Mitsubishi Electronics Mitsubishi Digital Electronics Car Amplifier MR J2M P8B User Manual

General-Purpose AC Servo  
J2M Series  
SSCNET Compatible  
MODEL  
MR-J2M-P8B  
MR-J2M- DU  
MR-J2M-BU  
SERVO AMPLIFIER  
INSTRUCTION MANUAL  
G
1. To prevent electric shock, note the following:  
WARNING  
Before wiring or inspection, switch power off and wait for more than 15 minutes. Then, confirm the voltage  
is safe with voltage tester. Otherwise, you may get an electric shock.  
Connect the base unit and servo motor to ground.  
Any person who is involved in wiring and inspection should be fully competent to do the work.  
Do not attempt to wire for each unit and the servo motor until they are installed. Otherwise, you can obtain  
the electric shock.  
Operate the switches with dry hand to prevent an electric shock.  
The cables should not be damaged, stressed, loaded, or pinched. Otherwise, you may get an electric  
shock.  
During power-on or operation, do not open the front cover of the servo amplifier. You may get an electric  
shock.  
Do not operate the servo amplifier with the front cover removed. High-voltage terminals and charging area  
are exposed and you may get an electric shock.  
Except for wiring or periodic inspection, do not remove the front cover even of the servo amplifier if the  
power is off. The servo amplifier is charged and you may get an electric shock.  
2. To prevent fire, note the following:  
CAUTION  
Do not install the base unit, servo motor and regenerative brake resistor on or near combustibles.  
Otherwise a fire may cause.  
When each unit has become faulty, switch off the main base unit power side. Continuous flow of a large  
current may cause a fire.  
When a regenerative brake resistor is used, use an alarm signal to switch main power off. Otherwise, a  
regenerative brake transistor fault or the like may overheat the regenerative brake resistor, causing a fire.  
3. To prevent injury, note the follow  
CAUTION  
Only the voltage specified in the Instruction Manual should be applied to each terminal. Otherwise, a  
burst, damage, etc. may occur.  
Connect the terminals correctly to prevent a burst, damage, etc.  
Ensure that polarity ( , ) is correct. Otherwise, a burst, damage, etc. may occur.  
Take safety measures, e.g. provide covers, to prevent accidental contact of hands and parts (cables, etc.)  
with the servo amplifier heat sink, regenerative brake resistor, servo motor, etc.since they may be hot  
while power is on or for some time after power-off. Their temperatures may be high and you may get  
burnt or a parts may damaged.  
During operation, never touch the rotating parts of the servo motor. Doing so can cause injury.  
A - 2  
4. Additional instructions  
The following instructions should also be fully noted. Incorrect handling may cause a fault, injury, electric  
shock, etc.  
(1) Transportation and installation  
CAUTION  
Transport the products correctly according to their masses.  
Stacking in excess of the specified number of products is not allowed.  
Do not carry the servo motor by the cables, shaft or encoder.  
Do not hold the front cover to transport each unit. Each unit may drop.  
Install the each unit in a load-bearing place in accordance with the Instruction Manual.  
Do not climb or stand on servo equipment. Do not put heavy objects on equipment.  
The controller and servo motor must be installed in the specified direction.  
Leave specified clearances between the base unit and control enclosure walls or other equipment.  
Do not install or operate the unit and servo motor which has been damaged or has any parts missing.  
Provide adequate protection to prevent screws and other conductive matter, oil and other combustible  
matter from entering each unit and servo motor.  
Do not drop or strike each unit or servo motor. Isolate from all impact loads.  
When you keep or use it, please fulfill the following environmental conditions.  
Conditions  
Environment  
Each unit  
0 to 55 (non-freezing)  
32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
Servo motor  
0 to 40 (non-freezing)  
32 to 104 (non-freezing)  
15 to 70 (non-freezing)  
5 to 158 (non-freezing)  
[
[
[
[
]
]
]
]
During  
operation  
Ambient  
temperature  
In storage  
During  
operation  
In storage  
90%RH or less (non-condensing)  
80%RH or less (non-condensing)  
Ambient  
humidity  
90%RH or less (non-condensing)  
Ambience  
Altitude  
Indoors (no direct sunlight) Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280 ft) above sea level  
HC-KFS Series  
[m/s2]  
[ft/s2]  
5.9 or less  
HC-MFS Series  
HC-UFS13 to 43  
HC-KFS Series  
HC-MFS Series  
HC-UFS13 to 43  
X
X
Y : 49  
(Note)  
Vibration  
19.4 or less  
Y : 161  
Note. Except the servo motor with reduction gear.  
Securely attach the servo motor to the machine. If attach insecurely, the servo motor may come off during  
operation.  
The servo motor with reduction gear must be installed in the specified direction to prevent oil leakage.  
Take safety measures, e.g. provide covers, to prevent accidental access to the rotating parts of the servo  
motor during operation.  
Never hit the servo motor or shaft, especially when coupling the servo motor to the machine. The encoder  
may become faulty.  
Do not subject the servo motor shaft to more than the permissible load. Otherwise, the shaft may break.  
When the equipment has been stored for an extended period of time, consult Mitsubishi.  
A - 3  
(2) Wiring  
CAUTION  
Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate.  
Do not install a power capacitor, surge absorber or radio noise filter (FR-BIF option) between the servo  
motor and drive unit.  
Connect the output terminals (U, V, W) correctly. Otherwise, the servo motor will operate improperly.  
Connect the servo motor power terminal (U, V, W) to the servo motor power input terminal (U, V, W)  
directly. Do not let a magnetic contactor, etc. intervene.  
Drive unit  
Servo Motor  
U
V
U
V
W
W
Do not connect AC power directly to the servo motor. Otherwise, a fault may occur.  
The surge absorbing diode installed on the DC output signal relay of the servo amplifier must be wired in  
the specified direction. Otherwise, the forced stop and other protective circuits may not operate.  
Interface unit  
VIN  
Interface unit  
VIN  
SG  
SG  
Control output  
signal  
Control output  
signal  
RA  
RA  
(3) Test run adjustment  
CAUTION  
Before operation, check the parameter settings. Improper settings may cause some machines to perform  
unexpected operation.  
The parameter settings must not be changed excessively. Operation will be insatiable.  
A - 4  
(4) Usage  
CAUTION  
Provide a emergency stop circuit to ensure that operation can be stopped and power switched off  
immediately.  
Any person who is involved in disassembly and repair should be fully competent to do the work.  
Before resetting an alarm, make sure that the run signal of the servo amplifier is off to prevent an accident.  
A sudden restart is made if an alarm is reset with the run signal on.  
Do not modify the equipment.  
Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be caused by  
electronic equipment used near MELSERVO-J2M.  
Burning or breaking each unit may cause a toxic gas. Do not burn or break each unit.  
Use the drive unit with the specified servo motor.  
The electromagnetic brake on the servo motor is designed to hold the motor shaft and should not be used  
for ordinary braking.  
For such reasons as service life and mechanical structure (e.g. where a ballscrew and the servo motor  
are coupled via a timing belt), the electromagnetic brake may not hold the motor shaft. To ensure safety,  
install a stopper on the machine side.  
(5) Corrective actions  
CAUTION  
When it is assumed that a hazardous condition may take place at the occur due to a power failure or a  
product fault, use a servo motor with electromagnetic brake or an external brake mechanism for the  
purpose of prevention.  
Configure the electromagnetic brake circuit so that it is activated not only by the interface unit signals but  
also by a forced stop (EM1).  
Contacts must be open when  
servo-off, when an alarm occurrence  
and when an electromagnetic brake  
interlock (MBR).  
Circuit must be  
opened during  
forced stop (EM1).  
Servo motor  
RA EM1  
24VDC  
Electromagnetic brake  
When any alarm has occurred, eliminate its cause, ensure safety, and deactivate the alarm before  
restarting operation.  
When power is restored after an instantaneous power failure, keep away from the machine because the  
machine may be restarted suddenly (design the machine so that it is secured against hazard if restarted).  
A - 5  
(6) Maintenance, inspection and parts replacement  
CAUTION  
With age, the electrolytic capacitor of the drive unit will deteriorate. To prevent a secondary accident due  
to a fault, it is recommended to replace the electrolytic capacitor every 10 years when used in general  
environment.  
Please consult our sales representative.  
(7) General instruction  
To illustrate details, the equipment in the diagrams of this Instruction Manual may have been drawn  
without covers and safety guards. When the equipment is operated, the covers and safety guards must  
be installed as specified. Operation must be performed in accordance with this Instruction Manual.  
A - 6  
About processing of waste  
When you discard servo amplifier, a battery (primary battery), and other option articles, please follow the law of  
each country (area).  
FOR MAXIMUM SAFETY  
These products have been manufactured as a general-purpose part for general industries, and have not  
been designed or manufactured to be incorporated in a device or system used in purposes related to  
human life.  
Before using the products for special purposes such as nuclear power, electric power, aerospace,  
medicine, passenger movement vehicles or under water relays, contact Mitsubishi.  
These products have been manufactured under strict quality control. However, when installing the product  
where major accidents or losses could occur if the product fails, install appropriate backup or failsafe  
functions in the system.  
EEP-ROM life  
The number of write times to the EEP-ROM, which stores parameter settings, etc., is limited to 100,000. If  
the total number of the following operations exceeds 100,000, the servo amplifier and/or converter unit may  
fail when the EEP-ROM reaches the end of its useful life.  
Write to the EEP-ROM due to parameter setting changes  
Precautions for Choosing the Products  
Mitsubishi will not be held liable for damage caused by factors found not to be the cause of Mitsubishi;  
machine damage or lost profits caused by faults in the Mitsubishi products; damage, secondary damage,  
accident compensation caused by special factors unpredictable by Mitsubishi; damages to products other  
than Mitsubishi products; and to other duties.  
A - 7  
COMPLIANCE WITH EC DIRECTIVES  
1. WHAT ARE EC DIRECTIVES?  
The EC directives were issued to standardize the regulations of the EU countries and ensure smooth  
distribution of safety-guaranteed products. In the EU countries, the machinery directive (effective in  
January, 1995), EMC directive (effective in January, 1996) and low voltage directive (effective in January,  
1997) of the EC directives require that products to be sold should meet their fundamental safety  
requirements and carry the CE marks (CE marking). CE marking applies to machines and equipment  
into which servo (MELSERVO-J2M is contained) have been installed.  
(1) EMC directive  
The EMC directive applies not to the servo units alone but to servo-incorporated machines and  
equipment. This requires the EMC filters to be used with the servo-incorporated machines and  
equipment to comply with the EMC directive. For specific EMC directive conforming methods, refer to  
the EMC Installation Guidelines (IB(NA)67310).  
(2) Low voltage directive  
The low voltage directive applies also to MELSERVO-J2M. Hence, they are designed to comply with  
the low voltage directive.  
MELSERVO-J2M is certified by TUV, third-party assessment organization, to comply with the low  
voltage directive.  
(3) Machine directive  
Not being machines, MELSERVO-J2M need not comply with this directive.  
2. PRECAUTIONS FOR COMPLIANCE  
(1) Unit and servo motors used  
Use each units and servo motors which comply with the standard model.  
Drive unit  
Interface unit  
Base unit  
:MR-J2M- DU  
:MR-J2M-P8B  
:MR-J2M-BU  
:HC-KFS  
Servo motor  
HC-MFS  
HC-UFS  
(2) Configuration  
Control box  
Reinforced  
insulating type  
24VDC  
power  
supply  
Reinforced  
insulating  
transformer  
No-fuse  
breaker  
Magnetic  
contactor  
Servo  
motor  
MELSERVO-  
J2M  
MC  
M
NFB  
A - 8  
(3) Environment  
Operate MELSERVO-J2M at or above the contamination level 2 set forth in IEC60664-1. For this  
purpose, install MELSERVO-J2M in a control box which is protected against water, oil, carbon, dust,  
dirt, etc. (IP54).  
(4) Power supply  
(a) Operate MELSERVO-J2M to meet the requirements of the overvoltage category II set forth in  
IEC60664-1. For this purpose, a reinforced insulating transformer conforming to the IEC or EN  
standard should be used in the power input section.  
(b) When supplying interface power from external, use a 24VDC power supply which has been  
insulation-reinforced in I/O.  
(5) Grounding  
(a) To prevent an electric shock, always connect the protective earth (PE) terminals (marked ) of the  
base unit to the protective earth (PE) of the control box.  
(b) Do not connect two ground cables to the same protective earth (PE) terminal. Always connect the  
cables to the terminals one-to-one.  
(c) If a leakage current breaker is used to prevent an electric shock, the protective earth (PE) terminals  
of the base unit must be connected to the corresponding earth terminals.  
(d) The protective earth (PE) of the servo motor is connected to the protective earth of the base unit via  
the screw which fastens the drive unit to the base unit. When fixing the drive unit to the base unit,  
therefore, tighten the accessory screw securely.  
(6) Auxiliary equipment and options  
(a) The no-fuse breaker and magnetic contactor used should be the EN or IEC standard-compliant  
products of the models described in Section 12.2.2.  
(b) The sizes of the cables described in Section 12.2.1 meet the following requirements. To meet the  
other requirements, follow Table 5 and Appendix C in EN60204-1.  
Ambient temperature: 40 (104) [ ( )]  
Sheath: PVC (polyvinyl chloride)  
Installed on wall surface or open table tray  
(c) Use the EMC filter for noise reduction.  
(7) Performing EMC tests  
When EMC tests are run on a machine/device into which MELSERVO-J2M has been installed, it must  
conform to the electromagnetic compatibility (immunity/emission) standards after it has satisfied the  
operating environment/electrical equipment specifications.  
For the other EMC directive guidelines on MELSERVO-J2M, refer to the EMC Installation  
Guidelines(IB(NA)67310).  
A - 9  
CONFORMANCE WITH UL/C-UL STANDARD  
The MELSERVO-J2M complies with UL508C.  
(1) Unit and servo motors used  
Use the each units and servo motors which comply with the standard model.  
Drive unit  
:MR-J2M- DU  
:MR-J2M-P8B  
:MR-J2M-BU  
:HC-KFS  
Interface unit  
Base unit  
Servo motor  
HC-MFS  
HC-UFS  
(2) Installation  
Install a fan of 100CFM (2.8m3/min)air flow 4 in (10.16 cm) above MELSERVO-J2M or provide cooling  
of at least equivalent capability.  
(3) Short circuit rating  
MELSERVO-J2M conforms to the circuit whose peak current is limited to 5000A or less. Having been  
subjected to the short-circuit tests of the UL in the alternating-current circuit, MELSERVO-J2M  
conforms to the above circuit.  
(4) Capacitor discharge time  
The capacitor discharge time is as listed below. To ensure safety, do not touch the charging section for  
15 minutes after power-off.  
Base unit  
Discharge time [min]  
MR-J2M-BU4  
MR-J2M-BU6  
MR-J2M-BU8  
3
4
5
(5) Options and auxiliary equipment  
Use UL/C-UL standard-compliant products.  
(6) Attachment of a servo motor  
For the flange size of the machine side where the servo motor is installed, refer to “CONFORMANCE  
WITH UL/C-UL STANDARD” in the Servo Motor Instruction Manual.  
(7) About wiring protection  
For installation in United States, branch circuit protection must be provided, in accordance with the  
National Electrical Code and any applicable local codes.  
For installation in Canada, branch circuit protection must be provided, in accordance with the Canada  
Electrical Code and any applicable provincial codes.  
<<About the manuals>>  
This Instruction Manual and the MELSERVO Servo Motor Instruction Manual are required if you use  
MELSERVO-J2M for the first time. Always purchase them and use the MELSERVO-J2M safely.  
Also read the manual of the servo system controller.  
Relevant manuals  
Manual name  
Manual No.  
