN1B)  
Used to connect the subsequent axis servo amplifier  
or termination connector (MR-A-TM).  
Communication connector (CN3)  
Used to connect a personal computer (RS-232C) or  
output analog monitor data.  
Section3.2  
Section12.1.5  
Encoder connector (CN2)  
Connector for connection of the servo motor encoder.  
Section3.2  
Section12.1.5  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply.  
Section3.5.2  
Section10.1  
Section12.1.1  
Main circuit terminal block (TE1)  
Used to connect the input power supply, regenerative  
brake option and servo motor.  
Section3.5.2  
Section10.1  
Cooling fan  
Name plate  
Section1.5  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section3.8  
Section10.1  
1 - 11  
1. FUNCTIONS AND CONFIGURATION  
(4) MR-J2S-700B  
POINT  
The servo amplifier is shown without the front cover. For removal of the  
front cover, refer to Section 1.7.2.  
Name/Application  
Battery connector (CON1)  
Reference  
Used to connect the battery for absolute position data Section13.3  
backup.  
Battery holder  
Contains the battery for absolute position data backup.  
Section13.3  
Display  
The two-digit, seven-segment LED shows the servo  
status and alarm number.  
Chapter4  
Axis select switch (CS1)  
CS1  
Used to set the axis number of the  
8
servo amplifier.  
Section3.11  
0
Bus cable connector (CN1A)  
Used to connect the servo system controller or  
preceding axis servo amplifier.  
Section3.2  
Section3.2  
Bus cable connector (CN1B)  
Used to connect the subsequent axis servo amplifier  
or termination connector (MR-A-TM).  
Communication connector (CN3)  
Used to connect a personal computer (RS-232C) or  
output analog monitor data.  
Section3.2  
Section12.1.5  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply.  
Section3.5.2  
Section10.1  
Section12.1.1  
Encoder connector (CN2)  
Connector for connection of the servo motor encoder.  
Section3.2  
Section12.1.5  
Name plate  
Section1.5  
Main circuit terminal block (TE1)  
Used to connect the input power supply, regenerative  
brake option and servo motor.  
Section3.5.2  
Section10.1  
Cooling fan  
Installation notch  
(4 places)  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section3.8  
Section10.1  
1 - 12  
1. FUNCTIONS AND CONFIGURATION  
(5) MR-J2S-11KB or more  
POINT  
The servo amplifier is shown without the front cover. For removal of the  
front cover, refer to Section 1.7.2.  
Name/Application  
Reference  
Axis select switch (CS1)  
CS1  
0
Used to set the axis number of  
the servo amplifier.  
Section3.11  
8
Display  
The two-digit, seven-segment LED shows the servo  
status and alarm number.  
Chapter4  
Battery holder  
Contains the battery for absolute position data backup.  
Section13.3  
Battery connector (CON1)  
Used to connect the battery for absolute position data Section13.3  
backup.  
Monitor output terminal (CN4)  
Section3.2  
Used to output monitor values on two channels in the  
Section12.1.5  
form of analog signals.  
Cooling fan  
Communication connector (CN3)  
Section3.2  
Used to connect a personal computer (RS-232C) .  
Section12.1.5  
Bus cable connector (CN1A)  
Used to connect the servo system controller or  
preceding axis servo amplifier.  
Section3.2  
Section3.2  
Bus cable connector (CN1B)  
Used to connect the subsequent axis servo amplifier  
or termination connector (MR-A-TM).  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Section3.5.2  
Sectin10.1  
Sectio12.1.1  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply.  
Encoder connector (CN2)  
Connector for connection of the servo motor encoder.  
Section3.2  
Sectio12.1.5  
I/O signal connector (CON2)  
Section3.2  
Used to connect digital I/O signals.  
Section12.1.5  
Rating plate  
Section1.5  
Main circuit terminal block (TE1)  
Used to connect the input power supply, regenerative  
brake option and servo motor.  
Section3.5.2  
Sectio10.1  
Installation notch  
(4 places)  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section3.8  
Sectio10.1  
1 - 13  
1. FUNCTIONS AND CONFIGURATION  
1.7.2 Removal and reinstallation of the front cover  
To avoid the risk of an electric shock, do not open the front cover while power is  
on.  
CAUTION  
(1) For MR-J2S-350B or less  
Removal of the front cover  
1)  
Reinstallation of the front cover  
Front cover hook  
(2 places)  
2)  
2)  
Front cover  
1)  
Front cover socket  
(2 places)  
1) Hold down the removing knob.  
2) Pull the front cover toward you.  
1) Insert the front cover hooks into the front cover sockets of  
the servo amplifier.  
2) Press the front cover against the servo amplifier until the  
removing knob clicks.  
(2) For MR-J2S-500B  
Removal of the front cover  
1)  
Reinstallation of the front cover  
Front cover hook  
(2 places)  
2)  
2)  
1)  
Front cover  
Front cover socket  
(2 places)  
1) Hold down the removing knob.  
2) Pull the front cover toward you.  
1) Insert the front cover hooks into the front cover sockets of  
the servo amplifier.  
2) Press the front cover against the servo amplifier until the  
removing knob clicks.  
1 - 14  
1. FUNCTIONS AND CONFIGURATION  
(3) For MR-J2S-700B  
Removal of the front cover  
Reinstallation of the front cover  
Front cover  
hook  
(2 places)  
A)  
B)  
2)  
2)  
1)  
A)  
1)  
Front cover socket  
(2 places)  
1) Push the removing knob A) or B), and put you  
finger into the front hole of the front cover.  
2) Pull the front cover toward you.  
1) Insert the two front cover hooks at the bottom into the  
sockets of the servo amplifier.  
2) Press the front cover against the servo amplifier until the  
removing knob clicks.  
(4) For MR-J2S-11KB or more  
Removal of the front cover  
Mounting screws  
(2 places)  
Mounting screws (2 places)  
2) Remove the front cover mounting screws (2 places).  
1) Remove the front cover mounting screws (2 places)  
and remove the front cover.  
3) Remove the front cover by drawing it in the direction of arrow.  
1 - 15  
1. FUNCTIONS AND CONFIGURATION  
Reinstallation of the front cover  
Mounting screws  
(2 places)  
2) Fix it with the mounting screws (2 places).  
1) Insert the front cover in the direction of arrow.  
Mounting screws (2 places)  
3) Fit the front cover and fix it with the mounting screws (2 places).  
1 - 16  
1. FUNCTIONS AND CONFIGURATION  
1.8 Servo system with auxiliary equipment  
To prevent an electric shock, always connect the protective earth (PE) terminal  
(terminal marked ) of the servo amplifier to the protective earth (PE) of the control  
box.  
WARNING  
(1) MR-J2S-100B or less  
(a) For 3-phase 200V to 230VAC or 1-phase 230VAC  
(Note2)  
3-phase 200V  
to 230VAC power  
supply or  
1-phase 230VAC  
power supply  
Options and auxiliary equipment  
No-fuse breaker  
Options and auxiliary equipment  
Reference  
Reference  
Section 12.2.2  
Section 12.1.1  
Section 12.2.1  
Regenerative brake option  
Magnetic contactor  
Section 12.2.2 Cables  
MR Configurator  
(Servo configuration software)  
Power factor improving reactor Section 12.2.3  
Section 12.1.8  
No-fuse breaker  
(NFB) or fuse  
Servo system  
controller  
Servo amplifier  
or  
preceding axis  
servo amplifier  
To CN1A  
Subsequent axis  
servo amplifier  
CN1A  
Magnetic  
contactor  
(MC)  
or  
Termination  
connector  
To CN1B  
To CN3  
Power  
factor  
MR Configurator  
(Servo configuration  
software  
improving  
reactor  
(FR-BAL)  
CHARGE  
Personal  
computer  
MRZJW3-SETUP151E)  
To CN2  
L1  
L2  
L3  
U
V
W
Protective earth(PE) terminal  
(Note1)  
Encoder cable  
(Note1)  
Power supply lead  
Control circuit terminal block  
L21  
D
L11  
P
Regenerative brake  
option  
Servo motor  
C
Note: 1. The HC-SFS, HC-RFS series have cannon connectors.  
2. A 1-phase 230VAC power supply may be used with the servo amplifier of MR-J2S-70B or less. Connect the power supply to  
L1 and L2 terminals and leave L3 open.  
1 - 17  
1. FUNCTIONS AND CONFIGURATION  
(b) For 1-phase 100V to 120VAC  
1-phase 100VAC  
power supply  
Options and auxiliary equipment  
No-fuse breaker  
Reference  
Options and auxiliary equipment  
Reference  
Section 12.2.2  
Section 12.2.2  
Regenerative brake option  
Cables  
Section 12.1.1  
Section 12.2.1  
Magnetic contactor  
MR Configurator  
(Servo configuration software)  
Power factor improving reactor Section 12.2.3  
Section 12.1.8  
No-fuse breaker  
(NFB) or fuse  
Servo system  
controller  
Servo amplifier  
or  
preceding axis  
servo amplifier  
To CN1A  
To CN1B  
To CN3  
Subsequent axis  
servo amplifier  
CN1A  
Magnetic  
contactor  
(MC)  
or  
Termination  
connector  
MR Configurator  
(Servo configuration  
software  
CHARGE  
Personal  
computer  
Power  
factor  
MRZJW3-SETUP151E)  
To CN2  
improving  
reactor  
(FR-BAL)  
L1  
L2  
U
V
W
Protective earth(PE) terminal  
(Note)  
Encoder cable  
(Note)  
Power supply lead  
Control circuit terminal block  
D
L21  
L11  
P
Regenerative brake  
option  
Servo motor  
C
Note: The HC-SFS, HC-RFS series have cannon connectors.  
1 - 18  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J2S-200B MR-J2S-350B  
3-phase 200V  
to 230VAC  
power supply  
Options and auxiliary equipment  
No-fuse breaker  
Options and auxiliary equipment  
Reference  
Reference  
Section 12.2.2  
Regenerative brake option  
Section 12.1.1  
Section 12.2.1  
Magnetic contactor  
Section 12.2.2 Cables  
MR Configurator  
(Servo configuration software)  
Power factor improving reactor Section 12.2.3  
Section 12.1.8  
No-fuse  
breaker  
(NFB) or  
fuse  
Servo system  
controller  
Servo amplifier  
or  
Preceding axis  
servo amplifier  
Subsequent axis  
servo amplifier  
CN1A  
To CN1A  
Magnetic  
contactor  
(MC)  
or  
Termination  
connector  
To CN1B  
To CN3  
MR Configurator  
(Servo  
configuration  
software  
MRZJW3-  
SETUP151E)  
Power factor  
improving  
reactor  
To CN2  
L11  
Personal  
computer  
(FA-BAL)  
L21  
L1  
L2  
L3  
U
V
P
C
W
Regenerative brake option  
1 - 19  
1. FUNCTIONS AND CONFIGURATION  
(3) MR-J2S-500B  
3-phase 200V  
to 230VAC  
power supply  
Options and auxiliary equipment  
Options and auxiliary equipment  
Reference  
Reference  
Section 12.1.1  
Section 12.2.1  
No-fuse breaker  
Section 12.2.2  
Regenerative brake option  
Magnetic contactor  
Section 12.2.2 Cables  
MR Configurator  
(Servo configuration software)  
Power factor improving reactor Section 12.2.3  
Section 12.1.8  
No-fuse  
breaker  
(NFB) or  
fuse  
Servo system  
controller  
Magnetic  
contactor  
(MC)  
or  
Preceding axis  
servo amplifier  
Servo amplifier  
Power  
factor  
Subsequent axis  
servo amplifier  
CN1A  
To CN1A  
improving  
reactor  
(FA-BAL)  
L1  
L2  
L3  
or  
MR  
Configurator  
(Servo  
configuration  
software  
MRZJW3-  
SETUP151E)  
Termination  
connector  
To CN1B  
To CN3  
To CN2  
(Note)  
Regenerative brake  
option  
C
P
Personal  
computer  
U
V
W
L11  
L21  
Note. When using the regenerative brake option, remove the lead wires of the built-in regenerative brake resistor.  
1 - 20  
1. FUNCTIONS AND CONFIGURATION  
(4) MR-J2S-700B  
Options and auxiliary equipment  
Options and auxiliary equipment  
Reference  
Reference  
No-fuse breaker  
Section 12.2.2  
Regenerative brake option  
Section 12.1.1  
Section 12.2.1  
Magnetic contactor  
Section 12.2.2 Cables  
3-phase 200V  
to 230VAC  
power supply  
MR Configurator  
(Servo configuration software)  
Power factor improving reactor Section 12.2.3  
Section 12.1.8  
Servo system  
controller  
No-fuse  
breaker  
(NFB) or  
fuse  
or  
Preceding axis  
servo amplifier  
Servo amplifier  
L11  
Subsequent axis  
servo amplifier  
CN1A  
To CN1A  
L21  
or  
Termination  
connector  
MR  
Configurator  
(Servo  
configuration  
software  
MRZJW3-  
SETUP151E)  
Magnetic  
contactor  
(MC)  
To CN1B  
To CN3  
Personal  
computer  
Power  
factor  
improving  
reactor  
(FA-BAL)  
To CN2  
L3  
L2  
L1  
U
V
W
C
P
(Note) Regenerative brake  
option  
Note. When using the regenerative brake option, remove the lead wires of the built-in regenerative brake resistor.  
1 - 21  
1. FUNCTIONS AND CONFIGURATION  
(5) MR-J2S-11KB or more  
Options and auxiliary equipment  
No-fuse breaker  
Reference  
Options and auxiliary equipment  
Reference  
Section 12.2.2  
Regenerative brake option  
Section 12.1.1  
Section 12.2.1  
3-phase 200V to  
230VAC power supply  
MR Configurator  
Magnetic contactor  
Section 12.2.2 Cables  
Power factor improving reactor Section 12.2.3  
Section 12.1.8  
(Servo configuration software)  
Power factor improving DC  
Section 12.2.4  
reactor  
No-fuse breaker(NFB)  
or fuse  
MR Configurator  
(Servo configuration  
software  
MRZJW3-SETUP151E)  
Personal  
computer  
To CN3  
L21  
L11  
Magnetic  
contactor  
(MC)  
Analog monitor  
To CN4  
Servo system  
controller or  
MITSUBISHI  
Preceding axis  
servo amplifier  
To CN1A  
(Note 2)  
Power factor  
improving  
reactor  
Subsequent axis  
servo amplifier  
CN1A or  
(FR-BAL)  
Terminal  
To CN1B  
To CON2  
To CN2  
connector  
L3  
L2  
L1  
Forced stop etc.  
C
P
Regenerative  
brake option  
(Note 2)  
Power factor improving  
DC reactor (FR-BEL)  
(Note 1)  
BW  
BV  
U V W  
BU  
Servo motor  
HA-LFS series  
Note1: There is no BW when the HA-LFS 11K2 is used.  
Note2: Use either the FR-BAL or FR-BEL power factor improving reactor.  
1 - 22  
2. INSTALLATION  
2. INSTALLATION  
Stacking in excess of the limited number of products is not allowed.  
Install the equipment to incombustibles. Installing them directly or close to  
combustibles will led to a fire.  
Install the equipment in a load-bearing place in accordance with this Instruction  
Manual.  
Do not get on or put heavy load on the equipment to prevent injury.  
Use the equipment within the specified environmental condition range.  
Provide an adequate protection to prevent screws, metallic detritus and other  
conductive matter or oil and other combustible matter from entering the servo  
amplifier.  
CAUTION  
Do not block the intake/exhaust ports of the servo amplifier. Otherwise, a fault may  
occur.  
Do not subject the servo amplifier to drop impact or shock loads as they are  
precision equipment.  
Do not install or operate a faulty servo amplifier.  
When the product has been stored for an extended period of time, consult  
Mitsubishi.  
2.1 Environmental conditions  
Environment  
Conditions  
[
[
[
[
]
]
]
]
0 to 55 (non-freezing)  
32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
During  
operation  
Ambient  
temperature  
In storage  
During operation  
In storage  
Ambient  
humidity  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Ambience  
Altitude  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280 ft) above sea level  
[m/s2] 5.9 [m/s2] or less  
[ft/s2] 19.4 [ft/s2] or less  
Vibration  
2 - 1  
2. INSTALLATION  
2.2 Installation direction and clearances  
The equipment must be installed in the specified direction. Otherwise, a fault may  
occur.  
CAUTION  
Leave specified clearances between the servo amplifier and control box inside  
walls or other equipment.  
(1) Installation of one servo amplifier  
Control box  
Control box  
40mm  
(1.6 in.)  
or more  
Servo amplifier  
Wiring clearance  
70mm  
Top  
(2.8 in.)  
10mm  
10mm  
(0.4 in.)  
or more  
(0.4 in.)  
or more  
Bottom  
40mm  
(1.6 in.)  
or more  
2 - 2  
2. INSTALLATION  
(2) Installation of two or more servo amplifiers  
Leave a large clearance between the top of the servo amplifier and the internal surface of the control  
box, and install a fan to prevent the internal temperature of the control box from exceeding the  
environmental conditions.  
Control box  
100mm  
(4.0 in.)  
or more  
10mm  
(0.4 in.)  
or more  
Servo  
amplifier  
30mm  
30mm  
(1.2 in.)  
or more  
(1.2 in.)  
or more  
40mm  
(1.6 in.)  
or more  
(3) Others  
When using heat generating equipment such as the regenerative brake option, install them with full  
consideration of heat generation so that the servo amplifier is not affected.  
Install the servo amplifier on a perpendicular wall in the correct vertical direction.  
2.3 Keep out foreign materials  
(1) When installing the unit in a control box, prevent drill chips and wire fragments from entering the  
servo amplifier.  
(2) Prevent oil, water, metallic dust, etc. from entering the servo amplifier through openings in the control  
box or a fan installed on the ceiling.  
(3) When installing the control box in a place where there are much toxic gas, dirt and dust, conduct an  
air purge (force clean air into the control box from outside to make the internal pressure higher than  
the external pressure) to prevent such materials from entering the control box.  
2 - 3  
2. INSTALLATION  
2.4 Cable stress  
(1) The way of clamping the cable must be fully examined so that flexing stress and cable's own weight  
stress are not applied to the cable connection.  
(2) For use in any application where the servo motor moves, fix the cables (encoder, power supply, brake)  
supplied with the servo motor, and flex the optional encoder cable or the power supply and brake  
wiring cables. Use the optional encoder cable within the flexing life range. Use the power supply and  
brake wiring cables within the flexing life of the cables.  
(3) Avoid any probability that the cable sheath might be cut by sharp chips, rubbed by a machine corner  
or stamped by workers or vehicles.  
(4) For installation on a machine where the servo motor will move, the flexing radius should be made as  
large as possible. Refer to section 11.4 for the flexing life.  
2 - 4  
3. SIGNALS AND WIRING  
3. SIGNALS AND WIRING  
Any person who is involved in wiring should be fully competent to do the work.  
Before starting wiring, make sure that the voltage is safe in the tester more than 10  
minutes after power-off. Otherwise, you may get an electric shock.  
Ground the servo amplifier and the servo motor securely.  
WARNING  
Do not attempt to wire the servo amplifier and servo motor until they have been  
installed. Otherwise, you may get an electric shock.  
The cables should not be damaged, stressed excessively, loaded heavily, or  
pinched. Otherwise, you may get an electric shock.  
Wire the equipment correctly and securely. Otherwise, the servo motor may  
misoperate, resulting in injury.  
Connect cables to correct terminals to prevent a burst, fault, etc.  
Ensure that polarity ( , ) is correct. Otherwise, a burst, damage, etc. may occur.  
The surge absorbing diode installed to the DC relay designed for control output  
should be fitted in the specified direction. Otherwise, the signal is not output due to  
a fault, disabling the forced stop(EM1) and other protective circuits.  
Servo  
Amplifier  
Servo amplifier  
COM  
COM  
(24VDC)  
(DC24V)  
CAUTION  
Control  
output  
signal  
Control output  
signal  
RA  
RA  
Use a noise filter, etc. to minimize the influence of electromagnetic interference,  
which may be given to electronic equipment used near the servo amplifier.  
Do not install a power capacitor, surge suppressor or radio noise filter (FR-BIF  
option) with the power line of the servo motor.  
When using the regenerative brake resistor, switch power off with the alarm signal.  
Otherwise, a transistor fault or the like may overheat the regenerative brake  
resistor, causing a fire.  
Do not modify the equipment.  
POINT  
CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of  
the connectors will lead to a failure. Connect them correctly.  
3 - 1  
3. SIGNALS AND WIRING  
3.1 Connection example of control signal system  
POINT  
Refer to Section 3.5 for the connection of the power supply system and to  
Section 3.6 for connection with the servo motor.  
3.1.1 MR-J2S-700B or less  
Servo amplifier  
(Note 5)  
CN3  
6
LA  
16 LAR  
LB  
17 LBR  
LZ  
Encoder A-phase pulse  
(differential line driver)  
7
Encoder B-phase pulse  
(differential line driver)  
(Note15)  
8
Encoder Z-phase pulse  
(differential line driver)  
(Note 9)  
18 LZR  
Plate SD  
MR Configurator  
(Servo configuration  
software)  
(Note 4)  
Personal computer  
CN3  
(Note 5,8)  
CN3  
2m(6.56ft) or less  
(Note 3,4,7)  
Forced stop  
20 EM1  
15m(49.2ft)  
or less  
3
4
1
SG  
MO1  
LG  
A
A
Analog monitor output  
Max. 1mA  
Reading in  
10k  
10k  
14 MO2  
both directions  
LG  
SD  
11  
Plate  
13  
Servo system controller  
(Note 2,6)  
(Note 10, 14)  
Bus cable (Option)  
RA1  
MBR  
COM  
(Note 5)  
CN1A  
Magnetic brake  
interlock  
5
10 VDD  
CS1  
Always connect.  
Cable clamp  
(Option)  
(Note 5)  
CN1B  
Setting:0 (Note 1)  
MR-J2S-B  
(2 axis)  
CN1A  
(Note 11)  
CS1  
CN1B  
Setting 1  
MR-J2S-B  
(3 axis)  
(Note 10, 14)  
Bus cable  
(Option)  
CN1A  
(Note 11)  
CS1  
CN1B  
Setting 2  
MR-J2S-B  
(n axis)  
CN1A  
(Note 11)  
(Note 12)  
CS1  
(Note 13)  
MR-A-TM  
CN1B  
Setting: n  
1
n
1 to 8  
3 - 2  
3. SIGNALS AND WIRING  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal (terminal marked ) of  
the servo amplifier to the protective earth (PE) of the control box.  
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be  
faulty and will not output signals, disabling the forced stop (EM1) and other protective circuits.  
3. If the controller does not have an emergency stop function, always install a forced stop switch  
(Normally closed).  
4. When a personal computer is connected for use of the test operation mode, always use the  
maintenance junction card (MR-J2CN3TM) to enable the use of the forced stop (EM1). (Refer to  
section 12.1.6)  
5. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to  
a fault.  
6. The sum of currents that flow in the external relays should be 80mA max.  
7. When starting operation, always turn on the forced stop (EM1). (Normally closed contacts) By  
setting “0001” in parameter No.23, the forced stop (EM1) can be made invalid.  
8. When connecting the personal computer together with analog monitor outputs 1, 2, use the  
maintenance junction card (MR-J2CN3TM). (Refer to Section 12.1.3.)  
9. Use MRZJW3-SETUP151E.  
10. Use the bus cable at the overall distance of 30m(98.4ft) or less. In addition, to improve noise  
immunity, it is recommended to use a cable clamp and data line filters (three or four filters  
connected in series) near the connector outlet.  
11. The wiring of the second and subsequent axes is omitted.  
12. Up to eight axes (n 1 to 8) may be connected. The MR-J2S- B/MR-J2-03B5 servo amplifier may  
be connected on the same bus.  
13. Always insert the termination connector (MR-A-TM) into CN1B of the servo amplifier located at the  
termination.  
14. The bus cable used with the SSCNET depends on the preceding or subsequent controller or servo  
amplifier connected. Refer to the following table and choose the bus cable.  
MR-J2S-  
B
MR-J2-03B5  
QD75M  
MR-J2HBUS  
Q172J2BCBL M(-B)  
Q173J2B CBL  
MR-J2HBUS M-A  
M
Q172CPU(N)  
Q173CPU(N)  
A motion  
Motion  
M
controller  
MR-J2S-  
B
MR-J2-03B5  
MR-J2HBUS  
M
Maintenance junction card  
15. When the A1SD75M (AD75M) is used as the controller, encoder pulses may not be output  
depending on the software version of the controller. For details, refer to the A1SD75M (AD75M)  
Manual.  
3 - 3  
3. SIGNALS AND WIRING  
3.1.2 MR-J2S-11KB or more  
Servo amplifier  
(Note 4)  
CN3  
6
LA  
Encoder A-phase pulse  
(differential line driver)  
16 LAR  
LB  
17 LBR  
LZ  
7
Encoder B-phase pulse  
(differential line driver)  
(Note  
13)  
(Note 7)  
MR Configurator  
Personal computer  
8
Encoder Z-phase pulse  
(differential line driver)  
(Servo configuration  
software)  
18 LZR  
Plate SD  
2m(6.56ft) or less  
CN3  
15m(49.2ft)  
or less  
CN4  
1
Analog monitor  
Max. 1mA  
Reading in  
10k  
A
A
MO1  
MO2  
LG  
2
4
10k  
both directions  
CON2  
2
(Note 3, 6)  
Forced stop  
EM1  
SG  
1
4
(Note 2, 5)  
Dynamic brake  
RA1  
RA1  
DB  
interlock  
Servo system controller  
3
MBR  
COM  
Magnetic brake  
interlock  
(Note 8, 12)  
Bus cable (Option)  
(Note 4)  
CN1A  
18  
Always connect.  
15 VDD  
Cable clamp  
(Option)  
CS1  
(Note 4)  
CN1B  
Setting : 0  
(Note 1)  
(Note 9)  
MR-J2S-B  
(2 axis)  
CN1A  
CS1  
CN1B  
Setting : 1  
MR-J2S-B  
(3 axis)  
CN1A  
(Note 9)  
CS1  
(Note 8, 12)  
Bus cable  
(Option)  
CN1B  
Setting : 2  
MR-J2S-B  
(n axis)  
CN1A  
(Note 9)  
CS1  
(Note 11)  
MR-A-TM  
CN1B  
(Note 10)  
Setting: n-1 n= 1 to 8  
3 - 4  
3. SIGNALS AND WIRING  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal (terminal marked ) of  
the base unit to the protective earth (PE) of the control box.  
2. Connect the diode in the correct direction. If it is connected reversely, the interface unit will be faulty  
and will not output signals, disabling the forced stop and other protective circuits.  
3. If the controller does not have an emergency stop (EM1) function, always install a forced stop switch  
(Normally closed).  
4. CN1A, CN1B, and CN3 have the same shape. Wrong connection of the connectors will lead to a  
fault.  
5. The sum of currents that flow in the external relays should be 80mA max.  
6. When starting operation, always turn on the forced stop (EM1). (Normally closed contacts) By  
setting “0001” in DRU parameter No.23 of the drive unit, the forced stop (EM1) can be made invalid.  
7. Use MRZJW3-SETUP151E.  
8. Use the bus cable at the overall distance of 30m(98.4ft) or less. In addition, to improve noise  
immunity, it is recommended to use a cable clamp and data line filters (three or four filters  
connected in series) near the connector outlet.  
9. The wiring of the second and subsequent axes is omitted.  
10. Up to eight axes (n 1 to 8) may be connected. The MR-J2S- B/MR-J2-03B5 servo amplifier may  
be connected on the same bus.  
11. Always insert the termination connector (MR-A-TM) into CN1B of the interface unit located at the  
termination.  
12. The bus cable used with the SSCNET depends on the preceding or subsequent controller or servo  
amplifier connected. Refer to the following table and choose the bus cable.  
MR-J2S-  
B
MR-J2-03B5  
QD75M  
MR-J2HBUS  
Q172J2BCBL M(-B)  
Q173J2B CBL  
MR-J2HBUS M-A  
M
Q172CPU(N)  
Q173CPU(N)  
A motion  
Motion  
M
controller  
MR-J2S-  
B
MR-J2-03B5  
MR-J2HBUS  
M
Maintenance junction card  
13. When the A1SD75M (AD75M) is used as the controller, encoder pulses may not be output  
depending on the software version of the controller. For details, refer to the A1SD75M (AD75M)  
Manual.  
3 - 5  
3. SIGNALS AND WIRING  
3.2 I/O signals  
3.2.1 Connectors and signal arrangements  
POINT  
The pin configurations of the connectors are as viewed from the cable  
connector wiring section.  
(1) MR-J2S-700B or less  
CN1A  
CN1B  
1
11  
LG  
13  
1
11  
LG  
13  
2
RD  
4
12  
2
RD  
4
12  
RD*  
14  
LG  
3
LG  
3
RD*  
14  
TD  
6
TD*  
16  
TD  
6
TD*  
16  
5
LG  
7
15  
5
LG  
7
15  
LG  
LG  
MITSUBISHI  
MELSERVO-J2  
17  
EMG*  
19  
17  
8
18  
20  
8
18  
20  
EMG  
9
EMG  
9
EMG*  
19  
10  
10  
BT  
BT  
CN2  
CN3  
1
LG  
3
11  
LG  
13  
1
LG  
3
11  
LG  
2
12  
LG  
14  
2
RXD  
4
12  
TXD  
14  
LG  
4
13  
SG  
5
MBR  
15  
MO1  
6
MO2  
16  
5
15  
6
MD  
8
16  
MDR  
18  
COM  
7
LA  
8
LAR  
18  
7
MR  
9
17  
MRR  
19  
17  
LBR  
19  
The connector frames are  
connected with the PE (earth)  
terminal inside the servo amplifier.  
LB  
9
P5  
LZ  
10  
LZR  
20  
10  
20  
BAT  
P5  
P5  
VDD  
EM1  
3 - 6  
3. SIGNALS AND WIRING  
(2) MR-J2S-11KB or more  
CN3  
1
11  
LG  
13  
CN4  
2
RXD  
4
12  
TXD  
14  
LG  
3
1 MO1  
2 MO2  
5
15  
4
LG  
6
16  
LAR  
18  
LA  
8
7
LB  
9
17  
LBR  
19  
LZ  
10  
LZR  
20  
MITSUBISHI  
CN1A  
Same as the one of the  
MR-J2S-700B or less.  
CN1B  
CON2  
Same as the one of the  
MR-J2S-700B or less.  
1
SG  
3
14  
16  
2
15  
CN2  
CHARGE  
EM1  
4
VDD  
17  
1
LG  
3
11  
LG  
13  
MBR  
5
2
LG  
4
12  
LG  
14  
DB  
6
18  
COM  
20  
19  
21  
23  
25  
7
9
8
5
15  
6
MD  
8
16  
The connector frames are  
connected with the PE (earth)  
terminal inside the servo amplifier.  
22  
24  
26  
MDR  
18  
10  
12  
7
MR  
9
17  
MRR  
19  
11  
13  
P5  
10  
20  
BAT  
P5  
P5  
3 - 7  
3. SIGNALS AND WIRING  
3.2.2 Signal explanations  
For the I/O interfaces (symbols in I/O column in the table), refer to Section 3.4.2.  
(1) Connector applications  
Connector  
Name  
Function/Application  
Used for connection with the controller or preceding-axis  
servo amplifier.  
CN1A  
Connector for bus cable from preceding axis.  
Used for connection with the next-axis servo amplifier or  
for connection of the termination connector.  
Used for connection with the servo motor encoder.  
Used for connection with the personal computer.  
Serves as an I/O signal connector when the personal  
computer is not used.  
CN1B  
CN2  
Connector for bus cable to next axis  
Encoder connector  
Communication connector  
(I/O signal connector)  
CN3  
Used to output analog monitor 1 (M01) and analog monitor  
(Note) CN4 Analog monitor output connector  
(Note) CON2 IO signal connector  
2 (M02).  
Used to input a forced stop and output the dynamic brake  
interlock(DR), the electromagnetic brake interlock  
Note. These connectors are exclusive to the MR-J2S-11KB or more.  
(2) I/O signals  
(a) Input signal  
Connector Pin  
No.  
Signal  
Symbol  
Function/Application  
I/O Division  
7kw  
11kw  
or less or more  
Turning off EM1 puts the servo motor in a forced stop status,  
in which the servo is switched off and the dynamic brake is  
operated to stop the servo motor.  
Turn on EM1 in the forced stop status to reset the forced stop  
status.  
DI-1  
CN3 CON2  
Forced stop  
EM1  
20  
2
(b) Output signals  
Connector Pin  
No.  
Signal  
Symbol  
Function/Application  
I/O Division  
7kw  
11kw  
or less or more  
Electromagnetic brake  
interlock  
CN3 CON2  
DO-1  
DO-1  
DO-2  
MBR  
DB  
In the servo-off or alarm status, MBR turns off.  
13  
3
Dynamic brake  
interlock  
CON2 When using this signal, set  
When the dynamic brake is operated, DB turns off.  
CN3 Outputs pulses per servo motor revolution set in parameter  
No.38 in the differential line driver system. In CCW rotation  
1
in the parameter No. 2.  
4
CN3  
6
LA  
Encoder A-phase pulse  
(Differential line driver)  
6
CN3  
16  
CN3 of the servo motor, the encoder B-phase pulse lags the  
LAR  
LB  
16  
CN3  
7
CN3  
17  
encoder A-phase pulse by a phase angle of /2.  
CN3  
7
Encoder B-phase pulse  
(Differential line driver)  
CN3  
17  
LBR  
LZ  
CN3  
8
CN3 The zero-phase signal of the encoder is output in the  
DO-2  
Encoder Z-phase pulse  
(Differential line driver)  
8
CN3  
18  
differential line driver system.  
CN3  
18  
LZR  
MO1  
MO2  
CN3  
4
CN4 Used to output the data set in parameter No.22 to across  
Analog  
output  
Analog  
output  
Analog monitor 1  
Analog monitor 2  
1
MO1-LG in terms of voltage. Resolution 10 bits  
CN3  
14  
CN4 Used to output the data set in parameter No.22 to across  
2
MO2-LG in terms of voltage. Resolution 10 bits  
(c) Power supply  
Connector Pin  
No.  
Signal  
Symbol  
Function/Application  
7kw  
11kw  
or less or more  
Driver power output terminal for digital interface.  
Used to output 24V 10% to across VDD-COM. Connect with COM.  
Permissible current: 80mA  
Internal power output  
for interface  
CN3 CON2  
VDD  
10  
15  
Driver power input terminal for digital interface.  
Used to input 24VDC (200mA or more) for input interface.  
Connect with VDD.  
Power input for digital  
interface  
CN3 CON2  
18  
COM  
SG  
5
Common for digital  
interface  
CN3 CON2 Common terminal to VDD and COM. Pins are connected internally.  
3
CN3  
1
1
Separated from LG.  
Common terminal to MO1 and MO2.  
CN4  
4
Control common  
Shield  
LG  
SD  
11  
Plate Plate Connect the external conductor of the shield cable.  
3 - 8  
3. SIGNALS AND WIRING  
3.3 Alarm occurrence timing chart  
When an alarm has occurred, remove its cause, make sure that the operation  
signal is not being input, ensure safety, and reset the alarm before restarting  
operation.  
CAUTION  
When an alarm occurs in the servo amplifier, the base circuit is shut off and the servo motor is coated to a  
stop. Switch off the main circuit power supply in the external sequence. To deactivate the alarm, power  
the control circuit off, then on or give the error reset or CPU reset command from the servo system  
controller. However, the alarm cannot be deactivated unless its cause is removed.  
(Note)  
Main circuit  
Control circuit  
ON  
OFF  
Power off  
power  
Power on  
ON  
OFF  
Base circuit  
Valid  
Invalid  
Brake operation  
Brake operation  
Dynamic brake  
ON  
Servo-on command  
(from controller)  
OFF  
NO  
YES  
NO  
YES  
NO  
Alarm  
1s  
Reset command  
(from controller)  
ON  
OFF  
50ms or more  
60ms or more  
Alarm occurs.  
Remove cause of trouble.  
Note. Switch off the main circuit power as soon as an alarm occurs.  
(1) Overcurrent, overload 1 or overload 2  
If operation is repeated by switching control circuit power off, then on to reset the overcurrent (32),  
overload 1 (50) or overload 2 (51) alarm after its occurrence, without removing its cause, the servo  
amplifier and servo motor may become faulty due to temperature rise. Securely remove the cause of  
the alarm and also allow about 30 minutes for cooling before resuming operation.  
(2) Regenerative alarm  
If operation is repeated by switching control circuit power off, then on to reset the regenerative (30)  
alarm after its occurrence, the external regenerative brake resistor will generate heat, resulting in an  
accident.  
(3) Instantaneous power failure  
Undervoltage (10) occurs if power is restored after a 60ms or longer power failure of the control circuit  
power supply or after a drop of the bus voltage to or below 200VDC. If the power failure persists  
further, the control circuit power switches off. When the power failure is reset in this state, the alarm  
is reset and the servo amplifier returns to the initial state.  
3 - 9  
3. SIGNALS AND WIRING  
3.4 Interfaces  
3.4.1 Common line  
The following diagram shows the power supply and its common line.  
To conform to the EMC directive, refer to the EMC Installation Guide lines (IB(NA)67310).  
Servo amplifier  
24VDC  
VDD  
COM  
MBR  
RA  
EM1  
SG  
DI-1  
<Isolated>  
LA .etc  
Differential line  
driver output  
35mA max.  
LAR  
.etc  
LG  
SD  
MO1  
MO2  
Analog monitor output  
LG  
TXD  
RXD  
RS-232C  
Servo motor encoder  
CN2  
MR  
MRR  
Servo motor  
M
LG  
SD  
Ground  
3 - 10  
3. SIGNALS AND WIRING  
3.4.2 Detailed description of the interfaces  
This section gives the details of the I/O signal interfaces (refer to I/O Division in the table) indicated in  
Sections 3.2.2.  
Refer to this section and connect the interfaces with the external equipment.  
(1) Digital input interface DI-1  
Give a signal with a relay or open collector transistor.  
Servo amplifier  
24VDC  
VDD  
R: Approx. 4.7  
COM  
For a transistor  
EM1  
Approx. 5mA  
Switch  
TR  
SG  
V CES 1.0V  
I CEO 100  
A
(2) Digital output interface DO-1  
A lamp, relay or photocoupler can be driven. Provide a diode (D) for an inductive load, or an inrush  
current suppressing resister (R) for a lamp load. (Permissible current: 40mA or less, inrush current:  
100mA or less)  
(a) Inductive load  
Servo amplifier  
24VDC  
VDD  
COM  
Load  
MBR  
If the diode is not  
connected as shown,  
the servo amplifier  
will be damaged.  
