Sony ICX274AQ User Manual

ICX274AQ  
Diagonal 8.923mm (Type 1/1.8) Progressive Scan CCD Image Sensor with Square Pixel for Color Cameras  
Description  
The ICX274AQ is a diagonal 8.923mm (Type 1/1.8)  
interline CCD solid-state image sensor with a square  
pixel array and 2.01M effective pixels. Progressive  
scan allows all pixels' signals to be output  
independently within approximately 1/15 second,  
and output is also possible using various addition  
and pulse elimination methods. This chip features an  
electronic shutter with variable charge-storage time  
which makes it possible to realize full-frame still  
images without a mechanical shutter. High resolution  
and high color reproductivity are achieved through  
the use of R, G, B primary color mosaic filters as the  
color filters. Further, high sensitivity and low dark  
current are achieved through the adoption of Super  
HAD CCD technology.  
20 pin DIP (Plastic)  
This chip is suitable for applications such as  
electronic still cameras, PC input cameras, etc.  
Features  
High horizontal and vertical resolution  
Supports the following modes  
Progressive scan mode (with/without mechanical shutter)  
2/8-line readout mode  
Pin 1  
2
2/4-line readout mode  
V
2-line addition mode  
Center scan modes (1), (2) and (3)  
AF modes (1) and (2)  
Square pixel  
10  
Horizontal drive frequency: 28.6364MHz (typ.), 36.0MHz (max.)  
Reset gate bias are not adjusted  
R, G, B primary color mosaic filters on chip  
High sensitivity, low dark current  
Continuous variable-speed shutter function  
Excellent anti-blooming characteristics  
20-pin high-precision plastic package  
12  
H
48  
Pin 11  
Optical black position  
(Top View)  
Device Structure  
Interline CCD image sensor  
Image size:  
Diagonal 8.923mm (Type 1/1.8)  
1688 (H) × 1248 (V) approx. 2.11M pixels  
Total number of pixels:  
Number of effective pixels: 1628 (H) × 1236 (V) approx. 2.01M pixels  
Number of active pixels:  
Recommended number of  
recording pixels:  
1620 (H) × 1220 (V) approx. 1.98M pixels  
1600 (H) × 1200 (V) approx. 1.92M pixels  
8.50mm (H) × 6.80mm (V)  
Chip size:  
Unit cell size:  
4.40µm (H) × 4.40µm (V)  
Optical black:  
Horizontal (H) direction: Front 12 pixels, rear 48 pixels  
Vertical (V) direction:  
Horizontal 28  
Vertical 1  
Front 10 pixels, rear 2 pixels  
Number of dummy bits:  
Substrate material:  
Silicon  
Wfine CCD is trademark of Sony corporation.  
Represents a CCD adopting progressive scan, primary color filter and square pixel.  
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by  
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the  
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.  
– 1 –  
E01410B23-PS  
ICX274AQ  
Absolute Maximum Ratings  
Item  
Ratings  
40 to +12  
50 to +15  
50 to +0.3  
40 to +0.3  
25 to  
Unit Remarks  
VDD, VOUT, φRG φSUB  
V
V
V
V
V
V
V
V
V
V
Vφ2α, Vφ3α φSUB (α = A to C)  
Vφ1, Vφ4, VL φSUB  
Against φSUB  
Hφ1β, Hφ2β, GND φSUB (β = A, B)  
CSUB φSUB  
VDD, VOUT, φRG, CSUB GND  
Vφ1, Vφ2α, Vφ3α, Vφ4 GND (α = A to C)  
Hφ1β, Hφ2β GND (β = A, B)  
0.3 to +22  
10 to +18  
10 to +6.5  
0.3 to +28  
0.3 to +15  
to +15  
Against GND  
Against VL  
Vφ2α, Vφ3α VL (α = A to C)  
Vφ1, Vφ4, Hφ1β, Hφ2β, GND VL (β = A, B)  
Voltage difference between vertical clock input pins  
Hφ1β Hφ2β (β = A, B)  
2  
V
V
Between input  
clock pins  
6.5 to +6.5  
10 to +16  
30 to +80  
10 to +60  
10 to +75  
Hφ1β, Hφ2β Vφ4 (β = A, B)  
V
Storage temperature  
°C  
°C  
°C  
Guaranteed temperature of performance  
Operating temperature  
2  
+24V (Max.) is guaranteed when clock width < 10µs, clock duty factor < 0.1%.  
+16V (Max.) is guaranteed during power-on or power-off.  
3 –  
ICX274AQ  
Bias Conditions  
Item  
Symbol  
VDD  
Min.  
Typ.  
Max.  
Unit Remarks  
V
Supply voltage  
14.55  
15.0  
15.45  
3  
Protective transistor bias  
VL  
1  
VSUB  
VSUB2  
Internally generated value  
14.4  
No line addition  
Substrate voltage  
adjustment range  
4  
2
2-line addition  
8.8  
V
Indicated  
voltage 0.2  
Indicated  
voltage  
Indicated  
voltage + 0.2  
Substrate voltage adjustment accuracy VSUB  
Reset gate clock φRG  
V
V
5  
1  
Progressive scan mode, 2/8-line readout mode, 2/4-line readout mode, center scan modes (1) and (3),  
and AF modes (1) and (2)  
2  
3  
2-line addition mode and center scan mode (2)  
VL setting is the VVL voltage of the vertical clock waveform, or the same voltage as the VL power supply  
for the V driver should be used.  
4  
Substrate voltage (VSUB2) setting value indication  
The substrate voltage (VSUB) for modes without line addition is generated internally.  
The substrate voltage setting value for use with vertical 2-line addition is indicated by a code on the  
bottom surface of the image sensor. Adjust the substrate voltage to the indicated voltage.  
VSUB2 code 1-digit indication  
VSUB2 code  
The code and the actual value correspond as follows.  
VSUB2 code  
1
2
3
4
6
7
8
9
A
C
d
E
f
G
h
Actual value 8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6  
VSUB2 code  
J
K
L
m
N
P
R
S
U
V
W
X
Y
Z
Actual value 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4  
[Example] "h" indicates a VSUB2 setting of 11.6V.  
5  
Do not apply a DC bias to the reset gate clock pin, because a DC bias is generated within the CCD.  
DC characteristics  
Item  
Symbol  
Min.  
7.0  
Typ.  
10.0  
Max.  
13.0  
Unit  
mA  
Remarks  
Supply current  
IDD  
4 –  
ICX274AQ  
Clock Voltage Conditions  
Waveform  
diagram  
Item  
Symbol  
Min.  
Typ.  