MELSERVO-J2M Series To Use the AC Servo Safely  
(Packed with the MR-J2M-P8B, MR-J2M- BU and MR-J2M-BU  
MELSERVO Servo Motor Instruction Manual  
EMC Installation Guidelines  
IB(NA)0300027  
)
SH(NA)3181  
IB(NA)67310  
In this Instruction Manual, the drive unit, interface unit and base unit may be referred to as follows:  
Drive unit : DRU  
Interface unit : IFU  
Base unit : BU  
A - 10  
CONTENTS  
1. FUNCTIONS AND CONFIGURATION  
1- 1 to 1-10  
1.1 Overview................................................................................................................................................... 1- 1  
1.2 Function block diagram .......................................................................................................................... 1- 2  
1.3 Unit standard specifications................................................................................................................... 1- 3  
1.4 Function list ............................................................................................................................................. 1- 4  
1.5 Model code definition .............................................................................................................................. 1- 5  
1.6 Combination with servo motor............................................................................................................... 1- 6  
1.7 Parts identification.................................................................................................................................. 1- 7  
1.8 Servo system with auxiliary equipment................................................................................................ 1- 9  
2. INSTALLATION AND START UP  
2- 1 to 2-10  
2.1 Environmental conditions....................................................................................................................... 2- 1  
2.2 Installation direction and clearances .................................................................................................... 2- 2  
2.3 Keep out foreign materials ..................................................................................................................... 2- 3  
2.4 Cable stress.............................................................................................................................................. 2- 3  
2.5 Mounting method .................................................................................................................................... 2- 4  
2.6 When switching power on for the first time.......................................................................................... 2- 6  
2.7 Start up..................................................................................................................................................... 2- 7  
2.8 Control axis selection .............................................................................................................................. 2- 9  
3. SIGNALS AND WIRING  
3- 1 to 3-28  
3.1 Connection example of control signal system....................................................................................... 3- 2  
3.2 I/O signals of interface unit.................................................................................................................... 3- 4  
3.2.1 Connectors and signal arrangements............................................................................................. 3- 4  
3.2.2 Signal explanations .......................................................................................................................... 3- 5  
3.2.3 Interfaces........................................................................................................................................... 3- 6  
3.3 Signals and wiring for extension IO unit.............................................................................................. 3- 9  
3.3.1 Connection example ......................................................................................................................... 3- 9  
3.3.2 Connectors and signal configurations ...........................................................................................3-11  
3.3.3 Output signal explanations ............................................................................................................3-12  
3.4 Signals and wiring for base unit...........................................................................................................3-14  
3.4.1 Connection example of power line circuit......................................................................................3-14  
3.4.2 Connectors and signal configurations ...........................................................................................3-16  
3.4.3 Terminals..........................................................................................................................................3-17  
3.4.4 Power-on sequence...........................................................................................................................3-18  
3.5 Connection of drive unit and servo motor............................................................................................3-19  
3.5.1 Connection instructions ..................................................................................................................3-19  
3.5.2 Connection diagram ........................................................................................................................3-19  
3.5.3 I/O terminals ....................................................................................................................................3-20  
3.6 Alarm occurrence timing chart .............................................................................................................3-21  
3.7 Servo motor with electromagnetic brake .............................................................................................3-22  
3.8 Grounding................................................................................................................................................3-26  
3.9 Instructions for the 3M connector.........................................................................................................3-27  
1
4. OPERATION AND DISPLAY  
4- 1 to 4-10  
4.1 Normal indication.................................................................................................................................... 4- 1  
4.1.1 Display sequence............................................................................................................................... 4- 2  
4.1.2 If alarm/warning occurs................................................................................................................... 4- 3  
4.2 Status display mode of interface unit.................................................................................................... 4- 4  
4.2.1 Display flowchart.............................................................................................................................. 4- 4  
4.2.2 Status display of interface unit....................................................................................................... 4- 5  
4.2.3 Diagnostic mode of interface unit ................................................................................................... 4- 6  
4.2.4 Alarm mode of interface unit........................................................................................................... 4- 7  
4.2.5 Interface unit parameter mode ....................................................................................................... 4- 8  
4.2.6 Output signal (DO) forced output ................................................................................................... 4- 9  
5. PARAMETERS  
5- 1 to 5-26  
5.1 Drive unit ................................................................................................................................................. 5- 1  
5.1.1 Parameter write inhibit ................................................................................................................... 5- 1  
5.1.2 Lists.................................................................................................................................................... 5- 2  
5.2 Interface unit ..........................................................................................................................................5-15  
5.2.1 IFU parameter write inhibit...........................................................................................................5-15  
5.2.2 Lists...................................................................................................................................................5-15  
5.2.3 Analog monitor.................................................................................................................................5-21  
5.2.4 Test operation mode ........................................................................................................................5-24  
6. GENERAL GAIN ADJUSTMENT  
6- 1 to 6-12  
6.1 Different adjustment methods ............................................................................................................... 6- 1  
6.1.1 Adjustment on a MELSERVO-J2M................................................................................................ 6- 1  
6.1.2 Adjustment using MR Configurator (servo configuration software)........................................... 6- 3  
6.2 Auto tuning .............................................................................................................................................. 6- 4  
6.2.1 Auto tuning mode ............................................................................................................................. 6- 4  
6.2.2 Auto tuning mode operation............................................................................................................ 6- 5  
6.2.3 Adjustment procedure by auto tuning............................................................................................ 6- 6  
6.2.4 Response level setting in auto tuning mode .................................................................................. 6- 7  
6.3 Manual mode 1 (simple manual adjustment)....................................................................................... 6- 8  
6.3.1 Operation of manual mode 1 ........................................................................................................... 6- 8  
6.3.2 Adjustment by manual mode 1 ....................................................................................................... 6- 8  
6.4 Interpolation mode .................................................................................................................................6-11  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7- 1 to 7-10  
7.1 Function block diagram .......................................................................................................................... 7- 1  
7.2 Machine resonance suppression filter................................................................................................... 7- 1  
7.3 Adaptive vibration suppression control................................................................................................. 7- 3  
7.4 Low-pass filter ......................................................................................................................................... 7- 4  
7.5 Gain changing function........................................................................................................................... 7- 5  
7.5.1 Applications ...................................................................................................................................... 7- 5  
7.5.2 Function block diagram................................................................................................................... 7- 5  
7.5.3 Parameters........................................................................................................................................ 7- 6  
7.5.4 Gain changing operation ................................................................................................................. 7- 8  
8. INSPECTION  
8- 1 to 8- 2  
2
9. TROUBLESHOOTING  
9- 1 to 9-10  
9.1 Alarms and warning list ......................................................................................................................... 9- 1  
9.2 Remedies for alarms................................................................................................................................ 9- 3  
9.3 Remedies for warnings...........................................................................................................................9-10  
10. OUTLINE DRAWINGS  
10- 1 to 10- 10  
10.1 MELSERVO-J2M configuration example.........................................................................................10- 1  
10.2 Unit outline drawings .........................................................................................................................10- 2  
10.2.1 Base unit (MR-J2M-BU )...........................................................................................................10- 2  
10.2.2 Interface unit (MR-J2M-P8B) .....................................................................................................10- 2  
10.2.3 Drive unit (MR-J2M- DU).........................................................................................................10- 3  
10.2.4 Extension IO unit (MR-J2M-D01) ..............................................................................................10- 4  
10.2.5 Battery unit (MR-J2M-BT)..........................................................................................................10- 4  
10.3 Connector .............................................................................................................................................10- 5  
11. CHARACTERISTICS  
11- 1 to 11- 6  
11.1 Overload protection characteristics...................................................................................................11- 1  
11.2 Power supply equipment capacity and generated loss ....................................................................11- 2  
11.3 Dynamic brake characteristics...........................................................................................................11- 4  
11.4 Encoder cable flexing life....................................................................................................................11- 6  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12- 1 to 12-36  
12.1 Options..................................................................................................................................................12- 1  
12.1.1 Regenerative brake options .........................................................................................................12- 1  
12.1.2 Cables and connectors..................................................................................................................12- 8  
12.1.3 Maintenance junction card (MR-J2CN3TM) ............................................................................12-21  
12.1.4 MR Configurator (servo configurations software)....................................................................12-23  
12.2 Auxiliary equipment ..........................................................................................................................12-25  
12.2.1 Recommended wires....................................................................................................................12-25  
12.2.2 No-fuse breakers, fuses, magnetic contactors...........................................................................12-26  
12.2.3 Power factor improving reactors................................................................................................12-27  
12.2.4 Relays............................................................................................................................................12-28  
12.2.5 Surge absorbers ...........................................................................................................................12-28  
12.2.6 Noise reduction techniques.........................................................................................................12-28  
12.2.7 Leakage current breaker ............................................................................................................12-34  
12.2.8 EMC filter.....................................................................................................................................12-35  
13. ABSOLUTE POSITION DETECTION SYSTEM  
13- 1 to 13- 4  
13.1 Features................................................................................................................................................13- 1  
13.2 Specifications .......................................................................................................................................13- 2  
13.3 Confirmation of absolute position detection data.............................................................................13- 3  
APPENDIX  
App- 1 to App- 2  
App 1. Status indication block diagram ................................................................................................. App- 1  
3
Optional Servo Motor Instruction Manual CONTENTS  
The rough table of contents of the optional MELSERVO Servo Motor Instruction Manual is introduced  
here for your reference. Note that the contents of the Servo Motor Instruction Manual are not included in  
this Instruction Manual.  
1. INTRODUCTION  
2. INSTALLATION  
3. CONNECTORS USED FOR SERVO MOTOR WIRING  
4. INSPECTION  
5. SPECIFICATIONS  
6. CHARACTERISTICS  
7. OUTLINE DIMENSION DRAWINGS  
8. CALCULATION METHODS FOR DESIGNING  
4
1. FUNCTIONS AND CONFIGURATION  
1. FUNCTIONS AND CONFIGURATION  
1.1 Overview  
The Mitsubishi general-purpose AC servo MELSERVO-J2M series is an AC servo which has realized  
wiring-saving, energy-saving and space-saving in addition to the high performance and high functions of  
the MELSERVO-J2-Super series. Connected with a servo system controller or like by a serial bus  
(SSCNET), the equipment reads position data directly to perform operation. Data from a command unit  
are used to control the speeds and directions of servo motors and execute precision positioning.  
The MELSERVO-J2M series consists of an interface unit (abbreviated to the IFU) to be connected with a  
servo system controller, drive units (abbreviated to the DRU) for driving and controlling servo motors,  
and a base unit (abbreviated to the BU) where these units are installed.  
A torque limit is applied to the drive unit by the clamp circuit to protect the main circuit power  
transistors from overcurrent caused by abrupt acceleration/deceleration or overload. In addition, the  
torque limit value can be changed as desired using the parameter.  
The interface unit has an RS-232C serial communication function to allow the parameter setting, test  
operation, status indication monitoring, gain adjustment and others of all units to be performed using a  
personal computer or like where the MR Configurator (servo configuration software) is installed. By  
choosing the axis number of the drive unit using the MR Configurator (servo configuration software), you  
can select the unit to communicate with, without changing the cabling.  
The real-time auto tuning function automatically adjusts the servo gains according to a machine.  
The MELSERVO-J2M series supports as standard the absolute position encoders which have 131072  
pulses/rev resolution, ensuring control as accurate as that of the MELSERVO-J2-Super series. Simply  
adding the optional battery unit configures an absolute position detection system. Hence, merely setting a  
home position once makes it unnecessary to perform a home position return at power-on, alarm  
occurrence or like.  
The MELSERVO-J2M series has a control circuit power supply in the interface unit and main circuit  
converter and regenerative functions in the base unit to batch-wire the main circuit power input,  
regenerative brake connection and control circuit power input, achieving wiring-saving.  
In the MELSERVO-J2M series, main circuit converter sharing has improved the capacitor regeneration  
capability dramatically. Except for the operation pattern where all axes slow down simultaneously, the  
capacitor can be used for regeneration. You can save the energy which used to be consumed by the  
regenerative brake resistor.  
Bus cable connections  
Extension IO unit  
MR-J2M-D01  
Regenerative  
brake option  
Encoder pulse output  
extension DIO (Axes 1 to 4)  
Control circuit  
power input  
Encoder cable  
Encoder pulse output  
extension DIO (Axes 5 to 8)  
Servo motor power cable  
Main circuit power input  
Personal computer connection  
Analog monitor  
Forced stop input  
Electromagnetic brake interlock output  
1 - 1  
1. FUNCTIONS AND CONFIGURATION  
1.2 Function block diagram  
Base unit  
CNP1B  
Interface unit  
L11  
I/F Control  
Power  
L21  
supply  
3-phase  
200 to  
230VAC  
(Note)  
1-phase  
200 to  
Controller or  
Servo amplifier  
FR-BAL CNP3  
NFB  
MC  
Position command  
I/F Control  
L1  
L2  
L3  
Servo amplifier  
or termination  
connector  
Personal  
computer  
RS-232C  
D/A  
230VAC  
CNP1A  
Regenerative brake option  
P
N
C
Analog monitor  
(3 channels)  
Drive unit  
Servo motor  
Dynamic  
brake  
(Earth)  
U
Current  
detector  
V
M
W
Overcurrent  
protection  
Current  
detection  
Base amplifier  
Current  
control  
Actual position  
control  
Actual speed  
control  
Encoder  
Model  
position  
Model  
speed  
Model  
torque  
Position  
command  
input  
Model position  
control  
Model speed  
control  
Virtual Virtual  
servo encoder  
motor  
Drive unit  
Dynamic  
brake  
Servo motor  
(Earth)  
U
Current  
detection  
V
M
W
Encoder  
Drive unit  
Servo motor  
Dynamic  
brake  
(Earth)  
U
V
W
Current  
detection  
M
Encoder  
Note. For 1-phase 200 to 230VAC, connect the power supply to L1, L2 and leave L3 open.  
1 - 2  
1. FUNCTIONS AND CONFIGURATION  
1.3 Unit standard specifications  
(1) Base unit  
Model  
MR-J2M-BU4  
MR-J2M-BU6  
MR-J2M-BU8  
Number of slots  
4
6
8
(Note)  
Control  
circuit  
power  
supply  
Voltage/frequency  
3-phase 200 to 230VAC or 1-phase 200 to 230VAC, 50/60Hz  
Permissible voltage fluctuation  
Permissible frequency fluctuation  
1-phase 170 to 253VAC  
Within 5%  
Inrush current  
20A (5ms)  
Voltage/frequency  
3-phase 200 to 230VAC or 1-phase 200 to 230VAC, 50/60Hz  
3-phase 170 to 253VAC or 1-phase 170 to 253VAC, 50/60Hz  
Within 5%  
Permissible voltage fluctuation  
Permissible frequency fluctuation  
Maximum servo motor connection  
capacity [W]  
Main  
circuit  
power  
supply  
1600  
1280  
2400  
3200  
2560  
Continuous capacity [W]  
Inrush current  
1920  
62.5A (15ms)  
Function  
Converter function, regenerative control, rushing into current control function  
Regenerative overvoltage shut-off, regenerative fault protection,  
undervoltage /instantaneous power failure protection  
Protective functions  
Mass  
[kg]  
[lb]  
1.1  
2.4  
1.3  
2.9  
1.5  
3.3  
Note. The control circuit power supply is recorded to the interface unit.  
(2) Drive unit  
Model  
MR-J2M-10DU  
MR-J2M-20DU  
MR-J2M-40DU  
MR-J2M-70DU  
Voltage/frequency  
270 to 311VDC  
230 to 342VDC  
Power  
supply  
Permissible voltage fluctuation  
Control system  
Dynamic brake  
Sine-wave PWM control, current control system  
Built-in  
Overcurrent shut-off, functions overload shut-off (electronic thermal relay),  
servo motor overheat protection, encoder fault protection, overspeed  
protection, excessive error protection  
Protective functions  
Structure  
Open (IP00)  
Cooling method  
Self-cooled  
0.4  
Force-cooling (With built-in fan unit)  
0.4  
[kg]  
[lb]  
0.4  
0.89  
0.7  
Mass  
0.89  
0.89  
1.54  
(3) Interface unit  
Model  
MR-J2M-P8B  
Power supply circuit for each unit(8 slots or less)  
Control circuit power supply  
Interface  
SSCNET interface 1channel RS-232C interface 1channel  
Forced stop input(1 point), Electromagnetic brake sequence output  
DIO  
(1 point)  
AIO  
Analog monitor 3channel  
Structure  
Open (IP00)  
0.5  
[kg]  
[lb]  
Mass  
1.10  
1 - 3  
1. FUNCTIONS AND CONFIGURATION  
1.4 Function list  
The following table lists the functions of this servo. For details of the functions, refer to the Reference  
field.  