SG  
3 - 11  
3. SIGNALS AND WIRING  
(b) Lamp load  
Servo amplifier  
24VDC  
VDD  
COM  
R
MBR  
SG  
(3) Encoder pulse output DO-2  
(Differential line driver system)  
1) Interface  
Max. output current: 35mA  
Servo amplifier  
Servo amplifier  
LA  
(LB, LZ)  
LA  
(LB, LZ)  
Am26LS32 or equivalent  
High-speed photocoupler  
100  
150  
LAR  
LAR  
(LBR, LZR)  
(LBR, LZR)  
LG  
SD  
SD  
2) Output pulse  
Servo motor CCW rotation  
LA  
LAR  
LB  
T
LBR  
/2  
LZ signal varies 3/8T on its leading edge.  
400 s or more  
LZ  
LZR  
OP  
3 - 12  
3. SIGNALS AND WIRING  
(4) Analog output  
Output voltage : 10V  
Max. output current :1mA  
Resolution :10bit  
Servo amplifier  
10k  
MO1  
(MO2)  
Reading in one or  
both directions  
1mA meter  
A
LG  
SD  
3 - 13  
3. SIGNALS AND WIRING  
3.5 Power line circuit  
When the servo amplifier has become faulty, switch power off on the amplifier  
power side. Continuous flow of a large current may cause a fire.  
Switch power off at detection of an alarm. Otherwise, a regenerative brake  
transistor fault or the like may overheat the regenerative brake resistor, causing a  
fire.  
CAUTION  
POINT  
For the power line circuit of the MR-J2S-11KB to MR-J2S-22KB, refer to  
Section 3.12 where the power line circuit is shown together with the servo  
motor connection diagram.  
3.5.1 Connection example  
Wire the power supply/main circuit as shown below so that power is shut off and the servo-on command  
turned off as soon as an alarm occurs, a servo forced stop is made valid, or a controller emergency stop is  
made valid. A no-fuse breaker (NFB) must be used with the input cables of the power supply.  
(1) For 3-phase 200 to 230VAC power supply  
(Note)  
Controller  
Alarm emergency stop  
Forced  
stop  
ON  
MC  
OFF  
RA1  
RA2  
MC  
SK  
NFB  
MC  
Servo amplifier  
L1  
Power supply  
3-phase  
L2  
200 to 230VAC  
L3  
L11  
L21  
VDD  
COM  
EM1  
SG  
Forced stop  
Note: Configure up the power supply circuit which switches off the magnetic contactor after detection of  
alarm occurrence on the controller side.  
3 - 14  
3. SIGNALS AND WIRING  
(2) For 1-phase 100 to 120VAC or 1-phase 230VAC power supply  
(Note 1) Controller  
Alarm emergency stop  
Forced  
stop  
ON  
MC  
OFF  
RA1  
RA2  
MC  
SK  
NFB  
MC  
Power supply  
1-phase 100 to  
120VAC or  
Servo amplifier  
L1  
L2  
1-phase 230VAC  
L3(Note 2)  
L11  
L21  
VDD  
COM  
EM1  
SG  
Forced stop  
Note: 1. Configure up the power supply circuit which switches off the magnetic contactor after detection of  
alarm occurrence on the controller side.  
2. Not provided for 1-phase 100 to 120VAC.  
3 - 15  
3. SIGNALS AND WIRING  
3.5.2 Terminals  
The positions and signal arrangements of the terminal blocks change with the capacity of the servo  
amplifier. Refer to Section 10.1.  
Connection Target  
Symbol  
Description  
(Application)  
Supply L1, L2 and L3 with the following power:  
For 1-phase 230VAC, connect the power supply to L1/L2 and leave L3 open.  
Servo amplifier MR-J2S-10B to MR-J2S-100B MR-J2S-10B1  
Power supply  
70B  
to 700B  
L1 L2 L3  
L1 L2  
to 40B1  
3-phase 200 to 230VAC,  
50/60Hz  
L1, L2, L3  
Main circuit power supply  
1-phase 230VAC,  
50/60Hz  
1-phase 100 to 120VAC,  
50/60Hz  
L1 L2  
U, V, W  
Servo motor output  
Connect to the servo motor power supply terminals (U, V, W).  
Supply the following power to L11, L21.  
Servo amplifier  
MR-J2S-10B to 700B MR-J2S-10B1 to 40B1  
Power supply  
1-phase 200 to 230VAC,  
50/60Hz  
L11, L21  
Control circuit power supply  
L11 L21  
1-phase 100 to 120VAC,  
50/60Hz  
L11 L21  
1) MR-J2S-350B or less  
Wiring is factory-connected across P-D (servo amplifier built-in regenerative  
brake resistor).  
When using the regenerative brake option, always remove the wiring from  
across P-D and connect the regenerative brake option across P-C.  
P, C, D  
Regenerative brake option 2) MR-J2S-500B MR-J2S-700B  
Wiring is factory-connected across P-C (servo amplifier built-in regenerative  
brake resistor).  
When using the regenerative brake option, always remove the wiring from  
across P-C and connect the regenerative brake option across P-C.  
Refer to Section 12.1.1 for details.  
When using the return converter or brake unit, connect it across P-N.  
Do not connect it to the servo amplifier of MR-J2S-350B or less.  
Refer to Sections 12.1.2 and 12.1.3 for details.  
Return converter  
Brake unit  
N
Connect this terminal to the protective earth (PE) terminals of the servo motor  
and control box for grounding.  
Protective earth (PE)  
3 - 16  
3. SIGNALS AND WIRING  
3.5.3 Power-on sequence  
(1) Power-on procedure  
1) Always wire the power supply as shown in above Section 3.5.1 using the magnetic contactor with  
the main circuit power supply (3-phase 200V: L1, L2, L3, 1-phase 230V: L1, L2). Configure up an  
external sequence to switch off the magnetic contactor as soon as an alarm occurs.  
2) Switch on the control circuit power supply L11, L21 simultaneously with the main circuit power  
supply or before switching on the main circuit power supply. If the main circuit power supply is not  
on, the display shows the corresponding warning. However, by switching on the main circuit power  
supply, the warning disappears and the servo amplifier will operate properly.  
3) The servo amplifier can accept the servo-on command within 3s the main circuit power supply is  
switched on. (Refer to paragraph (2) in this section.)  
(2) Timing chart  
SON accepted  
(3s)  
Main circuit  
Control circuit  
ON  
OFF  
ON  
power  
Base circuit  
OFF  
ON  
60ms  
10ms  
60ms  
Servo-on command  
(from controller)  
OFF  
(3) Forced stop  
Install an forced stop circuit externally to ensure that operation can be stopped and  
power shut off immediately.  
CAUTION  
If the controller does not have an emergency stop function, make up a circuit that switches off main  
circuit power as soon as EM1 is turned off at a forced stop. When EM1 is turned off, the dynamic  
brake is operated to stop the servo motor. At this time, the display shows the servo forced stop  
warning (E6).  
During ordinary operation, do not use forced stop (EM1) to alternate stop and run. The service life of  
the servo amplifier may be shortened.  
Servo amplifier  
VDD  
COM  
EM1  
Forced stop  
SG  
3 - 17  
3. SIGNALS AND WIRING  
3.6 Connection of servo amplifier and servo motor  
3.6.1 Connection instructions  
Insulate the connections of the power supply terminals to prevent an electric  
WARNING  
CAUTION  
shock.  
Connect the wires to the correct phase terminals (U, V, W) of the servo amplifier  
and servo motor. Otherwise, the servo motor will operate improperly.  
Do not connect AC power supply directly to the servo motor. Otherwise, a fault  
may occur.  
POINT  
Do not apply the test lead bars or like of a tester directly to the pins of the  
connectors supplied with the servo motor. Doing so will deform the pins,  
causing poor contact.  
The connection method differs according to the series and capacity of the servo motor and whether or not  
the servo motor has the electromagnetic brake. Perform wiring in accordance with this section.  
(1) For grounding, connect the earth cable of the servo motor to the protective earth (PE) terminal of the  
servo amplifier and connect the ground cable of the servo amplifier to the earth via the protective  
earth of the control box. Do not connect them directly to the protective earth of the control panel.  
Control box  
Servo  
amplifier  
Servo motor  
PE terminal  
(2) Do not share the 24VDC interface power supply between the interface and electromagnetic brake.  
Always use the power supply designed exclusively for the electromagnetic brake.  
3.6.2 Connection diagram  
POINT  
For the connection diagram of the MR-J2S-11KB to MR-J2S-22KB, refer  
to Section 3.12 where the connection diagram is shown together with the  
power line circuit.  
The following table lists wiring methods according to the servo motor types. Use the connection diagram  
which conforms to the servo motor used. For cables required for wiring, refer to Section 12.2.1. For  
encoder cable connection, refer to Section 12.1.4. For the signal layouts of the connectors, refer to Section  
3.6.3.  
For the servo motor connector, refer to Chapter 3 of the Servo Motor Instruction Manual.  
3 - 18  
3. SIGNALS AND WIRING  
Servo motor  
Connection diagram  
Servo amplifier  
Servo motor  
Motor  
U (Red)  
U
V
V (White)  
W (Black)  
(Green)  
W
24VDC  
(Note 1)  
B1  
B2  
HC-KFS053 (B) to 73 (B)  
HC-MFS053 (B) to 73 (B)  
HC-UFS13 (B) to 73 (B)  
(Note 2)  
Electromagnetic  
brake  
EM1  
To be shut off when servo-off  
or alarm occurrence  
CN2  
Encoder  
Encoder cable  
Note:1. To prevent an electric shock, always connect the protective earth (PE) terminal of the  
servo amplifier to the protective earth (PE) of the control box.  
2. This circuit applies to the servo motor with electromagnetic brake.  
Servo amplifier  
Servo motor  
U
V
U
V
Motor  
W
W
(Note 1) 24VDC  
EM1  
To be shut off when servo-off  
or alarm occurrence  
HC-SFS121 (B) to 301 (B)  
HC-SFS202 (B) to 702 (B)  
HC-SFS203 (B) 353 (B)  
HC-UFS202 (B) to 502 (B)  
HC-RFS353 (B) 503 (B)  
B1  
B2  
(Note 2)  
Electromagnetic  
brake  
CN2  
Encoder  
Encoder cable  
Note:1. To prevent an electric shock, always connect the protective earth (PE) terminal of the  
servo amplifier to the protective earth (PE) of the control box.  
2. This circuit applies to the servo motor with electromagnetic brake.  
Servo amplifier  
Servo motor  
Motor  
U
V
U
V
W
W
24VDC  
(Note 1)  
HC-SFS81 (B)  
B1  
B2  
(Note 2)  
HC-SFS52 (B) to 152 (B)  
HC-SFS53 (B) to 153 (B)  
HC-RFS103 (B) to 203 (B)  
HC-UFS72 (B) 152 (B)  
EM1  
Electromagnetic  
brake  
To be shut off when servo-off  
or alarm occurrence  
CN2  
Encoder  
Encoder cable  
Note:1. To prevent an electric shock, always connect the protective earth (PE) terminal of the  
servo amplifier to the protective earth (PE) of the control box.  
2. This circuit applies to the servo motor with electromagnetic brake.  
3 - 19  
3. SIGNALS AND WIRING  
3.6.3 I/O terminals  
(1) HC-KFS HC-MFS HC-UFS3000r/min series  
Encoder connector signal arrangement  
Power supply lead  
4-AWG19 0.3m (0.98ft.)  
1
MR  
4
2
MRR  
5
3
BAT  
6
Power supply connector (molex)  
Without electromagnetic brake  
5557-04R-210 (receptacle)  
5556PBTL (Female terminal)  
With electromagnetic brake  
5557-06R-210 (receptacle)  
5556PBTL (Female terminal)  
a
MD  
7
MDR  
8
Encoder cable 0.3m (0.98ft.)  
With connector 1-172169-9  
(AMP)  
b
9
P5  
LG  
SHD  
Power supply  
connector  
View a  
Power supply  
connector  
5557-06R-210  
Pin Signal  
Signal  
U
V
W
Earth  
Pin  
1
2
3
4
5557-04R-210  
1
2
3
4
U
V
W
1
2
3
4
1
2
3
4
5
6
Earth  
View b  
5
6
(Note)  
B1  
B2  
View b  
(Note)  
Note:For the motor with  
electromagnetic brake,  
supply electromagnetic  
brake power (24VDC).  
There is no polarity.  
3 - 20  
3. SIGNALS AND WIRING  
(2) HC-SFS HC-RFS HC-UFS2000 r/min series  
Servo motor side connectors  
Servo motor  
Electromagnetic  
For power supply For encoder  
brake connector  
HC-SFS81(B)  
The connector  
for power is  
shared.  
CE05-2A22-  
23PD-B  
HC-SFS52(B) to 152(B)  
HC-SFS53(B) to 153(B)  
HC-SFS121(B) to 301(B)  
HC-SFS202(B) to 502 (B)  
HC-SFS203(B) 353(B)  
CE05-2A24-  
10PD-B  
MS3102A10SL-  
4P  
CE05-2A32-  
HC-SFS702(B)  
17PD-B  
MS3102A20-  
29P  
CE05-2A22-  
23PD-B  
HC-RFS103(B) to 203 (B)  
HC-RFS353(B) 503(B)  
HC-UFS72(B) 152(B)  
HC-UFS202(B) to 502(B)  
a
The connector  
for power is  
shared.  
CE05-2A24-  
10PD-B  
Encoder connector  
b
CE05-2A22-  
23PD-B  
c
Brake connector  
Power supply connector  
CE05-2A24-  
10PD-B  
MS3102A10SL-  
4P  
Power supply connector signal arrangement  
CE05-2A22-23PD-B  
Key  
CE05-2A24-10PD-B  
CE05-2A32-17PD-B  
Key  
Key  
Pin  
Signal  
U
V
W
(Earth)  
Pin  
A
B
C
D
E
Signal  
Pin  
A
B
C
D
Signal  
U
V
W
U
V
W
A
B
C
D
E
F
F
F
A
C
A
G
A
B
D
C
B
E
B
H
G
C
E
D
(Earth)  
(Note) B1  
(Note) B2  
(Earth)  
D
View c  
View c  
F
(Note) B1  
(Note) B2  
G
G
H
Note:For the motor with  
electromagnetic brake,  
supply electromagnetic  
brake power (24VDC).  
There is no polarity.  
Note:For the motor with  
electromagnetic brake,  
supply electromagnetic  
brake power (24VDC).  
There is no polarity.  
Encoder connector signal arrangement  
Electromagnetic brake connector signal arrangement  
MS3102A20-29P  
Key  
MS3102A10SL-4P  
Key  
Pin  
A
B
Signal  
(Note)B1  
(Note)B2  
Pin  
Signal  
Pin  
Signal  
M
B
A
L
C
N
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
S
T
MD  
MDR  
MR  
D
K
T
P
A
B
J
E
S
R
Note:For the motor with  
electromagnetic brake,  
supply electromagnetic  
brake power (24VDC).  
There is no polarity.  
F
H
G
MRR  
SD  
View a  
View b  
BAT  
LG  
LG  
P5  
3 - 21  
3. SIGNALS AND WIRING  
3.7 Servo motor with electromagnetic brake  
Configure the electromagnetic brake circuit so that it is activated not only by the  
interface unit signals but also by a forced stop (EM1).  
Contacts must be open when  
servo-off, when an alarm occurrence  
and when an electromagnetic brake  
interlock (MBR).  
Circuit must be  
opened during  
forced stop (EM1).  
Servo motor  
RA EM1  
CAUTION  
24VDC  
Electromagnetic brake  
The electromagnetic brake is provided for holding purpose and must not be used  
for ordinary braking.  
POINT  
Refer to the Servo Motor Instruction Manual for specifications such as the  
power supply capacity and operation delay time of the electromagnetic  
brake.  
Note the following when the servo motor equipped with electromagnetic brake is used for applications  
requiring a brake to hold the motor shaft (vertical lift applications):  
1) Do not share the 24VDC interface power supply between the interface and electromagnetic  
brake. Always use the power supply designed exclusively for the electromagnetic brake.  
2) The brake will operate when the power (24VDC) switches off.  
3) Switch off the servo-on command after the servo motor has stopped.  
(1) Connection diagram  
Servo amplifier  
Servo motor  
Forced  
stop  
RA  
B1  
B2  
VDD  
COM  
MBR  
24VDC  
RA  
(2) Setting  
In parameter No.21 (electromagnetic brake sequence output), set the time delay (Tb) from  
electromagnetic brake operation to base circuit shut-off at a servo off time as in the timing chart in (3)  
in this section.  
3 - 22  
3. SIGNALS AND WIRING  
(3) Timing charts  
(a) Servo-on command (from controller) ON/OFF  
Tb [ms] after the servo-on is switched off, the servo lock is released and the servo motor coasts. If  
the electromagnetic brake is made valid in the servo lock status, the brake life may be shorter.  
Therefore, when using the electromagnetic brake in a vertical lift application or the like, set delay  
time (Tb) to about the same as the electromagnetic brake operation delay time to prevent a drop.  
Coasting  
0 r/min  
Servo motor speed  
Tb  
(60ms)  
(80ms)  
ON  
Base circuit  
OFF  
Invalid(ON)  
Valid(OFF)  
Electromagnetic brake  
operation delay time  
Electromagnetic  
brake interlock (MBR)  
ON  
Servo-on command  
(from controller)  
OFF  
(b) Emergency stop command (from controller) or forced stop (EM1) ON/OFF  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Electromagnetic brake  
Servo motor speed  
Electromagnetic brake release  
(10ms)  
(180ms)  
ON  
Base circuit  
OFF  
(180ms)  
Invalid (ON)  
Valid (OFF)  
Invalid (ON)  
Valid (OFF)  
Electromagnetic brake  
operation delay time  
Electromagnetic  
brake interlock (MBR)  
Emergency stop command  
(from controller)  
or  
Forced stop (EM1)  
3 - 23  
3. SIGNALS AND WIRING  
(c) Alarm occurrence  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Servo motor speed  
Electromagnetic brake  
(10ms)  
ON  
Base circuit  
OFF  
Invalid(ON)  
Electromagnetic brake  
operation delay time  
Electromagnetic  
brake interlock (MBR)  
Valid(OFF)  
No  
Trouble (ALM)  
Yes  
(d) Both main and control circuit power supplies off  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
(10ms)  
(Note)  
15 to 100ms  
Servo motor speed  
Base circuit  
Electromagnetic brake  
ON  
OFF  
(10ms or less)  
Invalid(ON)  
Valid(OFF)  
Electromagnetic  
brake interlock(MBR)  
Electromagnetic brake  
operation delay time  
(Note 2)  
No  
Alarm (ALM)  
Yes  
ON  
OFF  
Main circuit  
power  
Control circuit  
Note: Changes with the operating status.  
(e) Only main circuit power supply off (control circuit power supply remains on)  
Dynamic brake  
Dynamic brake  
(10ms)  
Electromagnetic brake  
(Note 1)  
15ms or more  
Servo motor speed  
Electromagnetic brake  
ON  
Base circuit  
OFF  
10ms or less  
Invalid(ON)  
Valid(OFF)  
No  
Electromagnetic  
brake interlock  
(MBR)  
Electromagnetic brake  
operation delay time  
(Note 2)  
Alarm  
Yes  
ON  
Main circuit power  
supply  
OFF  
Note: 1. Changes with the operating status.  
2. When the main circuit power supply is off in a motor stop status,  
the main circuit off warning (E9) occurs and the alarm (ALM) does not turn off.  
3 - 24  
3. SIGNALS AND WIRING  
3.8 Grounding  
Ground the servo amplifier and servo motor securely.  
To prevent an electric shock, always connect the protective earth (PE) terminal of  
the servo amplifier with the protective earth (PE) of the control box.  
WARNING  
The servo amplifier switches the power transistor on-off to supply power to the servo motor. Depending on  
the wiring and ground cablerouting, the servo amplifier may be affected by the switching noise (due to  
di/dt and dv/dt) of the transistor. To prevent such a fault, refer to the following diagram and always  
ground.  
To conform to the EMC Directive, refer to the EMC Installation Guidelines (IB(NA)67310).  
Control box  
Servo motor  
MC  
Servo amplifier  
L1  
NFB  
(Note 1)  
CN2  
Power supply  
3-phase  
200 to 230VAC,  
1-phase  
Encoder  
L2  
230VAC or  
1-phase  
L3  
100 to 120VAC  
L11  
L21  
U
V
U
V
M
W
W
CN1A  
(Note 2)  
Ensure to connect it to PE  
terminal of the servo amplifier.  
Do not connect it directly  
to the protective earth of  
the control panel.  
Outer  
box  
Protective earth(PE)  
Note: 1. For 1-phase 230VAC, connect the power supply to L1 L2 and leave L3 open.  
There is no L3 for 1-phase 100 to 120VAC power supply.  
2. To reduce the influence of external noise, we recommend you to ground the bus cable near  
the controller using a cable clamping fixture or to connect three or four data line filters in series.  
3 - 25  
3. SIGNALS AND WIRING  
3.9 Servo amplifier terminal block (TE2) wiring method  
(1) Termination of the cables  
2
Solid wire: After the sheath has been stripped, the cable can be used as it is. (Cable size: 0.2 to 2.5mm )  
Approx. 10mm  
(0.39inch)  
Twisted wire: Use the cable after stripping the sheath and twisting the core. At this time, take care to  
avoid a short caused by the loose wires of the core and the adjacent pole. Do not solder  
2
the core as it may cause a contact fault. (Cable size: 0.2 to 2.5mm ) Alternatively, a bar  
terminal may be used to put the wires together.  
Cable Size  
Bar Terminal Type  
For 1 cable For 2 cables  
BT1.25-9-1  
TUB-1.25  
Maker  
NICHIFU  
Crimping Tool  
NH1  
2
[mm ] AWG  
1.25  
1.5  
2
16  
YHT-2210  
JST  
AI-TWIN2  
AI-TWIN2  
1.5-8BK  
16 AI1.5-8BK  
CRIMPFOX-UD6  
Phoenix Contact  
1.5-12BK  
BT2-9-1  
14  
NH1  
NICHIFU  
JST  
TUB-2  
YHT-2210  
AI2.5-8BU  
14  
AI-TWIN2  
AI-TWIN2  
2.5-10BU  
2.5-13BU  
2.5  
CRIMPFOX-UD6  
Phoenix Contact  
AI2.5-8BK-1000  
(2) Connection  
Insert the core of the cable into the opening and tighten the screw with a flat-blade screwdriver so that  
the cable does not come off. (Tightening torque: 0.3 to 0.4N m(2.7 to 3.5 lb in)) Before inserting the  
cable into the opening, make sure that the screw of the terminal is fully loose.  
When using a cable of 1.5mm2 or less, two cables may be inserted into one opening.  
Flat-blade screwdriver  
Tip thickness 0.4 to 0.6mm  
Overall width 2.5 to 3.5mm  
To loosen. To tighten.  
Cable  
Opening  
Control circuit terminal block  
Use of a flat-blade torque screwdriver is recommended to manage the screw tightening torque. The  
following table indicates the recommended products of the torque screwdriver for tightening torque  
management and the flat-blade bit for torque screwdriver. When managing torque with a Phillips bit,  
please consult us.  
Product  
Model  
Maker/Representative  
Nakamura Seisakusho  
Shiro Sangyo  
Torque screwdriver  
Bit for torque screwdriver  
N6L TDK  
B-30, flat-blade, H3.5 X 73L  
3 - 26  
3. SIGNALS AND WIRING  
3.10 Instructions for the 3M connector  
When fabricating an encoder cable or the like, securely connect the shielded external conductor of the  
cable to the ground plate as shown in this section and fix it to the connector shell.  
External conductor  
Sheath  
Core  
External conductor  
Pull back the external conductor to cover the sheath  
Sheath  
Strip the sheath.  
Screw  
Cable  
Screw  
Ground plate  
3 - 27  
3. SIGNALS AND WIRING  
3.11 Control axis selection  
POINT  
The control axis number set to CS1 should be the same as the one set to  
the servo system controller.  
Use the axis select switch (CS1) to set the control axis number for the servo. If the same numbers are set  
to different control axes in a single communication system, the system will not operate properly. The  
control axes may be set independently of the bus cable connection sequence.  
Set the switch to "F" when executing the test operation mode using MR Configurator (servo configuration  
software).  
Axis select switch (CS1)  
8
0
No.  
0
Description  
Axis 1  
Axis 2  
1
2
Axis 3  
3
Axis 4  
4
Axis 5  
5
Axis 6  
6
Axis 7  
7
Axis 8  
8
Not used  
9
Not used  
A
B
C
D
E
F
Not used  
Not used  
Not used  
Not used  
Not used  
Test operation mode or  
when machine analyzer is used  
(Refer to Section 6.1.2)  
3 - 28  
3. SIGNALS AND WIRING  
3.12 Power line circuit of the MR-J2S-11KB to MR-J2S-22KB  
When the servo amplifier has become faulty, switch power off on the amplifier  
power side. Continuous flow of a large current may cause a fire.  
Switch power off at detection of an alarm. Otherwise, a regenerative brake  
transistor fault or the like may overheat the regenerative brake resistor, causing a  
fire.  
CAUTION  
POINT  
The power-on sequence is the same as in Section 3.5.3.  
3.12.1 Connection example  
Wire the power supply/main circuit as shown below so that power is shut off and the servo-on signal  
turned off as soon as an alarm occurs, a servo forced stop is made valid, a controller emergency stop, or a  
servo motor thermal relay alarm is made valid. A no-fuse breaker (NFB) must be used with the input  
cables of the power supply.  
Controller  
emergency stop  
RA2  
Servo motor  
thermal relay Alarm  
RA3 RA1  
(Note)  
Forced  
stop  
OFF  
ON  
MC  
MC  
SK  
Servo amplifier  
(Note 2)  
Dynamic  
break  
Servo motor  
HA-LFS series  
NFB  
MC  
U
U
V
L1  
3-phase  
200 to  
230VAC  
M
V
L2  
W
W
L3  
L11  
CN2  
L21  
MR-JHSCBL  
cable  
M
Encoder  
Fan  
BU  
BV  
BW  
(Note3)  
OHS1  
OHS2  
Servo motor  
thermal relay  
VDD  
COM  
EM1  
SG  
24VDC  
power supply  
RA3  
Forced stop  
Note: 1. Configure up the power supply circuit which switches off the magnetic contactor after detection of  
alarm occurrence on the controller side.  
2. When using the external dynamic break, refer to section 12. 1. 4.  
3. There is no BW when the HA-LFS11K2 is used.  
3 - 29  
3. SIGNALS AND WIRING  
3.12.2 Servo amplifier terminals  
The positions and signal arrangements of the terminal blocks change with the capacity of the servo  
amplifier. Refer to Section 10.1.  
Connection Target  
Symbol  
Description  
(Application)  
Main circuit power supply Supply L1, L2 and L3 with three-phase 200 to 230VAC, 50/60Hz power.  
Servo motor output Connect to the servo motor power supply terminals (U, V, W).  
Control circuit power supply Supply L11 and L21 with single-phase 200 to 230VAC power.  
The servo amplifier built-in regenerative brake resistor is not connected at the  
L1, L2, L3  
U, V, W  
L11, L21  
time of shipment.  
P, C  
N
Regenerative brake option  
When using the regenerative brake option, wire it across P-C.  
Refer to Section 12.1.1 for details.  
Return converter  
Brake unit  
When using the return converter or brake unit, connect it across P-N.  
Refer to Sections 12.1.2 and 12.1.3 for details.  
Connect this terminal to the protective earth (PE) terminals of the servo motor  
and control box for grounding.  
Protective earth (PE)  
Power factor improving DC P1-P are connected before shipment. When connecting a power factor improving  
P1, P  
reactors  
DC reactor, remove the short bar across P1-P. Refer to Section 12.2.4 for details.  
3 - 30  
3. SIGNALS AND WIRING  
3.12.3 Servo motor terminals  
Encoder connector  
MS3102A20-29P  
Terminal box  
Pin  
A
Signal  
MD  
Pin  
K
L
Signal  
Encoder connector  
signal arrangement  
MS3102A20-29P  
B
MDR  
MR  
Key  
C
M
N
P
D
E
MRR  
SHD  
M
B
A
L
J
C
N
K
T
P
D
F
BAT  
LG  
R
LG  
P5  
E
S
R
G
H
J
S
H
F
G
T
Terminal box inside (HA-LFS11K2)  
Thermal protector terminal  
block (OHS1, OHS2)  
M4 screw  
Cooling fan terminal block  
(BU, BV) M4 screw  
Motor power supply  
terminal block  
(U, V, W) M6 screw  
Earth terminal  
M6 screw  
Terminal block signal arrangement  
OHS1OHS2  
BU BV  
U
V
W
Encoder connector  
MS3102A20-29P  
BG72707B  
Power supply connection screw size  
Servo motor  
HA-LFS11K2  
Power supply connection screw size  
M6  
3 - 31  
3. SIGNALS AND WIRING  
Terminal box inside (HA-LFS15K2 HA-LFS-22K2)  
Cooling fan terminal  
block (BU, BV, BW)  
M4 screw  
Thermal protector terminal  
block (OHS1, OHS2)  
M4 screw  
Terminal block signal arrangement  
BU BV BW OHS1OHS2  
Encoder connector  
MS3102A20-29P  
Moter power supply  
terminal block  
Earth terminal M5 screw  
(U, V, W) M8 screw  
U
V
W
BG72706  
Power supply connection screw size  
Servo motor  
HA-LFS15K2  
HA-LFS22K2  
Power supply connection screw size  
M8  
Signal Name  
Abbreviation  
Description  
Power supply  
U
V
W
Connect to the motor output terminals (U, V, W) of the servo amplifier.  
Supply power which satisfies the following specifications.  
HA-LFS11K2  
Item  
Description  
single-phase 200 to 220VAC, 50Hz  
single-phase 200 to 230VAC, 60Hz  
42(50Hz)/54(60Hz)  
Voltage/frequency  
Power consumption [W]  
Rated voltage [V]  
0.12(50Hz)/0.25(60Hz)  
(Note)  
Cooling fan  
BU BV BW  
HA-LFS15K2/22K2  
Item  
Description  
Three-phase 200 to 220VAC, 50Hz  
Three-phase 200 to 230VAC, 60Hz  
32(50Hz)/40(60Hz)  
Voltage/frequency  
Power consumption [W]  
Rated voltage [V]  
0.30(50Hz)/0.25(60Hz)  
Motor thermal relay OHS1 OHS2 OHS1-OHS2 are opened when heat is generated to an abnormal temperature.  
For grounding, connect to the earth of the control box via the earth terminal of the servo  
Earth terminal  
amplifier.  
Note. There is no BW when the HA-LFS11K2 is used.  
3 - 32  
4. OPERATION AND DISPLAY  
4. OPERATION AND DISPLAY  
4.1 When switching power on for the first time  
Before starting operation, check the following:  
(1) Wiring  
(a) A correct power supply is connected to the power input terminals (L1, L2, L3, L11, L21) of the servo  
amplifier.  
(b) The servo motor power supply terminals (U, V, W) of the servo amplifier match in phase with the  
power input terminals (U, V, W) of the servo motor.  
(c) The servo motor power supply terminals (U, V, W) of the servo amplifier are not shorted to the  
power input terminals (L1, L2, L3) of the servo motor.  
(d) The earth terminal of the servo motor is connected to the PE terminal of the servo amplifier.  
(e) Note the following when using the regenerative brake option, brake unit or power regeneration  
converter:  
1) For the MR-J2S-350B or less, the lead has been removed from across D-P of the control circuit  
terminal block, and twisted cables are used for its wiring.  
2) For the MR-J2S-500B MR-J2S-700B, the lead has been removed from across P-C of the servo  
amplifier built-in regenerative brake resistor, and twisted cables are used for its wiring.  
(f) 24VDC or higher voltages are not applied to the pins of connector CN3.  
(g) SD and SG of connector CN3 are not shorted.  
(h) The wiring cables are free from excessive force.  
(i) CN1A should be connected with the bus cable connected to the servo system controller or preceding  
axis servo amplifier, and CN1B should connected with the bus cable connected to the subsequent  
axis servo amplifier or with the termination connector (MR-A-TM.)  
(2) Axis number  
The axis number setting of CS1 should be the same as that of the servo system controller. (Refer to  
Section 3.11.)  
(3) Parameters  
On the servo system controller screen or using the MR Configurator (servo configuration software),  
make sure that correct values have been set in the parameters.  
(4) Environment  
Signal cables and power cables are not shorted by wire offcuts, metallic dust or the like.  
(5) Machine  
(a) The screws in the servo motor installation part and shaft-to-machine connection are tight.  
(b) The servo motor and the machine connected with the servo motor can be operated.  
4 - 1  
4. OPERATION AND DISPLAY  
4.2 Start up  
Do not operate the switches with wet hands. You may get an electric shock.  
Do not operate the controller with the front cover removed. High-voltage terminals  
and charging area exposed and you may get an electric shock.  
During power-on or operation, do not open the front cover. You may get an electric  
shock.  
WARNING  
CAUTION  
Before starting operation, check the parameters. Some machines may perform  
unexpected operation.  
Take safety measures, e.g. provide covers, to prevent accidental contact of hands  
and parts (cables, etc.) with the servo amplifier heat sink, regenerative brake  
resistor, servo motor, etc.since they may be hot while power is on or for some time  
after power-off. Their temperatures may be high and you may get burnt or a parts  
may damaged.  
During operation, never touch the rotating parts of the servo motor. Doing so can  
cause injury.  
Connect the servo motor with a machine after confirming that the servo motor operates properly alone.  
(1) Power on  
When the main and control circuit power supplies are switched on, "d1" (for the first axis) appears on  
the servo amplifier display.  
In the absolute position detection system, first power-on results in the absolute position lost (25) alarm  
and the servo system cannot be switched on. This is not a failure and takes place due to the uncharged  
capacitor in the encoder.  
The alarm can be deactivated by keeping power on for a few minutes in the alarm status and then  
switching power off once and on again.  
Also in the absolute position detection system, if power is switched on at the servo motor speed of  
500r/min or higher, position mismatch may occur due to external force or the like. Power must  
therefore be switched on when the servo motor is at a stop.  
(2) Parameter setting  
Set the parameters according to the structure and specifications of the machine. Refer to Chapter 5 for  
the parameter definitions.  
Parameter No.  
Name  
Setting  
Description  
Increase in positioning address rotates the  
motor in the CCW direction.  
Used.  
7
Rotation direction setting  
0
8
9
Auto tuning  
1
Servo response  
5
Slow response (initial value) is selected.  
After setting the above parameters, switch power off once. Then switch power on again to make the set  
parameter values valid.  
4 - 2  
4. OPERATION AND DISPLAY  
(3) Servo-on  
Switch the servo-on in the following procedure:  
1) Switch on main circuit/control circuit power supply.  
2) The controller transmits the servo-on command.  
When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor is  
locked.  
(4) Home position return  
Always perform home position return before starting positioning operation.  
(5) Stop  
If any of the following situations occurs, the servo amplifier suspends the running of the servo motor  
and brings it to a stop.  
When the servo motor is equipped with an electromagnetic brake, refer to Section 3.7.  
Operation/command  
Stopping condition  
Servo off command  
The base circuit is shut off and the servo motor coasts.  
The base circuit is shut off and the dynamic brake  
Servo system controller  
Servo amplifier  
Emergency stop command operates to bring the servo motor to stop. The controller  
emergency stop warning (E7) occurs.  
The base circuit is shut off and the dynamic brake  
Alarm occurrence  
operates to bring the servo motor to stop.  
The base circuit is shut off and the dynamic brake  
Forced stop  
operates to bring the servo motor to stop. The servo  
(EM1) OFF  
forced stop warning (E6) occurs.  
4 - 3  
4. OPERATION AND DISPLAY  
4.3 Servo amplifier display  
On the servo amplifier display (two-digit, seven-segment display), check the status of communication with  
the servo system controller at power-on, check the axis number, and diagnose a fault at occurrence of an  
alarm.  
(1) Display sequence  
Servo amplifier power ON  
Waiting for servo system controller  
power to switch ON  
Servo system controller power ON  
Initial data communication  
with servo system controller  
During emergency stop and forced stop  
Ready OFF/servo OFF  
(Note)  
or  
Ready ON  
Emergency stop and forced stop  
reset  
(Note)  
Ready ON/servo OFF  
When alarm occurs,  
alarm code appears.  
Servo ON  
Ready ON/servo ON  
(Note)  
Ordinary operation  
Servo system controller power OFF  
Servo system controller power ON  
Note: The right-hand segments of b1, c1 and d1  
indicate the axis number.  
(Axis 1 in this example)  
4 - 4  
4. OPERATION AND DISPLAY  
(2) Indication list  
Indication  
Status  
Initializing  
Description  
The servo amplifier was switched on when power to the servo system  
controller is off.  
AA  
Power to the servo system controller was switched off during power-on of  
the servo amplifier.  
The axis No. set to the servo system controller does not match the axis No.  
set with the axis setting switch (CS1) of the servo amplifier.  
A servo amplifier fault occurred or an error took place in communication  
with the servo system controller. In this case, the indication changes:  
Ab  
Initializing  
Initializing  
"Ab"  
"AC"  
"Ad"  
"Ab"  
The servo system controller is faulty.  
Communication started between the servo system controller and servo  
amplifier.  
AC  
Ad  
AE  
b#  
d#  
C#  
**  
Initializing  
The initial parameters from the servo system controller were received.  
Initial data communication with the servo system controller was completed.  
The ready off signal from the servo system controller was received.  
The ready off signal from the servo system controller was received.  
The ready off signal from the servo system controller was received.  
The alarm No./warning No. that occurred is displayed. (Refer to Section 9.1.)  
Initial data communication with the servo system controller was completed.  
JOG operation, positioning operation, programmed operation, DO forced  
output.  
Initialize completion  
Ready OFF  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 2)  
Servo ON  
Servo OFF  
Alarm Warning  
CPU error  
88  
(Note 3)  
(Note 1)  
b0.  
(Note 3)  
b#.  
d#.  
c#.  
Test operation mode  
Motor-less operation  
Note: 1. # denotes any of numerals 0 to 8 and what it means is listed below:  
#
0
1
2
3
4
5
6
7
8
Description  
Set to the test operation mode.  
First axis  
Second axis  
Third axis  
Fourth axis  
Fifth axis  
Sixth axis  
Seventh axis  
Eighth axis  
2. ** indicates the warning/alarm No.  
3. Requires the MR Configurator (servo configuration software).  
4 - 5  
4. OPERATION AND DISPLAY  
4.4 Test operation mode  
The test operation mode is designed for servo operation confirmation and not for  
machine operation confirmation. Do not use this mode with the machine. Always  
use the servo motor alone.  