Max. Unit  
Remarks  
Readout clock  
voltage  
VVT  
14.55 15.0 15.45  
V
1
VVH1, VVH2  
VVH3, VVH4  
0.05  
0
0
0.05  
0.05  
V
V
2
2
VVH = (VVH1 + VVH2)/2  
VVL = (VVL3 + VVL4)/2  
0.2  
VVL1, VVL2,  
VVL3, VVL4  
8.0  
7.5  
7.0  
V
2
VφV  
6.8  
7.5  
8.05  
0.1  
V
V
V
V
V
V
V
V
V
V
V
V
V
2
2
2
2
2
2
2
3
3
3
4
4
4
VφV = VVHn VVLn (n = 1 to 4)  
Vertical transfer  
clock voltage  
VVH3 VVH  
VVH4 VVH  
VVHH  
0.25  
0.25  
0.1  
0.5  
High-level coupling  
High-level coupling  
Low-level coupling  
Low-level coupling  
VVHL  
0.5  
VVLH  
0.5  
VVLL  
0.5  
VφH  
4.75  
0.05  
0.8  
5.0  
0
5.25  
0.05  
Horizontal transfer  
clock voltage  
VHL  
VCR  
2.5  
3.3  
Cross-point voltage  
VφRG  
3.0  
5.25  
0.4  
Reset gate clock  
voltage  
VRGLH VRGLL  
VRGL VRGLm  
Low-level coupling  
Low-level coupling  
0.5  
Substrate clock  
voltage  
VφSUB  
21.5  
22.5  
23.5  
V
5
5 –  
ICX274AQ  
Clock Equivalent Circuit Constants  
Item  
Symbol  
Min.  
Typ.  
3300  
1200  
2700  
1000  
1800  
6800  
120  
220  
150  
270  
2700  
470  
680  
680  
1000  
820  
1800  
820  
1500  
100  
100  
47  
Max. Unit Remarks  
CφV1  
CφV2A, CφV2B  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
Capacitance between vertical transfer clock and CφV2C  
GND  
CφV3A, CφV3B  
CφV3C  
CφV4  
CφV12 (A, B)  
CφV12C  
CφV13 (A, B)  
CφV13C  
CφV14  
CφV2 (A, B), 3 (A, B)  
CφV2 (A, B), 3C  
CφV2 (A, B), 4  
CφV2C, 3 (A, B)  
CφV2C, 3C  
CφV2C, 4  
Capacitance between vertical transfer clocks  
CφV3 (A, B), 4  
CφV3C, 4  
CφH1  
Capacitance between horizontal transfer clock  
and GND  
CφH2  
Capacitance between horizontal transfer clocks  
CφHH  
Capacitance between reset gate clock and GND CφRG  
2
Capacitance between substrate clock and GND  
CφSUB  
820  
30  
R1, R4  
Vertical transfer clock series resistor  
R2 (A, B, C), 3 (A, B, C)  
RGND  
62  
Vertical transfer clock ground resistor  
Horizontal transfer clock series resistor  
Horizontal transfer clock ground resistor  
Reset gate clock and series resistor  
15  
RφH  
7
RφH2  
20  
kΩ  
RφRG  
4.7  
Note 1) Expressions using parentheses such as CφV2 (A,B), 3C indicate items which include all combinations of  
the pins within the parentheses.  
For example, CφV2 (A, B), 3C indicates [CφV2A3C, CφV2B3C].  
6 –  
ICX274AQ  
Vφ1  
RφH  
RφH  
Hφ1A  
Hφ2A  
R1  
CφV1  
RφH  
RφH  
Hφ1B  
Hφ2B  
CφHH  
CφV14  
CφV2α4 (α = A to C)  
CφV12α (α = A to C)  
RφH2  
CφH2  
CφH1  
Vφ4  
Vφ2α (α = A to C)  
2α (α = A to C)  
R
4
R
RGND  
CφV4  
CφV3α4 (α = A to C)  
CφV2α (α = A to C)  
Horizontal transfer clock equivalent circuit  
CφV2α3α (α = A to C)  
CφV3α (α = A to C)  
3α (α = A to C)  
CφV13α (α = A to C)  
R
RφRG  
RGφ  
Vφ3α (α = A to C)  
CφRG  
Note 2) Cφ2α2β and Cφ3α3β (α = A to C, β = A to C other than α) are  
sufficiently small relative to other capacitance between  
other vertical clocks in the equivalent circuit, so these  
are omitted from the equivalent circuit diagram.  
Vertical transfer clock equivalent circuit  
Reset gate clock equivalent circuit  
7 –  
ICX274AQ  
Drive Clock Waveform Conditions  
(1) Readout clock waveform  
100%  
90%  
φM  
VVT  
φM  
2
10%  
0%  
0V  
tr  
twh  
tf  
(2) Vertical transfer clock waveform  
Vφ1  
Vφ3A, Vφ3B, Vφ3C  
VVHH  
VVH1  
VVHH  
VVH  
VVH  
VVHH  
VVHH  
VVHL  
VVHL  
VVHL  
VVH3  
VVHL  
VVL1  
VVL3  
VVLH  
VVLH  
VVLL  
VVLL  
VVL  
VVL  
Vφ2A, Vφ2B, Vφ2C  
VVHH  
Vφ4  
VVHH  
VVHH  
VVHH  
VVH  
VVH  
VVHL  
VVHL  
VVHL  
VVHL  
VVH2  
VVH4  
VVLH  
VL2VVLH  
V
VVLL  
VVLL  
VVL  
VVL4  
VVL  
VVH = (VVH1 + VVH2)/2  
VVL = (VVL3 + VVL4)/2  
VφV = VVHn VVLn (n = 1 to 4)  
8 –  
ICX274AQ  
(3) Horizontal transfer clock waveform  
tr  
twh  
tf  
Hφ2β  
90%  
VCR  
VφH  
twl  
VφH  
2
10%  
Hφ1β  
VHL  
two  
Cross-point voltage for the Hφ1β rising side of the horizontal transfer clocks Hφ1β and Hφ2β waveforms is VCR.  
The overlap period for twh and twl of horizontal transfer clocks Hφ1β and Hφ2β is two. (β = A, B)  
(4) Reset gate clock waveform  
tr  
twh  
tf  
VRGH  
RG waveform  
twl  
VφRG  
Point A  
VRGLH  
VRGL  
VRGLL  
VRGLm  
VRGLH is the maximum value and VRGLL is the minimum value of the coupling waveform during the period from  
Point A in the above diagram until the rising edge of RG.  
In addition, VRGL is the average value of VRGLH and VRGLL.  