(1) Drive unit (Abbreviation DRU)  
Function  
Description  
Reference  
High-resolution encoder  
High-resolution encoder of 131072 pulses/rev is used as a servo motor encoder.  
Automatically adjusts the gain to optimum value if load applied to the servo motor  
shaft varies.  
Auto tuning  
Chapter 6  
Section 7.3  
Section 7.4  
Adaptive vibration  
suppression control  
MELSERVO-J2M detects mechanical resonance and sets filter characteristics  
automatically to suppress mechanical vibration.  
Suppresses high-frequency resonance which occurs as servo system response is  
increased.  
Low-pass filter  
Slight vibration  
suppression control  
Forced stop signal  
automatic ON  
DRU Parameter  
No.24  
Suppresses vibration of 1 pulse produced at a servo motor stop.  
Forced stop (EM1) can be automatically switched on internally to invalidate it.  
Servo motor torque can be limited to any value.  
DRU Parameter  
No.23  
DRU Parameters  
No.10, No.11  
Torque limit  
(2) Interface unit (Abbreviation IFU)  
Function  
Description  
Reference  
Forced stop signal input  
Disconnect forced stop (EM1) to bring the servo motor to a forced stop state, in  
which the servo is switched off and the dynamic brake is operated.  
In the servo-off or alarm status, this signal is disconnected.  
When an alarm occurs, they are disconnected, independently of the base circuit  
status.  
Section 3.2.2  
Electromagnetic brake  
output  
Section 3.2.2  
Section 5.2.3  
It is possible to use it to excite an electromagnetic brake.  
Servo status is output in terms of voltage in real time.  
Analog monitor  
(3) Base unit (Abbreviation BU)  
Function  
Description  
Reference  
Used when the built-in regenerative brake resistor of the unit does not have  
sufficient regenerative capability for the regenerative power generated.  
Regenerative brake option  
Section 12.1.1  
(4) MR Configurator (servo configuration software)  
Function  
Description  
Reference  
Machine analyzer function Analyzes the frequency characteristic of the mechanical system.  
Can simulate machine motions on a personal computer screen on the basis of the  
machine analyzer results.  
Machine simulation  
Gain search function  
Test operation mode  
Can simulate machine motions on the basis of the machine analyzer results.  
JOG operation and positioning operation are possible.  
(5) Option unit  
Function  
Description  
Reference  
Merely setting a home position once makes home position return unnecessary at  
every power-on.  
Battery unit MR-J2M-BT is necessary.  
Absolute position  
detection system  
The encoder feedback is output from enhancing IO unit MR-J2M-D01 by the  
Encoder pulse output  
A
B
Z phase pulse. The number of pulses output by the parameter can be  
changed.  
1 - 4  
1. FUNCTIONS AND CONFIGURATION  
1.5 Model code definition  
(1) Drive unit  
(a) Rating plate  
SON  
ALM  
Rating plate  
MODEL  
Model  
MR-J2M-40DU  
Capacity  
POWER 400W  
INPUT DC270V-311V  
OUTPUT 170V 0-360Hz 2.3A  
SERIAL N9Z95046  
Applicable power supply  
Rated output current  
Serial number  
TC300A***G51  
MITSUBISHI ELECTRIC  
Rating plate  
(b) Model code  
MR-J2M- DU  
Rated output  
Symbol Capacity of applied servo motor  
10  
20  
40  
70  
100  
200  
400  
750  
(2) Interface unit  
(a) Rating plate  
MITSUBISHI  
AC SERVO  
MR-J2M-P8B  
Model  
MODEL  
Rating  
plate  
Input capacity  
POWER :75W  
AC INPUT:2PH AC200-230V 50Hz  
2PH AC200-230V 60Hz  
Applicable  
power supply  
OUTPUT :DC5/12/20 4.6A/1.2/0.7A  
SERIAL :A5*******  
Output voltage / current  
Serial number  
TC3**AAAAG52  
PASSED  
MITSUBISHI ELECTRIC CORPORATION  
MADE IN JAPAN  
(b) Model code  
MR-J2M-P8B  
SSCNET compatible  
1 - 5  
1. FUNCTIONS AND CONFIGURATION  
(3) Base unit  
(a) Rating plate  
Rating plate  
MITSUBISHI  
MODEL  
Model  
MR-J2M-BU4  
Applicable power  
supply  
Serial number  
INPUT : 3PH 200-230  
14A 50/60Hz  
SERIAL:  
N87B95046  
BC336U246  
PASSED  
MITSUBISHI ELECTRIC  
MADE IN JAPAN  
(b) Model code  
MR-J2M-BU  
Number of Maximum servo motor  
Symbol  
Continuous capacity [W]  
slots  
connection capacity [W]  
4
6
8
4
6
8
1600  
2400  
3200  
1280  
1920  
2560  
1.6 Combination with servo motor  
The following table lists combinations of drive units and servo motors. The same combinations apply to  
the models with electromagnetic brakes and the models with reduction gears.  
Servo motor  
Drive unit  
HC-KFS  
053 13  
23  
HC-MFS  
053 13  
23  
HC-UFS  
13  
MR-J2M-10DU  
MR-J2M-20DU  
MR-J2M-40DU  
MR-J2M-70DU  
23  
43  
43  
43  
73  
73  
73  
1 - 6  
1. FUNCTIONS AND CONFIGURATION  
1.7 Parts identification  
(1) Drive unit  
Mounting screw  
Status indicator LED  
Indicates the status of the drive unit.  
Blinking green: Servo off status  
Steady green: Servo on status  
Blinking red: Warning status  
Steady red: Alarm status  
Rating plate  
CN2  
Encoder connector  
Connect the servo  
motor encoder  
CNP2  
Servo motor connector  
For connection of servo  
motor power line cable  
(2) Interface unit  
Display  
Indicates operating status or alarm.  
Pushbutton switches  
Used to change status indication or set IFU parameters.  
Mounting screw  
CN1A  
Bus cable connector  
Display/setting cover  
For connection of servo system controller or  
preceding-axis servo amplifier.  
CN1B  
Bus cable connector  
For connection of subsequent-axis servo  
amplifier or MR-A-TM termination connector.  
CN3  
For connection of personal computer (RS-232C).  
Outputs analog monitor.  
Charge lamp  
Lit when main circuit capacitor carries electrical charge.  
When this lamp is on, do not remove/reinstall any unit  
from/to base unit and do not unplug/plug cable and  
connector from/into any unit.  
1 - 7  
1. FUNCTIONS AND CONFIGURATION  
(3) Base unit  
The following shows the MR-J2M-BU4.  
CON3A  
First slot connector  
CNP1B  
CON3C  
Control circuit power input connector  
Third slot connector  
CNP1A  
Regenerative brake  
option connector  
CON4  
CNP3  
Option slot connector  
Main circuit power  
input connector  
CON5  
Battery unit connector  
CON1,CON2  
Interface unit connectors  
CON3B  
Second slot connector  
CON3D  
Fourth slot connector  
1 - 8  
1. FUNCTIONS AND CONFIGURATION  
1.8 Servo system with auxiliary equipment  
To prevent an electric shock, always connect the protective earth (PE) terminal  
(terminal marked ) of the base unit to the protective earth (PE) of the control box.  
WARNING  
3-phase 200V to 230VAC  
(Note) 1-phase 200V to 230VAC  
power supply  
Options and auxiliary equipment  
Options and auxiliary equipment  
Reference  
Reference  
Section 12.2.2  
No-fuse breaker  
Section 12.1.1  
Section 12.2.1  
Regenerative brake option  
Magnetic contactor  
Section 12.2.2 Cables  
MR Configurator  
(servo configuration software)  
No-fuse breaker  
(NFB) or fuse  
Section 12.1.4 Power factor improving reactor Section 12.2.3  
Servo system  
controller  
Subsequent axis  
servo amplifier  
or  
Termination  
connector  
Control circuit  
power supply  
L11  
L21  
or  
Preceding axis  
servo amplifier  
Magnetic  
contactor  
(MC)  
Regenerative brake  
option  
To CN1A  
To CN1B  
L1  
L2 L3  
P
C
To CNP1B  
Power  
factor  
improving  
reactor  
(FR-BAL)  
To CNP1A  
Encoder cable  
Main circuit  
power supply  
To CNP3  
To CN3  
MR Configurator  
(servo configuration  
software)  
Personal  
computer  
Power supply lead  
Note. For 1-phase 200 to 230VAC, connect the power supply to L1, L2 and leave L3 open.  
1 - 9  
1. FUNCTIONS AND CONFIGURATION  
MEMO  
1 - 10  
2. INSTALLATION AND START UP  
2. INSTALLATION AND START UP  
Stacking in excess of the limited number of products is not allowed.  
Install the equipment to incombustibles. Installing them directly or close to  
combustibles will led to a fire.  
Install the equipment in a load-bearing place in accordance with this Instruction  
Manual.  
Do not get on or put heavy load on the equipment to prevent injury.  
Use the equipment within the specified environmental condition range.  
Provide an adequate protection to prevent screws, metallic detritus and other  
conductive matter or oil and other combustible matter from entering each unit.  
Do not block the intake/exhaust ports of each unit. Otherwise, a fault may occur.  
Do not subject each unit to drop impact or shock loads as they are precision  
equipment.  
CAUTION  
Do not install or operate a faulty unit.  
When the product has been stored for an extended period of time, consult  
Mitsubishi.  
When treating the servo amplifier, be careful about the edged parts such as the  
corners of the servo amplifier.  
2.1 Environmental conditions  
The following environmental conditions are common to the drive unit, interface unit and base unit.  
Environment  
Conditions  
[
[
[
[
]
]
]
]
0 to 55 (non-freezing)  
32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
During  
operation  
Ambient  
temperature  
In storage  
During operation  
In storage  
Ambient  
humidity  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280 ft) above sea level  
Ambience  
Altitude  
2
2
[m/s ]  
5.9 [m/s ] or less  
Vibration  
2
2
[ft/s ]  
19.4 [ft/s ] or less  
2 - 1  
2. INSTALLATION AND START UP  
2.2 Installation direction and clearances  
The equipment must be installed in the specified direction. Otherwise, a fault may  
occur.  
CAUTION  
Leave specified clearances between each unit and control box inside walls or other  
equipment.  
(1) Installation of one MELSERVO-J2M  
40mm(1.57inch) or more  
40mm(1.57inch) or more  
(2) Installation of two or more MELSERVO-J2M  
When installing two units vertically, heat generated by the lower unit influences the ambient  
temperature of the upper unit. Suppress temperature rises in the control box so that the temperature  
between the upper and lower units satisfies the environmental conditions. Also provide adequate  
clearances between the units or install a fan.  
40mm(1.57inch) or more  
Leave 100mm(3.94inch) or more  
clearance or install fan for forced air cooling.  
40mm(1.57inch) or more  
2 - 2  
2. INSTALLATION AND START UP  
(3) Others  
When using heat generating equipment such as the regenerative brake option, install them with full  
consideration of heat generation so that MELSERVO-J2M is not affected.  
Install MELSERVO-J2M on a perpendicular wall in the correct vertical direction.  
2.3 Keep out foreign materials  
(1) When installing the unit in a control box, prevent drill chips and wire fragments from entering each  
unit.  
(2) Prevent oil, water, metallic dust, etc. from entering each unit through openings in the control box or a  
fan installed on the ceiling.  
(3) When installing the control box in a place where there are much toxic gas, dirt and dust, conduct an  
air purge (force clean air into the control box from outside to make the internal pressure higher than  
the external pressure) to prevent such materials from entering the control box.  
2.4 Cable stress  
(1) The way of clamping the cable must be fully examined so that flexing stress and cable's own mass  
stress are not applied to the cable connection.  
(2) For use in any application where the servo motor moves, fix the cables (encoder, power supply, brake)  
supplied with the servo motor, and flex the optional encoder cable or the power supply and brake  
wiring cables. Use the optional encoder cable within the flexing life range. Use the power supply and  
brake wiring cables within the flexing life of the cables.  
(3) Avoid any probability that the cable sheath might be cut by sharp chips, rubbed by a machine corner  
or stamped by workers or vehicles.  
(4) For installation on a machine where the servo motor will move, the flexing radius should be made as  
large as possible. Refer to section 11.4 for the flexing life.  
2 - 3  
2. INSTALLATION AND START UP  
2.5 Mounting method  
(1) Base unit  
As shown below, mount the base unit on the wall of a control box or like with M5 screws.  
Wall  
(2) Interface unit/drive unit (MR-J2M-40DU or less)  
The following example gives installation of the drive unit to the base unit. The same also applies to the  
interface unit.  
Sectional view  
Base unit  
Drive unit  
Wall  
1)  
Positioning hole  
Catch  
1) Hook the catch of the drive unit in the positioning hole of the base unit.  
Sectional view  
2)  
Base unit  
Drive unit  
Wall  
2) Using the catch hooked in the positioning hole as a support, push the drive unit in.  
2 - 4  
2. INSTALLATION AND START UP  
Sectional view  
3)  
3)  
Wall  
3) Tighten the M4 screw supplied for the base unit to fasten the drive unit to the base unit.  
POINT  
Securely tighten the drive unit fixing screw.  
Sectional view  
Wall  
(3) Drive unit (MR-J2M-70DU)  
When using the MR-J2M-70DU, install it on two slots of the base unit. The slot number of this drive  
unit is that of the left hand side slot of the two occupied slots, when they are viewed from the front of  
the base unit.  
2 - 5  
2. INSTALLATION AND START UP  
2.6 When switching power on for the first time  
Before starting operation, check the following:  
(1) Wiring  
(a) Check that the control circuit power cable, main circuit power cable and servo motor power cable  
are fabricated properly.  
(b) Check that the control circuit power cable is connected to the CNP1B connector and the main  
circuit power cable is connected to the CNP3 connector.  
(c) Check that the servo motor power cable is connected to the drive unit CNP2 connector.  
(d) The earth terminal of the servo motor is connected to the PE terminal of the drive unit. Also check  
that the drive unit is screwed to the base unit securely.  
(e) When using the regenerative brake option, check that the cable using twisted wires is fabricated  
properly and it is connected to the CNP1A connector properly.  
(f) 24VDC or higher voltages are not applied to the pins of connector CN3.  
(g) SD and SG of connector CN3 are not shorted.  
(h) The wiring cables are free from excessive force.  
(i) CN1A should be connected with the bus cable connected to the servo system controller or preceding  
axis servo amplifier, and CN1B should connected with the bus cable connected to the subsequent  
axis servo amplifier or with the termination connector MR-A-TM.  
(j) Check that the encoder cable and servo motor power cable connected to the drive unit are connected  
to the same servo motor properly.  
(2) Axis number  
(a) Check that the axis numbers of the servo system controller match the axis number settings of the  
corresponding drive units.  
(b) When changing the factory setting of any axis number (axis number slot number), check that the  
IFU parameter No. 11 to 18 values are set without fail.  
(c) Check that the encoder cable and motor power cable of the servo motor are wired to the drive unit  
mounted to the slot as in the axis setting.  
(3) Parameters  
(a) Check that the drive unit parameters are set to correct values using the servo system controller  
screen or MR Configurator (servo configuration software).  
(b) Check that the interface unit parameters are set to correct values using the interface unit display  
or MR Configurator (servo configuration software).  
(4) Environment  
Signal cables and power cables are not shorted by wire offcuts, metallic dust or the like.  
(5) Machine  
(a) The screws in the servo motor installation part and shaft-to-machine connection are tight.  
(b) The servo motor and the machine connected with the servo motor can be operated.  
2 - 6  
2. INSTALLATION AND START UP  
2.7 Start up  
Do not operate the switches with wet hands. You may get an electric shock.  
Do not operate the controller with the front cover removed. High-voltage terminals  
and charging area exposed and you may get an electric shock.  
During power-on or operation, do not open the front cover. You may get an electric  
shock.  
WARNING  
CAUTION  
Before starting operation, check the parameters. Some machines may perform  
unexpected operation.  
Take safety measures, e.g. provide covers, to prevent accidental contact of hands  
and parts (cables, etc.) with the servo amplifier heat sink, regenerative brake  
resistor, servo motor, etc.since they may be hot while power is on or for some time  
after power-off. Their temperatures may be high and you may get burnt or a parts  
may damaged.  