CAUTION  
If an operation fault occurred, use the forced stop (EM1) to make a stop.  
By using a personal computer and the MR Configurator (servo configuration software MRZJW3-  
SETUP121E), you can execute jog operation, positioning operation, motor-less operation and DO forced  
output without connecting the motion controller.  
(1) Test operation mode  
(a) Jog operation  
Jog operation can be performed without using the servo system controller. Use this operation with  
the forced stop reset. This operation may be used independently of whether the servo is on or off  
and whether the servo system controller is connected or not.  
Exercise control on the jog operation screen of the MR Configurator (servo configuration software).  
1) Operation pattern  
Item  
Initial value  
Setting range  
Speed [r/min]  
200  
0 to max. speed  
1 to 20000  
Acceleration/deceleration time constant [ms]  
1000  
2) Operation method  
Operation  
Screen control  
Forward rotation start  
Reverse rotation start  
Stop  
Click the "Forward" button.  
Click the "Reverse" button.  
Click the "Stop" button.  
(b) Positioning operation  
Positioning operation can be performed without using the servo system controller. Use this  
operation with the forced stop reset. This operation may be used independently of whether the  
servo is on or off and whether the servo system controller is connected or not.  
Exercise control on the positioning operation screen of the MR Configurator (servo configuration  
software).  
1) Operation pattern  
Item  
Initial value  
Setting range  
Travel [pulse]  
Speed [r/min]  
100000  
200  
0 to 9999999  
0 to max. speed  
1 to 50000  
Acceleration/deceleration time constant [ms]  
1000  
2) Operation method  
Operation  
Screen control  
Forward rotation start  
Reverse rotation start  
Pause  
Click the "Forward" button.  
Click the "Reverse" button.  
Click the "Pause" button.  
4 - 6  
4. OPERATION AND DISPLAY  
(c) Program operation  
Positioning operation can be performed in two or more operation patterns combined, without using  
the servo system controller. Use this operation with the forced stop reset. This operation may be  
used independently of whether the servo is on or off and whether the servo system controller is  
connected or not.  
Exercise control on the programmed operation screen of the MR Configurator (servo configuration  
software). For full information, refer to the MR Configurator (Servo Configuration Software)  
Installation Guide.  
Operation  
Screen Control  
Start  
Stop  
Click the "Start" button.  
Click the "Reset" button.  
(d) Motorless operation  
POINT  
Motor-less operation may be used with the MR Configurator (servo  
configuration software). Usually, however, use motor-less operation which  
is available by making the servo system controller parameter setting.  
Without connecting the servo motor, output signals or status displays can be provided in response  
to the servo system controller commands as if the servo motor is actually running. This operation  
may be used to check the servo system controller sequence. Use this operation with the forced stop  
reset. Use this operation with the servo amplifier connected to the servo system controller.  
Exercise control on the motor-less operation screen of the MR Configurator (servo configuration  
software).  
1) Load conditions  
Load Item  
Load torque  
Load inertia moment ratio  
Condition  
0
Same as servo motor inertia moment  
2) Alarms  
The following alarms and warning do not occur. However, the other alarms and warnings occur  
as when the servo motor is connected:  
Encoder error 1 (16)  
Encoder error 2 (20)  
Absolute position erasure (25)  
Battery cable breakage warning (92)  
(e) Output signal (DO) forced output  
Output signals can be switched on/off forcibly independently of the servo status. Use this function  
for output signal wiring check, etc.  
Exercise control on the DO forced output screen of the MR Configurator (servo configuration  
software).  
4 - 7  
4. OPERATION AND DISPLAY  
(2) Configuration  
Configuration should be as in Section 3.1. Always install a forced stop switch to enable a stop at  
occurrence of an alarm.  
(3) Operation procedure  
(a) Jog operation, positioning operation, program operation, DO forced output.  
1) Switch power off.  
2) Set CS1 to “F”.  
When CS1 is set to the axis number and operation is performed by the servo system controller,  
the test operation mode screen is displayed on the personal computer, but no function is  
performed.  
3) Switch servo amplifier power on.  
When initialization is over, the display shows the following screen:  
Decimal point flickers.  
4) Perform operation with the personal computer.  
(b) Motor-less operation  
1) Switch off the servo amplifier.  
2) Perform motor-less operation with the personal computer.  
The display shows the following screen:  
Decimal point flickers.  
4 - 8  
5. PARAMETERS  
5. PARAMETERS  
CAUTION  
Never adjust or change the parameter values extremely as it will make operation  
instable.  
POINT  
When the servo amplifier is connected with the servo system controller, the  
parameters are set to the values of the servo system controller. Switching  
power off, then on makes the values set on the MR Configurator (servo  
configuration software) invalid and the servo system controller values valid.  
In the maker setting parameters, do not set any values other than the  
initial values.  
Setting may not be made to some parameters and ranges depending on the  
model or version of the servo system controller. For details, refer to the  
servo system controller user's manual.  
5.1 Parameter write inhibit  
POINT  
When setting the parameter values from the servo system controller, the  
parameter No. 40 setting need not be changed.  
In this servo amplifier, the parameters are classified into the basic parameters (No. 1 to 11), adjustment  
parameters (No. 12 to 26) and expansion parameters (No. 27 to 40) according to their safety aspects and  
frequencies of use. The values of the basic parameters may be set/changed by the customer, but those of  
the adjustment and expansion parameters cannot. When in-depth adjustment such as gain adjustment is  
required, change the parameter No. 40 value to make all parameters accessible. Parameter No. 40 is  
made valid by switching power off, then on after setting its value.  
The following table indicates the parameters which are enabled for reference and write by parameter No.  
40 setting.  
Operation from MR Configurator  
(servo configuration software)  
Setting  
0000(initial value)  
000A  
Operation  
Operation from controller  
Parameter No.1 to 39  
Parameter No.1 to 39  
Parameter No.1 to 39  
Parameter No.1 to 39  
Parameter No.1 to 39  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Parameter No.1 to 11 40  
Parameter No.40  
Parameter No.1 to 40  
Parameter No.1 to 11 40  
000C  
000E  
Parameter No.1 to 40  
Reference  
Write  
Parameter No.1 to 40  
Parameter No.40  
100E  
5.2 Lists  
POINT  
For any parameter whose symbol is preceded by*, set the parameter value  
and switch power off once, then switch it on again to make that parameter  
setting valid. The parameter is set when communication between the  
servo system controller and servo amplifier is established (b* is  
displayed). After that, power the servo amplifier off once and then on  
again.  
5 - 1  
5. PARAMETERS  
(1) Item list  
(Note 1)  
Initial  
Classifi-  
Customer  
setting  
No. Symbol  
cation  
Name  
Unit  
Value  
1
2
3
4
5
6
7
8
*AMS Amplifier setting  
*REG Regenerative brake resistor  
0000  
0000  
0080  
000  
1
0
0
0001  
For manufacturer setting by servo system controller  
Automatically set from the servo system controller  
*FBP Feedback pulse number  
*POL Rotation direction selection  
ATU Auto tuning  
7kW or  
less: 0005  
11kW or  
more:  
9
RSP  
Servo response  
0002  
10  
11  
12  
TLP  
Forward rotation torque limit (Note 2)  
300  
300  
7.0  
%
%
times  
TLN Reverse rotation torque limit (Note 2)  
GD2  
Ratio of load inertia to servo motor inertia (load inertia ratio)  
7kW or  
less: 35  
13  
14  
15  
16  
PG1  
Position control gain 1  
rad/s  
rad/s  
rad/s  
11kW or  
more: 19  
7kW or  
less: 177  
11kW or  
more: 96  
7kW or  
VG1  
PG2  
Speed control gain 1  
less: 35  
Position control gain 2  
11kW or  
more: 19  
7kW or  
less: 817  
11kW or  
more: 455  
VG2  
VIC  
Speed control gain 2  
rad/s  
ms  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Speed integral compensation  
48  
0000  
0
100  
0
0001  
0000  
0000  
0000  
0
NCH Machine resonance suppression filter 1 (Notch filter)  
FFC  
INP  
MBR Electromagnetic brake sequence output  
MOD Analog monitor output  
*OP1 Optional function 1  
Feed forward gain  
In-position range  
%
pulse  
ms  
*OP2 Optional function 2  
LPF  
Low-pass filter/adaptive vibration suppression control  
For manufacturer setting  
MO1 Analog monitor 1 offset  
MO2 Analog monitor 2 offset  
For manufacturer setting  
ZSP  
ERZ  
OP5  
*OP6 Optional function 6  
VPI PI-PID control switch-over position droop  
For manufacturer setting  
VDC Speed differential compensation  
For manufacturer setting  
0
0
0001  
50  
mV  
mV  
Zero speed  
r/min  
(Note 3)  
0.025rev  
31  
Error excessive alarm level  
80  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Optional function 5  
0000  
0000  
0
pulse  
0
980  
0010  
4000  
0
*ENR Encoder output pulses  
For manufacturer setting  
*BLK Parameter blocks (Note 2)  
pulse/rev  
0000  
Note:1. Factory settings of the servo amplifier. Connecting it with the servo system controller and switching power on changes them to  
the settings of the servo system controller.  
2. Setting and changing cannot be made from the peripheral software of the motion controller.  
3. The setting unit of 0.025rev applies for the servo amplifier of software version B1 or later. For the amplifier of software version  
older than B1, the setting unit of 0.1rev is applied.  
5 - 2  
5. PARAMETERS  
(2) Details list  
Classifi-  
Initial  
Value  
0000  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
1
*AMS Amplifier setting  
Refer to  
name  
Used to select the absolute position detection.  
and  
function  
column.  
0 0 0  
Absolute position detection selection  
0: Invalid (Used in incremental system.)  
1: Valid (Used in absolute position  
detection system.)  
2
*REG Regenerative brake resistor  
0000  
Refer to  
name  
Used to select the regenerative brake option used.  
and  
function  
column.  
0 0  
Regenerative selection brake option  
00: Regenerative brake option is not used with  
7kW or less servo amplifier (The built-in  
regenerative brake resistor is used. However,  
the MR-J2S-10B does not have a built-in  
regenerative brake resistor and therefore  
cannot use it.)  
Supplied regenerative brake resistors or  
regenerative brake option is used with 11kW  
or more servo amplifier  
01: FR-RC, FR-BU, FR-CV  
05: MR-RB32  
08: MR-RB30  
09: MR-RB50  
0B: MR-RB31  
0C: MR-RB51  
0E: When regenerative brake resistors or regenerative  
brake option supplied to 11kW or more are cooled  
by fans to increase capability  
10: MR-RB032  
11: MR-RB12  
The MR-RB65, 66 and 67 are regenerative brake  
options that have encased the GRZG400-2  
,
GRZG400-1 and GRZG400-0.8 , respectively.  
When using any of these regenerative brake  
options, make the same parameter setting as  
when using the GRZG400-2 , GRZG400-1 or  
GRZG400-0.8 (supplied regenerative brake  
resistors or regenerative brake option is used  
with 11kW or more servo amplifier).  
Select the external dynamic brake.  
0: Invalid  
1: Valid  
Select "1" when using the external dynamic  
brake with the MR-J2S-11KB or more.  
POINT  
Wrong setting may cause the regenerative brake option to burn.  
If the regenerative brake option selected is not for use with the  
servo amplifier, parameter error (37) occurs.  
3
4
5
For automatic setting by servo system controller  
Automatically set from the servo system controller  
0080  
0000  
1
5 - 3  
5. PARAMETERS  
Classifi-  
Initial  
Value  
0
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
6
7
8
*FBP Feedback pulse number  
Refer to  
name  
and  
function  
column.  
Set the number of pulses per revolution in the controller side command  
unit. Information on the motor such as the feedback pulse value, present  
position, droop pulses and within-one-revolution position are derived  
from the values converted into the number of pulses set here.  
Setting  
Number of feedback pulses  
0
1
16384  
8192  
6
32768  
131072  
7
255  
Depending on the number of motor resolution pulses.  
POINT  
If the number of pulses set exceeds the actual motor  
resolution, the motor resolution is set automatically.  
*POL Rotation direction selection  
0
Refer to  
name  
Used to select the rotation direction of the servo motor.  
0: Forward rotation (CCW) with the increase of the positioning  
and  
address.  
function  
column.  
1: Reverse rotation (CW) with the increase of the positioning  
address.  
CCW  
CW  
ATU Auto tuning  
0001  
Refer to  
name  
Used to select the gain adjustment mode of auto tuning.  
and  
0 0 0  
function  
column.  
Gain adjustment mode selection  
(For details, refer to Section 6.1.1.)  
Set  
value  
0
Gain adjustment  
mode  
Interpolation mode Fixes position control  
Description  
gain 1  
(parameter No. 13).  
1
3
Auto tuning mode 1 Ordinary auto tuning.  
Auto tuning mode 2 Fixes the load inertia  
moment ratio set in  
parameter No. 12.  
Response level setting  
can be changed.  
4
2
Manual mode 1  
Manual mode 2  
Simple manual  
adjustment.  
Manual adjustment  
of all gains.  
5 - 4  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
9
RSP  
Servo response  
7kW or  
less  
Refer to  
name  
Used to select the response of auto tuning.  
:0005  
and  
0 0 0  
function  
column.  
11kW or  
more  
Response level selection  
Set  
Response Machine resonance  
:0002  
value  
level  
Low  
frequency guideline  
15Hz  
1
2
response  
20Hz  
3
25Hz  
4
30Hz  
5
35Hz  
6
45Hz  
7
8
9
55Hz  
70Hz  
85Hz  
Middle  
response  
A
B
C
D
E
F
105Hz  
130Hz  
160Hz  
200Hz  
240Hz  
300Hz  
High  
response  
If the machine hunts or generates large gear  
sound, decrease the set value.  
To improve performance, e.g. shorten the  
settling time, increase the set value.  
10  
11  
TLP  
Forward rotation torque limit  
300  
300  
%
%
0
Assume that the rated torque is 100[%].  
to  
Used to limit the torque in the forward rotation driving mode and  
reverse rotation regenerative mode.  
500  
In other than the test operation mode on the MR Configurator (servo  
configuration software), the torque limit value on the servo system  
controller side is made valid.  
TLN Reverse rotation torque limit  
0
Assume that the rated torque is 100[%].  
to  
Used to limit the torque in the forward rotation driving mode and  
forward rotation regenerative mode.  
500  
In other than the test operation mode on the MR Configurator (servo  
configuration software), the torque limit value on the servo system  
controller side is made valid.  
12  
13  
GD2 Ratio of load inertia to servo motor inertia (load inertia ratio)  
Used to set the ratio of the load inertia (inertia moment) to the  
inertia moment of the servo motor shaft. When auto tuning mode 1  
and interpolation mode is selected, the result of auto tuning is  
automatically used. (Refer to section 6.1.1)  
7.0  
times  
rad/s  
0.0  
to  
300.0  
PG1  
Position loop gain 1  
7kW or  
4
to  
Used to set the gain of position loop 1. Increase the gain to improve less:35  
trackability performance in response to the position command.  
2000  
When auto turning mode 1,2 is selected, the result of auto turning is 11kW or  
automatically used.  
more:19  
5 - 5  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
14  
VG1  
Speed loop gain 1  
7kW or  
rad/s  
20  
to  
Normally this parameter setting need not be changed. Higher setting less:177  
increases the response level but is liable to generate vibration and/or  
5000  
noise.  
11kW or  
When auto tuning mode 1,2 and interpolation mode is selected, the more:96  
result of auto tuning is automatically used.  
15  
PG2  
Position loop gain 2  
7kW or  
less:35  
rad/s  
rad/s  
ms  
1
to  
Used to set the gain of the position loop.  
Set this parameter to increase position response to load disturbance.  
1000  
Higher setting increases the response level but is liable to generate 11kW or  
vibration and/or noise.  
more:19  
When auto tuning mode 1 2, manual mode and interpolation mode  
is selected, the result of auto tuning is automatically used.  
Speed loop gain 2  
16  
VG2  
7kW or  
20  
to  
Set this parameter when vibration occurs on machines of low  
rigidity or large backlash.  
less:817  
20000  
Higher setting increases the response level but is liable to generate  
vibration and/or noise.  
11kW or  
more:455  
When auto tuning mode 1 2 and interpolation mode is selected, the  
result of auto tuning is automatically used.  
17  
18  
VIC  
7kW or  
less:48  
1
to  
Speed integral compensation  
Used to set the constant of integral compensation.  
When auto tuning mode 1 2 and interpolation mode is selected, the  
result of auto tuning is automatically used.  
1000  
11kW or  
more:91  
0
NCH Machine resonance suppression filter 1 (Notch filter)  
Used to select the machine resonance suppression filter.  
(Refer to Section 7.2.)  
Refer to  
name  
and  
function  
column.  
0
Notch frequency selection  
Setting Frequency Setting Frequency Setting Frequency Setting Frequency  
00  
01  
02  
03  
04  
05  
06  
07  
Invalid  
4500  
2250  
1500  
1125  
900  
08  
562.5  
500  
10  
11  
12  
13  
14  
15  
16  
17  
281.3  
264.7  
250  
18  
187.5  
180  
09  
19  
0A  
0B  
0C  
0D  
0E  
0F  
450  
1A  
1B  
1C  
1D  
1E  
1F  
173.1  
166.7  
160.1  
155.2  
150  
409.1  
375  
236.8  
225  
346.2  
321.4  
300  
214.3  
204.5  
195.7  
750  
642.9  
145.2  
Notch depth selection  
Setting  
Depth  
Deep  
to  
Gain  
0
1
2
3
40dB  
14dB  
8dB  
Shallow  
4dB  
Feed forward gain  
19  
FFC  
0
%
0
Set the feed forward gain. When the setting is 100%, the droop  
pulses during operation at constant speed are nearly zero. However,  
sudden acceleration/deceleration will increase the overshoot. As a  
guideline, when the feed forward gain setting is 100%, set 1s or more  
as the acceleration/deceleration time constant up to the rated speed.  
to  
100  
5 - 6  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
20  
INP  
In-position range  
100  
pulse  
0
to  
Used to set the droop pulse range in which the in-position (INP) will  
be output to the controller. Make setting in the feedback pulse unit  
(parameter No. 6).  
50000  
For example, when you want to set 10 m in the conditions that the  
ballscrew is direct coupled, the lead is 10mm, and the feedback  
pulses are 8192 pulses/rev (parameter No. 6 : 1), set "8" as indicated  
by the following expression:  
6
10 10  
8192 8.192  
8
3
10 10  
21  
22  
MBR Electromagnetic brake sequence output  
Used to set a time delay (Tb) from when the electromagnetic brake  
interlock signal (MBR) turns off until the base circuit is shut off.  
MOD Analog monitor output  
100  
ms  
0
to  
1000  
0001  
Refer to  
name  
and  
Used to select the signal provided to the analog monitor  
(MO1) analog monitor (MO2).  
(Refer to Section 5.3.)  
function  
column.  
0
0
Analog monitor2 (MO2)  
Setting  
Analog monitor1 (MO1)  
0
1
2
3
4
5
6
7
8
9
A
B
Servo motor speed ( 8V/max. speed)  
Torque ( 8V/max. torque)  
Servo motor speed ( 8V/max. speed)  
Torque ( 8V/max. torque)  
Current command ( 8V/max. current command)  
Speed command ( 8/max. speed)  
Droop pulses  
( 10V/128 pulses)  
Droop pulses ( 10V/2048 pulses)  
Droop pulses ( 10V/8192 pulses)  
Droop pulses ( 10V/32768 pulses)  
Droop pulses ( 10V/131072 pulses)  
Bus voltage ( 8V/400V)  
23  
*OP1 Optional function 1  
Used to make the servo forced stop function invalid.  
0000  
Refer to  
name  
and  
0 0 0  
function  
column.  
Servo forced stop selection  
0: Valid (Use the forced stop (EM1).)  
1: Invalid (Do not use the forced stop (EM1).)  
Automatically switched on internally  
5 - 7  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
24  
*OP2 Optional function 2  
0000  
Refer to  
name  
Used to select slight vibration suppression control and motor-less  
operation  
and  
function  
column.  
0
0
Slight vibration suppression control selection  
Made valid when auto tuning selection is  
set to "0002" in parameter No.8.  
Used to suppress vibration at a stop.  
0: Invalid  
1: Valid  
Motor-less operation selection  
0: Invalid  
1: Makes motor-less operation valid.  
When motor-less operation is made valid, signal output or  
status display can be provided as if the servo motor is running  
actually in response to the servo system controller command,  
without the servo motor being connected.  
Motor-less operation is performed as in the motor-less  
operation using the MR Configurator (servo configuration  
software). (Refer to (d), (1) in Section 4.4.)  
25  
LPF  
Low-pass filter/adaptive vibration suppression control  
Used to select the low-pass filter and adaptive vibration suppression  
control. (Refer to Chapter 7.)  
0000  
Refer to  
name  
and  
function  
column.  
0
Low-pass filter selection  
0: Valid (Automatic adjustment)  
1: Invalid  
When you choose "vaid", the filter of the handwidth  
represented by the following expression is set automatically.  
For 1kW or less  
VG2 setting 10  
[Hz]  
2
(1 GD2 setting 0.1)  
For 2kW or more  
VG2 setting  
(1 GD2 setting 0.1)  
5
[Hz]  
2
Adaptive vibration suppression control selection  
0: Invalid  
1: Valid  
Machine resonance frequency is always detected  
and the filter is generated in response to resonance to  
suppress machine vibration.  
2: Held  
The characteristics of the filter generated so far are  
held, and detection of machine resonance is stopped.  
Adaptive vibration suppression control sensitivity  
selection  
Used to select the sensitivity of machine resonance  
detection.  
0: Normal  
1: Large sensitivity  
26  
For manufacturer setting  
Don't change this value by any means.  
0
5 - 8  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
27  
MO1 Analog monitor 1 offset  
0
mV  
999  
to  
Used to set the offset voltage of the analog monitor1 (MO1) output.  
999  
999  
to  
28  
MO2 Analog monitor 2 offset  
0
mV  
Used to set the offset voltage of the analog monitor2 (MO2) output.  
999  
29  
30  
For manufacturer setting  
0001  
50  
Don't change this value by any means.  
Zero speed  
ZSP  
ERZ  
r/min  
0
to  
Used to set the output range of the zero speed signal (ZSP).  
10000  
0
31  
32  
Error excessive alarm level  
80  
(Note)  
Used to set the output range of the error excessive alarm.  
Note: The setting unit of 0.025rev applies for the servo amplifier of  
software version B1 or later. For the amplifier of software version  
older than B1, the setting unit of 0.1rev is applied.  
Optional function 5  
0.025  
to  
1000  
OP5  
0000  
Refer to  
name  
Used to select PI-PID control switch-over.  
and  
0 0 0  
function  
column.  
PI-PID control switch over selection  
0: PI control is always valid.  
1: Droop-based switching is valid in position  
control mode (refer to parameter No. 34).  
2: PID control is always valid.  
33  
*OP6 Option function 6  
Used to select the serial communication baudrate, serial  
0000  
Refer to  
name  
communication response delay time setting and encoder output  
pulse setting.  
and  
function  
column.  
0
Serial communication baudrate selection  
0: 9600[bps]  
1: 19200[bps]  
2: 38400[bps]  
3: 57600[bps]  
Serial communication response delay time  
0: Invalid  
1: Valid, replay sent in 800 s or more  
Encoder output pulse setting selection  
(refer to parameter No.38)  
0: Output pulse designation  
1: Division ratio setting  
34  
VPI  
PI-PID control switch-over position droop  
Used to set the position droop value (number of pulses) at which PI  
control is switched over to PID control.  
0
pulse  
0
to  
50000  
Set "0001" in parameter No. 32 to make this function valid.  
For manufacturer setting  
35  
36  
0
Don't change this value by any means.  
VDC Speed differential compensation  
Used to set the differential compensation.  
980  
0
to  
1000  
37  
For manufacturer setting  
0010  
5 - 9  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
38  
*ENR Encoder output pulses  
4000  
pulse/rev  
1
to  
Used to set the encoder pulses (A-phase, B-phase) output by the  
servo amplifier.  
65535  
Set the value 4 times greater than the A-phase and B-phase pulses.  
You can use parameter No.33 to choose the output pulse setting or  
output division ratio setting.  
The number of A-phase and B-phase pulses actually output is 1/4  
times greater than the preset number of pulses.  
The maximum output frequency is 1.3Mpps (after multiplication by  
4). Use this parameter within this range.  
For output pulse designation  
Set "0  
" (initial value) in parameter No. 33.  
Set the number of pulses per servo motor revolution.  
Output pulse set value [pulses/rev]  
At the setting of 5600, for example, the actually output A-phase  
and B-phase pulses are as indicated below:  
5600  
A-phase and B-phase output pulses  
1400[pulse]  
4
For output division ratio setting  
Set "1  
" in parameter No. 33.  
The number of pulses per servo motor revolution is divided by the  
set value.  
Resolution per servo motor revolution  
Output pulse  
[pulses/rev]  
Set value  
At the setting of 8, for example, the actually output A-phase and  
B-phase pulses are as indicated below:  
131072  
8
1
4
A-phase and B-phase output pulses  
4096[pulse]  
39  
40  
For manufacturer setting  
0
Don't change this value by any means.  
*BLK Parameter blocks  
Setting Operation  
0000  
Refer to  
name  
Operation from  
controller  
Operation from  
MR Configurator  
and  
function  
column.  
(servo configuration)  
0000  
(initial  
value)  
000A  
Reference Parameter No.1  
to 39  
Parameter No.1  
to 11 40  
Write  
Reference Parameter No.1  
to 39  
Parameter No.40  
Write  
000C  
Reference Parameter No.1  
Parameter No.1  
to 40  
to 39  
Write  
Parameter No.1  
to 11 40  
000E  
100E  
Reference Parameter No.1  
Parameter No.1  
to 40  
to 39  
Write  
Reference Parameter No.1  
Parameter No.1  
to 40  
to 39  
Write  
Parameter No.40  
5 - 10  
5. PARAMETERS  
5.3 Analog monitor  
The servo status can be output to two channels in terms of voltage. Use this function when using an  
ammeter to monitor the servo status or synchronizing the torque/speed with the other servo.  
(1) Setting  
Change the following digits of parameter No.22:  
Parameter No. 22  
0
0
Analog monitor 2(MO2) output selection  
(Signal output to across MO2-LG)  
Analog monitor 1(MO1) output selection  
(Signal output to across MO1-LG)  
Parameters No.27 and 28 can be used to set the offset voltages to the analog output voltages. The  
setting range is between 999 and 999mV.  
Parameter No.  
Description  
Setting range [mV]  
27  
Used to set the offset voltage for the analog monitor 1(MO) output.  
Used to set the offset voltage for the analog monitor 2(MO2)  
output.  
999 to 999  
28  
5 - 11  
5. PARAMETERS  
(2) Setting description  
The servo amplifier is factory-set to output the servo motor speed to analog monitor (MO1) and the  
torque to analog monitor (MO2). The setting can be changed as listed below by changing the  
parameter No.22 (Analog monitor output) value:  
Refer to (3) in this section for the measurement point.  
Setting  
Output item  
Description  
Setting  
Output item  
Description  
CCW direction  
CCW direction  
0
Servo motor speed  
6
Droop pulses  
10[V]  
8[V]  
( 10V/128pulse)  
128[pulse]  
Max. speed  
0
0
Max. speed  
8[V]  
128[pulse]  
10[V]  
CCW direction  
CW direction  
8[V]  
CW direction  
10[V]  
1
2
3
4
Torque  
7
Droop pulses  
Driving in CCW direction  
( 10V/2048pulse)  
2048[pulse]  
Max. torque  
0
0
2048[pulse]  
Max. torque  
10[V]  
CCW direction  
8[V]  
Driving in CW direction  
CW direction  
10[V]  
Servo motor speed  
8
Droop pulses  
( 10V/8192pulse)  
CW  
direction  
CCW  
8[V]  
direction  
8192[pulse]  
0
8192[pulse]  
Max. speed  
0
Max. speed  
10[V]  
CCW direction  
CW direction  
10[V]  
Torque  
9
Droop pulses  
( 10V/32768pulse)  
Driving in  
CW direction 8[V]  
Driving in  
CCW direction  
32768[pulse]  
0
32768[pulse]  
Max. torque  
8[V]  
0
Max. torque  
10[V]  
CCW direction  
CW direction  
10[V]  
CCW direction  
Current command  
A
Droop pulses  
Max. current  
command  
( 10V/131072pulse)  
131072[pulse]  
0
0
Max. current  
command  
131072[pulse]  
10[V]  
8[V]  
CW direction  
8[V]  
CW direction  
8[V]  
5
Speed command  
CCW direction  
B
Bus voltage  
Max. speed  
0
Max. speed  
0
400[V]  
8[V]  
CW direction  
5 - 12  
5. PARAMETERS  
(3) Analog monitor block diagram  
5 - 13  
5. PARAMETERS  
5.4 Replacement of MR-J2- B by MR-J2S-  
B
When using the MR-J2S- B on the servo system controller peripheral software incompatible with the  
MR-J2S- B, you cannot use some parameter functions. Read this section carefully and set appropriate  
values in the parameters.  
5.4.1 Main modifications made to the parameters  
The following table lists the parameters whose settings have been modified from the MR-J2- B or added  
to the MR-J2S- B. The peripheral software of the servo system controller may not be compatible with  
some parameters whose settings are different or have been added. For details, refer to the servo system  
controller manual.  
(Note) Setting from peripheral  
Parameter  
Code  
Name  
Main modifications/additions  
software of conventional servo  
system controller  
No.  
6
FBP Feedback pulse number  
ATU Auto tuning  
The encoder resolution of the  
compatible motor changed to  
131072 pulses/rev.  
Setting cannot be made.  
The resolution is 16384  
pulses/rev.  
8
9
Gain adjustment modes were  
increased.  
Setting can be made but the  
added modes cannot be  
used.  
RSP Servo response level  
The response level setting range Some response levels cannot  
was increased to meet the  
enhanced response.  
be set.  
18  
20  
NCH Machine resonance  
suppression filter 1  
(Notch filter)  
The machine resonance  
suppression filter (notch filter)  
setting range was increased.  
The setting unit became the  
feedback pulse unit in  
Some filter frequencies  
cannot be set.  
INP In-position range  
Setting can be made.  
parameter No. 6.  
22  
25  
MOD Analog monitor output  
LPF Low-pass filter/adaptive  
The data that may be output by Setting can be made but the  
analog monitor was added. bus voltage cannot be set.  
The low-pass filter and adaptive Setting can be made.  
vibration suppression control vibration suppression control  
functions were newly added.  
31  
ERZ Error excessive alarm level  
The setting unit was changed in Setting can be made but the  
response to the enhanced  
resolution (131072 pulses/rev) of  
the encoder.  
setting unit is [0.1 rev].  
33  
38  
OP6 Optional function 6  
The communication baudrate  
with the personal computer was  
changed to max. 57600bps.  
Setting cannot be made.  
ENR Encoder output pulses  
The encoder feedback pulses can Setting cannot be made.  
be output from the servo  
amplifier. These pulses can be  
set.  
Note. As of November, 2003  
5 - 14  
5. PARAMETERS  
5.4.2 Explanation of the modified parameters  
(1) Feedback pulse number (parameter No. 6)  
This parameter was newly added to the MR-J2S- B. If the peripheral software of the servo system  
controller is not compatible with the MR-J2S- B, this parameter setting cannot be changed. When  
the servo motor used is the HC-KFS or HC-MFS, the feedback pulse number is 8192 pulses/rev, and  
when it is the HC-SFS, HC-RFS or HC-UFS, the feedback pulse number is 16384 pulses/rev.  
(2) Auto tuning (parameter No. 8)  
The set values of this parameter were newly added to the MR-J2S- B. If the peripheral software of  
the servo system controller is not compatible with the MR-J2S- B, the parameter settings are as  
indicated below. The auto tuning mode 2 and manual mode 1 cannot be used.  
0 0 0  
Gain adjustment mode selection  
(For details, refer to Section 6.1.1.)  
Set value Gain adjustment mode  
Description  
Interpolation mode  
0
Fixes position control gain 1  
(parameter No. 13).  
Auto tuning mode 1  
1
Ordinary auto tuning.  
Manual mode 2  
2
Manual adjustment of all gains.  
(3) Servo response level (parameter No. 9)  
The set values of this parameter were newly added to the MR-J2S- B. In addition, the machine  
resonance frequency guidelines corresponding to the set values were changed. If the peripheral  
software of the servo system controller is not compatible with the MR-J2S- B, the parameter settings  
are as indicated below.  
0 0 0  
Auto tuning response level setting  
Set  
Response Machine resonance  
value  
level  
frequency guideline  
15Hz  
1
2
3
4
5
6
7
8
9
A
B
C
Low  
response  
20Hz  
25Hz  
30Hz  
35Hz  
45Hz  
55Hz  
70Hz  
85Hz  
Middle  
response  
105Hz  
130Hz  
160Hz  
High  
response  
5 - 15  
5. PARAMETERS  
(4) Machine resonance suppression filter 1 (parameter No. 18)  
The settings of this parameter were changed for the MR-J2S- B. If the peripheral software of the  
servo system controller is not compatible with the MR-J2S- B, the parameter settings are as  
indicated below. The notch depth is 40dB.  
0 0 0  
Notch frequency selection  
Set value Frequency  
Invalid  
4500  
2250  
1500  
1125  
900  
0
1
2
3
4
5
6
7
750  
642.9  
Notch depth selection  
Set value Depth  
Gain  
0
Deep  
40dB  
(5) In-position range (parameter No. 20)  
The setting of this parameter was changed for the MR-J2S- B. The setting unit was changed from  
the conventional input pulse unit to the feedback pulse unit. For details, refer to Section 5.2.  
(6) Analog monitor output (parameter No. 22)  
The setting of this parameter was changed for the MR-J2S- B. "Bus voltage" is a new choice, but you  
cannot select it if the peripheral software of the servo system controller is not compatible with the MR-  
J2S- B.  
Also, the droop pulse output is the encoder resolution unit of the actual motor. For details, refer to  
Section 5.3.  
(7) Low-pass filter/adaptive vibration suppression control (parameter No. 25)  
This parameter was newly added to the MR-J2S- B. If the peripheral software of the servo system  
controller is not compatible with the MR-J2S- B, this parameter setting cannot be changed. Hence,  
the low-pass filter is "valid" and the adaptive vibration suppression control is "invalid". For details,  
refer to Sections 7.3 and 7.4.  
(8) Error excessive alarm level (parameter No. 31)  
The setting of this parameter was changed for the MR-J2S- B. The setting unit was changed from  
conventional [k pulse] to [0.1rev]. If the peripheral software of the servo system controller is not  
compatible with the MR-J2S- B, the unit is set as [0.1rev] to the MR-J2S- B even when the on-  
screen setting unit is [k pulse]. For details, refer to Section 5.2.  
5 - 16  
5. PARAMETERS  
(9) Optional function 6 (parameter No. 33)  
This parameter was newly added to the MR-J2S- B. If the peripheral software of the servo system  
controller is not compatible with the MR-J2S- B, this parameter setting cannot be changed. Hence,  
the serial communication baudrate is “9600 [bps]”, the serial communication response ready time is  
“invalid”, and the encoder output pulse setting selection is "output pulse setting". For details, refer to  
Section 5.2.  
5 - 17  
5. PARAMETERS  
MEMO  
5 - 18  
6. GENERAL GAIN ADJUSTMENT  
6. GENERAL GAIN ADJUSTMENT  
6.1 Different adjustment methods  
6.1.1 Adjustment on a single servo amplifier  
The gain adjustment in this section can be made on a single servo amplifier. For gain adjustment, first  
execute auto tuning mode 1. If you are not satisfied with the results, execute auto tuning mode 2, manual  
mode 1 and manual mode 2 in this order.  
(1) Gain adjustment mode explanation  
Parameter No. 8  
setting  
Estimation of load inertia  
moment ratio  
Automatically set  
parameters  
Gain adjustment mode  
Manually set parameters  
Auto tuning mode 1  
(initial value)  
0001  
0003  
Always estimated  
GD2 (parameter No. 12) RSP (parameter No. 9)  
PG1 (parameter No. 13)  
VG1 (parameter No. 14)  
PG2 (parameter No. 15)  
VG2 (parameter No. 16)  
VIC (parameter No. 17)  
Auto tuning mode 2  
Fixed to parameter No. PG1 (parameter No. 13) GD2 (parameter No. 12)  
12 value  
VG1 (parameter No. 14) RSP (parameter No. 9)  
PG2 (parameter No. 15)  
VG2 (parameter No. 16)  
VIC (parameter No. 17)  
Manual mode 1  
Manual mode 2  
0004  
0002  
VG1 (parameter No. 14) GD2 (parameter No. 12)  
PG2 (parameter No. 15) PG1 (parameter No. 13)  
VG2 (parameter No. 16)  
VIC (parameter No. 17)  
GD2 (parameter No. 12)  
PG1 (parameter No. 13)  
VG1 (parameter No. 14)  
PG2 (parameter No. 15)  
VG2 (parameter No. 16)  
VIC (parameter No. 17)  
Interpolation mode  
0000  
Always estimated  
GD2 (parameter No. 12) PG1 (parameter No. 13)  
PG2 (parameter No. 15) VG1 (parameter No. 14)  
VG2 (parameter No. 16)  
VIC (parameter No. 17)  
6 - 1  
6. GENERAL GAIN ADJUSTMENT  
(2) Adjustment sequence and mode usage  
START  
Usage  
Yes  
Used when you want to  
match the position gain  
(PG1) between 2 or more  
axes. Normally not used for  
other purposes.  
Interpolation  
made for 2 or more  
axes?  
Interpolation mode  
Operation  
No  
Allows adjustment by  
merely changing the  
response level setting.  
First use this mode to make  
adjustment.  
Auto tuning mode 1  
Operation  
Yes  
No  
Used when the conditions of  
auto tuning mode 1 are not  
met and the load inertia  
moment ratio could not be  
estimated properly, for  
example.  
OK?  
OK?  
Yes  
No  
Auto tuning mode 2  
Operation  
Yes  
OK?  
No  
This mode permits  
adjustment easily with three  
gains if you were not  
satisfied with auto tuning  
results.  
Manual mode 1  
Operation  
Yes  
OK?  
You can adjust all gains  
manually when you want to  
do fast settling or the like.  
No  
Manual mode 2  
END  
6 - 2  
6. GENERAL GAIN ADJUSTMENT  
6.1.2 Adjustment using MR Configurator (servo configuration software)  
POINT  
When using the machine analyzer, set the servo amplifier's axis number  
for "F". (Refer to Section 3.11.)  
This section gives the functions and adjustment that may be performed by using the servo amplifier with  
the MR Configurator (servo configuration software) which operates on a personal computer.  