VRGL = (VRGLH + VRGLL)/2  
Assuming VRGH is the minimum value during the interval twh, then:  
VφRG = VRGH VRGL  
Negative overshoot level during the falling edge of RG is VRGLm.  
(5) Substrate clock waveform  
100%  
90%  
φM  
VφSUB  
φM  
2
10%  
VSUB  
0%  
(Internally generated bias)  
tr  
twh  
tf  
9 –  
ICX274AQ  
Clock Switching Characteristics (Horizontal drive frequency: 28.6364MHz)  
twh  
twl  
tr  
tf  
Item  
Symbol  
VT  
Unit Remarks  
Min. Typ. Max.Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.  
During  
Readout clock  
3.3 3.5  
0.5  
0.5  
µs  
readout  
Vφ1, Vφ4,  
Vφ2α, Vφ3α  
(α = A to C)  
Vertical transfer  
clock  
1  
2  
15  
400 ns  
Hφ1β (β = A, B) 10 12.5  
10 12.5  
10 12.5  
5
5
7.5  
7.5  
5
5
7.5  
ns  
7.5  
Horizontal  
transfer clock  
Hφ2β (β = A, B) 10 12.5  
ns  
Reset gate clock φRG  
4
7
24  
2
3
During drain  
charge  
φSUB  
µs  
0.5  
Substrate clock  
2.1  
0.5  
two  
Item  
Symbol  
Unit Remarks  
ns  
Min. Typ. Max.  
Horizontal  
transfer clock  
Hφ1A, Hφ1B,  
Hφ2A, Hφ2B  
8
10  
Clock Switching Characteristics (Horizontal drive frequency: 36MHz)  
twh  
twl  
tr  
tf  
Item  
Symbol  
VT  
Unit Remarks  
Min. Typ. Max.Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.  
During  
µs  
Readout clock  
4.0 4.2  
0.5  
0.5  
readout  
Vφ1, Vφ4,  
Vφ2α, Vφ3α  
(α = A to C)  
Vertical transfer  
clock  
1  
2  
15  
400 ns  
Hφ1β (β = A, B) 8  
9
9
8
8
9
9
5
5
6
6
5
5
6
Horizontal  
transfer clock  
ns  
6
Hφ2β (β = A, B) 8  
ns  
Reset gate clock φRG  
4
5.5  
8
2
3
During drain  
charge  
φSUB  
µs  
0.25  
Substrate clock  
1.67  
0.25  
two  
Item  
Symbol  
Unit Remarks  
ns  
Min. Typ. Max.  
Horizontal  
transfer clock  
Hφ1A, Hφ1B,  
Hφ2A, Hφ2B  
8
9
1  
When two vertical transfer clock drivers CXD3400N are used.  
2  
tf tr 2ns, and the cross-point voltage (VCR) for the Hφ1β (β = A, B) rising side of the Hφ1β and Hφ2β  
waveforms must be VφH/2 [V] or more.  
10 –  
ICX274AQ  
Spectral Sensitivity Characteristics (excludes lens characteristics and light source characteristics)  
1.0  
B
G
R
0.8  
0.6  
0.4  
0.2  
0
400  
450  
500  
550  
600  
650  
700  
Wave Length [nm]  
11 –  
ICX274AQ  
Image Sensor Characteristics  
(Ta = 25°C)  
Measurement  
method  
Item  
Symbol Min.  
Typ.  
Max. Unit  
Remarks  
G Sensitivity  
Sg  
335  
0.35  
0.45  
400  
400  
420  
0.5  
0.6  
545  
0.65  
0.75  
mV  
1
1
1
1/30s accumulation  
R
B
Rr  
Sensitivity  
comparison  
Rb  
2
Vsat  
Vsat2  
No line addition  
Saturation signal  
Smear  
mV  
dB  
2
Ta = 60°C  
1
3
2-line addition  
4  
Progressive scan mode  
100  
94  
92  
86  
80  
20  
25  
8
5
3
2/4-line readout mode  
2/8-line readout mode  
Zone 0 and I  
Sm  
6  
88  
%
%
4
5
Video signal shading SH  
Zone 0 to II’  
Srg  
Uniformity between  
video signal channels  
Sbg  
Vdt  
8
Dark signal  
Dark signal shading  
Line crawl G  
Line crawl R  
Line crawl B  
Lag  
Ta = 60°C, 14.985 frame/s  
8
mV  
mV  
%
6
7
8
8
8
9
7  
Vdt  
Lcg  
Lcr  
Ta = 60°C, 14.985 frame/s,  
2
3.8  
3.8  
3.8  
0.5  
%
Lcb  
Lag  
%
%
1
Vsat2 is the saturation signal level in 2-line addition mode, and is 200mV per pixel.  
2
Progressive scan mode, 2/8-line readout mode, 2/4-line readout mode, and center scan modes (1) and (3).  
2-line addition mode and center scan mode (2).  
3
4
Same for 2-line addition mode and center scan modes (2) and (3).  
Same for center scan mode (1).  
5
6
Same for AF modes (1) and (2).  
7
Excludes vertical dark signal shading caused by vertical register high-speed transfer.  
12 –  
ICX274AQ  
Zone Definition of Video Signal Shading  
1628 (H)  
4
4
8
V
10  
H
8
H
8
1236 (V)  
Zone 0, I  
Zone II, II’  
8
Ignored region  
Effective pixel region  
V
10  
Measurement System  
CCD signal output [ A]  
CCD  
C.D.S  
AMP  
Gr/Gb channel signal output [ B]  
S/H  
S/H  
R/B channel signal output [ C]  
Note) Adjust the amplifier gain so that the gain between [ A] and [ B], and between [ A] and [ C] equals 1.  
Image Sensor Characteristics Measurement Method  
Color coding of this image sensor & Readout  
The primary color filters of this image sensor are arranged in the layout  
Gb  
R
B
Gr  
B
Gb  
R
B
Gr  
B
shown in the figure on the left (Bayer arrangement).  
Gr and Gb denote the G signals on the same line as the R signal and the  
B signal, respectively.  
Gb  
R
Gb  
R
Gr  
Gr  
Horizontal register  
Color Coding Diagram  
13 –  
ICX274AQ  
Readout modes  
The diagrams below and on the following pages show the output methods for the following nine readout  
modes.  