During operation, never touch the rotating parts of the servo motor. Doing so can  
cause injury.  
Connect the servo motor with a machine after confirming that the servo motor operates properly alone.  
(1) Power on  
Switching on the main circuit power/control circuit power places the interface unit display in the scroll  
status as shown below.  
In the absolute position detection system, first power-on results in the absolute position lost (A.25)  
alarm and the servo system cannot be switched on. This is not a failure and takes place due to the  
uncharged capacitor in the encoder.  
The alarm can be deactivated by keeping power on for a few minutes in the alarm status and then  
switching power off once and on again.  
Also in the absolute position detection system, if power is switched on at the servo motor speed of  
500r/min or higher, position mismatch may occur due to external force or the like. Power must  
therefore be switched on when the servo motor is at a stop.  
2 - 7  
2. INSTALLATION AND START UP  
(2) Parameter setting  
Set the parameters according to the structure and specifications of the machine. Refer to Chapter 5 for  
the parameter definitions.  
(3) Checking the axis number  
On the interface unit display, check that the slot numbers and axis numbers are as set. Set the drive  
unit axis numbers in the IFU parameters No. 11 to 18.  
For MR-J2M-BU4  
First slot  
Display  
Third slot  
Axis number  
Drive unit status  
Slot number  
Second slot  
Fourth slot  
(4) Servo-on  
Switch the servo-on in the following procedure:  
1) Switch on main circuit/control circuit power supply.  
2) The controller transmits the servo-on command.  
When placed in the servo-on status, MELSERVO-J2M is ready to operate and the servo motor is  
locked.  
(5) Home position return  
Always perform home position return before starting positioning operation.  
(6) Stop  
If any of the following situations occurs, MELSERVO-J2M suspends the running of the servo motor  
and brings it to a stop.  
When the servo motor is equipped with an electromagnetic brake, refer to Section 3.7.  
Operation/command  
Servo off command  
Stopping condition  
The base circuit is shut off and the servo motor coasts.  
The base circuit is shut off and the dynamic brake operates to  
bring the servo motor to stop. The controller forced stop (A.E7)  
occurs.  
Servo system controller  
MELSERVO-J2M  
Forced stop command  
Alarm occurrence  
The base circuit is shut off and the dynamic brake operates to  
bring the servo motor to stop.  
The base circuit is shut off and the dynamic brake operates to  
bring the servo motor to stop. The servo forced stop (A.E6)  
occurs.  
Forced stop (EM1) OFF  
2 - 8  
2. INSTALLATION AND START UP  
2.8 Control axis selection  
POINT  
The control axis number set to the IFU parameter software should be the  
same as the one set to the servo system controller.  
Set the control axis numbers of the drive units in the IFU parameters No. 11 to 18.  
Setting the same control axis numbers in a single communication system will disable normal operation.  
Each control axis can be set independently of the slot number where the drive unit has been installed.  
The axis numbers of the drive units installed to the slots are factory-set as listed below.  
IFU Parameter No.  
Name  
Initial Value  
0000  
(Note) Definition  
Axis 1  
11  
12  
13  
14  
15  
16  
17  
18  
1 slot axis number selection  
2 slot axis number selection  
3 slot axis number selection  
4 slot axis number selection  
5 slot axis number selection  
6 slot axis number selection  
7 slot axis number selection  
8 slot axis number selection  
0001  
Axis 2  
0002  
Axis 3  
0003  
Axis 4  
0004  
Axis 5  
0005  
Axis 6  
0006  
Axis 7  
0007  
Axis 8  
Note. The axis number is represented as a set value 1.  
2 - 9  
2. INSTALLATION AND START UP  
MEMO  
2 - 10  
3. SIGNALS AND WIRING  
3. SIGNALS AND WIRING  
Any person who is involved in wiring should be fully competent to do the work.  
Before starting wiring, make sure that the voltage is safe in the tester more than 15  
minutes after power-off. Otherwise, you may get an electric shock.  
Ground the base unit and the servo motor securely.  
WARNING  
Do not attempt to wire each unit and servo motor until they have been installed.  
Otherwise, you may get an electric shock.  
The cables should not be damaged, stressed excessively, loaded heavily, or  
pinched. Otherwise, you may get an electric shock.  
Wire the equipment correctly and securely. Otherwise, the servo motor may  
misoperate, resulting in injury.  
Connect cables to correct terminals to prevent a burst, fault, etc.  
Ensure that polarity ( , ) is correct. Otherwise, a burst, damage, etc. may occur.  
The surge absorbing diode installed to the DC relay designed for control output  
should be fitted in the specified direction. Otherwise, the signal is not output due to  
a fault, disabling the forced stop and other protective circuits.  
Interface unit  
Interface unit  
VIN  
VIN  
SG  
SG  
CAUTION  
Control output  
signal  
Control output  
signal  
RA  
RA  
Use a noise filter, etc. to minimize the influence of electromagnetic interference,  
which may be given to electronic equipment used near each unit.  
Do not install a power capacitor, surge suppressor or radio noise filter (FR-BIF  
option) with the power line of the servo motor.  
When using the regenerative brake resistor, switch power off with the alarm signal.  
Otherwise, a transistor fault or the like may overheat the regenerative brake  
resistor, causing a fire.  
Do not modify the equipment.  
POINT  
CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of  
the connectors will lead to a failure. Connect them correctly.  
3 - 1  
3. SIGNALS AND WIRING  
3.1 Connection example of control signal system  
POINT  
Refer to Section 3.4 for the connection of the power supply system and to  
Section 3.5 for connection with the servo motor.  
Interface unit  
(Note 5) (Note 5)  
(Note 2 6)  
24VDC  
7)  
Forced stop  
CN3  
8
CN3  
13 MBR  
MO1  
RA  
A
VIN  
(Note 3  
4
EM1 20  
4
10k  
(Note 8)  
SG  
3
Analog monitor  
Max. 1mA  
Reading in  
A
A
14 MO2  
10k  
10k  
7
MO3  
both directions  
11 LG  
Plate SD  
Servo system  
controller  
2m(6.56ft) or less  
(Note 11 12 13)  
(Note 10 13) Bus cable  
(Option)  
(Note 5)  
CN1A  
Termination connector (MR-A-TM)  
(Note 5)  
CN1B  
Cable clamp  
(Option)  
Base unit  
Drive unit  
CON3A  
(Slot 1)  
(Note 5)  
CN2  
Drive unit  
CON3B  
(Slot 2)  
(Note 5)  
CN2  
(Note 9)  
MR Configurator  
(servo configuration  
(Note 4)  
Personal computer  
(Note 5)  
CN3  
software)  
15m(49.2ft) or less  
Drive unit  
CON3H  
(Slot 8)  
(Note 5)  
CN2  
(Note 14)  
MR-J2M-D01  
CN4A  
Battery unit  
MR-J2M-BT  
Encoder output  
pulses  
MR-J2MBTCBL  
M
CON5  
CON4  
Encoder output  
pulses  
CN4B  
(Note 1)  
3 - 2  
3. SIGNALS AND WIRING  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal (terminal marked  
protective earth (PE) of the control box.  
) of the base unit to the  
2. Connect the diode in the correct direction. If it is connected reversely, the interface unit will be faulty and will not output signals,  
disabling the forced stop and other protective circuits.  
3. If the controller does not have a forced stop function, always install a forced stop switch (Normally closed).  
4. When a personal computer is connected for use of the test operation mode, always use the maintenance junction card (MR-  
J2CN3TM) to enable the use of the forced stop (EM1). (Refer to section 12.1.5)  
5. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.  
6. When using the electromagnetic brake interlock (MBR) or forced stop (EM1), always supply 24VDC between VIN and SG.  
7. When starting operation, always connect the forced stop (EM1) and SG. (Normally closed contacts) By setting “0001” in DRU  
parameter No.23 of the drive unit, the forced stop (EM1) can be made invalid.  
8. When connecting the personal computer together with analog monitor 1  
(Refer to Section 12.1.3.)  
2
3 use the maintenance junction card (MR-J2CN3TM).  
9. Use MRZJW3-SETUP151E.  
10. Use the bus cable at the overall distance of 30m(98.4ft) or less. In addition, to improve noise immunity, it is recommended to use a  
cable clamp and data line filters (three or four filters connected in series) near the connector outlet.  
11. Up to eight axes (n 1 to 8) may be connected. The MR-J2S- B/MR-J2-03B5 servo amplifier may be connected on the same  
bus.  
12. Always insert the termination connector (MR-A-TM) into CN1B of the interface unit located at the termination.  
13. The bus cable used with the SSCNET depends on the preceding or subsequent controller or servo amplifier connected. Refer to  
the following table and choose the bus cable.  
MR-J2M-P8B  
MR-J2S-  
B
MR-J2-03B5  
QD75M  
MR-J2HBUS  
M
Q172CPU(N)  
Q173CPU(N)  
A motion  
Q172J2BCBL M(-B)  
Q173J2B CBL  
MR-J2HBUS M-A  
Motion  
M
controller  
MR-J2M-P8B MR-J2S-  
MR-J2-03B5  
B
MR-J2HBUS  
M
Maintenance junction card  
14. When using an absolute position detection system, connect the battery unit (MR-J2M-BT).  
3 - 3  
3. SIGNALS AND WIRING  
3.2 I/O signals of interface unit  
3.2.1 Connectors and signal arrangements  
POINT  
The pin configurations of the connectors are as viewed from the cable  
connector wiring section.  
CN1A  
CN1B  
1
11  
LG  
13  
1
11  
LG  
13  
2
RD  
4
12  
RD*  
14  
2
RD  
4
12  
RD*  
14  
LG  
3
LG  
3
TD  
6
TD*  
16  
TD  
6
TD*  
16  
5
LG  
7
15  
5
LG  
7
15  
Interface unit  
LG  
17  
LG  
17  
8
18  
20  
8
18  
20  
EMG*  
EMG  
9
EMG*  
19  
EMG  
9
19  
10  
10  
BT  
BT  
CN3  
1
LG  
3
11  
LG  
2
RXD  
4
12  
TXD  
14  
13  
SG  
5
MBR  
15  
The connector frames are  
connected with the PE (earth)  
terminal inside the base unit.  
MO1  
6
MO2  
16  
7
MO3  
9
17  
19  
8
18  
VIN  
10  
20  
EM1  
Cable side connector  
Model  
1. Soldering type  
Connector  
Maker  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
2. Insulation displacement type  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
CN1A  
CN1B  
CN3  
3M  
3 - 4  
3. SIGNALS AND WIRING  
3.2.2 Signal explanations  
For the I/O interfaces (symbols in I/O column in the table), refer to Section 3.2.3.  
(1) Connector applications  
Connector  
Name  
Function/Application  
Used for connection with the controller or preceding-axis  
servo amplifier.  
CN1A  
Connector for bus cable from preceding axis.  
Used for connection with the next-axis servo amplifier or  
for connection of the termination connector.  
Used for connection with the personal computer.  
Serves as an I/O signal connector when the personal  
computer is not used.  
CN1B  
CN3  
Connector for bus cable to next axis  
Communication connector  
(I/O signal connector)  
(2) I/O signals  
(a) Input signal  
Connector Pin  
No.  
Signal  
Symbol  
Function/Application  
I/O Division  
Disconnect EM1-SG to bring the servo motor to a forced stop  
state, in which the servo is switched off and the dynamic  
brake is operated.  
DI-1  
CN3  
20  
Forced stop  
EM1  
In the forced stop state, connect EM1-SG to reset that state.  
(b) Output signals  
Connector Pin  
No.  
Signal  
Symbol  
Function/Application  
I/O Division  
MBR-SG are disconnected when a forced stop is made valid,  
an alarm occurs in the interface unit or drive unit, or the  
servo switches off.  
DO-1  
Electromagnetic brake  
interlock  
CN3  
13  
MBR  
With IFU parameter No. 10, choose the axis number of the  
drive unit that will use this signal.  
CN3  
4
CN3  
14  
CN3  
7
Used to output the data set in IFU parameter No.3 to across  
MO1-LG in terms of voltage. Resolution 10 bits  
Used to output the data set in IFU parameter No.4 to across  
MO2-LG in terms of voltage. Resolution 10 bits  
Used to output the data set in IFU parameter No.5 to across  
MO3-LG in terms of voltage. Resolution 10 bits  
Analog  
output  
Analog  
output  
Analog  
output  
Analog monitor 1  
Analog monitor 2  
Analog monitor 3  
MO1  
MO2  
MO3  
(c) Power supply  
Connector Pin  
No.  
Signal  
Symbol  
VIN  
Function/Application  
Power input for digital  
interface  
Common for digital  
interface  
CN3  
8
CN3  
3
Driver power input terminal for digital interface.  
Used to input 24VDC (200mA or more) for input interface.  
Common terminal to VIN. Pins are connected internally.  
Separated from LG.  
SG  
CN3  
1
11  
Common terminal to MO1, MO2 and MO3.  
Control common  
Shield  
LG  
SD  
Plate  
Connect the external conductor of the shield cable.  
3 - 5  
3. SIGNALS AND WIRING  
3.2.3 Interfaces  
(1) Common line  
The following diagram shows the power supply and its common line.  
Interface unit  
INP .etc  
MBR  
24VDC  
RA  
VIN  
SD  
SON .etc  
MO1  
MO2  
Analog monitor  
DI-1  
SG  
MO3  
LG  
Base unit  
TXD  
RXD  
RS-232  
Drive unit  
Servo motor encoder  
MR  
MRR  
LG  
SD  
Servo motor  
M
E
Extension IO unit  
LA.etc  
LAR.etc  
LG  
Differential line  
driver output  
35mA max.  
SD  
Ground  
MBR  
SG  
RA  
24VDC  
3 - 6  
3. SIGNALS AND WIRING  
(2) Detailed description of the interfaces  
This section gives the details of the I/O signal interfaces (refer to I/O Division in the table) indicated in  
Sections 3.2.2.  
Refer to this section and connect the interfaces with the external equipment.  
(a) Digital input interface DI-1  
Give a signal with a relay or open collector transistor.  
Interface unit  
24VDC  
200mA or more  
R: Approx. 4.7k  
VIN  
For transistor  
Approx. 5mA  
EM1  
Switch  
SG  
TR  
VCES 1.0V  
I CE0 100  
A
(b) Digital output interface DO-1  
A lamp, relay or photocoupler can be driven. Provide a diode (D) for an inductive load, or an inrush  
current suppressing resister (R) for a lamp load. (Permissible current: 40mA or less, inrush  
current: 100mA or less)  
1) Inductive load  
Interface unit  
VIN  
24VDC  
Load  
10%  
MBR  
SG  
Opposite polarity of diode  
will fail interface unit.  
3 - 7  
3. SIGNALS AND WIRING  
2) Lamp load  
Interface unit  
VIN  
R
24VDC  
10%  
MBR  
SG  
(c) Analog output  
Output voltage : 4V  
Max. output current :0.5mA  
Resolution :10bit  
Interface unit  
MO1  
(MO2 M03)  
10k  
1mA meter which deflects  
unidirectionally or bidirectionally  
A
LG  
SD  
3 - 8  
3. SIGNALS AND WIRING  
3.3 Signals and wiring for extension IO unit  
3.3.1 Connection example  
POINT  
The pins without symbols can be assigned any devices using the MR  
Configurator (servo configuration software).  