Function  
Description  
Adjustment  
Machine analyzer  
With the machine and servo motor  
coupled, the characteristic of the  
mechanical system can be measured by  
giving a random vibration command from  
the personal computer to the servo and  
measuring the machine response.  
You can grasp the machine resonance frequency and  
determine the notch frequency of the machine  
resonance suppression filter.  
You can automatically set the optimum gains in  
response to the machine characteristic. This simple  
adjustment is suitable for a machine which has large  
machine resonance and does not require much settling  
time.  
Gain search  
Executing gain search under to-and-fro  
positioning command measures settling  
characteristic while simultaneously  
changing gains, and automatically  
searches for gains which make settling  
time shortest.  
You can automatically set gains which make positioning  
settling time shortest.  
Machine simulation  
Response at positioning settling of  
machine can be simulated from machine  
analyzer results on personal computer.  
a
You can optimize gain adjustment and command  
pattern on personal computer.  
6 - 3  
6. GENERAL GAIN ADJUSTMENT  
6.2 Auto tuning  
6.2.1 Auto tuning mode  
The servo amplifier has a real-time auto tuning function which estimates the machine characteristic (load  
inertia moment ratio) in real time and automatically sets the optimum gains according to that value. This  
function permits ease of gain adjustment of the servo amplifier.  
(1) Auto tuning mode 1  
The servo amplifier is factory-set to the auto tuning mode 1.  
In this mode, the load inertia moment ratio of a machine is always estimated to set the optimum gains  
automatically.  
The following parameters are automatically adjusted in the auto tuning mode 1.  
Parameter No.  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Position control gain 1  
12  
13  
14  
15  
16  
17  
PG1  
VG1  
Speed control gain 1  
PG2  
Position control gain 2  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
POINT  
The auto tuning mode 1 may not be performed properly if the following  
conditions are not satisfied.  
Time to reach 2000r/min is the acceleration/deceleration time constant of 5s or  
less.  
Speed is 150r/min or higher.  
The ratio of load inertia moment to servo motor is not more than 100  
times.  
The acceleration/deceleration torque is 10% or more of the rated torque.  
Under operating conditions which will impose sudden disturbance torque  
during acceleration/deceleration or on a machine which is extremely loose,  
auto tuning may not function properly, either. In such cases, use the auto  
tuning mode 2 or manual mode 1 2 to make gain adjustment.  
(2) Auto tuning mode 2  
Use the auto tuning mode 2 when proper gain adjustment cannot be made by auto tuning mode 1.  
Since the load inertia moment ratio is not estimated in this mode, set the value of a correct load  
inertia moment ratio (parameter No. 12).  
The following parameters are automatically adjusted in the auto tuning mode 2.  
Parameter No.  
Abbreviation  
PG1  
Name  
13  
14  
15  
16  
17  
Position control gain 1  
Speed control gain 1  
VG1  
PG2  
Position control gain 2  
Speed control gain 2  
VG2  
VIC  
Speed integral compensation  
6 - 4  
6. GENERAL GAIN ADJUSTMENT  
6.2.2 Auto tuning mode operation  
The block diagram of real-time auto tuning is shown below.  
Load inertia  
moment  
Automatic setting  
Encoder  
Control gains  
PG1,VG1  
PG2,VG2,VIC  
Command  
Current  
control  
Servo  
motor  
Current feedback  
Real-time auto  
tuning section  
Position/speed  
feedback  
Set 0 or 1 to turn on.  
Load inertia  
moment ratio  
estimation section  
Gain  
table  
Switch  
Speed feedback  
Parameter No.12  
Parameter No.8  
Parameter No.9  
Load inertia moment  
ratio estimation value  
1
5
Response level setting  
Auto tuning selection  
When a servo motor is accelerated/decelerated, the load inertia moment ratio estimation section always  
estimates the load inertia moment ratio from the current and speed of the servo motor. The results of  
estimation are written to parameter No. 12 (the ratio of load inertia moment to servo motor). These  
results can be confirmed on the status display screen of the MR Configurator (servo configuration  
software) section.  
If the value of the load inertia moment ratio is already known or if estimation cannot be made properly,  
chose the "auto tuning mode 2" (parameter No.8:0003) to stop the estimation of the load inertia moment  
ratio (Switch in above diagram turned off), and set the load inertia moment ratio (parameter No. 12)  
manually.  
From the preset load inertia moment ratio (parameter No. 12) value and response level (parameter No. 9),  
the optimum control gains are automatically set on the basis of the internal gain tale.  
The auto tuning results are saved in the EEP-ROM of the servo amplifier every 6 minutes since power-on.  
At power-on, auto tuning is performed with the value of each control gain saved in the EEP-ROM being  
used as an initial value.  
POINT  
If sudden disturbance torque is imposed during operation, the estimation  
of the inertia moment ratio may malfunction temporarily. In such a case,  
choose the "auto tuning mode 2" (parameter No. 8: 0003) and set the  
correct load inertia moment ratio in parameter No. 12.  
When any of the auto tuning mode 1, auto tuning mode 2 and manual  
mode 1 settings is changed to the manual mode 2 setting, the current  
control gains and load inertia moment ratio estimation value are saved in  
the EEP-ROM.  
6 - 5  
6. GENERAL GAIN ADJUSTMENT  
6.2.3 Adjustment procedure by auto tuning  
Since auto tuning is made valid before shipment from the factory, simply running the servo motor  
automatically sets the optimum gains that match the machine. Merely changing the response level  
setting value as required completes the adjustment. The adjustment procedure is as follows.  
Auto tuning adjustment  
Acceleration/deceleration repeated  
Yes  
Load inertia moment ratio  
estimation value stable?  
No  
Auto tuning  
conditions not satisfied.  
(Estimation of load inertia  
moment ratio is difficult)  
No  
Yes  
Choose the auto tuning mode 2  
(parameter No. 8: 0003) and set  
the load inertia moment ratio  
(parameter No. 12) manually.  
Adjust response level setting  
so that desired response is  
achieved on vibration-free level.  
Acceleration/deceleration repeated  
Requested  
No  
performance satisfied?  
Yes  
END  
To manual mode  
6 - 6  
6. GENERAL GAIN ADJUSTMENT  
6.2.4 Response level setting in auto tuning mode  
Set the response (parameter No.9) of the whole servo system. As the response level setting is increased,  
the trackability and settling time for a command decreases, but a too high response level will generate  
vibration. Hence, make setting until desired response is obtained within the vibration-free range.  
If the response level setting cannot be increased up to the desired response because of machine resonance  
beyond 100Hz, adaptive vibration suppression control (parameter No.25) or machine resonance  
suppression filter (parameter No. 18) may be used to suppress machine resonance. Suppressing machine  
resonance may allow the response level setting to increase. Refer to Section 7.2, 7.3 for adaptive vibration  
suppression control and machine resonance suppression filter.  
Parameter No. 9  
5
Response level setting  
Machine characteristic  
Response level setting  
Machine resonance  
frequency guideline  
Machine rigidity  
Guideline of corresponding machine  
1
2
Low  
15Hz  
20Hz  
25Hz  
30Hz  
35Hz  
45Hz  
55Hz  
70Hz  
3
Large conveyor  
4
5
6
Arm robot  
7
General machine  
tool conveyor  
8
Middle  
9
85Hz  
105Hz  
130Hz  
160Hz  
200Hz  
240Hz  
300Hz  
Precision  
working  
machine  
A
B
C
D
E
F
Inserter  
Mounter  
Bonder  
High  
6 - 7  
6. GENERAL GAIN ADJUSTMENT  
6.3 Manual mode 1 (simple manual adjustment)  
If you are not satisfied with the adjustment of auto tuning, you can make simple manual adjustment with  
three parameters.  
6.3.1 Operation of manual mode 1  
In this mode, setting the three gains of position control gain 1 (PG1), speed control gain 2 (VG2) and  
speed integral compensation (VIC) automatically sets the other gains to the optimum values according to  
these gains.  
GD2  
User setting  
PG1  
PG2  
VG2  
VG1  
Automatic setting  
VIC  
Therefore, you can adjust the model adaptive control system in the same image as the general PI control  
system (position gain, speed gain, speed integral time constant). Here, the position gain corresponds to  
PG1, the speed gain to VG2 and the speed integral time constant to VIC. When making gain adjustment  
in this mode, set the load inertia moment ratio (parameter No. 12) correctly.  
6.3.2 Adjustment by manual mode 1  
POINT  
If machine resonance occurs, adaptive vibration suppression control  
(parameter No. 25) or machine resonance suppression filter (parameter No.  
18) may be used to suppress machine resonance. (Refer to Section 7.2, 7.3.)  
(1) For speed control  
(a) Parameters  
The following parameters are used for gain adjustment:  
Parameter No.  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Speed control gain 2  
12  
16  
17  
VG2  
VIC  
Speed integral compensation  
(b) Adjustment procedure  
Step  
Operation  
Description  
Set an estimated value to the ratio of load inertia moment to servo  
motor inertia moment (parameter No. 12).  
Increase the speed control gain 2 (parameter No. 16) within the Increase the speed control gain.  
vibration- and unusual noise-free range, and return slightly if vibration  
takes place.  
1
2
3
Decrease the speed integral compensation (parameter No. 17) within Decrease the time constant of the speed  
the vibration-free range, and return slightly if vibration takes place.  
integral compensation.  
If the gains cannot be increased due to mechanical system resonance or Suppression of machine resonance  
the like and the desired response cannot be achieved, response may be Refer to Section 7.2, 7.3.  
increased by suppressing resonance with adaptive vibration  
suppression control or machine resonance suppression filter and then  
executing steps 2 and 3.  
4
5
While checking the settling characteristic and rotational status, fine- Fine adjustment  
adjust each gain.  
6 - 8  
6. GENERAL GAIN ADJUSTMENT  
(c) Adjustment description  
1) Speed control gain 2 (parameter No. 16)  
This parameter determines the response level of the speed control loop. Increasing this value  
enhances response but a too high value will make the mechanical system liable to vibrate. The  
actual response frequency of the speed loop is as indicated in the following expression:  
Speed control gain setting  
(1 ratio of load inertia moment to servo motor inertia moment)  
Speed loop response frequency(Hz)  
2
2) Speed integral compensation (parameter No. 17)  
To eliminate stationary deviation against a command, the speed control loop is under  
proportional integral control. For the speed integral compensation, set the time constant of this  
integral control. Increasing the setting lowers the response level. However, if the load inertia  
moment ratio is large or the mechanical system has any vibratory element, the mechanical  
system is liable to vibrate unless the setting is increased to some degree. The guideline is as  
indicated in the following expression:  
2000 to 3000  
Speed integral  
Speed control gain 2 setting/ (1 ratio of load inertia moment  
to servo motor inertia moment.)  
composition setting (ms)  
(2) For position control  
(a) Parameters  
The following parameters are used for gain adjustment:  
Parameter No.  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Position control gain 1  
12  
13  
16  
17  
PG1  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
(b) Adjustment procedure  
Step  
Operation  
Description  
Set an estimated value to the ratio of load inertia moment to servo  
motor inertia moment (parameter No. 12).  
1
2
Set a slightly smaller value to the position control gain 1 (parameter  
No. 13).  
Increase the speed control gain 2 (parameter No. 16) within the Increase the speed control gain.  
vibration- and unusual noise-free range, and return slightly if vibration  
takes place.  
3
Decrease the speed integral compensation (parameter No. 17) within Decrease the time constant of the speed  
4
5
the vibration-free range, and return slightly if vibration takes place.  
Increase the position control gain 1 (parameter No. 13).  
integral compensation.  
Increase the position control gain.  
If the gains cannot be increased due to mechanical system resonance or Suppression of machine resonance  
the like and the desired response cannot be achieved, response may be Refer to Section 7.2 and 7.3.  
increased by suppressing resonance with adaptive vibration  
suppression control or machine resonance suppression filter and then  
executing steps 3 to 5.  
6
7
While checking the settling characteristic and rotational status, fine- Fine adjustment  
adjust each gain.  
6 - 9  
6. GENERAL GAIN ADJUSTMENT  
(c) Adjustment description  
1) Position control gain 1 (parameter No. 13)  
This parameter determines the response level of the position control loop. Increasing position  
control gain 1 improves trackability to a position command but a too high value will make  
overshooting liable to occur at the time of settling.  
1
3
1
5
Position control  
gain 1 guideline  
Speed control gain 2 setting  
to  
)
(
(1 ratio of load inertia moment to servo motor inertia moment)  
2) Speed control gain 2 (parameter No. 16)  
This parameter determines the response level of the speed control loop. Increasing this value  
enhances response but a too high value will make the mechanical system liable to vibrate. The  
actual response frequency of the speed loop is as indicated in the following expression:  
Speed control gain 2 setting  
Speed loop response  
(1 ratio of load inertia moment to servo motor inertia moment)  
2
frequency(Hz)  
3) Speed integral compensation (parameter No. 17)  
To eliminate stationary deviation against a command, the speed control loop is under  
proportional integral control. For the speed integral compensation, set the time constant of this  
integral control. Increasing the setting lowers the response level. However, if the load inertia  
moment ratio is large or the mechanical system has any vibratory element, the mechanical  
system is liable to vibrate unless the setting is increased to some degree. The guideline is as  
indicated in the following expression:  
Speed integral  
compensation setting(ms)  
2000 to 3000  
Speed control gain 2 setting/ (1 ratio of load inertia moment to  
servo motor inertia moment set value)  
6 - 10  
6. GENERAL GAIN ADJUSTMENT  
6.4 Interpolation mode  
The interpolation mode is used to match the position control gains of the axes when performing the  
interpolation operation of servo motors of two or more axes for an X-Y table or the like. In this mode, the  
position control gain 1 and speed control gain 1 which determine command trackability are set manually  
and the other gain adjusting parameters are set automatically.  
(1) Parameter  
(a) Automatically adjusted parameters  
The following parameters are automatically adjusted by auto tuning.  
Parameter No.  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Position control gain 2  
12  
15  
16  
17  
PG2  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
(b) Manually adjusted parameters  
The following parameters are adjustable manually.  
Parameter No.  
Abbreviation  
Name  
13  
14  
PG1  
Position control gain 1  
Speed control gain 1  
VG1  
(2) Adjustment procedure  
Step  
Operation  
Description  
Select the auto tuning mode 1.  
Choose the auto tuning mode 1 (parameter No. 8: 0001) and set the machine  
resonance frequency of the response level to 15Hz 1 (parameter No. 9: 0001).  
1
2
During operation, increase the response level selection (parameter No. 9), and Adjustment in auto tuning mode  
return the setting if vibration occurs.  
1.  
Check the values of position control gain 1 (parameter No. 13) and speed control  
gain 1 (parameter No. 14).  
3
4
Check the upper setting limits.  
Select the interpolation mode.  
Choose the interpolation mode (parameter No. 8: 0000).  
Using the position control gain 1 value checked in step 3 as the guideline of the  
5
upper limit, set in position control gain 1 the value identical to the position loop Set position control gain 1.  
gain of the axis to be interpolated.  
Using the speed control gain 1 value checked in step 3 as the guideline of the  
upper limit, look at the rotation status and set in speed control gain 1 the value Set speed control gain 1.  
three or more times greater than the position control gain 1 setting.  
6
7
Looking at the interpolation characteristic and rotation status, fine-adjust the  
Fine adjustment.  
gains and response level setting.  
(3) Adjustment description  
(a) Position control gain 1 (parameter No.13)  
This parameter determines the response level of the position control loop. Increasing PG1 improves  
trackability to a position command but a too high value will make overshooting liable to occur at  
the time of settling. The droop pulse value is determined by the following expression.  
Rotation speed (r/min)  
131,072(pulse)  
60  
Droop pulse value (pulse)  
Position control gain set value  
(b) Speed control gain 1 (parameter No. 14)  
Set the response level of the speed loop of the model. Make setting using the following expression  
as a guideline.  
Speed control gain 1 setting Position control gain 1 setting 3  
6 - 11  
6. GENERAL GAIN ADJUSTMENT  
6.5 Differences in auto tuning between MELSERVO-J2 and MELSERVO-J2-Super  
6.5.1 Response level setting  
To meet higher response demands, the MELSERVO-J2-Super series has been changed in response level  
setting range from the MELSERVO-J2 series. The following table lists comparison of the response level  
setting.  
Parameter No. 9  
5
Response level setting  
MELSERVO-J2 series  
MELSERVO-J2-Super series  
Response level setting  
Machine resonance frequency  
Response level setting  
Machine resonance frequency guideline  
1
2
15Hz  
20Hz  
25Hz  
30Hz  
35Hz  
45Hz  
55Hz  
70Hz  
85Hz  
105Hz  
130Hz  
160Hz  
200Hz  
240Hz  
300Hz  
1
20Hz  
3
4
5
2
40Hz  
6
7
3
4
5
60Hz  
80Hz  
8
9
100Hz  
A
B
C
D
E
F
Note that because of a slight difference in gain adjustment pattern, response may not be the same if the  
resonance frequency is set to the same value.  
6.5.2 Auto tuning selection  
The MELSERVO-J2-Super series has an addition of the load inertia moment ratio fixing mode. It also has  
the addition of the manual mode 1 which permits manual adjustment with three parameters.  
Parameter No. 8  
1
Gain adjustment mode selection  
Auto tuning selection  
Gain adjustment mode  
Remarks  
MELSERVO-J2 series  
MELSERVO-J2-Super series  
Interpolation mode  
Auto tuning mode 1  
0
1
0
1
Position control gain 1 is fixed.  
Ordinary auto tuning  
Estimation of load inertia moment  
ratio stopped.  
Auto tuning  
Auto tuning mode 2  
3
Response level setting valid.  
Simple manual adjustment  
Manual adjustment of all gains  
Manual mode 1  
Manual mode 2  
4
2
Auto tuning  
invalid  
2
6 - 12  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7. SPECIAL ADJUSTMENT FUNCTIONS  
POINT  
The functions given in this chapter need not be used generally. Use them  
if you are not satisfied with the machine status after making adjustment  
in the methods in Chapter 6.  
If a mechanical system has a natural resonance point, increasing the servo system response level may  
cause the mechanical system to produce resonance (vibration or unusual noise) at that resonance  
frequency.  
Using the machine resonance suppression filter and adaptive vibration suppression control functions can  
suppress the resonance of the mechanical system.  
7.1 Function block diagram  
Current  
command  
Parameter  
No.25  
Speed  
control  
Parameter  
No.18  
Parameter  
No.25  
00  
0
0
Low-pass  
filter  
Servo  
motor  
1
Machine resonance  
Encoder  
suppression filter 1  
00  
except  
Adaptive vibration  
suppression control  
1
or  
2
7.2 Machine resonance suppression filter  
(1) Function  
The machine resonance suppression filter is a filter function (notch filter) which decreases the gain of  
the specific frequency to suppress the resonance of the mechanical system. You can set the gain  
decreasing frequency (notch frequency) and gain decreasing depth.  
Machine resonance point  
Mechanical  
system  
response  
level  
Frequency  
Notch  
depth  
Frequency  
Notch frequency  
POINT  
The machine resonance suppression filter is a delay factor for the servo  
system. Hence, vibration may increase if you set a wrong resonance  
frequency or a too deep notch.  
7 - 1  
7. SPECIAL ADJUSTMENT FUNCTIONS  
(2) Parameters  
Set the notch frequency and notch depth of the machine resonance suppression filter 1 (parameter No.  
18).  
Parameter No. 18  
Notch frequency selection  
Setting Frequency Setting Frequency Setting Frequency Setting Frequency  
562.5  
500  
10  
11  
12  
13  
14  
15  
16  
17  
281.3  
264.7  
250  
18  
19  
187.5  
180  
00  
01  
02  
03  
04  
05  
06  
07  
Invalid  
4500  
2250  
1500  
1125  
900  
08  
09  
450  
173.1  
166.7  
160.1  
155.2  
150  
0A  
0B  
0C  
0D  
0E  
0F  
1A  
1B  
1C  
1D  
1E  
1F  
409.1  
375  
236.8  
225  
346.2  
321.4  
300  
214.3  
204.5  
195.7  
750  
642.9  
145.2  
Notch depth selection  
Setting Depth (Gain)  
Deep ( 40dB)  
( 14dB)  
( 8dB)  
Shallow ( 4dB)  
0
1
2
3
POINT  
If the frequency of machine resonance is unknown, decrease the notch  
frequency from higher to lower ones in order. The optimum notch  
frequency is set at the point where vibration is minimal.  
A deeper notch has a higher effect on machine resonance suppression but  
increases a phase delay and may increase vibration.  
The machine characteristic can be grasped beforehand by the machine  
analyzer on the MR Configurator (servo configuration software). This  
allows the required notch frequency and depth to be determined.  
7 - 2  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7.3 Adaptive vibration suppression control  
(1) Function  
Adaptive vibration suppression control is a function in which the servo amplifier detects machine  
resonance and sets the filter characteristics automatically to suppress mechanical system vibration.  
Since the filter characteristics (frequency, depth) are set automatically, you need not be conscious of  
the resonance frequency of a mechanical system. Also, while adaptive vibration suppression control is  
valid, the servo amplifier always detects machine resonance, and if the resonance frequency changes,  
it changes the filter characteristics in response to that frequency.  
Machine resonance point  
Machine resonance point  
Mechanical  
system  
Mechanical  
system  
response  
level  
response  
level  
Frequency  
Frequency  
Notch  
depth  
Notch  
depth  
Frequency  
Frequency  
Notch frequency  
Notch frequency  
When machine resonance is large and frequency is low When machine resonance is small and frequency is high  
POINT  
The machine resonance frequency which adaptive vibration suppression  
control can respond to is about 150 to 500Hz. Adaptive vibration  
suppression control has no effect on the resonance frequency outside this  
range. Use the machine resonance suppression filter for the machine  
resonance of such frequency.  
Adaptive vibration suppression control may provide no effect on a  
mechanical system which has complex resonance characteristics or which  
has too large resonance.  
Under operating conditions in which sudden disturbance torque is imposed  
during operation, the detection of the resonance frequency may malfunction  
temporarily, causing machine vibration. In such a case, set adaptive  
vibration suppression control to be "held" (parameter No. 25:  
2
) to fix  
the characteristics of the adaptive vibration suppression control filter.  
7 - 3  
7. SPECIAL ADJUSTMENT FUNCTIONS  
(2) Parameters  
The operation of adaptive vibration suppression control selection (parameter No.25).  
Parameter No. 25  
Adaptive vibration suppression control selection  
0: Invalid  
1: Valid  
Machine resonance frequency is always detected to  
generate the filter in response to resonance, suppressing  
machine vibration.  
2: Held  
Filter characteristics generated so far is held, and detection of  
machine resonance is stopped.  
Adaptive vibration suppression control sensitivity selection  
Set the sensitivity of detecting machine resonance.  
0: Normal  
1: Large sensitivity  
POINT  
Adaptive vibration suppression control is factory-set to be "invalid"  
(parameter No. 25: 0000).  
Selection the adaptive vibration suppression control sensitivity can change  
the sensitivity of detecting machine resonance. Selection of "large  
sensitivity" detects smaller machine resonance and generates a filter to  
suppress machine vibration. However, since a phase delay will also  
increase, the response of the servo system may not increase.  
7.4 Low-pass filter  
(1) Function  
When a ballscrew or the like is used, resonance of high frequency may occur as the response level of  
the servo system is increased. To prevent this, the low-pass filter is factory-set to be valid for a torque  
command. The filter frequency of this low-pass filter is automatically adjusted to the value in the  
following expression:  
Filter frequency  
(Hz)  
Speed control gain 2 set value 10  
(1 ratio of load inertia moment to servo motor inertia moment set value 0.1)  
2
(2) Parameter  
Set the operation of the low-pass filter (parameter No.25).  
Parameter No. 25  
Low-pass filter selection  
0: Valid (automatic adjustment) initial value  
1: Invalid  
POINT  
In a mechanical system where rigidity is extremely high and resonance is  
difficult to occur, setting the low-pass filter to be "invalid" may increase  
the servo system response to shorten the settling time.  
7 - 4  
8. INSPECTION  
8. INSPECTION  
Before starting maintenance and/or inspection, make sure that the charge lamp is  
off more than 10 minutes after power-off. Then, confirm that the voltage is safe in  
the tester or the like. Otherwise, you may get an electric shock.  
WARNING  
Any person who is involved in inspection should be fully competent to do the work.  
Otherwise, you may get an electric shock. For repair and parts replacement,  
contact your safes representative.  
POINT  
Do not test the servo amplifier with a megger (measure insulation  
resistance), or it may become faulty.  
Do not disassemble and/or repair the equipment on customer side.  
(1) Inspection  
It is recommended to make the following checks periodically:  
(a) Check for loose terminal block screws. Retighten any loose screws.  
(b) Check the cables and the like for scratches and cracks. Perform periodic inspection according to  
operating conditions.  
(2) Life  
The following parts must be changed periodically as listed below. If any part is found faulty, it must be  
changed immediately even when it has not yet reached the end of its life, which depends on the  
operating method and environmental conditions. For parts replacement, please contact your sales  
representative.  
Part name  
Life guideline  
Smoothing capacitor  
10 years  
Number of power-on and number of forced  
stop times:100,000times.  
Relay  
Servo amplifier  
Cooling fan  
10,000 to 30,000hours (2 to 3 years)  
Refer to Section 13.2  
Absolute position battery  
(a) Smoothing capacitor  
Affected by ripple currents, etc. and deteriorates in characteristic. The life of the capacitor greatly  
depends on ambient temperature and operating conditions. The capacitor will reach the end of its  
life in 10 years of continuous operation in normal air-conditioned environment.  
(b) Relays  
Their contacts will wear due to switching currents and contact faults occur. Relays reach the end of  
their life when the cumulative number of power-on and forced stop times is 100,000, which depends  
on the power supply capacity.  
(c) Servo amplifier cooling fan  
The cooling fan bearings reach the end of their life in 10,000 to 30,000 hours. Normally, therefore,  
the fan must be changed in a few years of continuous operation as a guideline.  
It must also be changed if unusual noise or vibration is found during inspection.  
8 - 1  
8. INSPECTION  
MEMO  
8 - 2  
9. TROUBLESHOOTING  
9. TROUBLESHOOTING  
9.1 Alarms and warning list  
When a fault occurs during operation, the corresponding alarm or warning is displayed. If any alarm or  
warning has occurred, refer to Section 9.2 or 9.3 and take the appropriate action.  
After its cause has been removed, the alarm can be deactivated in any of the methods marked  
in the  
alarm deactivation column.  
Alarm deactivation  
Display  
Name  
Power  
OFF ON  
Error reset  
CPU reset  
10  
12  
13  
15  
16  
17  
19  
1A  
20  
24  
25  
30  
31  
32  
33  
34  
35  
36  
37  
45  
46  
50  
51  
52  
8E  
88  
92  
96  
9F  
E0  
E1  
E3  
E4  
E6  
E7  
E9  
EE  
Undervoltage  
Memory error 1  
Clock error  
Memory error 2  
Encoder error 1  
Board error  
Memory error 3  
Motor combination error  
Encoder error 2  
Main circuit error  
Absolute position erase  
Regenerative error  
Overspeed  
Overcurrent  
Overvoltage  
CRC error  
Command frequency error  
Transfer error  
(Note)  
(Note)  
(Note)  
Parameter error  
Main circuit device overheat  
Servo motor overheat  
Overload 1  
Overload 2  
Error excessive  
Serial communication error  
Watchdog  
Open battery cable warning  
Home position setting warning  
Battery warning  
(Note)  
(Note)  
(Note)  
(Note)  
(Note)  
(Note)  
Excessive regenerative warning  
Overload warning  
Removing the cause of occurrence  
deactivates the alarm automatically.  
Absolute position counter warning  
Parameter warning  
Servo forced stop warning  
Controller emergency stop warning  
Main circuit off warning  
SSCNET error warning  
Note: Deactivate the alarm about 30 minutes of cooling time after removing the cause of occurrence.  
9 - 1  
9. TROUBLESHOOTING  
9.2 Remedies for alarms  
When any alarm has occurred, eliminate its cause, ensure safety, then reset the  
alarm, and restart operation. Otherwise, injury may occur.  
If an absolute position erase alarm (25) occurred, always make home position  
setting again. Otherwise, misoperation may occur.  
CAUTION  
POINT  
When any of the following alarms has occurred, always remove its cause  
and allow about 30 minutes for cooling before resuming operation. If  
operation is resumed by switching control circuit power off, then on to reset  
the alarm, the servo amplifier and servo motor may become faulty. To  
protect the main circuit elements, any of these servo alarms cannot be  
deactivated from the servo system controller until the specified time elapses  
after its occurrence. Judging the load changing condition until the alarm  
occurs, the servo amplifier calculates this specified time automatically.  
Regenerative error (30)  
Overload 1 (50)  
Overload 2 (51)  
The alarm can be deactivated by switching power off, then on or by the  
error reset command CPU reset from the servo system controller. For  
details, refer to Section 9.1.  
When an alarm occurs, the dynamic brake is operated to stop the servomotor. At this time, the display  
indicates the alarm No.  
The servo motor comes to a stop. Remove the cause of the alarm in accordance with this section. The  
optional MR Configurator (servo configuration software) may be used to refer to the cause.  
Display  
Name  
Definition  
Cause  
Action  
10  
Undervoltage Power supply  
voltage dropped.  
MR-J2S- B:  
1. Power supply voltage is low.  
2. There was an instantaneous  
control circuit power failure of  
60ms or longer.  
Review the power supply.  
160VAC or less  
MR-J2S- B1:  
3. Shortage of power supply capacity  
caused the power supply voltage to  
drop at start, etc.  
83VAC or less  
4. Power was restored after the bus  
voltage had dropped to 200VDC.  
(Main circuit power switched on  
within 5s after it had switched off.)  
5. Faulty parts in the servo amplifier Change the servo amplifier.  
Checking method  
Alarm (10) occurs if power is  
switched on after CN1A, CN1B  
and CN3 connectors are  
disconnected.  
12  
13  
Memory error 1 RAM, memory fault Faulty parts in the servo amplifier  
Change the servo amplifier.  
Clock error  
Printed board fault  
Checking method  
Alarm (any of 12 and 13)  
occurs if power is switched on  
after disconnection of all cables  
but the control circuit power  
supply cables.  
9 - 2  
9. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
15  
Memory error 2 EEP-ROM fault  
1. Faulty parts in the servo amplifier Change the servo amplifier.  
Checking method  
Alarm (15) occurs if power is  
switched on after disconnection  
of all cables but the control  
circuit power supply cables.  
2. The number of write times to EEP-  
ROM exceeded 100,000.  
16  
Encoder error 1 Communication  
error occurred  
1. Encoder connector (CN2)  
disconnected.  
Connect correctly.  
between encoder  
2. Encoder fault  
Change the servo motor.  
Repair or change cable.  
and servo amplifier.  
3. Encoder cable faulty  
(Wire breakage or shorted)  
Faulty parts in the servo amplifier  
17  
19  
Board error 2  
Memory error 3 ROM memory fault  
CPU/parts fault  
Change the servo amplifier.  
Checking method  
Alarm (17 or 19) occurs if power  
is switched on after disconnection  
of all cable but the control circuit  
power supply cable.  
1A  
20  
Motor  
combination  
error  
Encoder error 2 Communication  
error occurred  
Wrong combination Wrong combination of servo  
Use correct combination.  
Connect correctly.  
of servo anplifier  
and servo motor.  
amplifier and servo motor connected.  
1. Encoder connector (CN2)  
disconnected.  
between encoder  
and servo amplifier.  
2. Encoder fault  
3. Encoder cable faulty  
(Wire breakage or shorted)  
Change the servo motor.  
Repair or change cable.  
24  
Main circuit  
error  
Ground fault  
1. Power input wires and servo motor Connect correctly.  
output wires are in contact at  
main circuit terminal block (TE1).  
occurred at the  
servo motor outputs  
(U,V and W phases)  
of the servo  
2. Sheathes of servo motor power  
cables deteriorated, resulting in  
ground fault.  
Change the cable.  
amplififer.  
3. Main circuit of servo amplifier  
failed.  
Change the servo amplifier.  
Checking method  
Alarm (24) occurs if the servo is  
switched on after disconnecting  
the U, V, W power cables from  
the servo amplifier.  
25  
Absolute  
position erase data in error  
Absolute position  
1. Battery voltage low  
2. Battery cable or battery is faulty.  
Change battery.  
Always make home position setting again.  
Power was switched 3. Super capacitor of the absolute  
After leaving the alarm occurring for a few  
minutes, switch power off, then on again.  
Always make home position setting again.  
on for the first time  
in the absolute  
position detection  
system.  
position encoder is not charged  
9 - 3  
9. TROUBLESHOOTING  
Display  
Name  
Definition  
Permissible  
regenerative power  
of the built-in  
Cause  
Action  
30  
Regenerative  
alarm  
1. Mismatch between used  
regenerative brake option and  
parameter No. 2 setting  
Set correctly.  
regenerative brake  
resistor or  
regenerative brake  
option is exceeded.  
2. Built-in regenerative brake  
resistor or regenerative brake  
option is not connected.  
3. High-duty operation or continuous 1. Reduce the frequency of positioning.  
regenerative operation caused the 2. Use the regenerative brake option of  
Connect correctly  
permissible regenerative power of  
the regenerative brake option to  
be exceeded.  
larger capacity.  
3. Reduce the load.  
Checking method  
Call the status display and check  
the regenerative load ratio.  
4. Power supply voltage is abnormal. Review power supply  
MR-J2S- B:260VAC or more  
MR-J2S- B1:135VAC or more  
5. Built-in regenerative brake  
resistor or regenerative brake  
option faulty.  
Change servo amplifier or regenerative  
brake option.  
Regenerative  
6. Regenerative transistor faulty.  
Change the servo amplifier.  
transistor fault  
Checking method  
1) The regenerative brake option  
has overheated abnormally.  
2) The alarm occurs even after  
removal of the built-in  
regenerative brake resistor or  
regenerative brake option.  
31  
Overspeed  
Speed has exceeded 1. Small acceleration/deceleration  
Increase acceleration/deceleration time  
the instantaneous  
permissible speed.  
time constant caused overshoot to constant.  
be large.  
2. Servo system is instable to cause 1. Reset servo gain to proper value.  
overshoot.  
2. If servo gain cannot be set to proper  
value:  
1) Reduce load inertia moment ratio; or  
2) Reexamine acceleration/  
deceleration time constant.  
Change the servo motor.  
3. Encoder faulty.  
32  
Overcurrent  
Current that flew is 1. Short occurred in servo amplifier Correct the wiring.  
higher than the  
permissible current  
of the servo  
output phases U, V and W.  
2. Transistor of the servo amplifier  
faulty.  
Change the servo amplifier.  
amplifier.  
Checking method  
Alarm (32) occurs if power is  
switched on after U,V and W  
are disconnected.  
3. Ground fault occurred in servo  
amplifier output phases U, V and  
W.  
Correct the wiring.  
4. External noise caused the  
overcurrent detection circuit to  
misoperate.  
Take noise suppression measures.  
Current higher than  
the permissible  
current flew in the  
regenerative brake  
transistor.  
5. Improper wiring of the  
regenerative brake option.  
Wire the regenerative brake option  
correctly.  
(MR-J2S-500B only)  
9 - 4  
9. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
33  
Overvoltage  
Converter bus  
voltage exceeded  
400VDC.  
1. Regenerative brake option is not  
used.  
Use the regenerative brake option.  
2. Though the regenerative brake  
option is used, the parameter No.  
Make correct setting.  
2 setting is "  
00 (not used)".  
3. Lead of built-in regenerative brake 1. Change lead.  
resistor or regenerative brake  
option is open or disconnected.  
4. Regenerative transistor faulty.  
5. Wire breakage of built-in  
regenerative brake resistor or  
regenerative brake option  
2. Connect correctly.  
Change servo amplifier  
1. For wire breakage of built-in  
regenerative brake resistor, change  
servo amplifier.  
2. For wire breakage of regenerative brake  
option, change regenerative brake  
option.  
6. Power supply voltage high.  
7. Ground fault occurred in servo  
amplifier output phases U, V and W.  
Review the power supply.  
Correct the wiring.  
34  
CRC error  
Bus cable is faulty 1. Bus cable disconnected.  
2. Bus cable fault  
Connect correctly.  
Change the cable.  
3. Noise entere bus cable.  
4. Termination connector  
disconnected.  
Take measures against noise.  
Connect termination connector.  
5. The same No. exists in the servo  
Set correctly.  
amplifier side axis setting.  
35  
36  
37  
Command  
Input frequency of 1. Command given is greater than  
Review opration program.  
frequency error command pulse is  
too high.  
the maximum speed of the servo  
motor.  
2. Noise entered bus cable.  
3. Servo system controller failure  
Take action against noise.  
Change the servo system controller.  
Connect the connector of the bus cable.  
Change the cable.  
Transfer error Bus cable or printed 1. Bus cable is disconnected.  
board is faulty  
2. Bus cable fault.  
3. Printed board is faulty.  
4. Terimination connector  
disconnected  
Change the servo amplifier  
Connect termination connector.  
Parameter  
error  
Parameter setting is 1. Servo amplifier fault caused the  
wrong. parameter setting to be rewritten.  
2. There is a parameter whose value Change the parameter value to within the  
Change the servo amplifier.  
was set to outside the setting  
range by the controller.  
setting range.  
Change the servo amplifier.  
3. The number of write times to EEP-  
ROM exceeded 100,000 due to  
parameter write, etc.  
45  
Main circuit  
Main circuit device 1. Servo amplifier faulty.  
Change the servo amplifier.  
The drive method is reviewed.  
device overheat overheat  
2. The power supply was turned on  
and off continuously by overloaded  
status.  
3. Air cooling fan of servo amplifier 1. Change the servo amplifier or cooling  
stops.  
fan.  
2. Reduce ambient temperature.  
9 - 5  
9. TROUBLESHOOTING  
Display  
Name  
Definition  
Servo motor  
Cause  
Action  
46  
Servo motor  
overheat  
1. Ambient temperature of servo  
Review environment so that ambient  
temperature rise  
actuated the  
motor is over 40  
.
temperature is 0 to 40  
1. Reduce load.  
.
2. Servo motor is overloaded.  
thermal protector.  
2. Review operation pattern.  
3. Use servo motor that provides larger  
output.  
3. Thermal protector in encoder is  
faulty.  
Change servo motor.  
50  
Overload 1  
Load exceeded  
1. Servo amplifier is used in excess  
of its continuous output current.  
1. Reduce load.  
overload protection  
characteristic of  
servo amplifier.  
2. Review operation pattern.  
3. Use servo motor that provides larger  
output.  
2. Servo system is instable and  
hunting.  
1. Repeat acceleration/  
deceleration to execute auto tuning.  