Progressive scan mode  
2/8-line readout mode  
2/4-line readout mode  
16 (V2C/V3C)  
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
16 (V2C/V3C)  
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
16 (V2C/V3C)  
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
15 (V2C/V3C)  
14 (V2A/V3A)  
13 (V2B/V3B)  
12 (V2C/V3C)  
11 (V2C/V3C)  
10 (V2B/V3B)  
9 (V2A/V3A)  
8 (V2C/V3C)  
7 (V2C/V3C)  
6 (V2A/V3A)  
5 (V2B/V3B)  
4 (V2C/V3C)  
3 (V2C/V3C)  
2 (V2B/V3B)  
1 (V2A/V3A)  
15 (V2C/V3C)  
14 (V2A/V3A)  
13 (V2B/V3B)  
12 (V2C/V3C)  
11 (V2C/V3C)  
10 (V2B/V3B)  
9 (V2A/V3A)  
8 (V2C/V3C)  
7 (V2C/V3C)  
6 (V2A/V3A)  
5 (V2B/V3B)  
4 (V2C/V3C)  
3 (V2C/V3C)  
2 (V2B/V3B)  
1 (V2A/V3A)  
15 (V2C/V3C)  
14 (V2A/V3A)  
13 (V2B/V3B)  
12 (V2C/V3C)  
11 (V2C/V3C)  
10 (V2B/V3B)  
9 (V2A/V3A)  
8 (V2C/V3C)  
7 (V2C/V3C)  
6 (V2A/V3A)  
5 (V2B/V3B)  
4 (V2C/V3C)  
3 (V2C/V3C)  
2 (V2B/V3B)  
1 (V2A/V3A)  
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
B
G
VOUT  
VOUT  
VOUT  
Note) Blacked out portions in the diagram indicate pixels which are not read out.  
Output starts from line 1 in 2/8-line decimation mode.  
1. Progressive scan mode  
In this mode, all pixel signals are output in non-interlace format in 1/14.985s.  
All pixel signals within the same exposure period are read out simultaneously, making this mode suitable  
for high resolution image capturing.  
2. 2/8-line readout mode  
All effective area signals are output in approximately 1/30s by reading out the signals for only two out of  
eight lines (1st and 6th lines, 9th and 14th lines).  
This readout mode emphasizes processing speed over vertical resolution, making it suitable for AE/AF and  
other control and for checking images on LCD viewfinders.  
3. 2/4-line readout mode  
All effective area signals are output in approximately 1/20s by reading out the signals for only two out of  
four lines (3rd and 4th lines, 7th and 8th lines, and so on).  
14 –  
ICX274AQ  
2-line addition mode  
Center scan mode (1)  
Center scan mode (2)  
16 (V2C/V3C)  
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
16 (V2C/V3C)  
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
16 (V2C/V3C)  
15 (V2C/V3C)  
14 (V2A/V3A)  
13 (V2B/V3B)  
12 (V2C/V3C)  
11 (V2C/V3C)  
10 (V2B/V3B)  
9 (V2A/V3A)  
8 (V2C/V3C)  
7 (V2C/V3C)  
6 (V2A/V3A)  
5 (V2B/V3B)  
4 (V2C/V3C)  
3 (V2C/V3C)  
2 (V2B/V3B)  
1 (V2A/V3A)  
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
15 (V2C/V3C)  
14 (V2A/V3A)  
13 (V2B/V3B)  
12 (V2C/V3C)  
11 (V2C/V3C)  
10 (V2B/V3B)  
9 (V2A/V3A)  
8 (V2C/V3C)  
7 (V2C/V3C)  
6 (V2A/V3A)  
5 (V2B/V3B)  
4 (V2C/V3C)  
3 (V2C/V3C)  
2 (V2B/V3B)  
1 (V2A/V3A)  
15 (V2C/V3C)  
14 (V2A/V3A)  
13 (V2B/V3B)  
12 (V2C/V3C)  
11 (V2C/V3C)  
10 (V2B/V3B)  
9 (V2A/V3A)  
8 (V2C/V3C)  
7 (V2C/V3C)  
6 (V2A/V3A)  
5 (V2B/V3B)  
4 (V2C/V3C)  
3 (V2C/V3C)  
2 (V2B/V3B)  
1 (V2A/V3A)  
G
B
G
B
G
B
G
B
G
B
G
VOUT  
VOUT  
VOUT  
Note) Blacked out portions in the diagram indicate pixels which are not read out.  
After reading out the pixels indicated by and transferring two lines, the pixels indicated by  
are read out and two pixels of the same color are added by the vertical transfer block.  
4. 2-line addition mode  
In this mode, the signals for only two out of four lines (3rd and 4th lines, 7th and 8th lines, and so on) are  
read out, the vertical register is shifted by 2 bits, and then the signals of the remaining two out of the four  
lines (1st and 2nd lines, 5th and 6th lines, and so on) are read out and added within the vertical register. All  
effective area signals are output in approximately 1/20s.  
5. Center scan mode (1)  
In this mode, the signals for only two out of four lines (3rd and 4th lines, 7th and 8th lines, and so on) are  
read out. The undesired portions are swept by vertical register high-speed transfer, and the vertical  
1136-pixel region in the center of the picture is output by the above readout method. The number of  
output lines is 568 lines at 36MHz, and 434 lines at 28.6364MHz. The frame rate is increased  
(approximately 30 frames/s) by setting the number of output lines to that of VGA mode, making this  
mode suitable for VGA moving pictures. (However, the angle of view decreases.)  
6. Center scan mode (2)  
In this mode, the signals for only two out of four lines (3rd and 4th lines, 7th and 8th lines, and so on) are  
read out, the vertical register is shifted by 2 bits, and then the signals of the remaining two out of the four  
lines (1st and 2nd lines, 5th and 6th lines, and so on) are read out and added within the vertical register.  
The undesired portions are swept by vertical register high-speed transfer, and the vertical 1136-pixel region  
in the center of the picture is output by the above readout method. The number of output lines is 568 lines  
at 36MHz, and 434 lines at 28.6364MHz. The frame rate is increased (approximately 30 frames/s) by  
setting the number of output lines to that of VGA mode, making this mode suitable for VGA moving pictures.  
(However, the angle of view decreases.)  