MR-J2M-D01  
(Note 2)  
CN4A  
(Note 3)  
24VDC  
(Note 2)  
CN4A  
(Note 1)  
RA1  
VIN  
SG  
CN4B-11  
11 36  
12 37  
1
9
MBR1  
MBR2  
Approx. 4.7k  
10  
RA2  
RA3  
RA4  
2
3
34 MBR3  
4
5
MBR4  
35  
6
(Note 2)  
CN4A  
7
(Note 4)  
8
13 38 LG  
50 LA1  
25 LAR1  
49 LB1  
24 LBR1  
48 LZ1  
23 LZR1  
47 LA2  
22 LAR2  
46 LB2  
21 LBR2  
45 LZ2  
20 LZR2  
44 LA3  
19 LAR3  
43 LB3  
18 LBR3  
42 LZ3  
17 LZR3  
41 LA4  
16 LAR4  
40 LB4  
15 LBR4  
39 LZ4  
14 LZR4  
plate SD  
26  
27  
28  
29  
30  
31  
32  
33  
Encoder A-phase pulse 1  
(Differential line driver system)  
Encoder B-phase pulse 1  
(Differential line driver system)  
Encoder Z-phase pulse 1  
(Differential line driver system)  
Approx. 4.7k  
Encoder A-phase pulse 2  
(Differential line driver system)  
Encoder B-phase pulse 2  
(Differential line driver system)  
Encoder Z-phase pulse 2  
(Differential line driver system)  
Encoder A-phase pulse 3  
(Differential line driver system)  
Encoder B-phase pulse 3  
(Differential line driver system)  
Encoder Z-phase pulse 3  
(Differential line driver system)  
Encoder A-phase pulse 4  
(Differential line driver system)  
Encoder B-phase pulse 4  
(Differential line driver system)  
Encoder Z-phase pulse 4  
(Differential line driver system)  
3 - 9  
3. SIGNALS AND WIRING  
(Note 2)  
CN4B  
(Note 2)  
CN4B  
CN4A-11  
LG  
13 38  
1
Approx. 4.7k  
2
3
50 LA5  
25 LAR5  
49 LB5  
24 LBR5  
48 LZ5  
23 LZR5  
47 LA6  
22 LAR6  
46 LB6  
21 LBR6  
45 LZ6  
20 LZR6  
44 LA7  
19 LAR7  
43 LB7  
18 LBR7  
42 LZ7  
17 LZR7  
41 LA8  
16 LAR8  
40 LB8  
15 LBR8  
39 LZ8  
14 LZR8  
Encoder A-phase pulse 5  
(Differential line driver system)  
4
Encoder B-phase pulse 5  
(Differential line driver system)  
5
6
7
Encoder Z-phase pulse 5  
(Differential line driver system)  
8
(Note 4)  
26  
27  
28  
29  
30  
31  
32  
33  
Encoder A-phase pulse 6  
(Differential line driver system)  
Encoder B-phase pulse 6  
(Differential line driver system)  
Encoder Z-phase pulse 6  
(Differential line driver system)  
Approx. 4.7k  
SG  
12 37  
Encoder A-phase pulse 7  
(Differential line driver system)  
VIN 11 36  
Encoder B-phase pulse 7  
(Differential line driver system)  
Encoder Z-phase pulse 7  
(Differential line driver system)  
Encoder A-phase pulse 8  
(Differential line driver system)  
Encoder B-phase pulse 8  
(Differential line driver system)  
Encoder Z-phase pulse 8  
(Differential line driver system)  
plate  
SD  
(Note 2)  
CN4B  
(Note 1)  
RA7  
9
MBR5  
MBR6  
MBR7  
MBR8  
RA8  
RA9  
10  
34  
35  
RA10  
MR-J2M-D01  
Note 1. Connect the diodes in the correct orientation. Opposite connection may cause the servo amplifier to be faulty and  
disable the signals from being output, making the forced stop and other protective circuits inoperative.  
2. The signals having the same name are connected to the inside of the servo amplifier.  
3. Always connect 24VDC (200mA).  
4. These pins are unavailable when the MR-J2M-P8B is used as the interface unit.  
3 - 10  
3. SIGNALS AND WIRING  
3.3.2 Connectors and signal configurations  
(1) Signal configurations  
POINT  
The pin configurations of the connectors are as viewed from the cable  
connector wiring section.  
CN4A  
CN4B  
50  
50  
25  
LAR1  
23  
25  
LAR5  
23  
49  
LB1  
47  
24  
LBR1  
22  
49  
LB5  
47  
24  
LBR5  
22  
LA1  
48  
LA5  
48  
LZ1  
46  
LZR1  
21  
LZ5  
46  
LZR5  
21  
LA2  
45  
LAR2  
20  
LA6  
45  
LAR6  
20  
LB2  
44  
LBR2  
19  
LB6  
44  
LBR6  
19  
LZ2  
43  
LZR2  
18  
LZ6  
43  
LZR6  
18  
LA3  
42  
LAR3  
17  
LA7  
42  
LAR7  
17  
LB3  
41  
LBR3  
16  
LB7  
41  
LBR7  
16  
LZ3  
40  
LZR3  
15  
LZ7  
40  
LZR7  
15  
LA4  
39  
LAR4  
14  
LA8  
39  
LAR8  
14  
LB4  
38  
LBR4  
13  
LB8  
38  
LBR8  
13  
LZ4  
37  
LZR4  
12  
LZ8  
37  
LZR8  
12  
LG  
LG  
LG  
LG  
SG  
35  
SG  
SG  
35  
SG  
36  
11  
36  
11  
10  
10  
VIN  
34  
VIN  
9
VIN  
34  
VIN  
9
MBR4  
33  
MBR2  
8
MBR8  
33  
MBR6  
8
MBR3  
32  
MBR1  
7
MBR7  
32  
MBR5  
7
31  
29  
27  
6
4
2
31  
29  
27  
6
4
2
30  
28  
26  
5
3
1
30  
28  
26  
5
3
1
3 - 11  
3. SIGNALS AND WIRING  
3.3.3 Output signal explanations  
For the IO interfaces (system in I/O column in the table), refer to section 3.2.3.  
Connector  
I/O  
Signal  
Symbol  
Function/Applications  
pin No.  
division  
Encoder A-phase  
pulse 1  
Encoder B-phase  
pulse 1  
LA1 CN4A-50 As LA , LAR , LB and LBR , the pulses per servo motor revolution set DO-2  
LAR1 CN4A-25 in the DRU parameter No. 38 of the corresponding slots are output in the  
LB1 CN4A-49 differential line driver system.  
LBR1 CN4A-24 In CCW rotation of the servo motor, the encoder B-phase pulse lags the  
encoder A-phase pulse by a phase angle of /2.  
The relationships between rotation direction and phase difference of the A-  
and B-phase pulses can be changed using DRU parameter No. 33.  
LZ1  
CN4A-48  
Encoder Z-phase  
pulse 1  
LZR1 CN4A-23  
LA2 CN4A-47  
LAR2 CN4A-22  
LB2 CN4A-46  
LBR2 CN4A-21  
Encoder A-phase  
pulse 2  
As LZ  
and LZR  
the zero-point signals of the encoders of the  
corresponding slots are output. One pulse is output per servo motor  
revolution. The same signals as OP are output in the differential line  
driver system.  
Encoder B-phase  
pulse 2  
LZ2  
CN4A-45  
Encoder Z-phase  
pulse 2  
LZR2 CN4A-20  
LA3 CN4A-44  
LAR3 CN4A-19  
LB3 CN4A-43  
LBR3 CN4A-18  
Encoder pulse outputs for slot 1  
Signal  
Symbol  
Encoder A-phase  
pulse 3  
Encoder A-phase pulse 1  
Encoder B-phase pulse 1  
Encoder Z-phase pulse 1  
Encoder pulse outputs for slot 2  
Signal  
LA1 LAR1  
LB1 LBR1  
LZ1 LZR1  
Encoder B-phase  
pulse 3  
LZ3  
CN4A-42  
Encoder Z-phase  
pulse 3  
LZR3 CN4A-17  
LA4 CN4A-41  
LAR4 CN4A-16  
LB4 CN4A-40  
LBR4 CN4A-15  
Symbol  
Encoder A-phase pulse 2  
Encoder B-phase pulse 2  
Encoder Z-phase pulse 2  
LA2 LAR2  
LB2 LBR2  
LZ2 LZR2  
Encoder A-phase  
pulse 4  
Encoder B-phase  
pulse 4  
Encoder pulse outputs for slot 3  
LZ4  
CN4A-39  
Signal  
Symbol  
Encoder Z-phase  
pulse 4  
LZR4 CN4A-14  
LA5 CN4B-50  
LAR5 CN4B-25  
LB5 CN4B-49  
LBR5 CN4B-24  
Encoder A-phase pulse 3  
Encoder B-phase pulse 3  
Encoder Z-phase pulse 3  
LA3 LAR3  
LB3 LBR3  
LZ3 LZR3  
Encoder A-phase  
pulse 5  
Encoder pulse outputs for slot 4  
Encoder B-phase  
pulse 5  
Signal  
Symbol  
LZ5  
CN4B-48  
Encoder A-phase pulse 4  
Encoder B-phase pulse 4  
Encoder Z-phase pulse 4  
LA4 LAR4  
LB4 LBR4  
LZ4 LZR4  
Encoder Z-phase  
pulse 5  
LZR5 CN4B-23  
LA6 CN4B-47  
LAR6 CN4B-22  
LB6 CN4B-46  
LBR6 CN4B-21  
Encoder A-phase  
pulse 6  
Encoder pulse outputs for slot 5  
Signal  
Symbol  
Encoder B-phase  
pulse 6  
Encoder A-phase pulse 5  
Encoder B-phase pulse 5  
Encoder Z-phase pulse 5  
LA5 LAR5  
LB5 LBR5  
LZ5 LZR5  
LZ6  
CN4B-45  
Encoder Z-phase  
pulse 6  
LZR6 CN4B-20  
LA7 CN4B-44  
LAR7 CN4B-19  
LB7 CN4B-43  
LBR7 CN4B-18  
Encoder pulse outputs for slot 6  
Encoder A-phase  
pulse 7  
Signal  
Symbol  
Encoder A-phase pulse 6  
Encoder B-phase pulse 6  
Encoder Z-phase pulse 6  
LA6 LAR6  
LB6 LBR6  
LZ6 LZR6  
Encoder B-phase  
pulse 7  
LZ7  
CN4B-42  
Encoder Z-phase  
pulse 7  
LZR7 CN4B-17  
LA8 CN4B-41  
LAR8 CN4B-16  
LB8 CN4B-40  
LBR8 CN4B-15  
Encoder pulse outputs for slot 7  
Signal  
Symbol  
Encoder A-phase  
pulse 8  
Encoder A-phase pulse 7  
Encoder B-phase pulse 7  
Encoder Z-phase pulse 7  
LA7 LAR7  
LB7 LBR7  
LZ7 LZR7  
Encoder B-phase  
pulse 8  
LZ8  
CN4B-39  
Encoder pulse outputs for slot 8  
Encoder Z-phase  
pulse 8  
LZR8 CN4B-14  
Signal  
Symbol  
Encoder A-phase pulse 8  
Encoder B-phase pulse 8  
Encoder Z-phase pulse 8  
LA8 LAR8  
LB8 LBR8  
LZ8 LZR8  
3 - 12  
3. SIGNALS AND WIRING  
Connector  
I/O  
Signal  
Symbol  
Function/Applications  
pin No.  
division  
DO-1  
MBR1: Electromagnetic brake interlock signal for axis 1  
MBR2: Electromagnetic brake interlock signal for axis 2  
MBR3: Electromagnetic brake interlock signal for axis 3  
MBR4: Electromagnetic brake interlock signal for axis 4  
MBR5: Electromagnetic brake interlock signal for axis 5  
MBR6: Electromagnetic brake interlock signal for axis 6  
MBR7: Electromagnetic brake interlock signal for axis 7  
MBR8: Electromagnetic brake interlock signal for axis 8  
MBR -SG are disconnected when a forced stop is made valid, an alarm  
occurs in the interface unit or drive unit, or the servo switches off. At alarm  
occurrence, they are disconnected independently of the base circuit status.  
Electromagnetic  
brake interlock 1  
Electromagnetic  
brake interlock 2  
MBR1 CN4A-9  
MBR2 CN4A-10  
MBR3 CN4A-34  
MBR4 CN4A-35  
MBR5 CN4A-9  
MBR6 CN4A-10  
MBR7 CN4A-34  
MBR8 CN4A-35  
Electromagnetic  
brake interlock 3  
Electromagnetic  
brake interlock 4  
Electromagnetic  
brake interlock 5  
Electromagnetic  
brake interlock 6  
Electromagnetic  
brake interlock 7  
Electromagnetic  
brake interlock 8  
3 - 13  
3. SIGNALS AND WIRING  
3.4 Signals and wiring for base unit  
When each unit has become faulty, switch power off on the base unit power side.  
Continuous flow of a large current may cause a fire.  
Switch power off at detection of an alarm. Otherwise, a regenerative brake  
transistor fault or the like may overheat the regenerative brake resistor, causing a  
fire.  
CAUTION  
Fabricate the cables noting the shapes of the CNP1A housing (X type) and CNP1B  
housing (Y type).  
3.4.1 Connection example of power line circuit  
Wire the power supply/main circuit as shown below so that power is shut off and the servo-on command  
turned off as soon as an alarm occurs, a servo forced stop is made valid, or a controller forced stop is made  
valid. A no-fuse breaker (NFB) must be used with the input cables of the power supply.  
(1) For 3-phase 200 to 230VAC power supply  
(Note)  
Alarm  
RA1  
Controller  
forced stop  
RA2  
Forced  
stop  
ON  
MC  
OFF  
MC  
SK  
MELSERVO-  
J2M  
CNP3  
NFB  
MC  
L1  
L2  
L3  
1
2
3
Power supply  
3-phase  
200 to 230VAC  
CNP1B  
1
L11  
L21  
2
CN3  
VIN  
EM1  
SG  
24VDC  
Forced stop  
Note. Configure up the power supply circuit which switches off the magnetic contactor after detection of alarm occurrence on the controller  
side.  
3 - 14  
3. SIGNALS AND WIRING  
(2) For 1-phase 200 to 230VAC power supply  
Controller  
forced  
stop  
(Note 1)  
Alarm  
RA1  
Forced  
stop  
OFF  
ON  
MC  
RA2  
MC  
SK  
MELSERVO-J2M  
NFB  
MC  
CNP3  
(Note 2)  
Power supply  
1-phase  
200 to 230VAC  
L1  
L2  
L3  
1
2
3
CNP1B  
1
L11  
L21  
2
CN3  
VIN  
24VDC  
Forced stop  
EM1  
SG  
Note 1. Configure up the power supply circuit which switches off the magnetic contactor after detection of alarm occurrence on the  
controller side.  
2. For 1-phase 200 to 230VAC, connect the power supply to L1, L2 and leave L3 open.  
3 - 15  
3. SIGNALS AND WIRING  
3.4.2 Connectors and signal configurations  
POINT  
The pin configurations of the connectors are as viewed from the cable  
connector wiring section.  
CNP1A  
(X type)  
CNP1B  
(Y type)  
1
1
L11  
2
Base unit  
N
2
P
3
L21  
3
C
CNP3  
3
L3  
2
L2  
1
The connector frames are connected to  
the PE (earth) terminal of the base unit.  
L1  
Cable side connector  
Model  
Housing: 1-178128-3 (X type)  
Connector  
Maker  
CNP1A  
Contact: 917511-2 (max. sheath OD: 2.8[mm])  
353717-2 (max. sheath OD: 3.4[mm]) (Note)  
Housing: 2-178128-3 (Y type)  
Tyco  
CNP1B  
CNP3  
Contact: 917511-2 (max. sheath OD: 2.8[mm])  
353717-2 (max. sheath OD: 3.4[mm]) (Note)  
Housing: 1-179958-3  
Electronics  
Contact: 316041-2  
Note. This contact is not included in the option (MR-J2MCNM).  
3 - 16  
3. SIGNALS AND WIRING  
3.4.3 Terminals  
Refer to Section 10.2.1 for the layouts and signal configurations of the terminal blocks.  
Connection target  
Connector  
Pin No.  
Code  
Description  
(Application)  
(1) When using a three-phase power supply  
Supply L1, L2 and L3 with three-phase, 200 to 230VAC, 50/60Hz  
power.  
1
L
L
L
1
2
3
CNP3  
2
3
Main circuit power  
(2) When using a signal-phase power supply  
Supply L1 and L2 with signal-phase, 200 to 230VAC, 50/60Hz  
power.  
1
2
3
1
2
3
L
L
11  
21  
Supply L and L with single-phase, 200 to 230VAC, 50/60Hz  
11 21  
CNP1B  
CNP1A  
Control circuit power  
power.  
N
Regenerative brake  
option  
Connect the regenerative brake option across P-C.  