2. Change auto tuning response setting.  
3. Set auto tuning to OFF and make gain  
adjustment manually.  
3. Machine struck something.  
1. Review operation pattern.  
2. Install limit switches.  
4. Wrong connection of servo motor. Connect correctly.  
Servo amplifier's output terminals  
U, V, W do not match servo  
motor's input terminals U, V, W.  
5. Encoder faulty.  
Change the servo motor.  
Checking method  
When the servo motor shaft is  
rotated with the servo off,the  
cumulative feedback pulses do  
not vary in proportion to the  
rotary angle of the shaft but the  
indication skips or returns midway.  
51  
Overload 2  
Machine collision or 1. Machine struck something.  
the like caused max.  
1. Review operation pattern.  
2. Install limit switches.  
output current to  
flow successively for  
several seconds.  
Servo motor locked:  
1s or more  
2. Wrong connection of servo motor. Connect correctly.  
Servo amplifier's output terminals  
U, V, W do not match servo  
motor's input terminals U, V, W.  
3. Servo system is instable and  
hunting.  
1. Repeat acceleration/deceleration to  
execute auto tuning.  
During rotation:  
2.5s or more  
2. Change auto tuning response setting.  
3. Set auto tuning to OFF and make gain  
adjustment manually.  
4. Encoder faulty.  
Change the servo motor.  
Checking method  
When the servo motor shaft is  
rotated with the servo off,the  
cumulative feedback pulses do  
not vary in proportion to the  
rotary angle of the shaft but the  
indication skips or returns midway.  
9 - 6  
9. TROUBLESHOOTING  
Display  
Name  
(Note)  
Definition  
Cause  
Action  
52  
The deviation  
1. Acceleration/deceleration time  
constant is too small.  
Increase the acceleration/deceleration  
time constant.  
Error excessive between the model  
position and the  
2. Torque limit value is too small.  
3. Motor cannot be started due to  
Increase the torque limit value.  
1. Review the power supply capacity.  
actual servo motor  
position exceeds the  
parameter No.31  
setting value (initial  
value: 2  
torque shortage caused by power 2. Use servo motor which provides larger  
supply voltage drop. output.  
4. Position control gain 1 (parameter Increase set value and adjust to ensure  
No.13) value is small. proper operation.  
5. Servo motor shaft was rotated by 1. When torque is limited, increase the  
revolutions).  
external force.  
limit value.  
2. Reduce load.  
3. Use servo motor that provides larger  
output.  
6. Machine struck something.  
7. Encoder faulty  
1. Review operation pattern.  
2. Install limit switches.  
Change the servo motor.  
8. Wrong connection of servo motor. Connect correctly.  
Servo amplifier's output terminals  
U, V, W do not match servo  
motor's input terminals U, V, W.  
Serial  
8E  
88  
Serial  
1. Communication cable fault  
(Open cable or short circuit)  
Repair or change the cable.  
communication  
error occurred  
between servo  
amplifier and  
communication  
device (e.g. personal  
computer).  
communication  
error  
2. Communication device (e.g.  
personal computer) faulty  
Change the communication device (e.g.  
personal computer).  
Watchdog  
CPU, parts faulty  
Fault of parts in servo amplifier  
Change servo amplifier.  
Checking method  
Alarm (88) occurs if power is  
switched on after disconnection  
of all cable but the control circuit  
power supply cable.  
Note: The error excessive detection for 2 revolutions is available only when the servo amplifier of software  
version B1 or later is used. For the servo amplifier of software version older than BI, an error  
excessive alarm occurs when the deviation (deviation counter value) between the instructed position  
and the actual servo motor position exceeds the parameter No. 1 setting value (initial value: 8  
revolutions).  
9 - 7  
9. TROUBLESHOOTING  
9.3 Remedies for warnings  
If E6, E7, E9 or EE occurs, the servo off status is established. If any other warning occurs, operation can  
be continued but an alarm may take place or proper operation may not be performed. Eliminate the cause  
of the warning according to this section. Use the optional MR Configurator (servo configuration software)  
to refer to the cause of warning.  
Display  
Name  
Definition  
Cause  
Action  
92 Open battery  
cable warning  
Absolute position  
1. Battery cable is open.  
Repair cable or changed.  
detection system battery  
voltage is low.  
2. Battery voltage dropped to 2.8V or less. Change battery.  
96 Home position  
Home position return  
1. Droop pulses remaining are greater  
than the in-position range setting.  
2. Home position return was executed  
during operation command  
Remove the cause of droop pulse  
setting warning could not be made in the  
precise position.  
occurrence  
Reduce creep speed.  
3. Creep speed high.  
9F Battery warning Voltage of battery for  
absolute position  
Battery voltage fell to 3.2V or less.  
Change the battery.  
detection system reduced.  
E0 Excessive  
regenerative  
warning  
There is a possibility that Regenerative power increased to 85% or  
regenerative power may more of permissible regenerative power of  
1. Reduce frequency of  
positioning.  
exceed permissible  
regenerative power of  
built-in regenerative  
brake resistor or  
regenerative brake  
option.  
built-in regenerative brake resistor or  
regenerative brake option.  
2. Change regenerative brake  
option for the one with larger  
capacity.  
Checking method  
Call the status display and check  
regenerative load ratio.  
3. Reduce load.  
E1 Overload  
warning  
There is a possibility that Load increased to 85% or more of overload Refer to 50, 51.  
overload alarm 1 or 2  
may occur.  
alarm 1 or 2 occurrence level.  
Cause, checking method  
Refer to 50, 51.  
E3 Absolute position Absolute position encoder 1. Noise entered the encoder.  
counter warning pulses faulty.  
Take noise suppression  
measures.  
2. Encoder faulty.  
Change servo motor.  
E4 Parameter  
warning  
Parameter outside  
setting range  
Parameter value set from servo system Set it correctly.  
controller is outside setting range  
External forced stop was made valid.  
(EM1 turned off.)  
E6 Servo forced stop EM1 is off.  
warning  
Ensure safety and deactivate  
forced stop.  
E7 Controller  
Emergency stop signal was entered into  
the servo system controller.  
Ensure safety and deactivate  
emergency stop.  
emergency stop  
warning  
E9 Main circuit off Servo-on (SON) was  
Switch on main circuit power.  
warning  
switched on with main  
circuit power off.  
EE SSCNET error  
warning  
The servo system  
controller connected is  
not SSCNET-compatible.  
9 - 8  
10. OUTLINE DIMENSION DRAWINGS  
10. OUTLINE DIMENSION DRAWINGS  
10.1 Servo amplifiers  
(1) MR-J2S-10B to MR-J2S-60B  
MR-J2S-10B1 to MR-J2S-40B1  
[Unit: mm]  
([Unit: in])  
A
70 (2.76)  
135 (5.32)  
6 ( 0.24) mounting hole  
Terminal layout  
(Terminal cover open)  
MITSUBISHI  
B
MITSUBISHI  
OPEN  
OPEN  
C
N
1
C
N
1
C
N
1
C
N
1
A
B
A
B
Name plate  
C
N
2
E
N
C
C
N
3
C
N
2
E
N
C
C
N
3
TE1  
L1 L2 L3  
(Note)  
U
V
W
TE2  
PE terminal  
6
(0.24)  
4(0.16)  
Variable dimensions  
Mass  
Servo amplifier  
[kg]([lb])  
A
B
MR-J2S-10B(1)  
MR-J2S-20B(1)  
MR-J2S-40B(1)  
MR-J2S-60B  
50 (1.97)  
70 (2.76)  
6 (0.24)  
0.7 (1.54)  
1.1 (2.43)  
22 (0.87)  
Note: This data applies to the 3-phase 200 to 230VAC and 1-phase 230VAC power supply models.  
Terminal signal layout  
TE1  
Mounting Screw  
Screw Size:M5  
Tightening torque:  
3.24[N m]  
For 3-phase 200 to 230VAC and 1-phase 230VAC  
For 1-phase 100 to 120VAC  
L1  
U
L2  
V
L3  
W
L1  
U
L2  
W
V
(28.676 [lb in])  
Terminal screw: M4  
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10 [lb in])  
Tightening torque: 1.2 [N m] (10 [lb in])  
TE2  
PE terminals  
Front  
D
C
P
L21 L11  
Tightening torque: 0.3 to 0.4 [N m] (2.7 to 3.5 [lb in])  
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10 [lb in])  
10 - 1  
10. OUTLINE DIMENSION DRAWINGS  
(2) MR-J2S-70B MR-J2S-100B  
[Unit: mm]  
([Unit: in])  
6 ( 0.24)  
70(2.76)  
mounting hole  
70(2.76)  
190(7.48)  
22  
Terminal layout  
(Terminal cover open)  
MITSUBISHI  
(0.87)  
MITSUBISHI  
OPEN  
OPEN  
C
N
1
C
N
1
C
N
1
C
N
1
A
B
A
B
Name plate  
C
N
2
C
N
3
C
N
2
C
N
3
E
N
C
E
N
C
L1 L2 L3  
U
V
W
PE terminal  
6(0.24)  
TE2  
TE1  
6(0.24)  
42  
22  
(0.87) (1.65)  
6(0.24)  
Mass  
Servo amplifier  
[kg]([lb])  
MR-J2S-70B  
MR-J2S-100B  
1.7  
(3.75)  
Terminal signal layout  
TE1  
L1  
Mounting Screw  
Screw Size:M5  
Tightening torque:3.24[N m](28.676 [lb in])  
L2  
V
L3  
W
U
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10 [lb in])  
TE2  
Front  
D
C
P
L21 L11  
N
Tightening torque: 0.3 to 0.4 [N m] (2.7 to 3.5 [lb in])  
PE terminals  
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10 [lb in])  
10 - 2  
10. OUTLINE DIMENSION DRAWINGS  
(3) MR-J2S-200B MR-J2S-350B  
[Unit: mm]  
([Unit: in])  
6 ( 0.24)  
70(2.76)  
195(7.68)  
90(3.54)  
78(3.07)  
mounting hole  
6
(0.24)  
Terminal layout  
MITSUBISHI  
MITSUBISHI  
TE2  
TE1  
PE terminal  
Fan air orientation  
Mass  
Servo amplifier  
[kg]([lb])  
MR-J2S-200B  
MR-J2S-350B  
2.0  
(4.41)  
Terminal signal layout  
PE terminals  
TE1  
L1  
Mounting Screw  
Screw Size:M5  
Tightening torque:  
3.24[N m]  
L2  
L3  
U
V
W
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10 [lb in])  
(28.676 [lb in])  
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10 [lb in])  
TE2  
L11 L21  
D
P
C
N
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10 [lb in])  
10 - 3  
10. OUTLINE DIMENSION DRAWINGS  
(4) MR-J2S-500B  
2- 6( 0.24)  
mounting hole  
[Unit: mm]  
([Unit: in])  
(0.24)  
6
(0.24)  
6
130(5.12)  
118(4.65)  
200(7.87)  
(0.19) 5  
70  
(2.76)  
Terminal layout  
MITSUBISHI  
OPEN  
MITSUBISHI  
OPEN  
OPEN  
TE1  
C
N
1
C
N
1
C
N
1
C
N
1
A
B
A
B
C
N
2
C
N
3
C
N
2
C
N
3
TE2  
N.P.  
N.P.  
Fan  
Fan  
6(0.24)  
Fan air orientation  
Mass  
Servo amplifier  
MR-J2S-500B  
[kg]([lb])  
4.9(10.8)  
Terminal signal layout  
PE terminals  
Mounting Screw  
Screw Size:M5  
Tightening torque:  
3.24[N m]  
TE1  
Built-in regenerative brake resistor  
lead terminal fixing screw  
Terminal screw : M4  
L1  
L2  
L3  
C
P
Tightening torque : 1.2 [N m](10[lb in])  
(28.676 [lb in])  
N
U
V
W
Terminal screw : M4  
Tightening torque : 1.2 [N m](10[lb in])  
TE2  
Terminal screw : M3.5  
Tightening torque : 0.8 [N m](7[lb in])  
L11  
L21  
10 - 4  
10. OUTLINE DIMENSION DRAWINGS  
(5) MR-J2S-700B  
2- 6( 0.24)  
mounting hole  
[Unit: mm]  
([Unit: in])  
200(7.87)  
138(5.43)  
70  
(2.76)  
180(7.09)  
160(6.23)  
(0.39)  
10  
62  
10  
(0.39)  
6(0.24)  
(2.44)  
Terminal layout  
MITSUBISHI  
MITSUBISHI  
OPEN  
OPEN  
C
N
1
C
N
1
C
N
1
C
N
1
A
B
A
B
C
N
3
C
N
3
C
N
2
C
N
2
TE2  
OPEN  
TE1  
Fan  
6 (0.24)  
Fan air orientation  
Mass  
Servo amplifier  
MR-J2S-700B  
[kg]([lb])  
7.2(15.9)  
Terminal signal layout  
PE terminals  
Mounting Screw  
Screw Size:M5  
Tightening torque:  
3.24[N m]  
TE1  
L1  
Terminal screw : M4  
Tightening torque : 1.2 [N m](10[lb in])  
L2  
L3  
C
P
N
U
V
W
Built-in regenerative  
brake resistor  
(28.676 [lb in])  
lead terminal fixing screw  
Terminal screw : M4  
Tightening torque : 1.2 [N m](10[lb in])  
TE2  
Terminal screw : M3.5  
Tightening torque : 0.8 [N m](7[lb in])  
L11  
L21  
10 - 5  
10. OUTLINE DIMENSION DRAWINGS  
(6) MR-J2S-11KB 15KB  
[Unit: mm]  
([Unit: in])  
Fan air orientation  
2- 12( 0.47)  
mounting hole  
75  
(2.95)  
Fan  
MITSUBISHI  
CN4  
C
N
3
C
N
1
A
C
N
1
B
TE2  
CHARGE  
CON2  
CN2  
TE1  
12(0.47)  
(0.47)12  
236(9.29)  
260(10.24)  
12(0.47)  
Mass  
Servo amplifier  
[kg]([lb])  
MR-J2S-11KB  
MR-J2S-15KB  
15(33.1)  
16(35.3)  
Terminal signal layout  
PE terminal  
Mounting Screw  
Screw Size:M10  
Tightening torque:  
26.5[N m]  
TE1  
L1  
Terminal screw : M6  
Tightening torque : 3.0[N m] (26[lb in)]  
L2  
L3  
U
V
W
P1  
P
C
N
(234.545[lb in])  
Terminal screw : M6  
Tightening torque : 6.0[N m] (52[lb in)]  
TE2  
L11  
L21  
Terminal screw : M4  
Tightening torque : 1.2[N m] (10[lb in])  
10 - 6  
10. OUTLINE DIMENSION DRAWINGS  
(7) MR-J2S-22KB  
[Unit: mm]  
([Unit: in])  
Fan air orientation  
2- 12( 0.47)  
mounting hole  
75  
(2.95)  
Fan  
MITSUBISHI  
CN4  
C
N
3
C
N
1
A
C
N
1
B
TE2  
CN2 CHARGE  
CON2  
TE1  
12(0.47)  
(0.47)12  
326(12.84)  
350(13.78)  
12(0.47)  
Mass  
Servo amplifier  
[kg]([lb])  
MR-J2S-22KB  
20(44.1)  
Terminal signal layout  
Mounting Screw  
TE1  
PE terminal  
Screw Size:M10  
Tighting torque:  
26.5[N m]  
L1  
Terminal screw : M8  
Tightening torque : 6.0[N m] (52[lb in)]  
L2  
L3  
U
V
W
P1  
P
C
N
(234.545[lb in])  
Terminal screw : M8  
Tightening torque : 6.0[N m] (52[lb in)]  
TE2  
L11  
L21  
Terminal screw : M4  
Tightening torque : 1.2[N m] (10[lb in)]  
10 - 7  
10. OUTLINE DIMENSION DRAWINGS  
10.2 Connectors  
(1) Servo amplifier side  
<3M>  
(a) Soldered type  
Model  
Connector  
Shell kit  
: 10120-3000VE 10126-3000VE  
: 10320-52F0-008 10326-52F0-008  
[Unit: mm]  
([Unit: in])  
12.0(0.47)  
A
14.0  
(0.55)  
Logo, etc. are indicated here.  
B
12.7  
(0.50)  
Variable dimensions  
Connector  
Shell kit  
A
B
10120-3000VE  
10126-3000VE  
10320-52F0-008  
10326-52F0-008  
22.0(0.87)  
25.8(1.02)  
33.3(1.31)  
37.2(1.47)  
(b) Threaded type  
Model  
Connector  
Shell kit  
Note. This is not available as option  
and should be user-prepared.  
: 10120-3000VE  
: 10320-52A0-008  
[Unit: mm]  
([Unit: in])  
12.0(0.47)  
22.0(0.87)  
14.0  
27.4  
(0.55)  
(1.08)  
Logo, etc. are indicated here.  
33.3  
(1.31)  
12.7  
(0.50)  
10 - 8  
10. OUTLINE DIMENSION DRAWINGS  
(c) Insulation displacement type  
Model  
Connector  
Shell kit  
: 10120-6000EL  
: 10320-3210-000  
[Unit: mm]  
([Unit: in])  
( 0.26)  
6.7  
2- 0.5 20.9(0.82)  
(0.02)  
Logo, etc. are indicated here.  
29.7  
(1.17)  
(2) Bus cable connector  
(a) Honda Tsushin Industry PCR type  
[Unit: mm]  
([Unit: in])  
PCR-LS20LA1  
PCR-LS20LA1W  
13.0  
10.4(0.41)  
(0.51)  
14.2(0.56)  
(0.04)1 12.2 1(0.04)  
23.0(0.91)  
(0.48)  
H O N D A  
H O N D A  
RS  
RS  
27.4(1.08)  
32.0(0.91)  
27.4(1.08)  
32.0(0.91)  
1.9  
12.2  
1
1
(0.08)  
(0.48) (0.04)  
(0.04)  
(Note) Model  
Number of Pins  
Connector  
Case  
PCR-LS20LA1  
PCR-LS20LA1W  
Crimping terminal  
PCR-S20FS (soldering type)  
20  
FHAT-002A  
PCR-S20F (insulation displacement type)  
Note: PCR-S20F and PCR-LS20LA1W are not options and are to be supplied by the customer.  
10 - 9  
10. OUTLINE DIMENSION DRAWINGS  
(b) Honda Tsushin Industry HDR type  
Model HDR  
Connector case  
Number of Pins  
Connector  
(Note) Crimping terminal  
Wire straightening tool : FHAT-0029  
Insulation displacement tool : FHPT-0004C  
14  
26  
HDR-E14MG1  
HDR-E26MG1  
HDR-E14LPA5  
HDR-E26LPA5  
Note: Not available from us and to be supplied by the customer.  
Model Connector  
: HDR-E14MG1  
Model Connector  
: HDR-E26MG1  
Connector case : HDR-E14LPA5  
Connector case : HDR-E26LPA5  
[Unit: mm]  
([Unit: in])  
21.8 (0.86)  
17 (0.67)  
5.6 ( 0.22)  
6
7 (0.24 0.28)  
21 (0.83)  
25.8 (1.02)  
(3) Communication cable connector  
<Japan Aviation Electronics Industry>  
[Unit: mm]  
([Unit: in])  
B
A
Fitting fixing screwG  
F
E(max. diameter of cable used)  
C
D
A
B
C
D
1
F
Type  
E
G
1
1
0.25  
Reference  
DE-C1-J6-S6  
34.5(1.36)  
19(0.75)  
24.99(0.98)  
33(1.30)  
6(0.24)  
18(0.71)  
#4-40  
10 - 10  
11. CHARACTERISTICS  
11. CHARACTERISTICS  
11.1 Overload protection characteristics  
An electronic thermal relay is built in the servo amplifier to protect the servo motor and servo amplifier  
from overloads. Overload 1 alarm (50) occurs if overload operation performed is above the electronic  
thermal relay protection curve shown in any of Figs 11.1, Overload 2 alarm (51) occurs if the maximum  
current flew continuously for several seconds due to machine collision, etc. Use the equipment on the left-  
hand side area of the continuous or broken line in the graph.  
In a machine like the one for vertical lift application where unbalanced torque will be produced, it is  
recommended to use the machine so that the unbalanced torque is 70% or less of the rated torque.  
1000  
1000  
During rotation  
During rotation  
100  
100  
During servo lock  
During servo lock  
10  
1
10  
1
0.1  
0
0.1  
0
150  
(Note) Load ratio [%]  
250  
150  
(Note) Load ratio [%]  
250  
50  
100  
200  
300  
50  
100  
200  
300  
a. MR-J2S-10B to MR-J2S-100B  
b. MR-J2S-200B to MR-J2S-350B  
10000  
10000  
1000  
100  
1000  
100  
During rotation  
During rotation  
During servo lock  
During servo lock  
10  
1
10  
1
0
50  
100  
200  
250  
150  
300  
0
100  
200  
300  
(Note) Load ratio [%]  
(Note) Load ratio [%]  
d. MR-J2S-11KB to MR-J2S-22KB  
c. MR-J2S-500B MR-J2S-700B  
Note: If the servo motor is stopped or low-speed (30r/min or less) operation is performed at an abnormally high duty with torque more  
than 100% of the rating being generated, the servo amplifier may fail even in a status where the electronic thermal relay protection  
is not activated.  
Fig 11.1 Electronic thermal relay protection characteristics  
11 - 1  
11. CHARACTERISTICS  
11.2 Power supply equipment capacity and generated loss  
(1) Amount of heat generated by the servo amplifier  
Table 11.1 indicates servo amplifiers' power supply capacities and losses generated under rated load.  
For thermal design of an enclosure, use the values in Table 11.1 in consideration for the worst  
operating conditions. The actual amount of generated heat will be intermediate between values at  
rated torque and servo off according to the duty used during operation. When the servo motor is run at  
less than the maximum speed, the power supply capacity will be smaller than the value in the table,  
but the servo amplifier's generated heat will not change.  
Table 11.1 Power supply capacity and generated heat per servo amplifier at rated output  
(Note 2)  
(Note 1)  
Area required for heat dissipation  
Servo amplifier-generated heat[W]  
Servo amplifier  
MR-J2S-10B(1)  
MR-J2S-20B(1)  
MR-J2S-40B(1)  
MR-J2S-60B  
Servo motor  
Power supply  
capacity[kVA]  
At rated torque  
With servo off  
[m2]  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.7  
0.7  
0.7  
0.8  
0.8  
0.8  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.8  
1.8  
1.8  
1.8  
1.0  
1.8  
1.8  
1.8  
2.7  
2.7  
1.8  
1.8  
1.8  
[ft2]  
5.4  
HC-KFS053 13  
HC-MFS053 13  
HC-UFS13  
0.3  
0.3  
0.3  
0.5  
0.5  
0.5  
0.9  
0.9  
0.9  
1.0  
1.0  
1.0  
1.3  
1.3  
1.3  
1.5  
1.7  
1.7  
2.1  
3.5  
2.5  
3.5  
1.8  
2.5  
2.5  
2.5  
4.8  
5.5  
3.5  
3.5  
3.5  
25  
25  
25  
25  
25  
25  
35  
35  
35  
40  
40  
40  
50  
50  
50  
50  
50  
50  
90  
90  
90  
90  
50  
90  
90  
90  
120  
130  
90  
90  
90  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
20  
20  
20  
20  
15  
20  
20  
20  
20  
20  
20  
20  
20  
5.4  
5.4  
HC-KFS23  
5.4  
HC-MFS23  
5.4  
HC-UFS23  
5.4  
HC-KFS43  
7.5  
HC-MFS43  
7.5  
HC-UFS43  
7.5  
HC-SFS52  
8.6  
HC-SFS53  
8.6  
HC-LFS52  
8.6  
HC-KFS73  
10.8  
10.8  
10.8  
10.8  
10.8  
10.8  
19.4  
19.4  
19.4  
19.4  
10.8  
19.4  
19.4  
19.4  
29.1  
29.1  
19.4  
19.4  
19.4  
MR-J2S-70B  
HC-MFS73  
HC-UFS72 73  
HC-SFS81  
MR-J2S-100B  
HC-SFS102 103  
HC-LFS102  
HC-SFS121  
HC-SFS201  
HC-SFS152 153  
HC-SFS202 203  
HC-RFS103  
HC-RFS153  
HC-UFS152  
HC-LFS152  
HC-SFS301  
HC-SFS352 353  
HC-RFS203  
HC-UFS202  
HC-LFS202  
MR-J2S-200B  
MR-J2S-350B  
11 - 2  
11. CHARACTERISTICS  
(Note 2)  
(Note 1)  
Area required for heat dissipation  
Servo amplifier-generated heat[W]  
Servo amplifier  
Servo motor  
Power supply  
capacity[kVA]  
At rated torque  
195  
With servo off  
[m2]  
3.9  
2.7  
3.9  
3.9  
3.9  
2.4  
3.9  
6.0  
6.0  
11  
[ft2]  
HC-SFS502  
7.5  
5.5  
25  
25  
25  
25  
25  
25  
25  
25  
25  
45  
45  
45  
45  
45  
45  
45  
55  
55  
55  
55  
42.0  
HC-RFS353  
HC-RFS503  
135  
29.1  
7.5  
195  
42.0  
MR-J2S-500B HC-UFS352  
HC-UFS502  
5.5  
195  
42.0  
7.5  
195  
42.0  
HC-LFS302  
4.5  
120  
25.8  
HA-LFS502  
7.5  
195  
42.0  
HC-SFS702  
MR-J2S-700B  
10.0  
10.6  
16.0  
12.0  
18.0  
16.0  
22.0  
22.0  
22.0  
33.0  
30.1  
37.6  
33.0  
300  
64.6  
HA-LFS702  
300  
64.6  
HA-LFS11K2  
530  
118.4  
83.9  
HA-LFS801  
MR-J2S-11KB  
390  
7.8  
11.6  
11.0  
13  
HA-LFS12K1  
580  
124.8  
118.4  
139.0  
139.0  
139.0  
183.0  
166.8  
208.8  
193.0  
HA-LFS11K1M  
HA-LFS15K2  
530  
640  
MR-J2S-15KB  
MR-J2S-22KB  
HA-LFS15K1  
HA-LFS15K1M  
HA-LFS22K2  
HA-LFS20K1  
HA-LFS25K1  
HA-LFS22K1M  
640  
13  
640  
13  
850  
17  
775  
15.5  
19.4  
17.0  
970  
850  
11 - 3  
11. CHARACTERISTICS  
(2) Heat dissipation area for enclosed servo amplifier  
The enclosed control box (hereafter called the control box) which will contain the servo amplifier  
should be designed to ensure that its temperature rise is within 10 at the ambient temperature of  
40 . (With a 5 (41 ) safety margin, the system should operate within a maximum 55 (131  
limit.) The necessary enclosure heat dissipation area can be calculated by Equation 11.1:  
)
P
............................................................................................................................................. (11.1)  
A
K
T
where, A  
P
: Heat dissipation area [m2]  
: Loss generated in the control box [W]  
T
: Difference between internal and ambient temperatures [  
]
K
: Heat dissipation coefficient [5 to 6]  
When calculating the heat dissipation area with Equation 11.1, assume that P is the sum of all losses  
generated in the enclosure. Refer to Table 11.1 for heat generated by the servo amplifier. "A" indicates  
the effective area for heat dissipation, but if the enclosure is directly installed on an insulated wall,  
that extra amount must be added to the enclosure's surface area.  
The required heat dissipation area will vary wit the conditions in the enclosure. If convection in the  
enclosure is poor and heat builds up, effective heat dissipation will not be possible. Therefore,  
arrangement of the equipment in the enclosure and the use of a fan should be considered.  
Table 11.1 lists the enclosure dissipation area for each servo amplifier when the servo amplifier is  
operated at the ambient temperature of 40 (104 ) under rated load.  
(Outside)  
(Inside)  
Air flow  
Fig. 11.5 Temperature distribution in enclosure  
When air flows along the outer wall of the enclosure, effective heat exchange will be possible, because  
the temperature slope inside and outside the enclosure will be steeper.  
11 - 4  
11. CHARACTERISTICS  
11.3 Dynamic brake characteristics  
Fig. 11.6 shows the pattern in which the servo motor comes to a stop when the dynamic brake is operated.  
Use Equation 11.2 to calculate an approximate coasting distance to a stop. The dynamic brake time  
constant varies with the servo motor and machine operation speeds. (Refer to Fig. 11.7. Please contact  
us for the servo motor not indicated.)  
ON  
Forced stop(EM1)  
OFF  
Time constant  
V0  
Machine speed  
Time  
te  
Fig. 11.6 Dynamic brake operation diagram  
JL  
JM  
V0  
60  
Lmax  
t
e
1
....................................................................................................................... (11.2)  
Lmax  
Vo  
: Maximum coasting distance .................................................................................................[mm][in]  
: Machine rapid feedrate......................................................................................... [mm/min][in/min]  
: Servo motor inertial moment.................................................................................[kg cm2][oz in2]  
: Load inertia moment converted into equivalent value on servo motor shaft  
.................................................................................................................................[kg cm2][oz in2]  
: Brake time constant........................................................................................................................ [s]  
M
J
L
J
te  
: Delay time of control section........................................................................................................... [s]  
For 7kW or less servo, there is internal relay delay time of about 30ms. For 11kW to 22kW  
servo, there is delay time of about 100ms caused by a delay of the external relay and a delay of  
the magnetic contactor built in the external dynamic brake.  
16  
14  
12  
23  
10  
8
73  
053  
6
4
2
0
43  
13  
0
500 1000 1500 2000 2500 3000  
Speed[r/min]  
a. HC-KFS series  
Fig. 11.7 Dynamic brake time constant 1  
11 - 5  
11. CHARACTERISTICS  
0.02  
0.018  
0.016  
0.014  
0.012  
0.01  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
121  
201  
23  
301  
73  
0.008  
0.006  
0.004  
0.002  
0
053  
43  
81  
13  
0
50  
500  
1000  
0
500 1000 1500 2000 2500 3000  
Speed [r/min]  
Speed [r/min]  
b. HC-MFS series  
c. HC-SFS1000r/min series  
0.045  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
0.12  
0.1  
203  
53  
702  
0.08  
0.06  
0.04  
0.02  
0
352  
202  
52  
502  
353  
153  
152  
102  
103  
0
500  
1000 1500 2000  
Speed [r/min]  
0
50 500 1000 1500 2000 2500 3000  
Speed [r/min]  
d. HC-SFS2000r/min series  
e. HC-SFS3000r/min series  
0.018  
0.016  
0.014  
0.012  
0.01  
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
72  
502  
352  
103  
503  
0.008  
0.006  
153  
0.004  
0.002  
0
353  
202  
203  
152  
0
500 1000 1500 2000 2500 3000  
Speed [r/min]  
0
500  
1000 1500 2000  
Speed [r/min]  
f. HC-RFS series  
g. HC-UFS 2000r/min series  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
73  
0.04  
0.035  
0.03  
0.025  
15K2  
0.02  
0.015  
43  
11K2  
0.01  
23  
13  
0.005  
22K2  
0
0
500  
Speed [r/min]  
1000 1500 2000  
0
50 500 10001500200025003000  
Speed [r/min]  
h. HC-UFS3000r/min series  
i. HA-LFS series  
Fig. 11.8 Dynamic brake time constant 2  
11 - 6  
11. CHARACTERISTICS  
Use the dynamic brake at the load inertia moment indicated in the following table. If the load inertia  
moment is higher than this value, the built-in dynamic brake may burn. If there is a possibility that the  
load inertia moment may exceed the value, contact Mitsubishi.  
Servo amplifier  
Load inertia moment ratio [times]  
MR-J2S-10B to MR-J2S-200B  
MR-J2S-10B1 to MR-J2S-40B1  
MR-J2S-350B  
30  
16  
MR-J2S-500B  
15  
MR-J2S-700B  
(Note)MR-J2S-11KB to MR-J2S-22KB  
(Note) 30  
Note. Assumes that the external dynamic brake is used.  
11.4 Encoder cable flexing life  
The flexing life of the cables is shown below. This graph calculated values. Since they are not guaranteed  
values, provide a little allowance for these values.  
1
5
108  
107  
a
1
5
107  
106  
a : Long flexing-life encoder cable  
MR-JCCBL M-H  
MR-JHSCBL M-H  
MR-ENCBL M-H  
1
5
106  
105  
b : Standard encoder cable  
MR-JCCBL M-L  
MR-JHSCBL M-L  
1
5
105  
104  
1
5
104  
103  
b
1
103  
4
7
10  
20  
40  
70 100  
200  
Flexing radius [mm]  
11 - 7  
11. CHARACTERISTICS  
11.5 Inrush currents at power-on of main circuit and control circuit  
The following table indicates the inrush currents (reference value) that will flow when the maximum  
permissible voltage (253VAC) is applied at the power supply capacity of 2500kVA and the wiring length of  
10m.  
Inrush Currents (A0-p  
)
Servo Amplifier  
Main circuit power supply (L1, L2, L3)  
30A (Attenuated to approx. 5A in 10ms)  
30A (Attenuated to approx. 5A in 10ms)  
54A (Attenuated to approx. 12A in 10ms)  
Control circuit power supply (L11, L21)  
MR-J2S-10B 20B  
MR-J2S-40B 60B  
MR-J2S-70B 100B  
70 to 100A  
(Attenuated to approx. 0A in 0.5 to 1ms)  
100 to 130A  
MR-J2S-200B 350B  
120A (Attenuated to approx. 12A in 20ms)  
(Attenuated to approx. 0A in 0.5 to 1ms)  
MR-J2S-500B  
MR-J2S-700B  
44A (Attenuated to approx. 20A in 20ms)  
88A (Attenuated to approx. 20A in 20ms)  
30A  
MR-J2S-11KB  
MR-J2S-15KB  
MR-J2S-22KB  
MR-J2S-10B1 20B1  
MR-J2S-40B1  
(Attenuated to approx. 0A in several ms)  
235A (Attenuated to approx. 20A in 20ms)  
59A (Attenuated to approx. 5A in 4ms)  
72A (Attenuated to approx. 5A in 4ms)  
100 to 130A  
(Attenuated to approx. 0A in 0.5 to 1ms)  
Since large inrush currents flow in the power supplies, always use no-fuse breakers and magnetic  
contactors. (Refer to Section 12.2.2.)  
When circuit protectors are used, it is recommended to use the inertia delay type that will not be tripped  
by an inrush current.  
11 - 8  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12. OPTIONS AND AUXILIARY EQUIPMENT  
Before connecting any option or auxiliary equipment, make sure that the charge  
lamp is off more than 10 minutes after power-off, then confirm the voltage with a  
tester or the like. Otherwise, you may get an electric shock.  
WARNING  
CAUTION  
Use the specified auxiliary equipment and options. Unspecified ones may lead to a  
fault or fire.  
12.1 Options  
12.1.1 Regenerative brake options  
The specified combinations of regenerative brake options and servo amplifiers  
may only be used. Otherwise, a fire may occur.  
CAUTION  
(1) Combination and regenerative power  
The power values in the table are resistor-generated powers and not rated powers.  
Regenerative power[W]  
(Note)  
(Note)  
MR-RB51  
[6.7 ]  
Servo amplifier  
Built-in regenerative MR-RB032 MR-RB12  
MR-RB32  
[40 ]  
MR-RB30  
[13 ]  
MR-RB31  
[6.7 ]  
MR-RB50  
[13 ]  
brake resistor  
[40 ]  
[40 ]  
MR-J2S-10B(1)  
MR-J2S-20B(1)  
MR-J2S-40B(1)  
MR-J2S-60B  
30  
30  
30  
30  
30  
30  
10  
10  
100  
100  
100  
100  
100  
10  
MR-J2S-70B  
20  
300  
300  
MR-J2S-100B  
MR-J2S-200B  
MR-J2S-350B  
MR-J2S-500B  
MR-J2S-700B  
20  
100  
100  
130  
170  
300  
300  
300  
500  
500  
500  
300  
500  
Note: Always install a cooling fan.  
(Note) Regenerative power[W]  
Servo amplifier  
External regenerative brake  
resistor (Accessory)  
MR-RB65  
[8 ]  
MR-RB66  
[5 ]  
MR-RB67  
[4 ]  
MR-J2S-11KB  
MR-J2S-15KB  
MR-J2S-22KB  
500 (800)  
850 (1300)  
850 (1300)  
500 (800)  
850 (1300)  
850 (1300)  
Note: Values in parentheses assume the installation of a cooling fan.  
12 - 1  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Selection of the regenerative brake option  
(a) Simple selection method  
In horizontal motion applications, select the regenerative brake option as described below:  
When the servo motor is run without load in the regenerative mode from the running speed to a  
stop, the permissible duty is as indicated in Section 5.1 of the separately available Servo Motor  
Instruction Manual.  
For the servo motor with a load, the permissible duty changes according to the inertia moment of  
the load and can be calculated by the following formula:  
Permissible duty for servo motor with no load (value indication Section 5.1 in Servo Motor Instruction Manual)  
Permissible  
duty  
(m 1)  
2
ratedspeed  
running speed  
[times/min]  
where m  
load inertia moment/servo motor inertia moment  
From the permissible duty, find whether the regenerative brake option is required or not.  
Permissible duty number of positioning times [times/min]  
Select the regenerative brake option out of the combinations in (1) in this section.  
(b) To make selection according to regenerative energy  
Use the following method when regeneration occurs continuously in vertical motion applications or  
when it is desired to make an in-depth selection of the regenerative brake option:  
a. Regenerative energy calculation  
Use the following table to calculate the regenerative energy.  
tf(1 cycle)  
No  
Up  
Time  
Down  
M
t1  
Tpsa1  
t2  
t3  
t4  
Tpsd1  
Tpsa2  
Tpsd2  
Friction  
torque  
1)  
( )  
(Driving)  
2)  
TF  
4)  
8)  
5)  
TU  
6)  
3)  
7)  
(Regenerative)  
( )  
Formulas for calculating torque and energy in operation  
Torque applied to servo motor [N m]  
Regenerative power  
Energy [J]  
(JL JM)  
1
0.1047  
2
No  
E1  
No  
1
T1  
U
TF  
T
T
psa1  
T
1)  
2)  
104  
Tpsa1  
9.55  
T2 TU TF  
E2 0.1047 No T2 t1  
0.1047  
(JL JM)  
9.55 104  
1
No  
E3  
No T3 Tpsd1  
T3  
TU  
TF  
3)  
2
Tpsd1  
4), 8)  
5)  
T4 TU  
E4 0 (No regeneration)  
0.1047  
T
psa2  
(JL JM)  
1
No  
9.55 104  
T6 TU TF  
(JL JM)  
E5  
No  
5
T5  
TU TF  
T
2
Tpsa2  
6)  
E6 0.1047 No T6 t3  
0.1047  
T
psd2  
1
No  
9.55 104  
E7  
No  
T
7
T7  
TU TF  
7)  
2
Tpsd2  
From the calculation results in 1) to 8), find the absolute value (Es) of the sum total of negative  
energies.  