15 –  
ICX274AQ  
Center scan mode (3)  
AF mode (1)  
AF mode (2)  
16 (V2C/V3C)  
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
16 (V2C/V3C)  
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
16 (V2C/V3C)  
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
15 (V2C/V3C)  
14 (V2A/V3A)  
13 (V2B/V3B)  
12 (V2C/V3C)  
11 (V2C/V3C)  
10 (V2B/V3B)  
9 (V2A/V3A)  
8 (V2C/V3C)  
7 (V2C/V3C)  
6 (V2A/V3A)  
5 (V2B/V3B)  
4 (V2C/V3C)  
3 (V2C/V3C)  
2 (V2B/V3B)  
1 (V2A/V3A)  
15 (V2C/V3C)  
14 (V2A/V3A)  
13 (V2B/V3B)  
12 (V2C/V3C)  
11 (V2C/V3C)  
10 (V2B/V3B)  
9 (V2A/V3A)  
8 (V2C/V3C)  
7 (V2C/V3C)  
6 (V2A/V3A)  
5 (V2B/V3B)  
4 (V2C/V3C)  
3 (V2C/V3C)  
2 (V2B/V3B)  
1 (V2A/V3A)  
15 (V2C/V3C)  
14 (V2A/V3A)  
13 (V2B/V3B)  
12 (V2C/V3C)  
11 (V2C/V3C)  
10 (V2B/V3B)  
9 (V2A/V3A)  
8 (V2C/V3C)  
7 (V2C/V3C)  
6 (V2A/V3A)  
5 (V2B/V3B)  
4 (V2C/V3C)  
3 (V2C/V3C)  
2 (V2B/V3B)  
1 (V2A/V3A)  
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
B
G
B
G
VOUT  
VOUT  
VOUT  
Note) Blacked out portions in the diagram indicate pixels which are not read out.  
7. Center scan mode (3)  
This is the center scan mode using the progressive scan method.  
The undesired portions are swept by vertical register high-speed transfer, and the picture center is cut out.  
The number of output lines is 580 lines at 36MHz, and 444 lines at 28.6364MHz.  
8. AF mode (1)  
In this mode, the undesired portions are swept by vertical register high-speed transfer, and the vertical  
940-pixel region in the center of the picture is output in approximately 1/60s by reading out the signals for  
only two out of eight lines (1st and 6th lines, 9th and 14th lines). The number of output lines is 235 lines at  
36MHz, and 170 lines at 28.6364MHz. This mode aims for even faster AF control than 2/8-line readout  
mode.  
9. AF mode (2)  
In this mode, the undesired portions are swept by vertical register high-speed transfer, and the vertical  
300-pixel region in the center of the picture is output in approximately 1/120s by reading out the signals for  
only two out of eight lines (1st and 6th lines, 9th and 14th lines). The number of output lines is 75 lines at  
36MHz, and 43 lines at 28.6364MHz. This mode aims for even faster AF control than 2/8-line readout  
mode.  
16 –  
ICX274AQ  
Center scan and AF modes  
Undesired portions (Swept by vertical register high-speed transfer)  
Picture center cut-out portion  
Description of Center Scan and AF Mode Operation  
The center scan and AF modes realize high frame rates by sweeping the top and bottom of the picture with  
high-speed transfer and cutting out the center of the picture.  
The various readout modes during center scan and AF operation are described below.  
AF modes  
AF mode (1), (2): The output method is the same as readout in 2/8-line readout mode.  
Center scan modes  
Center scan mode (1): The output method is the same as 2/4-line readout mode.  
Center scan mode (2): The output method consists of 2-line addition readout whereby the signals for only  
two out of four lines (3rd and 4th lines, 7th and 8th lines, and so on) are read out,  
the vertical register is shifted by 2 bits, and then the signals of the remaining two  
out of the four lines (1st and 2nd lines, 5th and 6th lines, and so on) are read out  
and added within the vertical register.  
Center scan mode (3): The output method is the same as progressive scan mode.  
The readout method, frame rate, number of output lines and other information for each readout mode are  
shown in the table below.  
Number of output  
Frame rate (frame/s) effective pixel data  
Addition  
method  
lines  
Mode  
Readout method  
28.6MHz 36MHz 28.6MHz 36MHz  
Progressive scan mode Progressive scan  
None  
None  
9.99  
29.97  
19.98  
19.98  
29.97  
29.97  
29.97  
59.94  
119.88  
14.985  
29.97  
19.98  
19.98  
29.97  
29.97  
29.97  
59.94  
119.88  
1220  
305  
610  
1220  
434  
434  
444  
170  
43  
1220  
305  
610  
1220  
568  
568  
580  
235  
75  
2/8-line readout mode  
2/4-line readout mode  
2-line addition mode  
Center scan mode (1)  
Center scan mode (2)  
Center scan mode (3)  
AF mode (1)  
2/8-line readout  
2/4-line readout  
2/4-line readout  
2/4-line readout  
None  
Vertical 2-line  
None  
2-line addition readout Vertical 2-line  
Progressive scan  
2/8-line readout  
2/8-line readout  
None  
None  
None  
AF mode (2)  
17 –  
ICX274AQ  
Measurement conditions  
(1) In the following measurements, the device drive conditions are at the typical values of the bias and clock  
voltage conditions, and the progressive scan readout mode is used.  
(2) In the following measurements, spot blemishes are excluded and, unless otherwise specified, the optical  
black level (OB) is used as the reference for the signal output, which is taken as the value of the Gr/Gb  
signal output or the R/B signal output of the measurement system.  
Definition of standard imaging conditions  
(1) Standard imaging condition I:  
Use a pattern box (luminance: 706cd/m2, color temperature of 3200K halogen source) as a subject.  
(Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S (t = 1.0mm) as an IR  
cut filter and image at F5.6. The luminous intensity to the sensor receiving surface at this point is defined  
as the standard sensitivity testing luminous intensity.  
(2) Standard imaging condition II:  
Image a light source (color temperature of 3200K) with a uniformity of brightness within 2% at all angles.  
Use a testing standard lens with CM500S (t = 1.0mm) as an IR cut filter. The luminous intensity is adjusted  
to the value indicated in each testing item by the lens diaphragm.  
1. Sensitivity  
Set to the standard imaging condition I. After setting the electronic shutter mode with a shutter speed of  
1/100s, measure the signal voltages (VGr, VGb) at the center of each Gr and Gb channel screen, and  
substitute the values into the following formulas.  
VG = (VGr + VGb)/2  
100  
Sg = VG ×  
[mV]  
30  
2. Saturation signal  
Set to the standard imaging condition II. After adjusting the luminous intensity to 20 times the intensity with  
the average value of the G channel signal output, 150mV, measure the minimum values of the G, R and B  
signal outputs.  
3. Smear  
Set to standard imaging condition II. With the lens diaphragm at F5.6 to F8, first adjust the average value  
of the Gr signal output to 150mV. Measure the average values of the Gr signal output, Gb signal output, R  
signal output and B signal output (Gra, Gba, Ra, Ba), and then adjust the luminous intensity to 500 times  
the intensity with the average value of the Gr signal output, 150mV. After the readout clock is stopped and  
the charge drain is executed by the electronic shutter at the respective H blankings, measure the maximum  
value (Vsm [mV]) independent of the Gr, Gb, R and B signal outputs, and substitute the values into the  
following formula.  