Keep N open. (Refer to Section 12.1.1)  
P
C
Connect this terminal to the protective earth (PE) terminals of the  
servo motor and control box for grounding.  
Protective earth (PE)  
3 - 17  
3. SIGNALS AND WIRING  
3.4.4 Power-on sequence  
(1) Power-on procedure  
1) Always wire the power supply as shown in above Section 3.4.1 using the magnetic contactor with  
the main circuit power supply (3-phase 200V: L1, L2, L3, 1-phase 200 to 230VAC: L1, L2). Configure  
up an external sequence to switch off the magnetic contactor as soon as an alarm occurs.  
2) Switch on the control circuit power supply L11, L21 simultaneously with the main circuit power  
supply or before switching on the main circuit power supply. If the main circuit power supply is not  
on, the display shows the corresponding warning. However, by switching on the main circuit power  
supply, the warning disappears and MELSERVO-J2M will operate properly.  
3) Each drive unit can accept the servo-on command within 4s the main circuit power supply is  
switched on. (Refer to paragraph (2) in this section.)  
(2) Timing chart  
SON accepted  
(4s)  
Main circuit  
Control circuit  
ON  
OFF  
ON  
power  
Base circuit  
OFF  
ON  
100ms  
10ms  
100ms  
Servo-on command  
(from controller)  
OFF  
(3) Forced stop  
Install an emergency stop circuit externally to ensure that operation can be  
stopped and power shut off immediately.  
CAUTION  
If the controller does not have a forced stop function, make up a circuit which shuts off main circuit  
power as soon as EM1-SG are opened at a forced stop. To ensure safety, always install a forced stop  
switch across EM1-SG. By disconnecting EM1-SG, the dynamic brake is operated to bring the servo  
motor to a stop. At this time, the display shows the servo forced stop warning (A.E6).  
During ordinary operation, do not use forced stop (EM1) to alternate stop and run. The service life of  
each drive unit may be shortened.  
Interface unit  
24VDC  
VIN  
Forced stop  
EM1  
SG  
3 - 18  
3. SIGNALS AND WIRING  
3.5 Connection of drive unit and servo motor  
3.5.1 Connection instructions  
Connect the wires to the correct phase terminals (U, V, W) of the drive unit and  
servo motor. Otherwise, the servo motor will operate improperly.  
Do not connect AC power supply directly to the servo motor. Otherwise, a fault  
may occur.  
CAUTION  
POINT  
Do not apply the test lead bars or like of a tester directly to the pins of the  
connectors supplied with the servo motor. Doing so will deform the pins,  
causing poor contact.  
The connection method differs according to the series and capacity of the servo motor and whether or not  
the servo motor has the electromagnetic brake. Perform wiring in accordance with this section.  
(1) The protective earth of the servo motor joins to the base unit via the drive unit mounting screw.  
Connect the protective earth terminal of the base unit to the protective earth of the control box to  
discharge electricity to the earth.  
(2) The power supply for the electromagnetic brake should not be used as the 24VDC power supply for  
interface. Always use the power supply for electromagnetic brake only.  
3.5.2 Connection diagram  
The following table lists wiring methods according to the servo motor types. Use the connection diagram  
which conforms to the servo motor used. For cables required for wiring, refer to Section 12.2.1. For  
encoder cable connection, refer to Section 12.1.2. For the signal layouts of the connectors, refer to Section  
3.5.3.  
For the servo motor connector, refer to Chapter 3 of the Servo Motor Instruction Manual.  
Servo motor  
Connection diagram  
Base unit Drive unit  
Servo motor  
Motor  
CNP2  
U (Red)  
V (White)  
W (Black)  
(Green)  
U
V
W
(Note 1) (Note 3)  
24VDC  
B1  
B2  
(Note 2)  
Electro-  
magnetic  
brake  
HC-KFS053 (B) to 73 (B)  
HC-MFS053 (B) to 73 (B)  
HC-UFS13 (B) to 73 (B)  
EM1  
To be shut off when servo-  
off or alarm occurrence  
CN2  
Encoder  
Encoder cable  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal of the base  
unit to the protective earth (PE) of the control box.  
2. This circuit applies to the servo motor with electromagnetic brake.  
3. The protective earth of the servo motor is connected to the base unit via the drive unit  
mounting screw.  
3 - 19  
3. SIGNALS AND WIRING  
3.5.3 I/O terminals  
(1) Drive unit  
POINT  
The pin configurations of the connectors are as viewed from the cable  
connector wiring section.  
CN2  
20  
P5  
10  
8
19  
P5  
9
Drive unit  
BAT  
7
18  
17  
P5  
CNP2  
MRR  
15  
MR  
5
2
V
1
4
16  
6
MD  
4
MDR  
14  
3
U
W
13  
3
12  
2
11  
1
LG  
LG  
Cable side connector  
Model  
Connector  
LG  
LG  
Maker  
1. Soldering type  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
2. Insulation displacement type  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
3M  
CN2  
Housing: 5557-04R-210  
Terminal: 5556PBT3L  
CNP2  
Molex  
(2) Servo motor (HC-KFS HC-MFS HC-UFS3000r/min series)  
Encoder connector signal arrangement  
Power supply lead  
4-AWG19 0.3m (0.98ft.)  
1
MR  
4
2
3
Power supply connector (Molex)  
Without electromagnetic brake  
5557-04R-210 (receptacle)  
MRR BAT  
5
MDR  
8
6
a
MD  
7
Encoder cable 0.3m (0.98ft.)  
5556PBTL (Female terminal)  
b
9
With connector 1-172169-9  
With electromagnetic brake  
P5  
LG  
SHD  
(Tyco Electronics)  
5557-06R-210 (receptacle)  
5556PBTL (Female terminal)  
Power supply  
connector  
5557-04R-210  
View a  
Power supply  
connector  
5557-06R-210  
Pin Signal  
Signal  
U
Pin  
1
1
U
1
2
3
4
1
2
3
4
5
6
2
3
2
3
V
W
V
W
4
4
View b  
(Earth)  
(Earth)  
5
6
(Note)  
B1  
B2  
View b  
(Note)  
Note. Supply electromagnetic  
brake power (24VDC).  
There is no polarity.  
3 - 20  
3. SIGNALS AND WIRING  
3.6 Alarm occurrence timing chart  
When an alarm has occurred, remove its cause, make sure that the operation  
signal is not being input, ensure safety, and reset the alarm before restarting  
operation.  
CAUTION  
As soon as an alarm occurs, make the Servo off status and interrupt the main  
circuit power.  
When an alarm occurs in each unit, the base circuit is shut off and the servo motor is coated to a stop.  
Switch off the main circuit power supply in the external sequence. To deactivate the alarm, power the  
control circuit off, then on or give the error reset or CPU reset command from the servo system controller.  
However, the alarm cannot be deactivated unless its cause is removed.  
(Note)  
Main circuit  
Control circuit  
ON  
OFF  
Power off  
power  
Power on  
ON  
OFF  
Base circuit  
Valid  
Invalid  
Brake operation  
Brake operation  
Dynamic brake  
ON  
Servo-on command  
(from controller)  
OFF  
NO  
YES  
NO  
YES  
NO  
Alarm  
4s  
Reset command  
(from controller)  
ON  
OFF  
50ms or more  
30ms or more  
Alarm occurs.  
Remove cause of trouble.  
Note. Switch off the main circuit power as soon as an alarm occurs.  
(1) Overcurrent, overload 1 or overload 2  
If operation is repeated by switching control circuit power off, then on to reset the overcurrent (A.32),  
overload 1 (A.50), overload 2 (A.51) or multi axis overload (A.53) alarm after its occurrence, without  
removing its cause, each unit and servo motor may become faulty due to temperature rise. Securely  
remove the cause of the alarm and also allow about 30 minutes for cooling before resuming operation.  
(2) Regenerative alarm  
If operation is repeated by switching control circuit power off, then on to reset the regenerative (A.30)  
alarm after its occurrence, the external regenerative brake resistor will generate heat, resulting in an  
accident.  
(3) Instantaneous power failure  
Undervoltage (A. 10) occurs when the input power is in either of the following statuses.  
A power failure of the control circuit power supply continues for 30ms or longer and the control  
circuit is not completely off.  
The bus voltage dropped to 200VDC or less.  
3 - 21  
3. SIGNALS AND WIRING  
3.7 Servo motor with electromagnetic brake  
Configure the electromagnetic brake operation circuit so that it is activated not only  
by the interface unit signals but also by an external forced stop (EM1).  
Contacts must be open when  
servo-off, when an alarm occurrence  
and when an electromagnetic brake  
interlock (MBR).  
Circuit must be  
opened during  
forced stop (EM1).  
Servo motor  
RA EM1  
CAUTION  
24VDC  
Electromagnetic brake  
The electromagnetic brake is provided for holding purpose and must not be used  
for ordinary braking.  
Before performing the operation, be sure to confirm that the electromagnetic brake  
operates properly.  
POINT  
Refer to the Servo Motor Instruction Manual for specifications such as the  
power supply capacity and operation delay time of the electromagnetic  
brake.  
Note the following when the servo motor equipped with electromagnetic brake is used.  
1) Do not share the 24VDC interface power supply between the interface and electromagnetic  
brake. Always use the power supply designed exclusively for the electromagnetic brake.  
2) The brake will operate when the power (24VDC) switches off.  
3) Switch off the servo-on command after the servo motor has stopped.  
4) Using the IFU parameter No.10, select the axis number of the drive unit which uses the  
electromagnetic brake interlock (MBR).  
(1) Connection diagram  
Interface unit  
or  
extension IO unit  
Forced  
stop  
Servo motor  
RA  
B1  
B2  
24VDC  
SG  
24VDC  
RA  
MBR  
(2) Setting  
In DRU parameter No.21 (electromagnetic brake sequence output), set the delay time (Tb) from  
electromagnetic brake operation to base circuit shut-off at a servo off time as in the timing chart in (4)  
in this section.  
3 - 22  
3. SIGNALS AND WIRING  
(3) Electromagnetic brake interlock signal  
There are the following electromagnetic brake interlock signals. The MR-J2M-D01 is required to use  
MBR1 to MBR8. Load the MR-J2M-D01 to the option slot of the base unit.  
Signal  
Symbol  
Connector Pin No.  
Description  
Electromagnetic  
brake interlock  
Electromagnetic  
brake interlock 1  
Electromagnetic  
brake interlock 2  
Electromagnetic  
brake interlock 3  
Electromagnetic  
brake interlock 4  
Electromagnetic  
brake interlock 5  
Electromagnetic  
brake interlock 6  
Electromagnetic  
brake interlock 7  
Electromagnetic  
brake interlock 8  
Electromagnetic brake interlock signal for all axes or the axis  
selected in parameter No. 10  
MBR  
CN3-13  
MBR1  
MBR2  
MBR3  
MBR4  
MBR5  
MBR6  
MBR7  
MBR8  
CN4A-9  
CN4A-10  
CN4A-34  
CN4A-35  
CN4B-9  
Electromagnetic brake interlock signal for axis 1  
Electromagnetic brake interlock signal for axis 2  
Electromagnetic brake interlock signal for axis 3  
Electromagnetic brake interlock signal for axis 4  
Electromagnetic brake interlock signal for axis 5  
Electromagnetic brake interlock signal for axis 6  
Electromagnetic brake interlock signal for axis 7  
Electromagnetic brake interlock signal for axis 8  
CN4B-10  
CN4B-34  
CN4B-35  
(a) Electromagnetic brake interlock (MBR)  
This signal is output from the CN3 connector of the interface unit. This signal allows you to select  
the axis number of the drive unit to be used with IFU parameter No. 10.  
Electromagnetic brake interlock output axis number selection  
Choose the axis number of the drive unit  
that will use electromagnetic brake interlock output (MBR).  
Setting  
Selected Axis  
All connected axes  
Axis 1  
0
1
2
3
4
5
6
7
8
Axis 2  
Axis 3  
Axis 4  
Axis 5  
Axis 6  
Axis 7  
Axis 8  
1) When selecting the corresponding axis number  
The timing chart of the corresponding axis is the same as in (4) of this section.  
2) When using all axes  
The timing chart in (4)(a) of this section changes as described below.  
When the base circuits of all connected axes turn on, electromagnetic brake interlock (MBR)  
turns on. If the servo on command timings differ between the axes, the axis whose servo on  
occurred first will result in overload alarm. Hence, the servo on command should be given to all  
axes at the same timing.  
The others are as shown in (4) of this section.  
3 - 23  
3. SIGNALS AND WIRING  
(b) Electromagnetic brake interlock 1 to 8 (MBR1 to MBR8)  
By adding an extension IO unit, you can use the electromagnetic brake interlock (MBR) for each  
axis. The timing chart is as shown in (4) of this section.  
(4) Timing charts  
(a) Servo-on command (from controller) ON/OFF  
Delay time (Tb) [ms] after the servo-on is switched off, the servo lock is released and the servo  
motor coasts. If the electromagnetic brake is made valid in the servo lock status, the brake life may  
be shorter. Therefore, when using the electromagnetic brake in a vertical lift application or the  
like, set Tb to about the same as the electromagnetic brake operation delay time to prevent a drop.  
Coasting  
0 r/min  
Servo motor speed  
(100ms)  
(120ms)  
Tb  
ON  
Base circuit  
OFF  
Electromagnetic  
brake interlock  
(MBR MBR1 to MBR8)  
Electromagnetic brake  
operation delay time  
Invalid(ON)  
Valid(OFF)  
ON  
Servo-on command  
(from controller)  
OFF  
(b) Forced stop command (from controller) or forced stop (EM1) ON/OFF  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Electromagnetic brake  
Servo motor speed  
Electromagnetic brake release  
(180ms)  
(10ms)  
ON  
Base circuit  
OFF  
(180ms)  
Electromagnetic  
brake interlock  
(MBR MBR1 to MBR8)  
Electromagnetic brake  
operation delay time  
Invalid (ON)  
Valid (OFF)  
Invalid (ON)  
Valid (OFF)  
Forced stop  
command(from controller)  
or  
Forced stop (EM1)  
3 - 24  
3. SIGNALS AND WIRING  
(c) Alarm occurrence  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Servo motor speed  
Electromagnetic brake  
(10ms)  
ON  
Base circuit  
OFF  
Electromagnetic  
brake interlock  
(MBR MBR1 to MBR8)  
Invalid(ON)  
Valid(OFF)  
Electromagnetic brake  
operation delay time  
No(ON)  
Trouble (ALM)  
Yes(OFF)  
(d) Both main and control circuit power supplies off  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
(10ms)  
Servo motor speed  
Electromagnetic brake  
(Note)15 to 100ms  
ON  
Base circuit  
OFF  
Electromagnetic  
brake interlock  
(MBR MBR1 to MBR8)  
Invalid(ON)  
Valid(OFF)  
Electromagnetic brake  
operation delay time  
No(ON)  
Trouble (ALM)  
Yes(OFF)  
ON  
Main circuit  
power  
Control circuit  
OFF  
Note. Changes with the operating status.  
(e) Only main circuit power supply off (control circuit power supply remains on)  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
(10ms)  
Servo motor speed  
Electromagnetic brake  
(Note 1)15ms or more  
ON  
Base circuit  
OFF  
Electromagnetic  
brake interlock  
(MBR MBR1 to MBR8)  
Invalid(ON)  
Valid(OFF)  
Electromagnetic brake  
operation delay time  
(Note 2)  
No(ON)  
Trouble (ALM)  
Yes(OFF)  
ON  
Main circuit power  
supply  
OFF  
Note 1. Changes with the operating status.  
2. When the main circuit power supply is off in a motor stop status,  
the main circuit off warning (A.E9) occurs and the trouble (ALM_ ) does not turn off.  
3 - 25  
3. SIGNALS AND WIRING  
3.8 Grounding  
Ground the base unit and servo motor securely.  
To prevent an electric shock, always connect the protective earth (PE) terminal of  
the base unit with the protective earth (PE) of the control box.  
WARNING  
The base unit switches the power transistor on-off to supply power to the servo motor. Depending on the  
wiring and ground cablerouting, MELSERVO-J2M may be affected by the switching noise (due to di/dt  
and dv/dt) of the transistor. To prevent such a fault, refer to the following diagram and always ground.  