12 - 2  
12. OPTIONS AND AUXILIARY EQUIPMENT  
b. Losses of servo motor and servo amplifier in regenerative mode  
The following table lists the efficiencies and other data of the servo motor and servo amplifier in  
the regenerative mode.  
Servo amplifier  
MR-J2S-10B(1)  
MR-J2S-20B(1)  
MR-J2S-40B(1)  
MR-J2S-60B  
Inverse efficiency[%]  
Capacitor charging[J]  
55  
70  
85  
85  
80  
80  
85  
85  
90  
90  
90  
90  
90  
9
9
11  
11  
18  
18  
40  
40  
45  
70  
120  
170  
250  
MR-J2S-70B  
MR-J2S-100B  
MR-J2S-200B  
MR-J2S-350B  
MR-J2S-500B  
MR-J2S-700B  
MR-J2S-11KB  
MR-J2S-15KB  
MR-J2S-22KB  
Inverse efficiency ( )  
:Efficiency including some efficiencies of the servo motor and servo  
amplifier when rated (regenerative) torque is generated at rated speed.  
Since the efficiency varies with the speed and torque, allow for about 10%.  
Capacitor charging (Ec) :Energy charged into the electrolytic capacitor in the servo amplifier.  
Subtract the capacitor charging from the result of multiplying the sum total of regenerative energies by  
the inverse efficiency to calculate the energy consumed by the regenerative brake option.  
ER [J]  
Es Ec  
Calculate the power consumption of the regenerative brake option on the basis of single-cycle operation  
period tf [s] to select the necessary regenerative brake option.  
PR [W] ER/tf............................................................................................(12.1)  
(3) Parameter setting  
Set parameter No.2 according to the option to be used.  
The MR-RB65, 66 and 67 are regenerative brake options that have encased the GRZG400-2 ,  
GRZG400-1 and GRZG400-0.8 , respectively. When using any of these regenerative brake options,  
make the same parameter setting as when using the GRZG400-2 , GRZG400-1 or GRZG400-0.8  
(supplied regenerative brake resistors or regenerative brake option is used with 11kW or more servo  
amplifier).  
Parameter No.2  
Selection of regenerative  
00: Regenerative brake option is not used with 7kW or less servo amplifier  
(The built-in regenerative brake resistor is used. However, the MR-J2S-10B  
does not have a built-in regenerative brake resistor and therefore cannot use it.)  
Supplied regenerative brake resistors or regenerative brake option is  
used with 11kW or more servo amplifier  
01: FR-RC, FR-RB, FR-CV  
05: MR-RB32  
08: MR-RB30  
09: MR-RB50  
0B: MR-RB31  
0C: MR-RB51  
0E: When regenerative brake resistors or regenerative brake option supplied  
to 11kW or more are cooled by fans to increase capability  
10: MR-RB032  
11: MR-RB12  
12 - 3  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Connection of the regenerative brake option  
The regenerative brake option will cause a temperature rise of 100 degrees relative to the ambient  
temperature. Fully examine heat dissipation, installation position, used cables, etc. before installing  
the option. For wiring, use flame-resistant cables and keep them clear of the regenerative brake option  
body. Always use twisted cables of max. 5m(16.4ft) length for connection with the servo amplifier.  
(a) MR-J2S-350B or less  
Always remove the wiring from across P-D and fit the regenerative brake option across P-C.  
The G3 and G4 terminals act as a thermal protector. G3-G4 are opened when the regenerative  
brake option overheats abnormally.  
Always remove the lead from across P-D.  
Servo amplifier  
Regenerative brake option  
D
P
P
C
C
G3  
(Note2)  
G4  
5m (16.4 ft) max.  
Fan (Note 1)  
Note: 1. When using the MR-RB50, forcibly cool it with a cooling fan (1.0m3/min, 92 or so).  
2. Make up a sequence which will switch off the magnetic contactor (MC) when  
abnormal heating occurs.  
G3-G4 contact specifications  
Maximum voltage: 120V AC/DC  
Maximum current: 0.5A/4.8VDC  
Maximum capacity: 2.4VA  
For the MR-RB50 install the cooling fan as shown.  
[Unit : mm(in)]  
Fan installation screw hole dimensions  
2-M3 screw hole  
Top  
(for fan installation)  
Depth 10 or less  
(Screw hole already  
machined)  
Fan  
Terminal block  
Thermal relay  
Bottom  
82.5  
40 (1.58)  
(3.25)  
Recommended fan:  
Installation surface  
Horizontal installation  
Vertical  
installation  
Toyo Denki's TL396A or equivalent  
12 - 4  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-J2S-500B MR-J2S-700B  
Always remove the wiring (across P-C) of the servo amplifier built-in regenerative brake resistor  
and fit the regenerative brake option across P-C.  
The G3 and G4 terminals act as a thermal protector. G3-G4 are opened when the regenerative  
brake option overheats abnormally.  
Always remove wiring (across P-C) of servo  
amplifier built-in regenerative brake resistor.  
Servo amplifier  
Regenerative brake option  
P
P
C
C
G3  
(Note 2)  
G4  
5m(16.4ft) or less  
Fan (Note 1)  
Note 1. When using the MR-RB50 MR-RB51, forcibly cool it with a cooling fan (1.0m3/min, 92 or so).  
2. Make up a sequence which will switch off the magnetic contactor (MC)  
when abnormal heating occurs.  
G3-G4 contact specifications  
Maximum voltage: 120V AC/DC  
Maximum current: 0.5A/4.8VDC  
Maximum capacity: 2.4VA  
When using the regenerative brake resistor option, remove the servo amplifier's built-in  
regenerative brake resistor terminals (across P-C), fit them back to back, and secure them to the  
frame with the accessory screw as shown below.  
Mounting method  
Accessory screw  
For MR-J2S-700B  
For MR-J2S-500B  
Accessory screw  
Accessory screw  
12 - 5  
12. OPTIONS AND AUXILIARY EQUIPMENT  
For the MR-RB50 MR-RB51 install the cooling fan as shown.  
[Unit : mm(in)]  
Fan installation screw hole dimensions  
2-M3 screw hole  
Top  
(for fan installation)  
Depth 10 or less  
(Screw hole already  
machined)  
Fan  
Terminal block  
Thermal relay  
Bottom  
82.5  
40 (1.58)  
(3.25)  
Recommended fan:  
Installation surface  
Horizontal installation  
Vertical  
installation  
Toyo Denki's TL396A or equivalent  
(c) MR-J2S-11KB to MR-J2S-22KB (when using the supplied regenerative brake resistor)  
When using the regenerative brake resistors supplied to the servo amplifier, the specified number  
of resistors (4 or 5 resistors) must be connected in series. If they are connected in parallel or in less  
than the specified number, the servo amplifier may become faulty and/or the regenerative brake  
resistors burn. Install the resistors at intervals of about 70mm. Cooling the resistors with fans  
(1.0m3/min, 92 ( about two fans) improves the regeneration capability. In this case, set "0E  
"
in parameter No. 2.  
5m or less  
Do not remove  
Servo amplifier  
the short bar.  
P1  
P
C
(Note) Series connection  
Fan  
Note: The number of resistors connected in series depends on the resistor type. Install a thermal sensor  
or like to configure a circuit that will shut off the main circuit power at abnormal overheat.  
Regenerative Power [W]  
Number of  
Resistors  
Regenerative  
Brake Resistor  
Resistance  
[ ]  
Servo Amplifier  
Normal  
Cooling  
MR-J2S-11KB  
MR-J2S-15KB  
MR-J2S-22KB GRZG400-0.8  
GRZG400-2  
GRZG400-1  
500  
850  
850  
800  
1300  
1300  
8
5
4
4
5
5
12 - 6  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(d) MR-J2S-11KB-PX to MR-J2S-22KB-PX (when using the regenerative brake option)  
The MR-J2S-11KB-PX to MR-J2S-22KB-PX servo amplifiers are not supplied with regenerative  
brake resistors. When using any of these servo amplifiers, always use the MR-RB65, 66 or 67  
regenerative brake option.  
The MR-RB65, 66 and 67 are regenerative brake options that have encased the GRZG400-2 ,  
GRZG400-1 and GRZG400-0.8 , respectively. When using any of these regenerative brake  
options, make the same parameter setting as when using the GRZG400-2 , GRZG400-1 or  
GRZG400-0.8 (supplied regenerative brake resistors or regenerative brake option is used with  
11kW or more servo amplifier).  
Cooling the regenerative brake option with fans improves regenerative capability.  
The G3 and G4 terminals are for the thermal protector. G3-G4 are opened when the regenerative  
brake option overheats abnormally.  
Servo amplifier  
Do not remove  
Regenerative brake option  
the short bar.  
P1  
P
C
P
C
G3  
G4  
(Note)  
Configure up a circuit which  
shuts off main circuit power  
when thermal protector operates.  
Note. Specifications of contact across G3-G4  
Maximum voltage  
Maximum current  
Maximum capacity  
: 120V AC/DC  
: 0.5A/4.8VDC  
: 2.4VA  
Regenerative  
Brake Option  
Model  
Regenerative Power [W]  
Without Fans With Fans  
Resistance  
[ ]  
Servo Amplifier  
MR-J2S-11KB-PX  
MR-J2S-15KB-PX  
MR-J2S-22KB-PX  
MR-RB65  
MR-RB66  
MR-RB67  
8
5
4
500  
850  
850  
800  
1300  
1300  
When using fans, install them using the mounting holes provided in the bottom of the  
regenerative brake option. In this case, set "0E  
" in parameter No. 2.  
Top  
MR-RB65 66 67  
Bottom  
TE1  
2 cooling fans  
(1.0m3/min 92)  
TE  
G4 G3 C  
P
Mounting screw  
4-M3(0.118)  
12 - 7  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(5) Outline drawing  
(a) MR-RB032 MR-RB12  
[Unit: mm (in)]  
LA  
6 (0.24) mounting hole  
LB  
MR-RB  
TE1  
Terminal block  
5 (0.20)  
G3  
G4  
P
G3  
G4  
P
TE1  
C
C
Terminal screw: M3  
Tightening torque:  
0.5 to 0.6 [N m](4 to 5 [lb in])  
Mounting screw  
1.6 (0.06)  
6 (0.23)  
Screw size: M5  
20  
(0.79)  
LD  
LC  
Tightening torque:  
3.2 [N m](28.32 [lb in])  
Variable dimensions  
Mass  
Regenerative  
brake option  
LA  
LB  
LC  
LD [kg] [lb]  
30  
15  
119  
99  
MR-RB032  
MR-RB12  
0.5 1.1  
(1.18) (0.59) (4.69) (3.9)  
40 15 169 149  
(1.57) (0.59) (6.69) (5.87)  
1.1 2.4  
(b) MR-RB30 MR-RB31 MR-RB32  
[Unit: mm (in)]  
Terminal block  
FAN mounting screw  
(2-M3 screw)  
P
C
Terminal screw: M4  
G3 Tightening torque: 1.2 [N m] (10 [lb in])  
G4  
Mounting screw  
Screw : M6  
Tightening torque: 5.4 [N m](47.79 [lb in])  
7
318 (12.52)  
17  
(0.67)  
Regenerative  
Mass [kg] (lb)  
brake option  
90 (3.54)  
100 (3.94)  
335 (13.19)  
10 (0.39)  
MR-RB30  
MR-RB31  
MR-RB32  
2.9 (6.4)  
12 - 8  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(c) MR-RB50 MR-RB51  
[Unit: mm (in)]  
Terminal block  
P
Fan mounting screw  
(2-M3 screw)  
On opposite side  
82.5  
(3.25)  
49  
(1.93)  
C
Terminal screw: M4  
G3 Tightening torque: 1.2 [N m](10 [lb in])  
G4  
7
14 slot  
Mounting screw  
Screw : M6  
Tightening torque: 5.4 [N m](47.79 [lb in])  
Wind blows in the  
arrow direction.  
Regenerative  
Mass [kg] (lb)  
brake option  
MR-RB50  
5.6 (12.3)  
MR-RB51  
7 (0.28)  
2.3  
(0.09)  
(30 (1.18))  
200 (7.87)  
223 (8.78)  
17 (0.67)  
108 (4.25)  
120 (4.73)  
12  
(0.47)  
8 (0.32)  
(d) MR-RB65 MR-RB66 MR-RB67  
[Unit: mm (in)]  
2- 10 ( 0.39)  
monutinghde  
Terminal block  
G4 G3 C  
P
Terminal screw: M5  
Tightening torque: 2.0 [N m](17 [lb in])  
Mounting screw  
TE1  
G4G3 CP  
Screw size: M8  
2.3 (0.09)  
215 (8.47)  
10 (0.39)  
230 (9.06)  
260 (10.24)  
Tightening torque: 13.2 [N m](116.83 [lb in])  
15 (0.59)  
230 (9.06)  
Mass  
Regenerative  
brake option  
[kg]  
[lb]  
MR-RB65  
MR-RB66  
MR-RB67  
10  
11  
11  
22.0  
24.3  
24.3  
(e) GRZG400-2  
GRZG400-1  
350 (13.78)  
GRZG400-0.8 (standard accessories)  
[Unit: mm (in)]  
Terminal block  
φ5.5 (0.217) hole  
Mounting screw  
Screw size: M8  
9 (0.354)  
384 (15.118)  
410 (16.142)  
Tightening torque: 13.2 [N m](116.83 [lb in])  
40  
(1.575)  
12 - 9  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.1.2 Brake unit  
POINT  
The brake unit and resistor unit of other than 200V class are not  
applicable to the servo amplifier.  
The brake unit and resistor unit of the same capacity must be combined.  
The units of different capacities may result in damage.  
The brake unit and resistor unit must be installed on a vertical surface in  
the vertical direction. If they are installed in the horizontal direction or on  
a horizontal surface, a heat dissipation effect reduces.  
The temperature of the resistor unit casing rises to higher than 100 . Do  
not cause cables and combustibles to make contact with the casing.  
The brake unit is the integration of the regenerative control and resistor and is connected to the bus  
(across P-N) of the servo amplifier. As compared to the MR-RB regenerative brake option, the brake unit  
can return larger power. Hence, use the this brake unit when the MR-RB cannot provide sufficient  
regenerative brake capability.  
When using the brake unit, set "  
01" in parameter No.2.  
(1) Selection  
Permissible Continuous Max. Instantaneous  
Brake unit  
Resistor unit  
Applicable Servo Amplifier  
Power [kw]  
Power [kw]  
MR-J2S-500B  
MR-J2S-700B  
MR-J2S-11KB  
MR-J2S-15KB  
MR-J2S-22KB  
FR-BU-15K  
FR-BU-30K  
FR-BU-55K  
FR-BR-15K  
FR-BR-30K  
FR-BR-55K  
0.99  
16.5  
1.99  
3.91  
33.4  
66.8  
(2) Connection example  
Servo amplifier  
No-fuse breaker  
NFB  
MC  
Servo motor  
Power  
L1  
U
V
supply  
3-phase  
200 to  
L2  
M
L3  
W
230VAC  
L11  
L21  
(Note 2)  
P
PR  
P
P/  
N/  
PR  
C
N
(Note 1)  
HA  
(Note 1)  
TH1  
HB  
Alarm  
output  
HC  
TH2  
THS  
FR-BR resistor unit  
FR-BU brake unit  
Note 1. Make up the external sequence to switch the power off when an alarm occurs or when the thermal relay is actuated.  
2. Always remove the wiring (across P-C) of the servo amplifier built-in resistor.  
12 - 10  
12. OPTIONS AND AUXILIARY EQUIPMENT  
The cables between the servo amplifier and brake unit and between the resistor unit and brake unit  
should be as short as possible. The cables longer than 5m(16.404ft) should be twisted. If twisted, the  
cables must not be longer than 10m(32.808ft).  
The cable size should be equal to or larger than the recommended size. See the brake unit instruction  
manual. You cannot connect one set of brake unit to two servo amplifiers or two sets of brake units to  
one servo amplifier.  
Servo amplifier  
Servo amplifier  
Brake unit  
Resistor unit  
Brake unit  
Resistor unit  
Twist.  
Twist.  
P
N
P
N
P
PR  
P
PR  
P
N
P
N
P
PR  
P
PR  
5m (16.404ft)  
or less  
5m (16.404ft)  
or less  
10m (32.808ft)  
or less  
10m (32.808ft)  
or less  
(3) Outside dimensions  
(a) Brake unit (FR-BU)  
[Unit : mm(in)]  
D
K
K
(Note)  
Operation  
Control circuit  
terminals  
Main circuit  
terminals  
display  
C
EE  
AA  
E
E
A
Note: Ventilation ports are provided in both side faces and top face. The bottom face is open.  
Approx.  
Brake Unit  
FR-BU-15K  
FR-BU-30K  
FR-BU-55K  
A
AA  
B
BA  
C
D
E
EE  
K
F
Mass [kg(Ib)]  
100  
60  
240  
225  
128  
6
18.5  
6
48.5  
7.5  
2.4  
(5.291)  
3.2  
(3.937) (2.362) (9.446) (10.039) (5.039) (0.236) (0.728) (0.236) (1.909) (0.295)  
160 90 240 225 128 33.5 78.5 7.5  
(6.299) (3.543) (9.446) (10.039) (5.039) (0.236) (1.319) (0.236) (3.091) (0.295)  
6
6
(7.055)  
5.8  
265  
145  
240  
225  
128  
58.6  
6
7.5  
(10.433) (5.709) (9.446) (10.039) (5.039)  
(2.307) (0.236)  
(0.295)  
(12.787)  
12 - 11  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Resistor unit (FR-BR)  
[Unit : mm(in)]  
2- D  
Control circuit  
terminals  
(Note)  
Main circuit  
terminals  
FR-BR-55K  
Two eye bolts are provided  
(as shown below).  
EE  
(E)  
EE  
(E)  
AA 5 (0.197)  
204  
(8.031)  
Eye bolt  
A 5 (0.197)  
Note: Ventilation ports are provided in both side faces and top face. The bottom face is open.  
Resistor  
Unit  
Approx.  
Mass  
A
AA  
B
BA  
BB  
C
D
E
EE  
K
F
Model  
[kg(Ib)]  
FR-BR-  
15K  
170  
100  
450  
432  
410  
220  
6
35  
6
1.6  
20  
15  
(6.693) (3.937) (17.717) (17.008) (16.142) (8.661) (0.236) (1.378) (0.236) (0.063) (0.787) (66.139)  
340 270 600 582 560 220 10 35 10 20 30  
(11.389) (10.63) (23.622) (22.913) (22.047) (8.661) (0.394) (1.378) (0.394) (0.079) (0.787) (33.069)  
480 410 700 670 620 450 12 35 12 3.2 40 70  
(18.898) (16.142) (27.559) (26.378) (24.409) (17.717) (0.472) (1.378) (0.472) (0.126) (1.575) (154.323)  
FR-BR-  
30K  
2
FR-BR-  
55K  
12.1.3 Power regeneration converter  
When using the power regeneration converter, set "  
01" in parameter No.2.  
(1) Selection  
The converters can continuously return 75% of the nominal regenerative power. They are applied to  
the servo amplifiers of the MR-J2S-500B to MR-J2S-22KB.  
Power  
Nominal  
regeneration  
converter  
Regenerative Servo Amplifier  
Power (kW)  
500  
MR-J2S-500B  
300  
200  
FR-RC-15K  
15  
MR-J2S-700B  
MR-J2S-11KB  
FR-RC-30K  
FR-RC-55K  
30  
100  
MR-J2S-15KB  
55  
MR-J2S-22KB  
50  
30  
20  
0
50  
75 100  
150  
Nominal regenerative power (%)  
12 - 12  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Connection example  
Servo amplifier  
L11  
L21  
Power factor improving reactor  
NFB  
MC  
FR-BAL  
L1  
L2  
Power supply  
3-phase  
200V or 230VAC  
L3  
VDD  
COM  
EM1  
SG  
For 7kW or less,  
always remove  
wiring across P-C.  
N
P
C
5m(16.4ft) or less  
N/  
P/  
RDY  
SE  
A
B
Ready  
RDY  
output  
B
C
C
R/L1  
S/L2  
T/L3  
Alarm  
output  
RX  
R
(Note)  
SX  
S
Phase detection  
terminals  
TX  
T
Power regeneration  
converter FR-RC  
FR-RC  
Operation ready  
ON  
EM1  
RA2  
OFF  
B
C
MC  
SK  
MC  
Note. When not using the phase detection terminals, fit the jumpers across RX-R, SX-S and TX-T. If the jumpers remain removed,  
the FR-RC will not operate.  
12 - 13  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outside dimensions of the power regeneration converters  
[Unit : mm(in)]  
Mounting foot (removable)  
Mounting foot  
movable  
2- D hole  
Rating plate  
Front cover  
Display  
panel  
window  
Cooling fan  
K
D
F
AA  
A
C
Heat generation area outside mounting dimension  
Power  
Approx.  
regeneration  
converter  
A
AA  
B
BA  
C
D
E
EE  
K
F
Mass [kg(Ib)]  
270  
200  
450  
432  
195  
10  
10  
8
3.2  
87  
19  
(41.888)  
31  
FR-RC-15K  
FR-RC-30K  
FR-RC-55K  
(10.630) (7.874) (17.717) (17.008) (7.677) (0.394) (0.394) (0.315) (0.126) (3.425)  
340 270 600 582 195 10 10 3.2 90  
(13.386) (10.630) (23.622) (22.913) (7.677) (0.394) (0.394) (0.315) (0.126) (3.543)  
480 410 700 670 250 12 15 15 3.2 135  
(18.898) (16.142) (27.559) (26.378) (9.843) (0.472) (0.591) (0.591) (0.126) (5.315)  
8
(68.343)  
55  
(121.254)  
(4) Mounting hole machining dimensions  
When the power regeneration converter is fitted to a totally enclosed type box, mount the heat  
generating area of the converter outside the box to provide heat generation measures. At this time, the  
mounting hole having the following dimensions is machined in the box.  
[Unit : mm(in)]  
(2- D hole)  
(AA)  
Model  
A
B
D
AA  
BA  
260  
412  
10  
200  
432  
FR-RC-15K  
(10.236) (16.220) (0.394) (7.874) (17.009)  
330 562 10 270 582  
(12.992) (22.126) (0.394) (10.630) (22.913)  
470 642 12 410 670  
(18.504) (25.276) (0.472) (16.142) (26.378)  
FR-RC-30K  
FR-RC-55K  
(Mounting hole)  
a
12 - 14  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.1.4 External dynamic brake  
(1) Selection of dynamic brake  
The dynamic brake is designed to bring the servo motor to a sudden stop when a power failure occurs  
or the protective circuit is activated, and is built in the 7kW or less servo amplifier. Since it is not built  
in the 11kW or more servo amplifier, purchase it separately if required. Set " 1  
No. 2.  
" in the parameter  
If the 7kW or less servo amplifier is used but the inertia moment of the load is large, the built-in brake  
may not be usable. Refer to Section 11.3 and examine.  
Servo amplifier  
MR-J2S-11KB  
MR-J2S-15KB  
MR-J2S-22KB  
Dynamic brake  
DBU-11K  
DBU-15K  
DBU-22K  
(2) Connection example  
Servo amplifier  
CON2  
Operation-ready  
ON  
15 VDD  
18 CO  
(Note1) EM1  
OFF  
MC  
SK  
MC  
RA1  
4
DB  
NFB  
MC  
Servo motor  
M
L1  
Power supply  
3-phase  
200 to  
U
V
U
L2  
V
L3  
230VAC  
W
E
W
L11  
L21  
CON2  
2
EM1  
EM1  
SG  
1
(Note2)  
Plate SD  
14  
13  
U
V
W
a
RA1  
b
Dynamic brake  
Note1: Configure up the circuit to switch power off in the external sequence at servo alarm occurrence.  
2: Terminals 13, 14 are normally open contact outputs. If the dynamic brake is seized, terminals 13, 14 will open.  
Therefore, configure up an external sequence to prevent servo-on.  
12 - 15  
12. OPTIONS AND AUXILIARY EQUIPMENT  
Coasting  
Coasting  
Dynamic brake  
Servo motor rotation  
Dynamic brake  
Present  
Alarm  
Base  
Absent  
ON  
OFF  
ON  
RA1  
OFF  
Invalid  
Valid  
Short  
Open  
Dynamic brake  
Forced stop  
(EM1)  
a. Timing chart at alarm occurrence  
b. Timing chart at forced stop (EM1) validity  
12 - 16  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outline dimension drawing  
[Unit: mm]  
([Unit: in])  
5
(0.2)  
(0.2)5  
100(3.94)  
G
F
2.3(0.09)  
D
D
C
Terminal block  
E
U
V
W
a
b
13 14  
(GND)  
Screw : M4  
Tightening torque: 1.2 [N m](10 [lb in])  
Screw : M3.5  
Tightening torque: 0.8 [N m](7 [lb in])  
Mass  
Connection  
Dynamic brake  
DBU-11K  
A
B
C
D
E
F
G
2
[kg]([Ib])  
wire [mm ]  
200  
(7.87)  
250  
190  
(7.48)  
238  
140  
(5.51)  
150  
20  
5
(0.2)  
6
170  
(6.69)  
235  
163.5  
(6.44)  
228  
2 (4.41)  
5.5  
5.5  
(0.79)  
25  
DBU-15K, 22K  
6 (13.23)  
(9.84)  
(9.37)  
(5.91)  
(0.98)  
(0.24)  
(9.25)  
(8.98)  
POINT  
Configure up a sequence which switches off the contact of the brake unit  
after (or as soon as) it has turned off the servo on signal at a power failure  
or failure.  
For the braking time taken when the dynamic brake is operated, refer to  
Section 11.3.  
The brake unit is rated for a short duration. Do not use it for high duty.  
When the dynamic brake is used, the power supply voltage is restricted as  
indicated below.  
3-Phase 170 to 220VAC/50Hz  
3-Phase 170 to 242VAC/60Hz  
12 - 17  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.1.5 Cables and connectors  
(1) Cable make-up  
The following cables are used for connection with the servo motor and other models.  
The broken line areas in the diagram are not options.  
Servo system  
controller  
Servo amplifier  
Servo amplifier  
(Note)  
Bus cable  
(Note)  
Bus cable  
13)  
CN1A  
CN1B  
CN1A  
CN1B  
Termination connector  
CN2 CN3  
CN2 CN3  
Personal computer  
15)  
(Note)  
Connector set  
CN4  
CON2  
14)  
(Note)  
22)  
23)  
To U, V, W  
HA-LFS  
HC-KFS  
HC-MFS  
20) 21)  
HC-UFS 3000r/min  
3) 4) 5)  
1) 2)  
7) 8)  
6)  
HC-SFS  
HC-RFS  
HC-UFS 2000r/min  
16) 17) 18)  
19)  
3) 4) 5)  
7) 8)  
Note: The bus cable used with the SSCNET depends on the preceding or subsequent controller or servo amplifier connected.  
Refer to the following table and choose the bus cable.  
MR-J2S-  
10) Bus cable :MR-J2HBUS  
Q172CPU(N) 24) Bus cable :Q172J2BCBL M(-B)  
Q173CPU(N) 25) Bus cable :Q173J2B CBL  
A motion 9) Bus cable :MR-J2HBUS M-A  
B
MR-J2-03B5  
QD75M  
M
12) Connector set:MR-J2CN1  
Motion  
M
controller  
11) Connector set:MR-J2CN1-A  
12) Connector set:MR-J2CN1  
MR-J2S-  
B
MR-J2-03B5  
Maintenance junction card  
10) Bus cable :MR-J2HBUS  
M
12 - 18  
12. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
1) Standard encoder MR-JCCBL M-L  
cable Refer to (2) in this Shell kit: 10320-52F0-008  
section. (3M or equivalent)  
Product  
Model  
Description  
Housing: 1-172161-9  
Application  
Connector: 10120-3000VE  
Standard  
flexing life  
IP20  
Connector pin: 170359-1  
(AMP or equivalent)  
Cable clamp: MTI-0002  
(Toa Electric Industry)  
2) Long flexing life MR-JCCBL M-H  
Long flexing  
life  
encoder cable  
Refer to (2) in this  
section.  
IP20  
3) Standard encoder MR-JHSCBL M-L Connector: 10120-3000VE  
cable Refer to (2) in this Shell kit: 10320-52F0-008  
section. (3M or equivalent)  
4) Long flexing life MR-JHSCBL M-H  
Plug: MS3106B20-29S  
Standard  
flexing life  
IP20  
Cable clamp: MS3057-12A  
(Japan Aviation Electronics)  
Long flexing  
life  
encoder cable  
Refer to (2) in this  
section.  
5) IP65-compliant  
encoder cable  
MR-ENCBL M-H Connector: 10120-3000VE  
Refer to (2) in this Shell kit: 10320-52F0-008  
Plug: MS3106A20-29S (D190)  
Long flexing  
Cable clamp: CE3057-12A-3 (D265) life  
section.  
(3M or equivalent)  
Back shell: CE02-20BS-S  
(DDK)  
IP65  
IP67  
Not oil-  
resistant.  
6) Encoder  
connector set  
MR-J2CNM  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Housing: 1-172161-9  
Connector Pin: 170359-1  
(AMP or equivalent)  
Cable clamp: MTI-0002  
(Toa Electric Industry)  
IP20  
7) Encoder  
connector set  
MR-J2CNS  
MR-ENCNS  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Plug: MS3106B20-29S  
IP20  
IP65  
Cable clamp: MS3057-12A  
(Japan Aviation Electronics)  
8) Encoder  
connector set  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Plug: MS3106A20-29S (D190)  
Cable clamp: CE3057-12A-3 (D265) IP67  
Back shell: CE02-20BS-S  
(DDK)  
9) Bus cable  
MR-J2HBUS M-A Connector: PCR-S20FS  
Refer to (4) in this Case: PCR-LS20LA1  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
section.  
(Honda Tsushin)  
10) Bus cable  
MR-J2HBUS M  
Connector: 10120-6000EL  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
Refer to (4) in this Shell kit: 10320-3210-000  
section. (3M or equivalent)  
12 - 19  
12. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
Product  
Model  
Description  
Connector: 10120-3000EL  
Application  
11) Connector set  
MR-J2CN1-A  
Connector: PCR-S20FS  
Refer to (4) in this Shell kit: PCR-LS20LA1  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
section  
(Honda Tsushin)  
12) Control signal  
connector set  
MR-J2CN1  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Qty: 2 each  
13) Termination  
connector  
MR-A-TM  
14) Maintenance  
junction card  
MR-J2CN3TM  
Refer to Section 12.1.6.  
15) Communication MR-CPCATCBL3M Connector: 10120-6000EL  
Connector: DE-9SF-N  
Case: DE-C1-J6-S6  
For  
cable  
Refer to (3) in this Shell kit: 10320-3210-000  
connection  
with PC-AT-  
compatible  
personal  
section.  
(3M or equivalent)  
(Japan Aviation Electronics)  
computer  
16) Power supply  
connector set  
MR-PWCNS1  
Refer to the Servo  
Motor Instruction  
Manual.  
Plug: CE05-6A22-23SD-B-BSS  
Cable clamp:CE3057-12A-2 (D265)  
(DDK)  
17) Power supply  
connector set  
MR-PWCNS2  
Refer to the Servo  
Motor Instruction  
Manual.  
Plug: CE05-6A24-10SD-B-BSS  
Cable clamp: CE3057-16A-2 (D265)  
(DDK)  
EN  
Standard-  
compliant  
IP65 IP67  
18) Power supply  
connector set  
MR-PWCNS3  
Refer to the Servo  
Motor Instruction  
Manual.  
Plug: CE05-6A32-17SD-B-BSS  
Cable clamp: CE3057-20A-1 (D265)  
(DDK)  
19) Brake connector MR-BKCN  
Plug: MS3106A10SL-4S (D190) (DDK)  
EN  
set  
Refer to the Servo  
Cable connector: YS010-5-8 (Daiwa Dengyo)  
Standard-  
compliant  
IP65 IP67  
IP20  
Motor Instruction  
Manual.  
20) Power supply  
connector set  
MR-PWCNK1  
Plug: 5559-04P-210  
Terminal: 5558PBT3L (For AWG16)(6 pcs.)  
(molex)  
21) Power supply  
connector set  
MR-PWCNK2  
MR-J2CMP2  
MR-H3CBL1M  
Plug: 5559-06P-210  
For motor  
with brake  
IP20  
Terminal: 5558PBT3L (For AWG16)(8 pcs.)  
(molex)  
22) Connector Set  
23) Monitor cable  
Connector: 10126-3000VE  
Shell kit: 10326-52F0-008  
(3M or equivalent)  
Servo amplifier side connector (AMP)  
Housing: 171822-4  
12 - 20  
12. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
Product  
Model  
Description  
Connector: 10120-6000EL  
Application  
24) Bus cable  
Q172J2BCBL  
(-B)  
M
Connector: HDR-E14MG1  
Shell kit: HDR-E14LPA5  
Shell kit: 10320-3210-000  
(3M or equivalent)  
Refer to (4) in this (Honda Tsushin)  
section  
(Note)  
Socket: HCN2-2.5S-2  
Terminal: HCN2-2.5S-D-B  
(Hirose Electric)  
Note. When using the battery unit Q170BAT, use the  
Q172J2BCBL M-B.  
Q173J2B CBL M Connector: HDR-E26MG1  
Refer to (4) in this Shell kit: HDR-E26LPA5  
25) Bus cable  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
section  
(Honda Tsushin)  
12 - 21  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Encoder cable  
If you have fabricated the encoder cable, connect it correctly.  
CAUTION  
Otherwise, misoperation or explosion may occur.  
POINT  
The encoder cable is not oil resistant.  
Refer to Section 11.4 for the flexing life of the encoder cable.  
When the encoder cable is used, the sum of the resistance values of the  
cable used for P5 and the cable used for LG should be within 2.4 .  
When soldering the wire to the connector pin, insulate and protect the  
connection portion using heat-shrinkable tubing.  
Generally use the encoder cable available as our options. If the required length is not found in the  
options, fabricate the cable on the customer side.  
(a) MR-JCCBL M-L MR-JCCBL M-H  
These encoder cables are used with the HC-KFS HC-MFS HC-UFS3000r/min series servo  
motors.  
1) Model explanation  
Model: MR-JCCBL M-  
Symbol  
Specifications  
Standard flexing life  
Long flexing life  
L
H
Symbol (Note) Cable length [m(ft)]  
2
5
2 (6.56)  
5 (16.4)  
10  
20  
30  
40  
50  
10 (32.8)  
20 (65.6)  
30 (98.4)  
40 (131.2)  
50 (164.0)  
Note: MR-JCCBL M-H has no 40(131.2)  
and 50m(164.0ft) sizes.  
2) Connection diagram  
The signal assignment of the encoder connector is as viewed from the pin side. For the pin  
assignment on the servo amplifier side, refer to Section 3.2.1.  
Encoder cable  
Servo amplifier  
supplied to servo motor  
Encoder connector  
Encoder connector  
1-172169-9 (AMP)  
Servo motor  
Encoder  
Encoder cable  
(option or fabricated)  
1
2
3
MR MRR BAT  
CN2  
4
5
6
MD MDR  
50m(164.0ft) max.  
30cm  
(0.98ft)  
7
8
9
P5  
LG SHD  
12 - 22  
12. OPTIONS AND AUXILIARY EQUIPMENT  
MR-JCCBL10M-L  
MR-JCCBL10M-H  
to  
MR-JCCBL2M-L  
MR-JCCBL5M-L  
MR-JCCBL2M-H  
MR-JCCBL5M-H  
to  
MR-JCCBL30M-L  
MR-JCCBL50M-H  
Drive unit side  
Encoder side  
7
Drive unit side  
Encoder side  
7
Drive unit side  
Encoder side  
7
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
18  
2
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
18  
2
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
18  
2
8
1
2
4
5
3
8
1
2
4
5
3
8
1
2
4
5
3
MR  
7
MR  
7
MR  
7
MRR 17  
MD  
MDR 16  
MRR 17  
MD  
MDR 16  
MRR 17  
MD  
MDR 16  
6
6
6
BAT  
LG  
9
1
BAT  
LG  
9
1
BAT  
LG  
9
1
(Note)  
(Note)  
(Note)  
Plate  
Plate  
Plate  
SD  
9
SD  
9
SD  
9
Note. Always make connection for use in an absolute position detection system.  
This wiring is not needed for use in an incremental system.  
When fabricating an encoder cable, use the recommended wires given in Section 12.2.1 and the  
MR-J2CNM connector set for encoder cable fabrication, and fabricate an encoder cable as shown  
in the following wiring diagram. Referring to this wiring diagram, you can fabricate an encoder  
cable of up to 50m(164.0ft) length including the length of the encoder cable supplied to the servo  
motor.  
When the encoder cable is to be fabricated by the customer, the wiring of MD and MDR is not  
required.  
Refer to Chapter 3 of the servo motor instruction manual and choose the encode side connector  
according to the servo motor installation environment.  
For use of AWG22  
Drive unit side  
(3M)  
Encoder side  
19  
11  
20  
12  
18  
2
7
P5  
LG  
P5  
LG  
P5  
LG  
8
1
2
7
MR  
17  
MRR  
9
1
3
BAT  
LG  
(Note)  
9
Plate  
SD  
Note. Always make connection for use in an absolute position detection system.  
This wiring is not needed for use in an incremental system.  
12 - 23  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-JHSCBL M-L MR-JHSCBL M-H MR-ENCBL M-H  
These encoder cables are used with the HC-SFS HC-RFS HC-UFS2000r/min series servo motors.  
1) Model explanation  
Model: MR-JHSCBL M-  
Symbol  
Specifications  
Standard flexing life  
Long flexing life  
L
H
Symbol  
Cable length [m(ft)]  
2
5
2 (6.56)  
5 (16.4)  
10  
20  
30  
40  
50  
10 (32.8)  
20 (65.6)  
30 (98.4)  
40 (131.2)  
50 (164.0)  
Note: MR-JHSCBL M-L has no 40(131.2)  
and 50m(164.0ft) sizes.  
Model: MR-ENCBL M-H  
Long flexing life  
Symbol  
Cable length [m(ft)]  
2
5
2 (6.56)  
5 (16.4)  
10  
20  
30  
40  
50  
10 (32.8)  
20 (65.6)  
30 (98.4)  
40 (131.2)  
50 (164.0)  
2) Connection diagram  
For the pin assignment on the servo amplifier side, refer to Section 3.2.1.  