Smear in modes other than progressive scan mode is calculated from the storage time and signal  
addition method. As a result, 2-line addition mode and center scan modes (2) and (3) are the same as  
progressive scan mode, 2/4-line readout mode and center scan mode (1) are two times progressive scan  
mode, and 2/8-line readout mode and AF modes (1) and (2) are four times progressive scan mode.  
Gra + Gba + Ra + Ba  
4
1
500  
1
10  
Sm = 20 × log Vsm ÷  
×
×
[dB] (1/10V method conversion value)  
(
)
18 –  
ICX274AQ  
4. Video signal shading  
Set to the standard imaging condition II. With the lens diaphragm at F5.6 to F8, adjusting the luminous  
intensity so that the average value of the G channel signal output is 150mV. Then measure the maximum  
value (Gmax [mV]) and minimum value (Gmin [mV]) of the G signal output and substitute the values into  
the following formula.  
SH = (Gmax Gmin)/150 × 100 [%]  
5. Uniformity between video signal channels  
After measuring 4, measure the maximum (Rmax [mV]) and minimum (Rmin [mV]) values of the R signal  
and the maximum (Bmax [mV]) and minimum (Bmin [mV]) values of the B signal, and substitute the values  
into the following formulas.  
Srg = (Rmax Rmin)/150 × 100 [%]  
Sbg = (Bmax Bmin)/150 × 100 [%]  
6. Dark signal  
Measure the average value of the signal output (Vdt [mV]) with the device ambient temperature of 60°C  
and the device in the light-obstructed state, using the horizontal idle transfer level as a reference.  
7. Dark signal shading  
After measuring 6, measure the maximum (Vdmax [mV]) and minimum (Vdmin [mV]) values of the dark  
signal output and substitute the values into the following formula.  
Vdt = Vdmax Vdmin [mV]  
8. Line crawl  
Set to the standard imaging condition II. Adjusting the luminous intensity so that the value of the Gr signal  
output is 150mV, and then insert R, G and B filters and measure the difference between G signal lines  
(Glr, Glg, Glb [mV]) as well as the value of the G signal output (Gar, Gag, Gab). Substitute the values  
into the following formula.  
Gli  
Gai  
Lci =  
× 100 [%] (i = r, g, b)  
9. Lag  
Adjust the Y signal output generated by the strobe light to 150mV. After setting the strobe light so that it  
strobes with the following timing, measure the residual signal amount (Vlag). Substitute the value into the  
following formula.  
Lag = (Vlag/150) × 100 [%]  
VD  
Light  
Strobe light timing  
Y signal output 150mV  
Vlag (lag)  
Output  
19 –  
ICX274AQ  
O U V T  
D D V  
R φ G  
G N D  
1 φ V  
2 B φ H  
1 B φ H  
2 C φ V  
2 B φ V  
2 A φ V  
3 C φ V  
3 B φ V  
3 A φ V  
G N D  
S φ U B  
S U C B  
L V  
1 A φ H  
2 A φ H  
4 φ V  
20 –  
ICX274AQ  
1 0  
9
8
7
6
5
4
3
2
1
1 0  
1 4  
1 3  
1 2  
1 1  
1 0  
9
8
7
6
5
4
3
2
1
9
8
7
6
5
4
3
2
1
2 8 . 6 M H z  
1 4 9 3  
1 4 9 2  
3 6 M H z  
1 2 5 2  
1 2 5 1  
1 2 5 0  
1 2 4 9  
1 2 3 6  
1 2 3 5  
1 0  
9
8
7
6
5
4
3
2
1
1 4  
1 3  
1 2  
1 1  
1 0  
1 0  
9
8
7
6
5
4
3
2
1
9
8
7
6
5
4
3
2
1
2 8 . 6 M H z  
1 4 9 3  
1 4 9 2  
3 6 M H z  
1 2 5 2  
1 2 5 1  
1 2 5 0  
1 2 4 9  
1 2 3 6  
1 2 3 5  
21 –  
ICX274AQ  
2 9 6  
1 9 2 0  
22 –  
ICX274AQ  
23 –  
ICX274AQ  
1
2 8 . 6 M H z  
3 6 M H z  
1 7 4 2  
1 5 6 5  
1 5 6 4  
1 3 2 1  
1 2 3 6  
1 2 3 5  
1 0  
9
8
7
6
5
4
3
2
1
1 0  
9
8
7
6
5
4
3
2
1
7 2  
7 0  
1 1  
1 0  
9
8
7
6
5
4
3
2
1
24 –  
ICX274AQ  
1
25 –  
ICX274AQ  
4 6  
4 1  
3 8  
3 3  
3 0  
2 5  
2 2  
1 7  
1 4  
1 4  
1 3  
1 2  
1 1  
1 0  
9
8
7
6
5
4
3
2
1
9
6
1
8
3
3 6 M H z  
2 8 . 6 M H z  
5 1 1  
5 1 0  
4 0 7  
4 0 6  
1 2 3 3  
1 2 3 0  
1 2 2 5  
3 1 2  
3 1 1  
4 6  
1 4  
4 1  
3 8  
3 3  
3 0  
2 5  
2 2  
1 7  
1 4  
1 3  
1 2  
1 1  
1 0  
9
8
7
6
5
4
3
2
1
9
6
1
8
3
3 6 M H z  
5 1 1  
5 1 0  
2 8 . 6 M H z  
4 0 7  
4 0 6  
1 2 3 3  
1 2 3 0  
1 2 2 5  
3 1 2  
3 1 1  
26 –  
ICX274AQ  
7 2 8  
2 3 5 2  
27 –  
ICX274AQ  
28 –  
ICX274AQ  
1 0  
9
8
7
6
5
4
3
2
1
8
7
4
3
1 0  
9
6
5
3 6 M H z  
2 8 . 6 M H z  
8 7 1  
6 9 3  
6 5 2  
1 2 3 6  
1 2 3 5  
1 2 3 2  
1 2 3 1  
1 0  
9
8
7
6
5
4
3
2
1
8
7
4
3
1 0  
9
6
5
3 6 M H z  
2 8 . 6 M H z  
8 7 1  
6 9 3  
6 2 5  
1 2 3 6  
1 2 3 5  
1 2 3 2  
1 2 3 1  
29 –  
ICX274AQ  