To conform to the EMC Directive, refer to the EMC Installation Guidelines (IB(NA)67310).  
Control box  
Base unit  
Power  
supply  
NFB  
Servo motor  
FR-BAL  
Drive unit  
MC  
CN2  
3-phase  
200 to  
230VAC  
(Note 4)  
1-phase  
200 to  
L1  
L2  
Encoder  
L3  
U
V
U
L11  
L21  
M
V
230VAC  
CNP2  
W
(Earth)  
W
(Note 2)  
(Note 3)  
Drive unit  
Servo motor  
CN2  
Encoder  
U
V
U
M
V
CNP2  
W
(Earth)  
W
(Note 2)  
(Note 3)  
Interface unit  
CN1A  
(Note 1)  
Protective earth(PE)  
Note 1. To reduce the influence of external noise, we recommend you to ground the bus cable near  
the controller using a cable clamping fixture or to connect three or four data line filters in series.  
2. The mounting screw of the drive unit is also used for PE connection of the servo motor.  
3. Ensure to connect it to PE terminal of the drive unit. Do not connect it directly to the protective earth of the control panel.  
4. For 1-phase 230VAC, connect the power supply to L1 L2 and leave L3 open.  
3 - 26  
3. SIGNALS AND WIRING  
3.9 Instructions for the 3M connector  
When fabricating an encoder cable or the like, securely connect the shielded external conductor of the  
cable to the ground plate as shown in this section and fix it to the connector shell.  
External conductor  
Sheath  
Core  
External conductor  
Pull back the external conductor to cover the sheath  
Sheath  
Strip the sheath.  
Screw  
Cable  
Screw  
Ground plate  
3 - 27  
3. SIGNALS AND WIRING  
MEMO  
3 - 28  
4. OPERATION AND DISPLAY  
4. OPERATION AND DISPLAY  
On the interface unit display (5-digit, seven-segment display), check the status of communication with the  
servo system controller at power-on, check the axis number, and diagnose a fault at occurrence of an  
alarm.  
4.1 Normal indication  
When powered on, the MELSERVO-J2M is placed in the automatic scroll mode in which the statuses of  
the drive units installed on the base unit appear at intervals of 2 seconds in due order. At this time, open  
slot numbers do not appear.  
In the initial status, the indication is in the automatic scroll mode. Pressing the "SET" button switches the  
automatic scroll mode to the fixed mode. In the fixed mode, pressing the "UP" or "DOWN" button displays  
the status of the subsequent-axis drive unit.  
If an alarm/warning occurs in the interface unit, the alarm/warning number of the interface unit appears.  
(Refer to Section 4.1.2)  
Automatic scroll  
or  
button  
UP DOWN  
#
#
#
#
#
DRU status indication  
DRU status indication  
DRU status indication  
DRU status indication  
DRU status indication  
(Slot 1)  
(Slot 2)  
(Slot 3)  
(Slot 7)  
(Slot 8)  
Pressing the "MODE" button in the automatic scroll mode for more than 2s switches to the interface-  
related display mode in which the data of the interface unit appears. (Refer to Section 4.2)  
4 - 1  
4. OPERATION AND DISPLAY  
4.1.1 Display sequence  
@ in the diagram denotes the slot number of the base unit and # the axis number of the drive unit.  
MELSERVO-J2M power ON  
Waiting for servo system controller  
power to switch ON  
@
#
Servo system controller power ON  
@
@
@
#
#
#
Initial data communication  
with servo system controller  
At interface unit alarm occurrence  
Interface unit  
current alarm indication  
Ready OFF/servo OFF  
Ready ON/servo OFF  
Ready ON/servo ON  
@
@
@
#
#
#
* *  
Ready ON  
Servo ON  
2s later  
When alarm  
occurs, alarm  
code appears.  
To drive unit status indication  
Ordinary operation  
Servo system controller power OFF  
@
#
Servo system controller power ON  
4 - 2  
4. OPERATION AND DISPLAY  
(1) Indication list  
(Note 1) Indication  
Status  
Description  
MELSERVO-J2M was switched on when power to the servo system controller  
is off.  
@ Ab# Initializing  
Power to the servo system controller was switched off during power-on of  
MELSERVO-J2M.  
The axis No. set to the servo system controller does not match the axis No.  
set with IFU parameter No.11 to No.18.  
@ AA# Initializing  
@ AC# Initializing  
MELSERVO-J2M fault occurred or an error took place in communication  
with the servo system controller. In this case, the indication changes:  
"Ab"  
"AC"  
"Ad"  
"Ab"  
The servo system controller is faulty.  
Communication started between the servo system controller and MELSERVO-  
J2M.  
@ Ad# Initializing  
The initial parameters from the servo system controller were received.  
Initial data communication with the servo system controller was completed.  
The ready off signal from the servo system controller was received.  
The ready off signal from the servo system controller was received.  
The ready off signal from the servo system controller was received.  
The alarm No./warning No. that occurred is displayed. (Refer to Section 9.1.)  
It is a state of the test operation mode with the MR Configurator (servo  
configuration software).  
@ AE# Initialize completion  
@ b#  
@ C#  
@ d#  
Ready OFF  
Servo OFF  
Servo ON  
(Note 2) @A**# Alarm Warning  
@T b#.  
(Note 3)  
@T c#.  
Test operation mode  
@T d#.  
JOG operation, positioning operation, programmed operation, DO forced  
output, motor-less operation.  
Note 1. @ denotes the slot number of the base unit and # the axis number of the drive unit.  
2. ** indicates the warning/alarm No.  
4.1.2 If alarm/warning occurs  
(1) If alarm/warning occurs in drive unit  
An alarm/warning which occurred in the drive unit is represented by the following indication.  
The following indication example assumes that an encoder error (A.16) occurred in the drive unit of  
axis 3 installed on slot 1. During alarm occurrence, the decimal points in the fifth and second digits  
flicker.  
1. A 1 6. 3  
Axis number  
Alarm/warning number  
Denotes alarm/warning indication.  
Slot number  
(2) If alarm/warning occurs in interface unit  
An alarm/warning which occurred in the interface unit is represented by the following indication. The  
following indication example assumes that interface unit undervoltage (A.10) occurred. During alarm  
occurrence, the decimal points in the fifth and second digits flicker.  
F. A 1 0.  
Alarm/warning number  
Denotes alarm/warning indication.  
Denotes interface unit.  
4 - 3  
4. OPERATION AND DISPLAY  
4.2 Status display mode of interface unit  
4.2.1 Display flowchart  
Use the display (5-digit, 7-segment LED) on the front panel of the interface unit for status display,  
parameter setting, etc. Set the parameters before operation, diagnose an alarm, confirm external  
sequences, and/or confirm the operation status. The unit is in the automatic scroll mode at power-on.  
Press the "MODE" button for more than 2s to change the display before starting operation. Press the  
"MODE" "UP" or "DOWN" button once to move to the next screen.  
button  
MODE  
Status display  
Diagnosis  
Alarm  
Basic IFU parameters  
Regenerative load  
ratio [%]  
External I/O  
signal display  
IFU parameter No. 0  
IFU parameter No. 1  
Current alarm  
Bus voltage [V]  
Output signal  
forced output  
Last alarm  
UP  
Peak bus voltage  
[V]  
Software version  
low  
Second alarm in past  
Third alarm in past  
Fourth alarm in past  
Fifth alarm in past  
Sixth alarm in past  
Parameter error No.  
DOWN  
Software version  
high  
IFU parameter No. 18  
IFU parameter No. 19  
4 - 4  
4. OPERATION AND DISPLAY  
4.2.2 Status display of interface unit  
MELSERVO-J2M status during operation is shown on the 5-digit, 7-segment LED display. Press the "UP"  
or "DOWN" button to change display data as desired. When the required data is selected, the  
corresponding symbol appears. Press the "SET" button to display its data.  
(1) Display examples  
The following table lists display examples:  
Displayed data  
Item  
Status  
Interface unit display  
Regenerative load ratio  
60%  
Bus voltage  
270V  
350V  
Peak bus voltage  
(2) Status display list  
The following table lists the servo statuses that may be shown: Refer to Appendix 1 for the  
measurement point.  
Display  
range  
Name  
Symbol  
Unit  
Description  
Regenerative load  
ratio  
The ratio of regenerative power to permissible regenerative power is  
displayed in %.  
L
%
V
0 to 100  
0 to 450  
Bus voltage  
Pn  
The voltage (across P-N) of the main circuit converter is displayed.  
Shows the maximum voltage of the main circuit converter (across P-N).  
The maximum value during past 15s is displayed.  
Peak bus voltage  
PnP  
V
0 to 450  
If there is a difference of 40V or more between the bus voltage and peak  
bus voltage during normal operation, use the regenerative brake option.  
4 - 5  
4. OPERATION AND DISPLAY  
4.2.3 Diagnostic mode of interface unit  
Name  
Display  
Description  
Shows the ON/OFF states of the external I/O signals and  
whether a forced stop command from the servo system controller  
is present or not.  
2)  
1)  
3)  
1) Forced stop command from servo system controller  
External I/O signal  
display  
Absent: On  
Present: Off  
2) Forced stop (EM1)  
ON: On  
OFF: Off  
3) Electromagnetic brake interlock (MBR)  
ON: On  
OFF: Off  
Output signal forced  
output  
The digital output signal can be forced on/off. For more  
information, refer to section 4.2.6.  
Software version low  
Software version high  
Indicates the version of the software.  
Indicates the system number of the software.  
4 - 6  
4. OPERATION AND DISPLAY  
4.2.4 Alarm mode of interface unit  
The current alarm, past alarm history and parameter error are displayed. The lower 2 digits on the  
display indicate the alarm number that has occurred or the parameter number in error. Display examples  
are shown below.  
Name  
Display  
Description  
Indicates no occurrence of an alarm.  
Current alarm  
Indicates the occurrence of overvoltage (A.33).  
Flickers at occurrence of the alarm.  
Indicates that the last alarm is Multiple axis overload (A.53).  
Indicates that the second alarm in the past is overvoltage (A.33).  
Indicates that the third alarm in the past is undervoltage (A.10).  
Indicates that the fourth alarm in the past is overspeed (A.31).  
Indicates that there is no fifth alarm in the past.  
Alarm history  
Indicates that there is no sixth alarm in the past.  
Indicates no occurrence of parameter error.  
Parameter error No.  
Indicates that the data of parameter No. 1 is faulty.  
Functions at occurrence of an alarm  
(1) Any mode screen displays the current alarm.  
(2) Even during alarm occurrence, the other screen can be viewed by pressing the button in the operation  
area. At this time, the decimal point in the fourth digit remains flickering.  
(3) For any alarm, remove its cause and clear it in any of the following:  
(a) Switch power OFF, then ON.  
(b) Press the "SET" button on the current alarm screen.  
(c) Turn on the alarm reset (RES) methods (for clearable alarms, refer to Section 9.1).  
(4) Use IFU parameter No. 16 to clear the alarm history.  
(5) Pressing "SET" button on the alarm history display screen for 2s or longer shows the following detailed  
information display screen. Note that this is provided for maintenance by the manufacturer.  
(6) Press "UP" or "DOWN" button to move to the next history.  
4 - 7  
4. OPERATION AND DISPLAY  
4.2.5 Interface unit parameter mode  
The parameters whose abbreviations are marked* are made valid by changing the setting and then  
switching power off once and switching it on again. Refer to Section 5.2.2.  
The following example shows the operation procedure performed after power-on to change the serial  
communication baudrate (IFU parameter No. 0) to 38400bps.  
Using the "MODE" button, show the basic parameter screen.  
The parameter number is displayed.  
Press  
or  
UP DOWN  
to change the number.  
Press SET twice.  
The set value of the specified parameter number flickers.  
Press UP once.  
During flickering, the set value can be changed.  
Use  
(
or  
UP DOWN  
2: Baudrate 38400bps)  
.
Press SET to enter.  
/
UP DOWN  
To shift to the next parameter, press the  
button.  
When changing the parameter No. 0 setting, change its set value, then switch power off once and switch it  
on again to make the new value valid.  
4 - 8  
4. OPERATION AND DISPLAY  
4.2.6 Output signal (DO) forced output  
POINT  
This function is available during test operation.  
The output signal can be forced on/off independently of the servo status. This function is used for output  
signal wiring check, etc. This operation must be performed in the servo off state.  
Call the display screen shown after power-on.  
Using the "MODE" button, show the diagnostic screen.  
Press UP once.  
Press SET for more than 2s.  
Turns on/off the signal under the lit LED.  
Always lit.  
Indicates whether the output signal is ON or OFF.  
The signals are the same as the output signals of  
CN3  
13  
the external I/O signal display. (On: ON, Off: OFF)  
Pressing MODE once moves the lit LED to the left.  
Press UP once.  
The CN3-13 pin turns on.  
(There will be continuity across CN3-13 pin-SG.)  
Press DOWN once.  
The CN3-13 pin turns off.  
Press SET for more than 2s.  
4 - 9  
4. OPERATION AND DISPLAY  
MEMO  
4 - 10  
5. PARAMETERS  
5. PARAMETERS  
CAUTION  
Never adjust or change the parameter values extremely as it will make operation  
instable.  
POINT  
When MELSERVO-J2M is connected with the servo system controller, the  
parameters are set to the values of the servo system controller. Switching  
power off, then on makes the values set on the MR Configurator (servo  
configuration software) invalid and the servo system controller values valid.  
In the maker setting parameters, do not set any values other than the  
initial values.  
Setting may not be made to some parameters and ranges depending on the  
model or version of the servo system controller. For details, refer to the  
servo system controller user's manual.  
The IFU and DRU parameters can be set in the following methods.  
Parameters  
Setting Method  
Pushbuttons in interface unit operation section  
MR Configurator (servo configuration software)  
MR Configurator (servo configuration software)  
Servo system controller  
IFU parameters  
DRU parameters  
5.1 Drive unit  
5.1.1 Parameter write inhibit  
POINT  
When setting the parameter values from the servo system controller, the  
DRU parameter No. 40 setting need not be changed.  
In this drive unit, the parameters are classified into the basic DRU parameters (No. 1 to 11), adjustment  
DRU parameters (No. 12 to 26) and expansion DRU parameters (No. 27 to 40) according to their safety  
aspects and frequencies of use. The values of the basic DRU parameters may be set/changed by the  
customer, but those of the adjustment and expansion DRU parameters cannot. When in-depth  
adjustment such as gain adjustment is required, change the DRU parameter No. 40 value to make all  
parameters accessible. DRU parameter No. 40 is made valid by switching power off, then on after setting  
its value.  
The following table indicates the parameters which are enabled for reference and write by DRU  
parameter No. 40 setting.  
Operation from MR Configurator  
Operation from controller  
DRU parameter No.1 to 39  
DRU parameter No.1 to 39  
DRU parameter No.1 to 39  
DRU parameter No.1 to 39  
DRU parameter No.1 to 39  
Setting  
0000(initial value)  
000A  
Operation  
(servo configuration software)  
Reference  
Write  
DRU parameter No.1 to 11 40  
Reference  
Write  
DRU parameter No.40  
Reference  
Write  
DRU parameter No.1 to 40  
000C  
DRU parameter No.1 to 11 40  
Reference  
Write  
000E  
DRU parameter No.1 to 40  
Reference  
Write  
DRU parameter No.1 to 40  
DRU parameter No.40  
100E  
5 - 1  
5. PARAMETERS  
5.1.2 Lists  
POINT  
For any DRU parameter whose symbol is preceded by*, set the DRU  
parameter value and switch power off once, then switch it on again to  
make that parameter setting valid. The parameter is set when  
communication between the servo system controller and servo amplifier is  
established (b* is displayed). After that, power the servo amplifier off once  
and then on again.  