Servo amplifier  
Encoder connector  
Encoder connector  
Pin Signal  
Pin Signal  
K
L
Servo motor  
A
B
C
D
E
F
G
H
J
MD  
MDR  
MR  
Encoder cable  
(Optional or fabricated)  
A
M
T
B
P
C
L
N
M
K
J
D
E
F
MRR  
N
P
R
S
SHD  
CN2  
Encoder  
S
R
H
G
BAT  
LG  
LG  
P5  
T
50m(164.0ft) max.  
12 - 24  
12. OPTIONS AND AUXILIARY EQUIPMENT  
MR-JHSCBL2M-L  
MR-JHSCBL5M-L  
MR-JHSCBL2M-H  
MR-JHSCBL5M-H  
MR-ENCBL2M-H  
MR-ENCBL5M-H  
MR-JHSCBL10M-L  
MR-JHSCBL10M-H  
to  
to  
MR-JHSCBL30M-L  
MR-JHSCBL50M-H  
MR-ENCBL10M-H  
to  
MR-ENCBL50M-H  
Servo amplifier side  
Encoder side Servo amplifier side  
Encoder side Servo amplifier side  
Encoder side  
S
19  
11  
20  
12  
18  
2
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
7
19  
11  
20  
12  
18  
2
P5  
LG  
P5  
LG  
P5  
LG  
P5  
S
S
LG  
P5  
LG  
R
C
D
MR  
MRR  
P5  
17  
18  
2
R
C
D
LG  
R
C
D
7
MR  
9
7
MR  
MRR  
BAT  
LG  
F
17  
MRR  
1
17  
G
(Note1)  
SD  
N
Plate  
9
1
BAT  
LG  
9
1
BAT  
LG  
F
F
(Note2) Use of AWG24  
(Less than 10m(32.8ft))  
G
G
(Note1)  
(Note1)  
SD  
SD  
N
N
Note1: This wiring is required for use in the absolute  
position detection system. This wiring is not  
needed for use in the incremental system.  
Plate  
Plate  
Use of AWG22  
(10m(32.8ft) to 50m(164.0ft))  
Use of AWG24  
(10m(32.8ft) to 50m(164.0ft))  
2: AWG28 can be used for 5m(16.4ft) or less.  
When fabricating an encoder cable, use the recommended wires given in Section 12.2.1 and the  
MR-J2CNS connector set for encoder cable fabrication, and fabricate an encoder cable in  
accordance with the optional encoder cable wiring diagram given in this section. You can  
fabricate an encoder cable of up to 50m(164.0ft) length.  
Refer to Chapter 3 of the servo motor instruction guide and choose the encode side connector  
according to the servo motor installation environment.  
12 - 25  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Communication cable  
POINT  
This cable may not be used with some personal computers. After fully  
examining the signals of the RS-232C connector, refer to this section and  
fabricate the cable.  
(a) Model definition  
Model : MR-CPCATCBL3M  
Cable length 3[m](10[ft])  
(b) Connection diagram  
MR-CPCATCBL3M  
Personal computer side  
Servo amplifier side  
Plate FG  
RXD  
TXD  
3
2
1
LG  
TXD  
LG  
RXD  
GND  
RTS  
CTS  
DSR  
DTR  
2
5
7
8
6
4
12  
11  
D-SUB9 pins  
Half-pitch 20 pins  
When fabricating the cable, refer to the connection diagram in this section.  
The following must be observed in fabrication:  
1) Always use a shielded, multi-core cable and connect the shield with FG securely.  
2) The optional communication cable is 3m(10ft) long. When the cable is fabricated, its maximum  
length is 15m(49ft) in offices of good environment with minimal noise.  
12 - 26  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Bus cable  
When fabricating the bus cable, do not make incorrect connection. Doing so can  
cause misoperation or explosion.  
CAUTION  
When fabricating this cable, use the recommended cable given in Section 12.2.1 and fabricate it in  
accordance with the connection diagram shown in this section. The overall distance of the bus cable on  
the same bus is 30m(98.4ft).  
(a) MR-J2HBUS M-A  
1) Model definition  
Model:MR-J2HBUS M-A  
Symbol Cable Length [m(ft)]  
05  
1
5
0.5 (1.64)  
1 (3.28)  
5 (16.4)  
2) Connection diagram  
MR-J2HBUS M-A  
PCR-S20FS(Connector)  
PCR-LS20LA1(Case)  
10120-6000EL(Connector)  
10320-3210-000(Shell kit)  
LG  
LG  
1
11  
2
1
11  
2
RD  
RD*  
TD  
12  
4
12  
4
TD*  
LG  
14  
5
14  
5
LG  
15  
6
15  
7
EMG  
EMG*  
16  
17  
SD  
20  
Plate  
12 - 27  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-J2HBUS  
M
1) Model definition  
Model:MR-J2HBUS  
M
Symbol Cable Length [m(ft)]  
05  
1
5
0.5 (1.64)  
1 (3.28)  
5 (16.4)  
2) Connection diagram  
MR-J2HBUS  
M
10120-6000EL(Connector)  
10320-3210-000(Shell kit)  
10120-6000EL(Connector)  
10320-3210-000(Shell kit)  
LG  
1
11  
2
1
11  
2
LG  
RD  
RD*  
12  
3
12  
3
13  
4
13  
4
TD  
TD* 14  
14  
5
LG  
LG  
5
15  
6
15  
6
16  
7
16  
7
EMG  
EMG*  
17  
8
17  
8
18  
9
18  
9
BAT  
SD  
19  
10  
20  
19  
10  
20  
Plate  
Plate  
12 - 28  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(c) Q172J2BCBL M(-B)  
When using the battery unit Q170BAT, use the Q172J2BCBL M-B. For the Q170BAT, refer to  
the Motion Controller Q Series User's Manual (IB(NA)0300021).  
1) Model definition  
Model:Q172J2BCBL M-  
Symbol Connection of Battery Unit  
No  
-B  
No  
Yes  
Symbol  
Cable Length [m(ft)]  
05  
1
5
0.5 (1.64)  
1 (3.28)  
5 (16.4)  
2) Connection diagram  
Q172J2BCBL  
M
Q172J2BCBL M-B  
HDR-E14MG1(Connector) 10120-6000EL(Connector)  
HDR-E14-LPA5(Connectorcase) 10320-3210-000(Shell kit)  
HDR-E14MG1(Connector)  
10120-6000EL(Connector)  
HDR-E14-LPA5(Connector case) 10320-3210-000(Shell kit)  
TD1  
TD1*  
LG  
1
8
2
12  
1
RD  
TD1  
TD1*  
LG  
1
8
2
12  
1
RD  
RD*  
LG  
RD*  
LG  
2
2
LG  
9
11  
4
LG  
LG  
9
11  
4
LG  
RD  
3
TD  
RD  
3
TD  
RD*  
LG  
10  
6
14  
5
TD*  
LG  
RD*  
LG  
10  
6
14  
5
TD*  
LG  
BT  
13  
4
9
BT  
BT  
13  
4
9
BT  
EMG  
EMG*  
SD  
7
EMG  
EMG*  
SD  
EMG  
EMG*  
SD  
7
EMG  
EMG*  
SD  
11  
Shell  
17  
Plate  
11  
Shell  
17  
Plate  
BAT  
LG  
1
2
HCN2-2.5S-2(Socket)  
HNC2-2.5S-D-B(Terminal)  
(d) Q173J2B CBL  
1) Model definition  
Model:Q173J2B CBL  
M
M
Symbol  
Cable Length [m(ft)]  
05  
1
5
0.5 (1.64)  
1 (3.28)  
5 (16.4)  
Symbol  
SSCNET Line Number  
SSCNET1 Line  
SSCNET2 Line  
SSCNET3 Line  
SSCNET4 Line  
No  
2
3
4
12 - 29  
12. OPTIONS AND AUXILIARY EQUIPMENT  
2) Connection diagram  
Q173J2B CBL  
M
When =4  
HDR-E26MG1(Connector)  
HDR-E26-LPA5(Connector case)  
10120-6000EL(Connector)  
10320-3210-000(Connector case)  
SSCNET1 Line  
TD1  
1
14  
3
2
12  
1
RD  
TD1*  
LG  
RD*  
LG  
LG  
16  
2
11  
4
LG  
RD1  
RD1*  
LG  
TD  
15  
13  
26  
6
14  
5
TD*  
LG  
= No  
BT  
9
BT  
EMG12  
EMG12*  
7
EMG  
EMG*  
SD  
19  
17  
Plate  
= 2  
SSCNET2 Line  
SSCNET3 Line  
SSCNET4 Line  
TD2  
4
2
12  
1
RD  
TD2*  
17  
RD*  
LG  
11  
4
LG  
RD2  
5
TD  
RD2*  
18  
14  
5
TD*  
LG  
= 3  
9
BT  
7
EMG  
EMG*  
SD  
17  
Plate  
= 4  
TD3  
TD3*  
LG  
7
20  
9
2
12  
1
RD  
RD*  
LG  
LG  
22  
8
11  
4
LG  
RD3  
RD3*  
TD  
21  
14  
5
TD*  
LG  
9
BT  
EMG34  
12  
25  
7
EMG  
EMG*  
SD  
EMG34*  
17  
Plate  
TD4  
10  
23  
2
12  
1
RD  
TD4*  
RD*  
LG  
11  
4
LG  
RD4  
11  
24  
TD  
RD4*  
14  
5
TD*  
LG  
9
BT  
7
EMG  
EMG*  
SD  
17  
Plate  
SD  
Shell  
12 - 30  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.1.6 Maintenance junction card (MR-J2CN3TM)  
POINT  
The MR-J2S-11KB or more allows only the relaying of signals using  
CN3A/CN3C. Since TE1 cannot be used, keep it open.  
(1) Usage  
The maintenance junction card (MR-J2CN3TM) is designed for use when a personal computer and  
analog monitor outputs are used at the same time.  
Servo amplifier  
Communication cable  
Maintenance junction card (MR-J2CN3TM)  
Bus cable  
MR-J2HBUS  
M
CN3B  
CN3  
CN3A  
A1 A2 A3 A4 B4 B3 B2 B1 B5 B6 A5 A6  
CN3C  
VDD  
COM EM1DI MBR EMGO  
SG PE  
LG  
LG MO1 MO2  
Forced stop  
Analog monitor 2  
Analog monitor 1  
RA1  
Electromagnetic brake interlock  
(2) Connection diagram  
TE1  
B5  
LG  
B6  
CN3A  
CN3B  
CN3C  
LG  
A5  
1
1
2
1
2
1
2
MO1  
MO2  
A6  
3
4
5
3
3
3
4
4
4
5
5
5
6
6
6
7
7
7
8
8
8
A1  
A2  
9
9
9
10  
VDD  
COM  
EM1  
DI  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
A3  
A4  
13  
14  
15  
B4  
B3  
MBR  
EMGO  
SG  
19  
20  
B2  
B1  
Shell  
Shell  
Shell  
PE  
(3) Outline drawing  
[Unit: mm]  
([Unit: in])  
CN3A  
CN3B  
CN3C  
2- 5.3(0.21)(mounting hole)  
A1  
B1  
A6  
B6  
TE1  
3(0.12)  
88(3.47)  
41.5(1.63)  
100(3.94)  
Mass: 110g(0.24Ib)  
12 - 31  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.1.7 Battery (MR-BAT, A6BAT)  
POINT  
The revision (Edition 44) of the Dangerous Goods Rule of the  
International Air Transport Association (IATA) went into effect on  
January 1, 2003 and was enforced immediately. In this rule, "provisions of  
the lithium and lithium ion batteries" were revised to tighten the  
restrictions on the air transportation of batteries. However, since this  
battery is non-dangerous goods (non-Class 9), air transportation of 24 or  
less batteries is outside the range of the restrictions. Air transportation of  
more than 24 batteries requires packing compliant with the Packing  
Standard 903. When a self-certificate is necessary for battery safety tests,  
contact our branch or representative. For more information, consult our  
branch or representative. (As of November, 2003).  
Use the battery to build an absolute position detection system.  
12 - 32  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.1.8 MR Configurator (servo configurations software)  
The MR Configurator (servo configuration software) uses the communication function of the servo  
amplifier to perform parameter setting changes, graph display, test operation, etc. on a personal  
computer.  
(1) Specifications  
Item  
Description  
Communication signal Conforms to RS-232C.  
Baudrate [bps]  
57600, 38400, 19200, 9600  
Display, high speed monitor, trend graph  
Monitor  
Minimum resolution changes with the processing speed of the personal computer.  
Display, history, amplifier data  
Alarm  
Digital I/O, no motor rotation, total power-on time, amplifier version info, motor information,  
tuning data, absolute encoder data, Axis name setting.  
Parameter list, turning, change list, detailed information  
Jog operation, positioning operation, motor-less operation, Do forced output, program operation.  
Machine analyzer, gain search, machine simulation.  
Diagnostic  
Parameters  
Test operation  
Advanced function  
File operation  
Others  
Data read, save, print  
Automatic demo, help display  
(2) System configuration  
(a) Components  
To use this software, the following components are required in addition to the servo amplifier and  
servo motor:  
Model  
(Note1) Description  
IBM PC-AT compatible where the English version of Windows® 95, Windows® 98, Windows® Me,  
Windows NT® Workstation 4.0 or Windows® 2000 Professional operates  
Processor: Pentium 133MHz or more (Windows® 95, Windows® 98, Windows NT® Workstation 4.0,  
Windows® 2000 Professional)  
(Note 2)  
Personal  
computer  
Pentium 150MHz or more (Windows® Me)  
Memory: 16MB or more (Windows® 95), 24MB or more (Windows® 98)  
32MB or more (Windows® Me, Windows NT® Workstation 4.0, Windows® 2000 Professional)  
Free hard disk space: 30MB or more  
Serial port used  
Windows® 95, Windows® 98, Windows® Me, Windows NT® Workstation 4.0, Windows® 2000 Professional  
(English version)  
OS  
One whose resolution is 800 600 or more and that can provide a high color (16 bit) display.  
Connectable with the above personal computer.  
Display  
Keyboard  
Mouse  
Connectable with the above personal computer.  
Connectable with the above personal computer. Note that a serial mouse is not used.  
Printer  
Connectable with the above personal computer.  
Communication MR-CPCATCBL3M  
cable  
When this cannot be used, refer to (3) Section 12.1.5 and fabricate.  
Note 1: Windows and Windows NT are the registered trademarks of Microsoft Corporation in the United State and other countries.  
2: On some personal computers, this software may not run properly.  
(b) Configuration diagram  
Servo amplifier  
Personal computer  
Communication cable  
CN3  
CN2  
Servo motor  
To RS-232C  
connector  
12 - 33  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.1.9 Power regeneration common converter  
POINT  
For details of the power regeneration common converter FR-CV, refer to  
the FR-CV Installation Guide (IB(NA)0600075).  
Do not supply power to the main circuit power supply terminals (L1, L2,  
L3) of the servo amplifier. Doing so will fail the servo amplifier and FR-CV.  
Connect the DC power supply between the FR-CV and servo amplifier  
with correct polarity. Connection with incorrect polarity will fail the FR-  
CV and servo amplifier.  
Two or more FR-CV's cannot be installed to improve regeneration  
capability. Two or more FR-CV's cannot be connected to the same DC  
power supply line.  
When using the power regeneration common converter, set parameter No. 2 to "  
(1) Selection  
01".  
The power regeneration common converter FR-CV can be used with 750W to 22kW servo amplifiers.  
There are the following restrictions on use of the FR-CV.  
(a) Up to six servo amplifiers can be connected to one FR-CV.  
(b) FR-CV capacity [W] Total of rated capacities [W] of servo amplifiers connected to FR-CV  
2
(c) The total of used servo motor rated currents should be equal to or less than the applicable current  
[A] of the FR-CV.  
(d) Among the servo amplifiers connected to the FR-CV, the servo amplifier of the maximum capacity  
should be equal to or less than the maximum connectable capacity [W].  
The following table lists the restrictions.  
FR-CV-  
Item  
7.5K  
11K  
15K  
22K  
6
30K  
37K  
55K  
Maximum number of connected servo amplifiers  
Total of connectable servo amplifier capacities [kW]  
Total of connectable servo motor rated currents [A]  
Maximum servo amplifier capacity [kW]  
3.75  
33  
5.5  
46  
5
7.5  
61  
7
11  
90  
11  
15  
115  
15  
18.5  
145  
15  
27.5  
215  
22  
3.5  
When using the FR-CV, always install the dedicated stand-alone reactor (FR-CVL).  
Power regeneration common converter  
FR-CV-7.5K(-AT)  
FR-CV-11 K(-AT)  
FR-CV-15K(-AT)  
FR-CV-22K(-AT)  
FR-CV-30K(-AT)  
FR-CV-37K  
Dedicated stand-alone reactor  
FR-CVL-7.5K  
FR-CVL-11 K  
FR-CVL-15K  
FR-CVL-22K  
FR-CVL-30K  
FR-CVL-37K  
FR-CVL-55K  
FR-CV-55K  
12 - 34  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Connection diagram  
Servo amplifier  
Servo motor  
U
FR-CVL  
FR-CV  
NFB  
MC  
U
V
L11  
L21  
P
R/L11  
R2/L12  
S2/L22  
T2/L32  
R2/L1  
S2/L2  
T2/L3  
Three-phase  
200 to 230VAC  
V
S/L21  
T/L31  
Thermal  
relay  
P/L  
N/L  
W
W
0HS2  
0HS1  
N
(Note 2)  
CN2  
R/L11  
S/L21  
EM1  
(Note 1)  
RA1  
(Note 5)  
EM1  
SG  
P24  
SD  
T/MC1  
RESET  
COM  
RES  
RDYB  
RDYA  
RSO  
Servo system  
controller  
SD  
(Note 3)  
(Note 4)  
(Note 1)  
(Note 1)  
EM1  
SE  
A
ON  
RA1 RA2  
OFF  
RA1  
(Note 1)  
MC  
B
C
MC  
SK  
24VDC  
power  
supply  
RA2  
Note 1. Configure a sequence that will shut off main circuit power at an emergency stop or at FR-CV or servo amplifier alarm  
occurrence.  
2. For the servo motor with thermal relay, configure a sequence that will shut off main circuit power when the thermal relay  
operates.  
3. For the servo amplifier, configure a sequence that will switch the servo on after the FR-CV is ready.  
4. For the FR-CV, the RS0 signal turns off when it is put in a ready-to-operate status where the reset signal is input.  
Configure a sequence that will make the servo inoperative when the RS0 signal is on.  
5. Configure a sequence that will make a stop with the emergency stop input of the servo system controller if an alarm occurs  
in the FR-CV. When the servo system controller does not have an emergency stop input, use the forced stop input of the  
servo amplifier to make a stop as shown in the diagram.  
(3) Wires used for wiring  
(a) Wire sizes  
1) Across P-P, N-N  
The following table indicates the connection wire sizes of the DC power supply (P, N terminals)  
between the FR-CV and servo amplifier. The used wires are based on the 600V vinyl wires.  
Total of servo amplifier capacities [kW]  
Wires[mm2]  
1 or less  
2
2
5
3.5  
5.5  
8
7
11  
15  
22  
14  
22  
50  
12 - 35  
12. OPTIONS AND AUXILIARY EQUIPMENT  
2) Grounding  
For grounding, use the wire of the size equal to or greater than that indicated in the following  
table, and make it as short as possible.  
Power regeneration common converter  
Grounding wire size [mm2]  
FR-CV-7.5K TO FR-CV-15K  
FR-CV-22K • FR-CV-30K  
FR-CV-37K • FR-CV-55K  
14  
22  
38  
(b) Example of selecting the wire sizes  
When connecting multiple servo amplifiers, always use junction terminals for wiring the servo  
amplifier terminals P, N. Also, connect the servo amplifiers in the order of larger to smaller  
capacities.  
Wire as short as possible.  
50mm2  
22mm2  
FR-CV-55K  
Servo amplifier (15kW)  
First unit:  
P/L  
N/L  
P
N
R2/L1  
S2/L2  
T2/L3  
50mm2 assuming that the total of servo amplifier  
capacities is 27.5kW since 15kW + 7kW + 3.5kW  
+ 2.0kW = 27.5kW.  
22mm2  
8mm2  
Servo amplifier (7kW)  
Second unit:  
P
N
R/L11  
22mm2 assuming that the total of servo amplifier  
capacities is 15kW since 7kW + 3.5kW + 2.0kW =  
12.5kW.  
S/L21  
T/MC1  
8mm2  
5.5mm2  
Servo amplifier (3.5kW)  
Third unit:  
P
N
8mm2 assuming that the total of servo amplifier  
capacities is 7kW since 3.5kW + 2.0kW = 5.5kW.  
3.5mm2  
3.5mm2  
Servo amplifier (2kW)  
Fourth unit:  
P
N
3.5mm2 assuming that the total of servo amplifier  
capacities is 2kW since 2.0kW = 2.0kW.  
Junction terminals  
Overall wiring length 5m or less  
(4) Other precautions  
(a) Always use the FR-CVL as the power factor improving reactor. Do not use the FR-BAL or FR-BEL.  
(b) The inputs/outputs (main circuits) of the FR-CV and servo amplifiers include high-frequency  
components and may provide electromagnetic wave interference to communication equipment  
(such as AM radios) used near them. In this case, interference can be reduced by installing the  
radio noise filter (FR-BIF) or line noise filter (FR-BSF01, FR-BLF).  
(c) The overall wiring length for connection of the DC power supply between the FR-CV and servo  
amplifiers should be 5m or less, and the wiring must be twisted.  
12 - 36  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(5) Specifications  
Power regeneration common converter  
7.5K  
11K  
15K  
22K  
30K  
37K  
55K  
FR-CV-  
Item  
Total of connectable servo amplifier capacities [kW]  
Maximum servo amplifier capacity [kW]  
Total of connectable servo motor rated  
3.75  
3.5  
5.5  
5
7.5  
7
11  
11  
15  
15  
18.5  
15  
27.5  
22  
33  
46  
61  
90  
115  
145  
215  
currents  
[A]  
Short-time  
rating  
Output  
Total capacity of applicable servo motors, 300% torque, 60s (Note)  
Regenerative  
braking torque  
Continuous  
rating  
100% torque  
Rated input AC voltage/frequency  
Permissible AC voltage fluctuation  
Permissible frequency fluctuation  
Three-phase 200 to 220V 50Hz, 200 to 230V 60Hz  
Three-phase 170 to 242V 50Hz, 170 to 253V 60Hz  
5%  
Power supply  
Power supply capacity  
[kVA]  
17  
20  
28  
41  
52  
66  
100  
Protective structure (JEM 1030), cooling system  
Ambient temperature  
Open type (IP00), forced cooling  
-10 to +50 (non-freezing)  
90%RH or less (non-condensing)  
Environment Ambient humidity  
Ambience  
Indoors (without corrosive gas, flammable gas, oil mist, dust and dirt)  
1000m or less above sea level, 5.9m/s2 or less (compliant with JIS C 0040)  
Altitude, vibration  
100AF  
60A  
100AF  
75A  
225AF  
125A  
225AF  
175  
225AF  
225A  
400AF  
250A  
400AF  
400A  
No-fuse breaker or leakage current breaker  
Magnetic contactor  
S-N35  
S-N50  
S-N65  
S-N95  
S-N125 S-N150 S-N220  
Note. This is the time when the protective function of the FR-CV is activated. The protective function of the servo amplifier is  
activated in the time indicated in Section 11.1.  
12 - 37  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.1.10 Heat sink outside mounting attachment (MR-JACN)  
Use the heat sink outside mounting attachment to mount the heat generation area of the servo amplifier  
in the outside of the control box to dissipate servo amplifier-generated heat to the outside of the box and  
reduce the amount of heat generated in the box, thereby allowing a compact control box to be designed.  
In the control box, machine a hole having the panel cut dimensions, fit the heat sink outside mounting  
attachment to the servo amplifier with the fitting screws (4 screws supplied), and install the servo  
amplifier to the control box.  
The environment outside the control box when using the heat sink outside mounting attachment should  
be within the range of the servo amplifier operating environment conditions.  
(1) Panel cut dimensions  
D
4-M10 Screw  
[Unit: mm(in)]  
Changeable  
dimension  
A
B
C
D
Servo amplifier  
Model  
236  
(9.291)  
255  
(10.039)  
270  
(10.63)  
203  
(7.992)  
MR-J2S-11KB  
MR-J2S-15KB  
MR-JACN15K  
326  
(12.835)  
345  
(13.583)  
360  
(14.173)  
290  
(11.417)  
MR-JACN22K  
MR-J2S-22KB  
Punched  
hole  
A
B
C
(2) How to assemble the attachment for a heat sink outside mounting attachment  
Screw  
(2 places)  
Screw  
(4 places)  
Attachment  
Attachment  
MR-JACN15K  
MR-JACN22K  
12 - 38  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Fitting method  
Attachment  
Fit using the  
Servo  
amplifier  
Punched  
hole  
assembiling  
screws.  
Servo  
amplifier  
Attachment  
Control box  
a. Assembling the heat sink outside mounting attachment  
b. Installation to the control box  
(4) Outline dimension drawing  
(a) MR-JACN15K (MR-J2S-11KB, MR-J2S-15KB)  
20 (0.787)  
Panel  
Attachment  
Servo amplifier  
Servo amplifier  
Attachment  
Panel  
236 (9.291)  
280 (11.024)  
260 (10.236)  
4- 12  
Mounting hole  
3.2 (0.126)  
155 (6.102)  
260  
11.5  
(0.453)  
105  
(4.134)  
(10.236)  
12 - 39  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-JACN22K (MR-J2S-22KB)  
68(2.677)  
Panel  
Attachment  
Servo amplifer  
Servo amplifer  
Attachment  
Panel  
326(12.835)  
370(14.567)  
350(13.78)  
4- 12  
Mounting hole  
3.2(0.126)  
155(6.102)  
105  
11.5  
(4.134) (0.453)  
260  
(10.236)  
12 - 40  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2 Auxiliary equipment  
Always use the devices indicated in this section or equivalent. To comply with the EN Standard or UL/C-  
UL (CSA) Standard, use the products which conform to the corresponding standard.  
12.2.1 Recommended wires  
(1) Wires for power supply wiring  
The following diagram shows the wires used for wiring. Use the wires given in this section or equivalent.  
3) Motor power supply lead  
1) Main circuit power supply lead  
Servo motor  
Servo amplifier  
Power supply  
L1  
U
V
U
V
L2  
L3  
Motor  
W
W
L11  
L21  
4) Brake unit lead or  
Return converter  
5) Electromagnetic  
brake lead  
2) Control power supply lead  
Electro-  
magnetic  
brake  
Brake unit or  
Return converter  
B1  
B2  
N
Regenerative brake option  
C
P
Encoder  
Encoder cable  
(refer to Section 12.1.4)  
Power supply  
4) Regenerative brake option lead  
Cooling fan  
BU  
BV  
BW  
Fan lead  
The following table lists wire sizes. The wires used assume that they are 600V vinyl wires and the  
wiring distance is 30m(98.4ft) max. If the wiring distance is over 30m(98.4ft), choose the wire size in  
consideration of voltage drop.  
The alphabets (a, b, c) in the table correspond to the crimping terminals (Table 12.2) used to wire the  
servo amplifier. For connection with the terminal block TE2 of the MR-J2S-100B or less, refer to  
Section 3.9.  
The servo motor side connection method depends on the type and capacity of the servo motor. Refer to  
Section 3.6.  
To comply with the UL/C-UL (CSA) Standard, use UL-recognized copper wires rated at 60 (140 ) or  
more for wiring.  
12 - 41  
12. OPTIONS AND AUXILIARY EQUIPMENT  
Table 12.1 Recommended wires  
2
(Note 1) Wires [mm ]  
P1 4) P  
Servo amplifier  
1) L1 L2 L3  
2) L11 L21 3) U  
V
W
P
C
5) B1 B2  
6) BU BV BW  
N
MR-J2S-10B(1)  
MR-J2S-20B(1)  
MR-J2S-40B(1)  
MR-J2S-60B  
1.25 (AWG16) : a  
2 (AWG14) : a  
MR-J2S-70B  
2 (AWG14) : a  
3.5(AWG12): b  
1.25 (AWG16)  
MR-J2S-100B  
MR-J2S-200B  
2 (AWG14) : a  
3.5 (AWG12) : b  
(Note 2)  
5.5 (AWG10) : b  
5.5 (AWG10) : b  
8 (AWG8) : c  
22 (AWG4) :e  
3.5 (AWG12) : b  
5.5 (AWG10) : b  
1.25  
(AWG16)  
MR-J2S-350B  
MR-J2S-500B  
MR-J2S-700B  
MR-J2S-11KB  
MR-J2S-15KB  
MR-J2S-22KB  
8 (AWG8) : c  
14 (AWG6) :d  
22 (AWG4) :e  
50 (AWG1/0) :g  
30 (AWG2) :f  
5.5(AWG10): b 2(AWG14)  
2(AWG14)  
60 (AWG2/0) :g  
Note: 1. For the crimping terminals and applicable tools, see the table 12.2.  
2. 3.5mm2 for use of the HC-RFS203 servo motor.  
Use wires 6) of the following sizes with the brake unit (FR-BU) and power regeneration converter (FR-RC).  
Model  
Wires[mm2]  
3.5(AWG12)  
5.5(AWG10)  
14(AWG6)  
14(AWG6)  
14(AWG6)  
22(AWG4)  
FR-BU-15K  
FR-BU-30K  
FR-BU-55K  
FR-RC-15K  
FR-RC-30K  
FR-RC-55K  
Table 12.2 Recommended crimping terminals  
Servo amplifier side crimping terminals  
Symbol  
Crimping terminal  
32959  
Applicable tool  
47387  
Maker name  
a
b
AMP  
32968  
59239  
Body YF-1 E-4  
c
d
e
FVD8-5  
FVD14-6  
FVD22-6  
Head YNE-38  
Dice DH-111 DH-121  
Body YF-1 E-4  
Head YNE-38  
Dice DH-112 DH-122  
Body YF-1 E-4  
Head YNE-38  
Japan Solderless  
Terminal  
Dice DH-113 DH-123  
Body YPT-60-21  
Dice TD-124 TD-112  
Body YF-1 E-4  
Head YET-60-1  
Dice TD-124 TD-112  
NOP60  
NOM60  
38-S6  
R38-6S  
(Note1 2)  
f
NICHIFU  
Body YDT-60-21  
Dice TD-125 TD-113  
Body YF-1 E-4  
Head YET-60-1  
Japan Solderless  
Terminal  
g
(Note)R60-8  
Dice TD-125 TD-113  
Note 1. Cover the crimped portion with an insulating tape.  
2. Always use the recommended crimping terminals since they may not be installed depending on the size.  
12 - 42  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Wires for cables  
When fabricating a cable, use the wire models given in the following table or equivalent:  
Table 12.3 Wires for option cables  
Characteristics of one core  
Conductor Insulation coating  
[Wires/mm] resistance[ /mm] ODd[mm] (Note 1)  
(Note 3)  
Finishing  
OD [mm]  
Length  
[m(ft)]  
Core size Number  
Type  
Model  
Wire model  
Structure  
[mm2]  
of Cores  
2 to 10  
(6.56 to 32.8)  
20 30  
12  
(6 pairs)  
12  
(6 pairs)  
12  
(6 pairs)  
14  
(7 pairs)  
UL20276 AWG#28  
6pair (BLAC)  
UL20276 AWG#22  
6pair (BLAC)  
(Note 2)  
0.08  
0.3  
7/0.127  
12/0.18  
40/0.08  
40/0.08  
7/0.127  
12/0.18  
40/0.08  
40/0.08  
40/0.08  
40/0.08  
7/0.127  
222  
62  
0.38  
1.2  
5.6  
8.2  
7.2  
8.0  
4.7  
8.2  
6.5  
7.2  
6.5  
7.2  
4.6  
6.1  
5.5  
MR-JCCBL M-L  
(65.6 98.4)  
2 5  
(6.56 16.4)  
10 to 50  
0.2  
105  
105  
222  
62  
0.88  
0.88  
0.38  
1.2  
A14B2343 6P  
(Note 2)  
MR-JCCBL M-H  
MR-JHSCBL M-L  
MR-JHSCBL M-H  
0.2  
(32.8 to 164)  
A14B0238 7P  
UL20276 AWG#28  
4pair (BLAC)  
UL20276 AWG#22  
6pair (BLAC)  
(Note 2)  
A14B2339 4P  
(Note 2)  
A14B2343 6P  
(Note 2)  
A14B2339 4P  
(Note 2)  
A14B2343 6P  
UL20276 AWG#28  
3pair (BLAC)  
2 5  
(6.56 16.4)  
10 to 30  
8
0.08  
0.3  
(4 pairs)  
12  
(6 pairs)  
Encoder cable  
(32.8 to 98.4)  
2 5  
(6.56 16.4)  
10 to 50  
8
0.2  
105  
105  
105  
105  
222  
0.88  
0.88  
0.88  
0.88  
0.38  
(4 pairs)  
12  
(6 pairs)  
0.2  
(32.8 to 164)  
2 5  
(6.56 16.4)  
10 to 50  
8
0.2  
(4 pairs)  
12  
(6 pairs)  
MR-ENCBL M-H  
MR-CPCATCBL3M  
0.2  
(32.8 to 164)  
Communication  
cable  
6
3 (9.84)  
0.08  
(3 pairs)  
20  
(10 pairs)  
MR-J2HBUS  
M
UL20276 AWG#28  
10pair (CREAM)  
MR-J2HBUS M-A  
Q172J2BCBL M(-B)  
Q173J2B CBL  
0.5 to 5  
(1.64 to 16.4)  
Bus cable  
0.08  
7/0.127  
222  
0.38  
14  
(7 pairs)  
UL20276 AWG#28  
7pair (CREAM)  
M
Note 1: d is as shown below:  
d
Conductor Insulation sheath  
2: Purchased from Toa Electric Industry  
3: Standard OD. Max. OD is about 10% greater.  
12 - 43  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2.2 No-fuse breakers, fuses, magnetic contactors  
Always use one no-fuse breaker and one magnetic contactor with one servo amplifier. When using a fuse  
instead of the no-fuse breaker, use the one having the specifications given in this section.  
Fuse  
Servo amplifier  
No-fuse breaker  
Magnetic contactor  
Class Current [A] Voltage [V]  
MR-J2S-10B(1)  
MR-J2S-20B  
MR-J2S-40B 20B1 30A frame 10A  
MR-J2S-60B 40B1 30A frame 15A  
MR-J2S-70B  
MR-J2S-100B  
MR-J2S-200B  
MR-J2S-350B  
MR-J2S-500B  
MR-J2S-700B  
MR-J2S-11KB  
MR-J2S-15KB  
MR-J2S-22KB  
30A frame 5A  
30A frame 5A  
K5  
K5  
K5  
K5  
K5  
K5  
K5  
K5  
K5  
K5  
10  
10  
15  
20  
20  
25  
40  
70  
125  
150  
200  
250  
350  
S-N10  
30A frame 15A  
30A frame 15A  
30A frame 20A  
30A frame 30A  
50A frame 50A  
100A frame 75A  
100A frame 100A K5  
225A frame 125A K5  
225A frame 175A K5  
AC250  
S-N18  
S-N20  
S-N35  
S-N50  
S-N65  
S-N95  
S-N25  
12.2.3 Power factor improving reactors  
The input power factor is improved to be about 90%. For use with a 1-phase power supply, it may be  
slightly lower than 90%.  
[Unit : mm]  
FR-BAL  
FR-BAL  
FR-BAL  
Servo amplifier  
L1  
MC  
MC  
MC  
NFB  
R
S
T
X
Y
Z
3-phase  
200 to 230VAC  
L2  
L3  
Servo amplifier  
L1  
NFB  
W
D1  
5
R
S
T
X
Y
Z
Installation screw  
(Note)  
1-phase  
230VAC  
L2  
L3  
RXSYT Z  
W1  
C
Servo amplifier  
L1  
NFB  
R
S
T
X
Y
Z
1-phase  
100 to120VAC  
L2  
Note: For the 1-phase 230V power supply, Connect the power supply to L1, L2 and leave L3 open.  
Dimensions [mm (in) ]  
Mounting Terminal  
screw size screw size  
Mass  
Servo amplifier  
Model  
[kg (lb)]  
W
W1  
H
D
D1  
C
MR-J2S-10B(1)/20B  
MR-J2S-40B/20B1  
FR-BAL-0.4K  
135 (5.31) 120 (4.72) 115 (4.53) 59 (2.32)  
45 (1.77) 7.5 (0.29)  
57 (2.24) 7.5 (0.29)  
55 (2.17) 7.5 (0.29)  
75 (2.95) 7.5 (0.29)  
M4  
M4  
M4  
M4  
M5  
M5  
M6  
M6  
M8  
M8  
M3.5  
M3.5  
M3.5  
M3.5  
M4  
2.0 (4.4)  
2.8 (6.17)  
3.7 (8.16)  
5.6 (12.35)  
8.5 (18.74)  
14.5 (32.0)  
19 (41.9)  
FR-BAL-0.75K 135 (5.31) 120 (4.72) 115 (4.53) 69 (2.72)  
MR-J2S-60B/70B/40B1 FR-BAL-1.5K  
160 (6.30) 145 (5.71) 140 (5.51) 71 (2.79)  
160 (6.30) 145 (5.71) 140 (5.51) 91 (3.58)  
220 (8.66) 200 (7.87) 192 (7.56) 90 (3.54)  
MR-J2S-100B  
MR-J2S-200B  
MR-J2S-350B  
MR-J2S-500B  
MR-J2S-700B/11KB  
MR-J2S-15KB  
MR-J2S-22KB  
FR-BAL-2.2K  
FR-BAL-3.7K  
FR-BAL-7.5K  
FR-BAL-11K  
FR-BAL-15K  
FR-BAL-22K  
FR-BAL-30K  
70 (2.76)  
10 (0.39)  
220 (8.66) 200 (7.87) 194 (7.64) 120 (4.72) 100 (3.94) 10 (0.39)  
280 (11.02) 255 (10.04) 220 (8.66) 135 (5.31) 100 (3.94) 12.5 (0.49)  
295 (11.61) 270 (10.62) 275 (10.83) 133 (5.24) 110 (4.33) 12.5 (0.49)  
290 (11.41) 240 (9.75) 301 (11.85) 199 (7.84) 170 (6.69) 25 (0.98)  
290 (11.41) 240 (9.75) 301 (11.85) 219 (8.62) 190 (7.48) 25 (0.98)  
M5  
M6  
M6  
27 (59.5)  
M8  
35 (77.16)  
43 (94.79)  
M8  
12 - 44  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2.4 Power factor improving DC reactors  
The input power factor is improved to be about 95%.  