4 4 6  
2 0 7 0  
30 –  
ICX274AQ  
31 –  
ICX274AQ  
1 0  
9
8
7
6
5
4
3
2
1
8
7
4
3
1 0  
9
6
5
6
5
2
1
8
7
4
3
3 6 M H z  
2 8 . 6 M H z  
8 7 1  
6 9 3  
6 2 5  
2
1
1 2 3 6 1 2 3 4  
1 2 3 5 1 2 3 3  
1 2 3 2 1 2 3 0  
1 2 3 1 1 2 2 9  
1 0  
9
8
7
6
5
4
3
2
1
8
7
4
3
1 0  
9
6
5
6
5
2
1
8
7
4
3
3 6 M H z  
2 8 . 6 M H z  
8 7 1  
6 9 3  
2
6 2 5  
1
1 2 3 6 1 2 3 4  
1 2 3 5 1 2 3 3  
1 2 3 2 1 2 3 0  
1 2 3 1 1 2 2 9  
32 –  
ICX274AQ  
4 4 6  
2 0 7 0  
33 –  
ICX274AQ  
34 –  
ICX274AQ  
1 9 2  
1 9 1  
1 8 8  
1 7  
1 5  
1 0  
9
8
7
6
5
4
3
2
1
4 6 2  
4 6 1  
4 6 0  
4 5 9  
4 5 3  
4 5 2  
4 5 1  
4 5 0  
1 0 5 5  
1 0 5 2  
1 0 5 1  
1 0 4 8  
1 9 5  
1 9 2  
1 9 1  
1 8 8  
1 7  
1 5  
1 0  
9
8
7
6
5
4
3
2
1
4 6 2  
4 6 1  
4 6 0  
4 5 9  
4 5 8  
4 5 3  
4 5 2  
4 5 1  
4 5 0  
1 0 5 5  
1 0 5 2  
35 –  
ICX274AQ  
6 0  
5 9  
5 6  
5 5  
1 0  
9
8
7
6
5
4
3
2
1
5 8 1  
5 8 0  
5 7 9  
5 7 8  
5 7 7  
5 7 6  
1 1 8 8  
1 1 8 7  
1 1 8 4  
1 1 8 3  
6 0  
5 9  
5 6  
5 5  
1 0  
9
8
7
6
5
4
3
2
1
5 8 1  
5 8 0  
5 7 9  
5 7 8  
5 7 7  
5 7 6  
1 1 8 8  
1 1 8 7  
1 1 8 4  
1 1 8 3  
36 –  
ICX274AQ  
37 –  
ICX274AQ  
38 –  
ICX274AQ  
39 –  
ICX274AQ  
1 9 2  
1 9 1  
1 8 8  
1 9 0  
1 8 9  
1 8 6  
1 8  
1 5  
1 0  
9
8
7
6
5
4
3
2
1
4 6 2  
4 6 1  
4 6 0  
4 5 9  
4 5 8  
4 5 7  
4 5 6  
4 5 5  
4 5 4  
4 5 3  
4 5 2  
1 0 5 5 1 0 5 3  
1 0 5 2 1 0 5 0  
1 0 5 1 1 0 4 9  
1 0 4 8 1 0 4 6  
1 9 5  
1 9 2  
1 9 1  
1 8 8  
1 9 3  
1 9 0  
1 8 9  
1 8 6  
1 8  
1 5  
1 0  
9
8
7
6
5
4
3
2
1
4 6 2  
4 6 1  
4 6 0  
4 5 9  
4 5 8  
4 5 7  
4 5 6  
4 5 5  
4 5 4  
4 5 3  
4 5 2  
1 0 5 5 1 0 5 3  
1 0 5 2 1 0 5 0  
40 –  
ICX274AQ  
6 0  
5 9  
5 6  
5 5  
5 8  
5 7  
5 4  
5 3  
1 0  
9
8
7
6
5
4
3
2
1
5 8 1  
5 8 0  
5 7 9  
5 7 8  
5 7 7  
5 7 6  
1 1 8 8 1 1 8 6  
1 1 8 7 1 1 8 5  
1 1 8 4 1 1 8 2  
1 1 8 3 1 1 8 1  
6 0  
5 8  
5 7  
5 4  
5 3  
5 9  
5 6  
5 5  
1 0  
9
8
7
6
5
4
3
2
1
5 8 1  
5 8 0  
5 7 9  
5 7 8  
5 7 7  
5 7 6  
1 1 8 8 1 1 8 6  
1 1 8 7 1 1 8 5  
1 1 8 4 1 1 8 2  
1 1 8 3 1 1 8 1  
41 –  
ICX274AQ  
42 –  
ICX274AQ  
43 –  
ICX274AQ  
44 –  
ICX274AQ  
4 4 6  
2 0 7 0  
45 –  
ICX274AQ  
1
46 –  
ICX274AQ  
1
47 –  
ICX274AQ  
3 9 8  
3 9 7  
3 5  
3 4  
3 3  
3 2  
6
5
4
3
2
1
4 9 8  
4 9 7  
4 9 6  
4 7 9  
4 7 8  
8 4 0  
8 3 9  
3 9 8  
3 9 7  
3 5  
3 4  
3 3  
3 2  
6
5
4
3
2
1
4 9 8  
4 9 7  
4 9 6  
4 7 9  
4 7 8  
8 4 0  
8 3 9  
48 –  
ICX274AQ  
3 3 0  
3 2 9  
3 0  
2 9  
2 8  
2 7  
6
5
4
3
2
1
6 2 6  
6 2 5  
6 2 4  
6 1 0  
6 0 9  
9 0 8  
9 0 7  
3 1  
3 3 0  
3 2 9  
3 0  
2 9  
2 8  
2 7  
6
5
4
3
2
1
6 2 6  
6 2 5  
6 2 4  
6 1 0  
6 0 9  
9 0 8  
9 0 7  
49 –  
ICX274AQ  
2 9 6  
1 9 2 0  
50 –  
ICX274AQ  
51 –  
ICX274AQ  
52 –  
ICX274AQ  
53 –  
ICX274AQ  
1
54 –  
ICX274AQ  
1
55 –  
ICX274AQ  
2 8 9  
2 8 6  
2 2  
2 1  
2 0  
1 9  
9
8
7
6
5
4
3
2
1
2 0 4  
2 0 3  
2 0 2  
2 0 1  
1 9 1  
1 9 0  
9 5 8  
9 5 3  
2 8 9  
2 8 6  
2 2  
2 1  
2 0  
1 9  
8
7
6
5
4
3
2
1
2 0 4  
2 0 3  
2 0 2  
2 0 1  
1 9 1  
1 9 0  
9 5 8  
9 5 3  
56 –  
ICX274AQ  
1 5 8  
1 5 3  
1 4  
1 3  
1 2  
1 1  
1 0  
9
8
7
6
5
4
3
2
1
2 5 6  
2 5 5  
2 5 4  
2 4 9  
2 4 8  
1 0 8 9  
1 0 8 6  
1 5 8  
1 5 3  
1 4  
1 3  
1 2  
1 1  
1 0  
9
8
7
6
5
4
3
2
1
2 5 6  
2 5 5  
2 5 4  
2 4 9  
2 4 8  
1 0 8 9  
1 0 8 6  
57 –  
ICX274AQ  
58 –  
ICX274AQ  
59 –  
ICX274AQ  
1
60 –  
ICX274AQ  
1
61 –  
ICX274AQ  
5 4 2  
5 3 7  
3 8  
3 7  
3 6  
3 5  
9
8
7
6
5
4
3
2
1
1 0 2  
1 0 1  
1 0 0  
8 1  
7 0 5  
7 0 2  
8 0  
5 4 2  
5 3 7  
3 8  
3 7  
3 6  
3 5  
9
8
7
6
5
4
3
2
1
1 0 2  
1 0 1  
1 0 0  
8 1  
8 0  
7 0 5  
7 0 2  
62 –  
ICX274AQ  
4 7 8  
4 7 3  
3 4  
3 3  
3 2  
3 1  
9
8
7
6
5
4
3
2
1
1 2 8  
1 2 7  
1 2 6  
1 0 9  
1 0 8  
7 6 9  
7 6 6  
4 7 8  
4 7 3  
3 4  
3 3  
3 2  
3 1  
9
8
7
6
5
4
3
2
1
1 2 8  
1 2 7  
1 2 6  
1 0 9  
1 0 8  
7 6 9  
7 6 6  
63 –  
ICX274AQ  
64 –  
ICX274AQ  
65 –  
ICX274AQ  
1
66 –  
ICX274AQ  
1
67 –  
ICX274AQ  
7 2 8  
2 3 5 2  
68 –  
ICX274AQ  
69 –  
ICX274AQ  
Notes of Handling  
1) Static charge prevention  
CCD image sensors are easily damaged by static discharge. Before handling be sure to take the following  
protective measures.  
a) Either handle bare handed or use non-chargeable gloves, clothes or material.  
Also use conductive shoes.  
b) When handling directly use an earth band.  
c) Install a conductive mat on the floor or working table to prevent the generation of static electricity.  
d) Ionized air is recommended for discharge when handling CCD image sensors.  
e) For the shipment of mounted substrates, use boxes treated for the prevention of static charges.  
2) Soldering  
a) Make sure the package temperature does not exceed 80°C.  
b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a ground 30W  
soldering iron and solder each pin in less than 2 seconds. For repairs and remount, cool sufficiently.  
c) To dismount an image sensor, do not use a solder suction equipment. When using an electric  
desoldering tool, use a thermal controller of the zero-cross On/Off type and connect it to ground.  
3) Dust and dirt protection  
Image sensors are packed and delivered by taking care of protecting its glass plates from harmful dust and  
dirt. Clean glass plates with the following operations as required, and use them.  
a) Perform all assembly operations in a clean room (class 1000 or less).  
b) Do not either touch glass plates by hand or have any object come in contact with glass surfaces. Should  
dirt stick to a glass surface, blow it off with an air blower. (For dirt stuck through static electricity ionized  
air is recommended.)  
c) Clean with a cotton bud and ethyl alcohol if grease stained. Be careful not to scratch the glass.  
d) Keep in a case to protect from dust and dirt. To prevent dew condensation, preheat or precool when  
moving to a room with great temperature differences.  
e) When a protective tape is applied before shipping, just before use remove the tape applied for  
electrostatic protection. Do not reuse the tape.  
4) Installing (attaching)  
a) Remain within the following limits when applying a static load to the package. Do not apply any load  
more than 0.7mm inside the outer perimeter of the glass portion, and do not apply any load or impact to  
limited portions. (This may cause cracks in the package.)  
Cover glass  
50N  
50N  
1.2Nm  
Plastic package  
Compressive strength  
Torsional strength  
b) If a load is applied to the entire surface by a hard component, bending stress may be generated and the  
package may fracture, etc., depending on the flatness of the bottom of the package. Therefore, for  
installation, use either an elastic load, such as a spring plate, or an adhesive.  
70 –  
ICX274AQ  
c) The adhesive may cause the marking on the rear surface to disappear, especially in case the regulated  
voltage value is indicated on the rear surface.Therefore, the adhesive should not be applied to this area,  
and indicated values should be transferred to other locations as a precaution.  
d) The notch of the package is used for directional index, and that can not be used for reference of fixing.  
In addition, the cover glass and seal resin may overlap with the notch of the package.  
e) If the leads are bent repeatedly and metal, etc., clash or rub against the package, the dust may be  
generated by the fragments of resin.  
f) Acrylate anaerobic adhesives are generally used to attach CCD image sensors. In addition, cyano-  
acrylate instantaneous adhesives are sometimes used jointly with acrylate anaerobic adhesives.  
(reference)  
5) Others  
a) Do not expose to strong light (sun rays) for long periods, as color filters will be discolored. When high  
luminous objects are imaged with the exposure level controlled by the electronic iris, the luminance of  
the image-plane may become excessive and discoloring of the color filter will possibly be accelerated. In  
such a case, it is advisable that taking-lens with the automatic-iris and closing of the shutter during the  
power-off mode should be properly arranged. For continuous using under cruel condition exceeding the  
normal using condition, consult our company.  
b) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or  
usage in such conditions.  
c) Brown stains may be seen on the bottom or side of the package. But this does not affect the CCD  
characteristics.  
d) This package has 2 kinds of internal structure. However, their package outline, optical size, and strength  
are the same.  
Structure A  
Structure B  
Package  
Chip  
Metal plate  
(lead frame)  
Cross section of  
lead frame  
The cross section of lead frame can be seen on the side of the package for structure A.  
71 –  
ICX274AQ  
1 . 7  
1 . 7  
t o 0 9 ˚ ˚  
0 . 2 5  
2
1 2 .  
2 . 9 ± 0 . 1 5  
0 . 5  
3 . 5 ± 0 . 3  
1 2 . 0 ± 0 . 1  
2 . 4  
0 . 8  
1 0 . 9  
6 . 0  
9 . 0  
2 . 5  
2 . 5  
0 . 5  
~
~
Sony Corporation  
72 –  

Wharfedale Diamond 157 User Manual
Sony TRV88 User Manual
Sony SPK HCB User Manual
Sony HVL F58AM User Manual
Sony HDR CX210 User Manual
Sony Handycam HDR SR1 User Manual
Sony DFW V500 User Manual
Sharp AQUOS BD HP21U User Manual00000000#
Samsung Cash Register ER 290 User Manual
Rosewill Car Video System RHMS 11003 User Manual