(Note 1) Terminal cover  
Screw size G  
Name plate  
2-F  
L
H
Notch  
E
B or less  
A or less  
F
Mounting foot part  
5m or less  
Servo amplifier  
FR-BEL  
P
(Note2)  
P1  
Note1. Fit the supplied terminal cover after wiring.  
2. When using the DC reactor, remove the short-circuit bar across P-P1.  
Power factor  
improving DC  
reactors  
Dimensions [mm (in) ]  
Terminal  
Mass  
Used wire  
2
Servo amplifier  
screw size [kg (lb)]  
[mm ]  
A
B
C
D
E
F
L
G
H
MR-J2S-11KB  
MR-J2S-15KB  
MR-J2S-22KB  
FR-BEL-15K 170(6.69) 93(3.66) 170(6.69)2.3(0.09)155(6.10) 6(0.24) 14(0.55)  
FR-BEL-22K 185(7.28)119(4.69)182(7.17)2.6(0.10)165(6.49) 7(0.28) 15(0.59)  
FR-BEL-30K 185(7.28)119(4.69)201(7.91)2.6(0.10)165(6.49) 7(0.28) 15(0.59)  
M8  
M8  
M8  
56(2.21)  
70(2.77)  
70(2.77)  
M5  
M6  
M6  
3.8(8.38) 22(AWG4)  
5.4(11.91) 30(AWG2)  
6.7(14.77) 60(AWG1/0)  
12 - 45  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2.5 Relays  
The following relays should be used with the interfaces:  
Interface  
Selection example  
Relay used for digital input signals (interface DI-1)  
To prevent defective contacts , use a relay for small signal  
(twin contacts).  
(Ex.) Omron : type G2A , MY  
Relay used for digital output signals (interface DO-1)  
Small relay with 12VDC or 24VDC of 40mA or less  
(Ex.) Omron : type MY  
12.2.6 Surge absorbers  
A surge absorber is required for the electromagnetic brake. Use the following surge absorber or equivalent.  
Insulate the wiring as shown in the diagram.  
Maximum rating  
Static  
capacity  
(reference  
value)  
Maximum  
Varistor voltage  
Permissible circuit  
voltage  
Surge  
Energy  
Rated  
limit voltage  
rating (range) V1mA  
immunity  
immunity power  
AC[Vma] DC[V]  
[A]  
[J]  
5
[W]  
0.4  
[A]  
25  
[V]  
[pF]  
[V]  
220  
(Note)  
140  
180  
20 s  
360  
300  
500/time  
(198 to 242)  
Note: 1 time  
8
(Example) ERZV10D221 (Matsushita Electric Industry)  
TNR-10V221K (Nippon Chemi-con)  
Outline drawing [mm] ( [in] ) (ERZ-C10DK221)  
13.5 (0.53)  
4.7 1.0 (0.19 0.04)  
Vinyl tube  
Crimping terminal  
for M4 screw  
0.8 (0.03)  
12.2.7 Noise reduction techniques  
Noises are classified into external noises which enter the servo amplifier to cause it to malfunction and  
those radiated by the servo amplifier to cause peripheral devices to malfunction. Since the servo amplifier  
is an electronic device which handles small signals, the following general noise reduction techniques are  
required.  
Also, the servo amplifier can be a source of noise as its outputs are chopped by high carrier frequencies. If  
peripheral devices malfunction due to noises produced by the servo amplifier, noise suppression measures  
must be taken. The measures will vary slightly with the routes of noise transmission.  
(1) Noise reduction techniques  
(a) General reduction techniques  
Avoid laying power lines (input and output cables) and signal cables side by side or do not bundle  
them together. Separate power lines from signal cables.  
Use shielded, twisted pair cables for connection with the encoder and for control signal  
transmission, and connect the shield to the SD terminal.  
Ground the servo amplifier, servo motor, etc. together at one point (refer to Section 3.9).  
12 - 46  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Reduction techniques for external noises that cause the servo amplifier to malfunction  
If there are noise sources (such as a magnetic contactor, an electromagnetic brake, and many  
relays which make a large amount of noise) near the servo amplifier and the servo amplifier may  
malfunction, the following countermeasures are required.  
Provide surge absorbers on the noise sources to suppress noises.  
Attach data line filters to the signal cables.  
Ground the shields of the encoder connecting cable and the control signal cables with cable clamp  
fittings.  
(c) Techniques for noises radiated by the servo amplifier that cause peripheral devices to malfunction  
Noises produced by the servo amplifier are classified into those radiated from the cables connected  
to the servo amplifier and its main circuits (input and output circuits), those induced  
electromagnetically or statically by the signal cables of the peripheral devices located near the  
main circuit cables, and those transmitted through the power supply cables.  
Noise radiated directly  
from servo amplifier  
Noises produced  
by servo amplifier  
Noises transmitted  
in the air  
Route 1)  
Route 2)  
Route 3)  
Noise radiated from the  
power supply cable  
Noise radiated from  
servo motor cable  
Magnetic induction  
noise  
Routes 4) and 5)  
Static induction  
noise  
Route 6)  
Noises transmitted  
through electric  
channels  
Noise transmitted through  
power supply cable  
Route 7)  
Route 8)  
Noise sneaking from  
grounding cable due to  
leakage current  
5)  
7)  
7)  
2)  
1)  
7)  
Sensor  
power  
supply  
Servo  
amplifier  
2)  
Instrument  
Receiver  
3)  
8)  
6)  
Sensor  
4)  
3)  
Servo motor  
M
12 - 47  
12. OPTIONS AND AUXILIARY EQUIPMENT  
Noise transmission route  
Suppression techniques  
When measuring instruments, receivers, sensors, etc. which handle weak signals and may  
malfunction due to noise and/or their signal cables are contained in a control box together with the  
servo amplifier or run near the servo amplifier, such devices may malfunction due to noises  
transmitted through the air. The following techniques are required.  
(1) Provide maximum clearance between easily affected devices and the servo amplifier.  
(2) Provide maximum clearance between easily affected signal cables and the I/O cables of the servo  
amplifier.  
1) 2) 3)  
(3) Avoid laying the power lines (I/O cables of the servo amplifier) and signal cables side by side or  
bundling them together.  
(4) Insert a line noise filter to the I/O cables or a radio noise filter on the input line.  
(5) Use shielded wires for signal and power cables or put cables in separate metal conduits.  
When the power lines and the signal cables are laid side by side or bundled together, magnetic  
induction noise and static induction noise will be transmitted through the signal cables and  
malfunction may occur. The following techniques are required.  
(1) Provide maximum clearance between easily affected devices and the servo amplifier.  
(2) Provide maximum clearance between easily affected signal cables and the I/O cables of the servo  
amplifier.  
4) 5) 6)  
(3) Avoid laying the power lines (I/O cables of the servo amplifier) and signal cables side by side or  
bundling them together.  
(4) Use shielded wires for signal and power cables or put the cables in separate metal conduits.  
When the power supply of peripheral devices is connected to the power supply of the servo  
amplifier system, noises produced by the servo amplifier may be transmitted back through the  
power supply cable and the devices may malfunction. The following techniques are required.  
(1) Insert the radio noise filter (FR-BIF) on the power cables (input cables) of the servo amplifier.  
(2) Insert the line noise filter (FR-BSF01 FR-BLF) on the power cables of the servo amplifier.  
When the cables of peripheral devices are connected to the servo amplifier to make a closed loop  
circuit, leakage current may flow to malfunction the peripheral devices. If so, malfunction may be  
prevented by disconnecting the grounding cable of the peripheral device.  
7)  
8)  
(2) Noise reduction products  
(a) Data line filter  
Noise can be prevented by installing a data line filter onto the encoder cable, etc.  
For example, the ZCAT3035-1330 of TDK and the ESD-SR-25 of Tokin are available as data line  
filters.  
As a reference example, the impedance specifications of the ZCAT3035-1330 (TDK) are indicated  
below.  
This impedances are reference values and not guaranteed values.  
[Unit: mm]([Unit: in.])  
Impedance[ ]  
10 to 100MHZ  
80  
100 to 500MHZ  
150  
39 1(1.54 0.04)  
Loop for fixing the  
cable band  
34 1  
(1.34 0.04)  
TDK  
Product name Lot number  
Outline drawing (ZCAT3035-1330)  
12 - 48  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Surge suppressor  
The recommended surge suppressor for installation to an AC relay, AC valve, AC electromagnetic  
brake or the like near the servo amplifier is shown below. Use this product or equivalent.  
MC  
Relay  
Surge suppressor  
Surge suppressor  
Surge suppressor  
This distance should be short  
(within 20cm(0.79 in.)).  
(Ex.) 972A.2003 50411  
(Matsuo Electric Co.,Ltd. 200VAC rating)  
Outline drawing [Unit: mm] ([Unit: in.])  
Rated  
voltage  
AC[V]  
Vinyl sheath  
18 1.5  
C [ F]  
R [ ]  
Test voltage AC[V]  
(0.71 0.06)  
Blue vinyl cord  
Red vinyl cord  
50  
Across  
6(0.24)  
200  
0.5  
(1W)  
T-C 1000(1 to 5s)  
10(0.39)or less  
15 1(0.59 0.04)  
10(0.39)or less  
4(0.16)  
10 3  
(0.39  
0.12)  
10 3  
31(1.22)  
(0.39  
0.15)  
200(7.87)  
200(7.87)  
48 1.5  
or more (1.89 0.06) or more  
Note that a diode should be installed to a DC relay, DC valve or  
the like.  
RA  
Maximum voltage: Not less than 4 times the drive voltage of  
the relay or the like  
Maximum current: Not less than twice the drive current of  
the relay or the like  
Diode  
(c) Cable clamp fitting (AERSBAN -SET)  
Generally, the earth of the shielded cable may only be connected to the connector's SD terminal.  
However, the effect can be increased by directly connecting the cable to an earth plate as shown  
below.  
Install the earth plate near the servo amplifier for the encoder cable. Peel part of the cable sheath  
to expose the external conductor, and press that part against the earth plate with the cable clamp.  
If the cable is thin, clamp several cables in a bunch.  
The clamp comes as a set with the earth plate.  
Cable  
Cable clamp  
Earth plate  
(A,B)  
Strip the cable sheath of  
the clamped area.  
cutter  
cable  
External conductor  
Clamp section diagram  
12 - 49  
12. OPTIONS AND AUXILIARY EQUIPMENT  
Outline drawing  
[Unit: mm]  
([Unit: in.])  
Earth plate  
Clamp section diagram  
2- 5(0.20) hole  
installation hole  
17.5(0.69)  
L or less  
10(0.39)  
22(0.87)  
6
(Note)M4 screw  
35(1.38)  
(0.24)  
Note:Screw hole for grounding. Connect it to the earth plate of the control box.  
Type  
A
B
C
Accessory fittings  
Clamp fitting  
L
100  
86  
30  
70  
AERSBAN-DSET  
clamp A: 2pcs.  
A
(3.94) (3.39) (1.18)  
70 56  
(2.76) (2.20)  
(2.76)  
45  
AERSBAN-ESET  
clamp B: 1pc.  
B
(1.77)  
12 - 50  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(d) Line noise filter (FR-BLF, FR-BSF01)  
This filter is effective in suppressing noises radiated from the power supply side and output side of  
the servo amplifier and also in suppressing high-frequency leakage current (zero-phase current)  
especially within 0.5MHz to 5MHz band.  
Connection diagram  
Outline drawing [Unit: mm] ([Unit: in.])  
FR-BLF(MR-J2S-350B or more)  
Wind the 3-phase wires by the equal number of times in the  
same direction, and connect the filter to the power supply side  
and output side of the servo amplifier.  
7 (0.28)  
The effect of the filter on the power supply side is higher as the  
number of winds is larger. The number of turns is generally four.  
If the wires are too thick to be wound, use two or more filters  
and make the total number of turns as mentioned above.  
On the output side, the number of turns must be four or less.  
Do not wind the grounding wire together with the 3-phase wires.  
The filter effect will decrease. Use a separate wire for grounding.  
130 (5.12)  
85 (3.35)  
Example 1  
NFB MC  
Servo amplifier  
160 (6.30)  
180 (7.09)  
Power  
supply  
L1  
L2  
L3  
FR-BSF01(for MR-J2S-200B or less)  
Line noise  
filter  
(Number of turns: 4)  
MC  
110 (4.33)  
95 (3.74)  
Example 2  
NFB  
2- 5 (0.20)  
Servo amplifier  
Power  
supply  
L1  
L2  
L3  
Line noise  
filter  
65 (2.56)  
33 (1.3)  
Two filters are used  
(Total number of turns: 4)  
(e) Radio noise filter (FR-BIF)...for the input side only  
This filter is effective in suppressing noises radiated from the power supply side of the servo  
amplifier especially in 10MHz and lower radio frequency bands. The FR-BIF is designed for the  
input only.  
Connection diagram  
Outline drawing (Unit: mm) ([Unit: in.])  
Make the connection cables as short as possible.  
Grounding is always required.  
Leakage current: 4mA  
Red WhiteBlue  
Green  
NFB  
Servo amplifier  
L1  
L2  
Power  
supply  
29 (1.14)  
L3  
5 (0.20)  
hole  
Radio noise  
filter  
FR-BIF  
29 (1.14)  
44 (1.73)  
58 (2.28)  
7 (0.28)  
12 - 51  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2.8 Leakage current breaker  
(1) Selection method  
High-frequency chopper currents controlled by pulse width modulation flow in the AC servo circuits.  
Leakage currents containing harmonic contents are larger than those of the motor which is run with a  
commercial power supply.  
Select a leakage current breaker according to the following formula, and ground the servo amplifier,  
servo motor, etc. securely.  
Make the input and output cables as short as possible, and also make the grounding cable as long as  
possible (about 30cm (11.8 in)) to minimize leakage currents.  
Rated sensitivity current 10 {Ig1 Ign Iga K (Ig2 Igm)} [mA] ..........(12.2)  
K: Constant considering the harmonic contents  
Cable  
Leakage current breaker  
K
Mitsubishi  
products  
Noise  
filter  
Type  
NV  
Servo  
amplifier  
Cable  
Ig2  
M
NV-SP  
NV-SW  
NV-CP  
NV-CW  
NV-L  
Models provided with  
harmonic and surge  
reduction techniques  
1
3
Ig1 Ign  
Iga  
Igm  
BV-C1  
NFB  
General models  
NV-L  
Ig1:  
Ig2:  
Leakage current on the electric channel from the leakage current breaker to the input terminals  
of the servo amplifier (Found from Fig. 12.1.)  
Leakage current on the electric channel from the output terminals of the servo amplifier to the  
servo motor (Found from Fig. 12.1.)  
Ign:  
Iga:  
Igm:  
Leakage current when a filter is connected to the input side (4.4mA per one FR-BIF)  
Leakage current of the servo amplifier (Found from Table 12.5.)  
Leakage current of the servo motor (Found from Table 12.4.)  
Table 12.4 Servo motor's  
leakage current  
Table 12.5 Servo amplifier's  
leakage current  
120  
100  
80  
60  
40  
20  
0
example (Igm)  
example (Iga)  
Servo motor  
output [kW]  
Leakage  
current [mA]  
Servo amplifier Leakage current  
capacity [kW]  
[mA]  
0.05 to 0.5  
0.1  
0.1  
0.2  
0.3  
0.5  
0.7  
1.0  
1.3  
2.3  
0.1 to 0.6  
0.1  
0.6 to 1.0  
1.2 to 2.2  
0.7 to 3.5  
0.15  
[mA]  
3 to 3.5  
5
5 7  
11 15  
22  
2
5.5  
7
7
2
3.5 8 1422 38 80 150  
5.5 30 60 100  
11  
15  
22  
Cable size[mm2]  
Fig. 12.1 Leakage current example  
(Ig1, Ig2) for CV cable run  
in metal conduit  
Table 12.6 Leakage circuit breaker selection example  
Rated sensitivity  
Servo amplifier  
current of leakage  
circuit breaker [mA]  
MR-J2S-10B to MR-J2S-350B  
MR-J2S-10B1 to MR-J2S-40B1  
MR-J2S-500B  
15  
30  
50  
MR-J2S-700B  
MR-J2S-11KB to MR-J2S-22KB  
100  
12 - 52  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Selection example  
Indicated below is an example of selecting a leakage current breaker under the following conditions:  
2mm2 5m  
2mm2 5m  
NV  
Servo  
amplifier  
MR-J2S-60B  
Servo motor  
HC-MFS73  
M
Iga  
Ig1  
Ig2  
Igm  
Use a leakage current breaker designed for suppressing harmonics/surges.  
Find the terms of Equation (12.2) from the diagram:  
5
Ig1 20  
Ig2 20  
0.1  
0.1  
[mA]  
[mA]  
1000  
5
1000  
Ign 0 (not used)  
Iga 0.1 [mA]  
Igm 0.1 [mA]  
Insert these values in Equation (12.2):  
Ig 10 {0.1 0 0.1 3 (0.1 0.1)}  
4 [mA]  
According to the result of calculation, use a leakage current breaker having the rated sensitivity  
current (Ig) of 4[mA] or more. A leakage current breaker having Ig of 15[mA] is used with the NV-  
SP/CP/SW/CW/HW series.  
12 - 53  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2.9 EMC filter  
For compliance with the EMC directive of the EN standard, it is recommended to use the following filter.  
Some EMC filters are large in leakage current.:  
(1) Combination with the servo amplifier  
Recommended filter  
Mass  
Servo amplifier  
[kg]([Ib])  
Model  
Leakage current [mA]  
MR-J2S-10B to MR-J2S-100B  
MR-J2S-10B1 to MR-J2S-40B1  
MR-J2S-200B MR-J2S-350B  
MR-J2S-500B  
SF1252  
38  
0.75(1.65)  
SF1253  
57  
1.5  
1.5  
3.0  
3.0  
3.0  
1.37(3.02)  
5.5(12.13)  
6.7(14.77)  
10.0(22.05)  
13.0(28.66)  
14.5(31.97)  
(Note) HF3040A-TM  
(Note) HF3050A-TM  
(Note) HF3060A-TMA  
(Note) HF3080A-TMA  
(Note) HF3100A-TMA  
MR-J2S-700B  
MR-J2S-11KB  
MR-J2S-15KB  
MR-J2S-22KB  
Note: Soshin Electric. A surge protector is separately required to use any of these EMC filters. (Refer to the EMC Installation  
Guidelines.)  
(2) Connection example  
EMC filter  
Servo amplifier  
NFB LINE  
LOAD  
MC  
(Note 1) Power supply  
3-phase  
L1  
L2  
L3  
L1  
L2  
L3  
L1  
L2  
L3  
200 to 230V AC,  
1-phase  
230VAC or  
(Note 2)  
1-phase  
100 to120VAC  
L11  
L21  
Note: 1. For 1-phase 230VAC power supply, connect the power supply  
to L1,L2 and leave L3 open.There is no L3 for 1-phase 100 to 120VAC  
power supply.  
2. Connect when the power supply has earth.  
(3) Outline drawing  
[Unit: mm(in)]  
6.0(0.236)  
SF1252  
SF1253  
6.0(0.236)  
LINE  
149.5(5.886)  
209.5(8.248)  
L1  
L2  
L3  
L1  
L2  
L3  
LINE  
(input side)  
(input side)  
L1'  
L2'  
L3'  
L1'  
L2'  
L3'  
LOAD  
(output side)  
LOAD  
(output side)  
8.5  
(0.335)  
16.0(0.63)  
23.0(0.906)  
8.5  
(0.335)  
42.0  
49.0  
(1.654)  
(1.929)  
12 - 54  
12. OPTIONS AND AUXILIARY EQUIPMENT  
HF3040A-TM HF3050A-TM HF3060A-TMA  
6-K  
3-L  
3-L  
M
J
2
C
1
C
1
H
2
B
A
2
5
Dimensions [mm(in)]  
Model  
A
B
C
D
E
F
G
H
J
K
L
M
260  
210  
85  
155  
140  
125  
44  
140  
70  
HF3040A-TM  
HF3050A-TM  
HF3060A-TMA  
M5  
M4  
(10.24) (8.27) (8.35) (6.10) (5.51) (4.92) (1.73) (5.51) (2.76)  
290 240 100 190 175 160 44 170 100  
(11.42) (9.45) (3.94) (7.48) (6.89) (6.29) (1.73) (6.69) (3.94)  
R3.24,  
length  
M6  
M6  
M4  
M4  
8 (0.32)  
290  
240  
100  
190  
175  
160  
44  
230  
160  
(11.42) (9.45) (3.94) (7.48) (6.89) (6.29) (1.73) (9.06) (6.29)  
HF3080A-TMA HF3100A-TMA  
8-K  
3-L  
3-L  
M
J
2
C
1
C
B
A
1
2
5
C
1
H
2
Dimensions [mm(in)]  
Model  
A
B
C
D
E
F
G
H
J
K
L
M
HF3080A-TMA  
HF3100A-TMA  
405  
350  
100  
220  
200  
180  
56  
210  
135  
R4.25,  
M8  
M6  
(15.95) (13.78) (3.94) (8.66) (7.87) (7.09) (2.21) (8.27) (5.32) length 12  
12 - 55  
12. OPTIONS AND AUXILIARY EQUIPMENT  
MEMO  
12 - 56  
13. ABSOLUTE POSITION DETECTION SYSTEM  
13. ABSOLUTE POSITION DETECTION SYSTEM  
If an absolute position erase alarm (25) has occurred, always perform home  
position setting again. Not doing so can cause runaway.  
CAUTION  
13.1 Features  
For normal operation, as shown below, the encoder consists of a detector designed to detect a position  
within one revolution and a cumulative revolution counter designed to detect the number of revolutions.  
The absolute position detection system always detects the absolute position of the machine and keeps it  
battery-backed, independently of whether the servo system controller power is on or off.  
Therefore, once home position return is made at the time of machine installation, home position return is  
not needed when power is switched on thereafter.  
If a power failure or a fault occurs, restoration is easy.  
Also, the absolute position data, which is battery-backed by the super capacitor in the encoder, can be  
retained within the specified period (cumulative revolution counter value retaining time) if the cable is  
unplugged or broken.  
Servo system controller  
Servo amplifier  
Position data  
Current  
position  
Detecting  
Detecting the  
position within  
Home position data  
the number  
LS0  
of revolutions one revolution  
CYC0  
Battery MR-BAT  
Servo motor  
1 pulse/rev accumulative revolution counter  
Super capacitor  
High speed serial  
communication  
Within one-revolution counter  
13 - 1  
13. ABSOLUTE POSITION DETECTION SYSTEM  
13.2 Specifications  
(1) Specification list  
Item  
Description  
System  
Electronic battery backup system  
1 piece of lithium battery ( primary battery, nominal 3.6V)  
Type: MR-BAT or A6BAT  
Battery  
Maximum revolution range  
(Note 1) Maximum speed at power failure  
(Note 2) Battery backup time  
(Note 3) Data holding time during battery  
replacement  
Home position 32767 rev.  
500r/min  
Approx. 10,000 hours (battery life with power off)  
2 hours at delivery, 1 hour in 5 years after delivery  
5 years from date of manufacture  
Battery storage period  
Note: 1. Maximum speed available when the shaft is rotated by external force at the time of power failure or the  
like.  
2. Time to hold data by a battery with power off. It is recommended to replace the battery in three years  
independently of whether power is kept on or off.  
3. Period during which data can be held by the super capacitor in the encoder after power-off, with the  
battery voltage low or the battery removed, or during which data can be held with the encoder cable  
disconnected.  
Battery replacement should be finished within this period.  
(2) Configuration  
Servo system controller  
Servo amplifier  
CN1  
CN2  
CN5  
Servo motor  
Battery (MR-BAT)  
(3) Parameter setting  
Set "0001" in parameter No.1 to make the absolute position detection system valid.  
Absolute position detection selection  
0: Used in incremental system.  
1: Used in absolute position  
detection system.  
13 - 2  
13. ABSOLUTE POSITION DETECTION SYSTEM  
13.3 Battery installation procedure  
Before starting battery installation procedure, make sure that the charge lamp is off  
more than 10 minutes after power-off. Then, confirm that the voltage is safe in the  
tester or the like. Otherwise, you may get an electric shock.  
WARNING  
POINT  
The internal circuits of the servo amplifier may be damaged by static electricity.  
Always take the following precautions:  
Ground human body and work bench.  
Do not touch the conductive areas, such as connector pins and electrical  
parts, directly by hand.  
1) Open the operation window. (When the model used is the MR-J2S-200B MR-J2S-350B, also remove  
the front cover.)  
2) Install the battery in the battery holder.  
3) Install the battery connector into CON1 until it clicks.  
Battery connector  
Battery connector  
CON1  
Operation window  
CON1  
Battery  
Battery holder  
Battery  
Battery holder  
For MR-J2S-200B or less  
For MR-J2S-200B MR-J2S-350B  
CON1  
Battery connector  
CON1  
Battery holder  
Battery connector  
Battery  
Battery holder  
Battery  
For MR-J2S-500B MR-J2S-700B  
For MR-J2S-11KB or more  
13 - 3  
13. ABSOLUTE POSITION DETECTION SYSTEM  
13.4 Confirmation of absolute position detection data  
You can confirm the absolute position data with MR Configurator (servo configuration software).  
Click "Diagnostics" and "Absolute Encoder Data" to open the absolute position data display screen.  
(1) Clicking "Diagnostics" in the menu opens the sub-menu as shown below:  
(2) By clicking "Absolute Encoder Data" in the sub-menu, the absolute encoder data display window  
appears.  
(3) Click the "Close" button to close the absolute encoder data display window.  
13 - 4  
Appendix  
App. Combination of servo amplifier and servo motor  
The servo amplifier software versions compatible with the servo motors are indicated in the parentheses.  
The servo amplifiers whose software versions are not indicated can be used regardless of the versions.  
Servo amplifier  
Servo amplifier  
Servo motor  
HC-KFS053  
HC-KFS13  
HC-KFS23  
Servo motor  
(Software version)  
(Software version)  
MR-J2S-10B  
HC-RFS103  
HC-RFS153  
HC-RFS203  
HC-RFS353  
HC-RFS503  
HC-UFS72  
HC-UFS152  
HC-UFS202  
HC-UFS352  
HC-UFS502  
MR-J2S-200B  
MR-J2S-10B1  
MR-J2S-200B  
MR-J2S-10B  
MR-J2S-10B1  
MR-J2S-350B (Version B0 or later)  
MR-J2S-500B (Version B0 or later)  
MR-J2S-500B (Version B0 or later)  
MR-J2S-70B  
MR-J2S-20B  
MR-J2S-20B1  
MR-J2S-40B  
MR-J2S-40B1  
MR-J2S-200B  
HC-KFS43  
HC-KFS73  
HC-MFS053  
MR-J2S-350B (Version B0 or later)  
MR-J2S-500B (Version B0 or later)  
MR-J2S-500B (Version B0 or later)  
MR-J2S-10B  
MR-J2S-70B (Version A3 or later)  
MR-J2S-10B  
MR-J2S-10B1  
HC-UFS13  
HC-UFS23  
HC-UFS43  
MR-J2S-10B1  
MR-J2S-10B  
MR-J2S-10B1  
HC-MFS13  
HC-MFS23  
HC-MFS43  
MR-J2S-20B  
MR-J2S-20B1  
MR-J2S-20B  
MR-J2S-20B1  
MR-J2S-40B  
MR-J2S-40B1  
MR-J2S-40B  
MR-J2S-40B1  
HC-UFS73  
MR-J2S-70B  
HC-MFS73  
HC-SFS81  
HC-SFS121  
HC-SFS201  
HC-SFS301  
HC-SFS52  
HC-SFS102  
HC-SFS152  
HC-SFS202  
HC-SFS352  
HC-SFS502  
HC-SFS702  
HC-SFS53  
HC-SFS103  
HC-SFS153  
HC-SFS203  
HC-SFS352  
MR-J2S-70B  
HC-LFS52  
MR-J2S-60B (Version B3 or later)  
MR-J2S-100B (Version B3 or later)  
MR-J2S-200B (Version B3 or later)  
MR-J2S-350B (Version B3 or later)  
MR-J2S-500B (Version B3 or later)  
MR-J2S-11KB (Version A3 or later)  
MR-J2S-11KB (Version A3 or later)  
MR-J2S-15KB (Version A3 or later)  
MR-J2S-22KB (Version A3 or later)  
MR-J2S-22KB (Version A3 or later)  
MR-J2S-11KB (Version A4 or later)  
MR-J2S-15KB (Version A3 or later)  
MR-J2S-500B (Version B0 or later)  
MR-J2S-700B (Version B0 or later)  
MR-J2S-11KB (Version A3 or later)  
MR-J2S-15KB (Version A3 or later)  
MR-J2S-22KB (Version A3 or later)  
MR-J2S-100B  
HC-LFS102  
HC-LFS152  
HC-LFS202  
HC-LFS302  
HA-LFS801  
HA-LFS12K1  
HA-LFS15K1  
HA-LFS20K1  
HA-LFS25K1  
HA-LFS11K1M  
HA-LFS15K1M  
HA-LFS502  
HA-LFS702  
HA-LFS11K2  
HA-LFS15K2  
HA-LFS22K2  
MR-J2S-200B  
MR-J2S-200B  
MR-J2S-350B  
MR-J2S-60B  
MR-J2S-100B  
MR-J2S-200B  
MR-J2S-200B  
MR-J2S-350B  
MR-J2S-500B (Version B0 or later)  
MR-J2S-700B (Version B0 or later)  
MR-J2S-60B  
MR-J2S-100B  
MR-J2S-200B  
MR-J2S-200B  
MR-J2S-350B  
App - 1  
Appendix  
MEMO  
App - 2  
REVISIONS  
*The manual number is given on the bottom left of the back cover.  
Print Data  
*Manual Number  
Revision  
Sep., 2000 SH(NA)030007-A First edition  
Jan., 2001 SH(NA)030007-B Servo amplifier: Addition of MR-J2S-500B and MR-J2S-700B  
Servo motor: Addition of HC-KFS73, HC-SFS502, HC-SFS702, HC-RFS353,  
HC-RFS503, HC-UFS502 and HC-UFS352  
Section 1.4: Addition of brake unit and regeneration converter  
Section 1.7: Overall reexamination  
Section 3.5.2: Addition of return converter and brake unit  
Section 3.7: Reexamination of Section 3.7 and later  
Section 5.2 (2): Addition of regenerative brake option to parameter No. 2  
Section 6.1.2: Addition of POINT  
Changing of alarm 24 name  
Section 9.2: Changes made to alarm 20 cause and action fields  
Addition of alarm 33 causes 1, 2  
Section 10.2 (2): Addition  
Section 12.1.1 (3): Overall reexamination  
Section 12.1.1 (4): Addition  
Section 12.1.1 (5): Addition of MR-RB31 and MR-RB51 regenerative brake  
options  
Section 12.1.2: Addition  
Section 12.1.3: Addition  
Section 12.1.4: Addition of power supply connector set  
Section 12.2.1 (1): Changing of wiring diagram  
Addition of brake unit and power regeneration converter wire  
size list  
Section 12.2.8 (3): Addition of outline drawing  
Oct., 2002  
SH(NA)030007-C Servo amplifier: Addition of MR-J2S-11KB, MR-J2S-15KB and MR-J2S-22KB  
Servo motor: Addition of HA-LFS and HC-LFS series  
About processing of waste: Addition of about processing of waste  
SAFETY INSTRUCTIONS: Addition of FOR MAXIMIM SAFETY  
CONFORMANCE WITH UL/C-UL STANDARD:  
Addition of MR-J2S-11KB to MR-J2S-22KB to(4) Capacitor  
discharge time  
Addition of(6) Attachment of servo motor  
Addition of(7) About wiring protection  
Section 1.4: Modification made to the contents of the test operation mode  
Section 1.7.1: Deletion of (6)  
Section 3.1.1: Addition of MR-J2S-700B or less  
Section 3.1.2: Addition of MR-J2S-11KB or less  
Section 3.2.1 (2): Addition of MR-J2S-11KB or less  
Section 3.2.2: Addition of 11kW and more to the connector pin No.  
Section 3.2.2 (C): Addition of dynamic brake sequence  
Section 3.3: Addition of Note  
Section 3.4.2 (2), (3): Wiring reexamination  
Section 3.5: Addition of POINT  
Section 3.6.2: Addition of POINT  
Print Data  
*Manual Number  
Revision  
Oct., 2002  
SH(NA)030007-C Section 3.6.3: Addition of Note  
Section 3.9: Reexamination of contents  
Section 3.12: Addition  
Section 3.12.2: Addition of power factor improving DC reactor  
Section 4.3 (2): Addition of initialization completion  
Section 5.2 (2): Addition of external dynamic brake selection to parameter No. 2  
Renaming of parameter Nos. 3 to 5  
Reexamination of parameter No. 19 contents  
Section 9.1: Addition of Note to alarm 30  
Section 9.2: Addition of occurrence factor 4 to alarm 16  
Changing of occurrence factor and checking method of alarm 50  
Changing of occurrence factor and checking method of alarm 51  
Section 10.1 (7), (8): Addition of MR-J2S-11KB, 15KB and 22KB  
Section 10.2 (a): Addition of connectors and shell kits  
Section 11.1 (4): Addition  
Section 11.3: Reexamination of HC-KFS series dynamic brake time constants  
Addition of HA-LFS series  
Section 12.1.1 (3): Addition of sentences  
Section 12.1.1 (4) (a): Reexamination of contents  
Section 12.1.1 (4) (b): Reexamination of contents  
Section 12.1.1 (4) (c): Addition of sentences  
Section 12.1.1 (4) (d): Addition  
Section 12.1.1. (5) (e): Addition  
Section 12.1.2 (1), (3): Addition of FR-BU-55K brake unit  
Section 12.1.2 (3) (a), (b): Addition of FR-BR-55K resistor unit  
Section 12.1.3 (1), (3), (4): Addition of FR-RC-55K power regeneration converter  
Section 12.1.4: Addition; reexamination of subsequent sections  
Section 12.1.5: Addition of HA-LFS series wiring  
Addition of connector sets and monitor cables  
Section 12.1.6: Addition of POINT  
Section 12.1.7 (1): Reexamination of contents  
Section 12.1.7 (2) (a): Reexamination of contents  
Section 12.2.1 (1): Addition of cooling fan wiring  
Addition of FR-RC-30K and FR-RC-50K  
Section 12.2.1 (2): Reexamination of optional cable table  
Section 12.2.4: Addition of power factor improving DC reactor; reexamination of  
subsequent sections  
Section 12.2.5: Changing of interface name into digital input signals  
Section 12.2.8 (1): Reexamination of our leakage current breaker products  
Section 12.2.9 (3): Addition of outline drawing  
Section 13.3: Addition of MR-J2S-11KB and more  
Section 13.4: Screen change  
Print Data  
*Manual Number  
Revision  
May., 2003 SH(NA)030007-D COMPLIANCE WITH EC DIRECTIVES 2 (6): Addition of (6)  
CONFORMANCE WITH UL/C-UL STANDARD: Addition of (2) Air volume  
(2.8m3/min)  
Section 1.3: Inrush current addition  
Section 3.1.1: Reexamination of table in Note  
Section 3.1.2: Reexamination of table in Note  
Section 3.6.3: Addition of power supply connector signal arrangement  
CE05-2A32-17PD-B  
Section 3.12.3: Change of terminal box inside of HA-LFS11K2  
Section 5.2 (1): Reexamination of alarm 8 initial value  
Section 5.2 (2): Addition of "Use of built-in regenerative brake resistor" to  
parameter No. 2  
Section 5.2 (2): Reexamination of alarm 8 initial value  
Section 9.1: Partial sentence change  
Section 9.2: Partial POINT sentence reexamination  
Section 9.2: Reexamination of alarm 12, 13 definitions  
Reexamination of alarm 15 definition  
Addition of alarm 37 occurrence factor and corrective action  
Addition of During rotation: 2.5s or more to alarm 51  
Section 10.2 (2) (a): Addition of model PCR  
Section 11.3: Reexamination of explanation of te  
Section 11.5: Addition of inrush currents at power-on of main circuit and  
control circuit  
Section 12.1.2: Partial sentence addition  
Section 12.1.3: Partial sentence addition  
Section 12.1.3 (2): Addition of Note  
Section 12.1.4 (2): Correction of connection example  
Addition of Note  
Section 12.1.5: Addition of bus cable connected to motion controller  
Section 12.1.5 (4): Reexamination/addition of contents  
Section 12.1.6: POINT sentence change  
Section 12.2.1 (1): Correction of error in writing of recommended wire  
MR-J2S-22KB wire size  
Section 12.2.1 (2): Addition of bus cable Q172J2BCBL M/Q173J2B CBL  
M
Jan., 2004  
SH(NA)030007-E Safety Instructions: Overall reexamination  
Section 1.5 (2): Partial addition  
Section 1.6: Table reexamination  
Section 1.8 (3): Note addition  
Section 1.8 (4): Note addition  
Section 3.1.1: Note 15. reexamination  
Section 3.1.2: Note 15. reexamination  
Section 4.2: Partial reexamination/addition of CAUTION sentence  
Section 5.2: Partial addition of POINT sentence  
Section 5.2 (1): Addition of Note 3  
Print Data  
*Manual Number  
Revision  
Jan., 2004  
SH(NA)030007-E Section 5.2 (2): Partial addition of parameter No. 2  
Note addition of parameter No. 31  
Section 5.4.2: (10) deletion  
Section 9.2: Display 32 item addition, Partial reexamination/Note addition of  
display 52  
Section 10.1: Overall reexamination  
Section 11.2: Table change  
Section 11.3: Partial text addition  
Section 12.1.1 (3): Partial text deletion  
Section 12.1.1 (4): Partial text change  
Section 12.1.1 (5): Overall reexamination  
Section 12.1.4 (2): Addition of Note 2  
Section 12.1.7: POINT addition  
Section 12.1.8 (1)(a): Partial table reexamination  
Section 12.1.9 (2): Partial figure reexamination  
Section 12.1.10: Addition  
Section 12.2.9 (3): Partial reexamination  
Appendix: Addition  
MR-J2S-B GIJUTU SIRYOU  
MODEL  
MODEL  
CODE  
1CW502  
HEAD OFFICE:MITSUBISHI DENKI BLDG MARUNOUCHI TOKYO 100-8310  
This Instruction Manual uses recycled paper.  
Specifications subject to change without notice.  
SH (NA) 030007-E (0401) MEE  
Printed in Japan  

Vizio Car Satellite TV System E390i A1 User Manual
VDO Dayton CD 2327 G User Manual
Toshiba TEC MA 71 User Manual
Sony DVD306E User Manual
Sony CDX GT10W User Manual
Sony Car Stereo System XR CA400 User Manual
Sony Camcorder TR83 User Manual
Sony 55 User Manual
Samsung MX H205RP User Manual
Rosen Entertainment Systems Rosen ClearVue A9 User Manual