(1) Item list  
(Note)  
Classifi-  
Customer  
No. Symbol  
cation  
Name  
Initial  
Unit  
setting  
Value  
1
*AMS Amplifier setting  
*REG Regenerative brake resistor  
0000  
0000  
0080  
000  
1
2
3
4
For automatic setting by servo system controller  
*FBP Feedback pulse number  
5
6
0
7
*POL Rotation direction selection  
ATU Auto tuning  
0
8
0001  
0005  
300  
300  
7.0  
35  
9
RSP  
TLP  
Servo response  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Forward rotation torque limit  
%
TLN Reverse rotation torque limit  
%
GD2  
PG1  
VG1  
PG2  
VG2  
VIC  
Ratio of load inertia to servo motor inertia (load inertia ratio)  
Position control gain 1  
times  
rad/s  
rad/s  
rad/s  
rad/s  
ms  
Speed control gain 1  
177  
35  
Position control gain 2  
Speed control gain 2  
817  
48  
Speed integral compensation  
NCH Machine resonance suppression filter 1 (Notch filter)  
0000  
0
FFC  
INP  
Feed forward gain  
In-position range  
%
100  
0
pulse  
ms  
MBR Electromagnetic brake sequence output  
For manufacturer setting  
0001  
0000  
0000  
0000  
0
*OP1 Optional function 1  
*OP2 Optional function 2  
LPF  
Low-pass filter/adaptive vibration suppression control  
0
For manufacturer setting  
0
0001  
50  
ZSP  
ERZ  
OP5  
Zero speed  
r/min  
Error excessive alarm level  
Optional function 5  
80  
0.1rev  
0000  
0000  
0
*OP6 Optional function 6  
VPI PI-PID control switch-over position droop  
For manufacturer setting  
pulse  
0
VDC Speed differential compensation  
For manufacturer setting  
980  
0010  
*ENR Encoder output pulses  
For manufacturer setting  
4000 pulse/rev  
0
*BLK DRU parameter write inhibit  
0000  
Note. Factory settings of the servo amplifier. Connecting it with the servo system controller and switching power on changes them to the  
settings of the servo system controller.  
5 - 2  
5. PARAMETERS  
(Note)  
Initial  
Classifi-  
Custome  
r setting  
No. Symbol  
cation  
Name  
Unit  
Value  
41  
42  
43  
44  
45  
46  
47  
48  
For manufacturer setting  
500  
0000  
0111  
20  
50  
0
0
0
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
*CDP Gain changing selection  
0000  
10  
CDS  
CDT  
Gain changing condition  
(Note)  
ms  
Gain changing time constant  
1
GD2B Ratio of load inertia moment to Servo motor inertia moment 2  
PG2B Position control gain 2 changing ratio  
7.0  
100  
100  
100  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
400  
100  
1
times  
%
VG2B Speed control gain 2 changing ratio  
%
VICB  
Speed integral compensation changing ratio  
For manufacturer setting  
%
*OPC Optional function C  
NH2 Machine resonance suppression filter 2  
For manufacturer setting  
1
0
0
0
0
0
0
0
0
0
Note. Depends on the DRU parameter No. 49 setting.  
5 - 3  
5. PARAMETERS  
(2) Details list  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
1
*AMS Amplifier setting  
0000  
Refer to  
name  
Used to select the absolute position detection.  
and  
0 0 0  
function  
column.  
Absolute position detection selection  
0: Invalid (Used in incremental system.)  
1: Valid (Used in absolute position  
detection system.)  
2
*REG Regenerative brake resistor  
0000  
Refer to  
name  
Used to select the regenerative brake option used. The values set to  
the drive units installed on the base unit should all be the same.  
and  
function  
column.  
0 0  
Regenerative selection brake option  
(The built-in regenerative brake resister is used.)  
00: Not used  
06: MR-RB34  
07: MR-RB54  
10: MR-RB032  
11: MR-RB14  
POINT  
Wrong setting may cause the regenerative brake option to burn.  
If the regenerative brake option selected is not for use with the  
drive unit, parameter error (A.37) occurs.  
For automatic setting by servo system controller  
Automatically set from the servo system controller  
3
4
5
6
0080  
0000  
1
*FBP Feedback pulse number  
0
Refer to  
name  
Set the number of pulses per revolution in the controller side  
command unit. Information on the motor such as the feedback pulse  
value, present position, droop pulses and within-one-revolution  
position are derived from the values converted into the number of  
pulses set here.  
and  
function  
column.  
Setting  
Number of feedback pulses  
0
1
16384  
8192  
6
32768  
131072  
7
255  
Depending on the number of motor resolution pulses.  
POINT  
If the number of pulses set exceeds the actual motor  
resolution, the motor resolution is set automatically.  
5 - 4  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
7
*POL Rotation direction selection  
0
Refer to  
name  
Used to select the rotation direction of the servo motor.  
0: Forward rotation (CCW) with the increase of the positioning  
and  
address.  
function  
column.  
1: Reverse rotation (CW) with the increase of the positioning  
address.  
CCW  
CW  
8
ATU Auto tuning  
0001  
Refer to  
name  
Used to select the gain adjustment mode of auto tuning.  
and  
0 0 0  
function  
column.  
Gain adjustment mode selection  
(For details, refer to Section 6.1.1.)  
Set  
value  
0
Gain adjustment  
mode  
Interpolation mode Fixes position control  
Description  
gain 1  
(parameter No. 13).  
1
3
Auto tuning mode 1 Ordinary auto tuning.  
Auto tuning mode 2 Fixes the load inertia  
moment ratio set in  
parameter No. 12.  
Response level setting  
can be changed.  
4
2
Manual mode 1  
Manual mode 2  
Simple manual  
adjustment.  
Manual adjustment  
of all gains.  
5 - 5  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
9
RSP  
Servo response  
0005  
Refer to  
name  
Used to select the response level of auto tuning.  
and  
0 0 0  
function  
column.  
Auto tuning response level selection  
Set  
Response Machine resonance  
value  
level  
Low  
response  
frequency guideline  
15Hz  
1
2
20Hz  
3
25Hz  
4
30Hz  
5
35Hz  
6
45Hz  
7
8
9
55Hz  
70Hz  
85Hz  
Middle  
response  
A
B
C
D
E
F
105Hz  
130Hz  
160Hz  
200Hz  
240Hz  
300Hz  
High  
response  
If the machine hunts or generates large gear  
sound, decrease the set value.  
To improve performance, e.g. shorten the  
settling time, increase the set value.  
10  
11  
TLP  
Forward rotation torque limit  
300  
300  
%
%
0
Assume that the rated torque is 100[%].  
to  
Used to limit the torque in the forward rotation driving mode and  
reverse rotation regenerative mode.  
500  
In other than the test operation mode on the MR Configurator (servo  
configuration software), the torque limit value on the servo system  
controller side is made valid.  
TLN Reverse rotation torque limit  
0
Assume that the rated torque is 100[%].  
to  
Used to limit the torque in the forward rotation driving mode and  
forward rotation regenerative mode.  
500  
In other than the test operation mode on the MR Configurator (servo  
configuration software), the torque limit value on the servo system  
controller side is made valid.  
Ratio of load inertia moment to servo motor inertia moment  
Used to set the ratio of the load inertia moment to the servo motor  
shaft inertia moment. When auto tuning mode 1 and interpolation  
mode is selected, the result of auto tuning is automatically used.  
(Refer to section 6.1.1)  
12  
13  
GD2  
PG1  
7.0  
35  
times  
rad/s  
0.0  
to  
300.0  
In this case, it varies between 0 and 1000.  
Position loop gain 1  
4
to  
Used to set the gain of position loop 1. Increase the gain to improve  
trackability performance in response to the position command.  
When auto turning mode 1,2 is selected, the result of auto turning is  
automatically used.  
2000  
5 - 6  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
14  
VG1  
Speed loop gain 1  
177  
rad/s  
20  
to  
Normally this parameter setting need not be changed. Higher setting  
increases the response level but is liable to generate vibration and/or  
noise.  
5000  
When auto tuning mode 1,2 and interpolation mode is selected, the  
result of auto tuning is automatically used.  
15  
PG2  
Position loop gain 2  
35  
rad/s  
rad/s  
ms  
1
to  
Used to set the gain of the position loop.  
Set this parameter to increase position response to load disturbance.  
Higher setting increases the response level but is liable to generate  
vibration and/or noise.  
1000  
When auto tuning mode 1 2, manual mode and interpolation mode  
is selected, the result of auto tuning is automatically used.  
Speed loop gain 2  
16  
VG2  
817  
20  
to  
Set this parameter when vibration occurs on machines of low  
rigidity or large backlash.  
20000  
Higher setting increases the response level but is liable to generate  
vibration and/or noise.  
When auto tuning mode 1 2 and interpolation mode is selected, the  
result of auto tuning is automatically used.  
17  
18  
VIC  
Speed integral compensation  
48  
0
1
to  
Used to set the constant of integral compensation.  
When auto tuning mode 1 2 and interpolation mode is selected, the  
result of auto tuning is automatically used.  
1000  
NCH Machine resonance suppression filter 1 (Notch filter)  
Used to select the machine resonance suppression filter.  
(Refer to Section 7.2.)  
Refer to  
name  
and  
function  
column.  
0
Notch frequency selection  
Setting Frequency Setting Frequency Setting Frequency Setting Frequency  
00  
01  
02  
03  
04  
05  
06  
07  
Invalid  
4500  
2250  
1500  
1125  
900  
08  
562.5  
500  
10  
11  
12  
13  
14  
15  
16  
17  
281.3  
264.7  
250  
18  
187.5  
180  
09  
19  
0A  
0B  
0C  
0D  
0E  
0F  
450  
1A  
1B  
1C  
1D  
1E  
1F  
173.1  
166.7  
160.1  
155.2  
150  
409.1  
375  
236.8  
225  
346.2  
321.4  
300  
214.3  
204.5  
195.7  
750  
642.9  
145.2  
Notch depth selection  
Setting  
Depth  
Deep  
to  
Gain  
0
1
2
3
40dB  
14dB  
8dB  
Shallow  
4dB  
Feed forward gain  
19  
FFC  
0
%
0
Set the feed forward gain. When the setting is 100%, the droop  
pulses during operation at constant speed are nearly zero. However,  
sudden acceleration/deceleration will increase the overshoot. As a  
guideline, when the feed forward gain setting is 100%, set 1s or more  
as the acceleration/deceleration time constant up to the rated speed.  
to  
100  
5 - 7  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
20  
INP  
In-position range  
100  
pulse  
0
to  
Used to set the droop pulse range in which the in-position (INP) will  
be output to the controller. Make setting in the feedback pulse unit  
(parameter No. 6).  
50000  
For example, when you want to set 10 m in the conditions that the  
ballscrew is direct coupled, the lead is 10mm (0.39inch), and the  
feedback pulses are 8192 pulses/rev (parameter No. 6 : 1), set "8" as  
indicated by the following expression:  
6
10 10  
8192 8.192  
8
3
10 10  
21  
MBR Electromagnetic brake sequence output  
Used to set a time delay (Tb) from when the electromagnetic brake  
interlock (MBR) turns off until the base circuit is shut off.  
For manufacturer setting  
100  
ms  
0
to  
1000  
22  
23  
0001  
0000  
Do not change this value by any means.  
*OP1 Optional function 1  
Refer to  
name  
Used to make the servo forced stop function invalid.  
and  
0
0
function  
column.  
Servo forced stop selection  
0: Valid (Use the forced stop (EM1).)  
1: Invalid (Do not use the forced stop (EM1).)  
Automatically switched on internally  
Encoder cable selection  
0: 2-wire type (when MR-JCCBL M-L/H is used)  
1: 4-wire type (when MR-JC4CBL M-H is used)  
24  
*OP2 Optional function 2  
0000  
Refer to  
name  
Used to select slight vibration suppression control and motor-less  
operation  
and  
function  
column.  
0
0
Slight vibration suppression control selection  
Made valid when auto tuning selection is  
set to "0002" in parameter No.8.  
Used to suppress vibration at a stop.  
0: Invalid  
1: Valid  
Motor-less operation selection  
0: Invalid  
1: Makes motor-less operation valid.  
When motor-less operation is made valid, signal output or  
status display can be provided as if the servo motor is running  
actually in response to the servo system controller command,  
without the servo motor being connected.  
Motor-less operation is performed as in the motor-less  
operation using the MR Configurator (servo configuration software).  
(Refer to Section 5.2.4.)  
5 - 8  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
25  
LPF  
Low-pass filter/adaptive vibration suppression control  
Used to select the low-pass filter and adaptive vibration suppression  
control. (Refer to Chapter 7.)  
0000  
Refer to  
name  
and  
function  
column.  
0
Low-pass filter selection  
0: Valid (Automatic adjustment)  
1: Invalid  
VG2 setting 10  
When you choose "valid",  
[Hz]  
(1 GD2 setting 0.1)  
2
bandwidth filter is set automatically.  
Adaptive vibration suppression control selection  
0: Invalid  
1: Valid  
Machine resonance frequency is always detected  
and the filter is generated in response to resonance to  
suppress machine vibration.  
2: Held  
The characteristics of the filter generated so far are  
held, and detection of machine resonance is stopped.  
Adaptive vibration suppression control sensitivity  
selection  
Used to select the sensitivity of machine resonance  
detection.  
0: Normal  
1: Large sensitivity  
26  
For manufacturer setting  
0
Do not change this value by any means.  
For manufacturer setting  
27  
28  
29  
30  
0
0
Do not change this value by any means.  
0001  
50  
ZSP  
ERZ  
OP5  
Zero speed  
r/min  
0
to  
Used to set the output range of the zero speed (ZSP).  
10000  
31  
32  
Error excessive alarm level  
80  
0.1rev  
0
to  
Used to set the output range of the error excessive alarm.  
1000  
Optional function 5  
0000  
Refer to  
name  
Used to select PI-PID control switch-over.  
and  
0 0 0  
function  
column.  
PI-PID control switch over selection  
0: PI control is always valid.  
1: Droop-based switching is valid in position  
control mode (refer to DRU parameter No. 34).  
2: PID control is always valid.  
5 - 9  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
33  
*OP6 Option function 6  
0000  
Refer to  
name  
Used to select the serial communication baudrate, serial  
communication response delay time setting and encoder output  
pulse setting.  
and  
function  
column.  
0
0 0  
Encoder output pulse setting selection  
(refer to parameter No.38)  
0: Output pulse setting  
1: Division ratio setting  
34  
VPI  
PI-PID control switch-over position droop  
0
pulse  
0
to  
Used to set the position droop value (number of pulses) at which PI  
control is switched over to PID control.  
50000  
Set "0001" in DRU parameter No. 32 to make this function valid.  
For manufacturer setting  
35  
36  
0
Do not change this value by any means.  
VDC Speed differential compensation  
Used to set the differential compensation.  
980  
0
to  
1000  
37  
38  
For manufacturer setting  
0010  
4000  
*ENR Encoder output pulses  
pulse/rev  
1
to  
POINT  
The MR-J2M-D01 extension IO unit is required to output the  
encoder pulses (A phase, B phase, Z phase).  
65535  
Used to set the encoder pulses (A-phase, B-phase) output by the  
enhancing IO unit.  
Set the value 4 times greater than the A-phase and B-phase pulses.  
You can use DRU parameter No.33 to choose the output pulse  
setting or output division ratio setting.  
The number of A-phase and B-phase pulses actually output is 1/4  
times greater than the preset number of pulses.  
The maximum output frequency is 1.3Mpps (after multiplication by  
4). Use this parameter within this range.  
For output pulse designation  
Set "0  
" (initial value) in DRU parameter No.33.  
Set the number of pulses per servo motor revolution.  
Output pulse set value [pulses/rev]  
At the setting of 5600, for example, the actually output A-phase  
and B-phase pulses are as indicated below:  
5600  
A-phase and B-phase output pulses  
1400[pulse]  
4
For output division ratio setting  
Set "1  
" in DRU parameter No.33.  
The number of pulses per servo motor revolution is divided by the  
set value.  
Resolution per servo motor revolution  
Output pulse  
[pulses/rev]  
Set value  
At the setting of 8, for example, the actually output A-phase and  
B-phase pulses are as indicated below:  
131072  
8
1
4
A-phase and B-phase output pulses  
4096[pulse]  
5 - 10  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
39  
For manufacturer setting  
Do not change this value by any means.  
*BLK DRU Parameter blocks write inhibit  
0
40  
0000  
Refer to  
name  
Operation from MR  
Configurator (servo  
configuration  
and  
Operation from  
controller  
Setting  
Operation  
function  
column.  
software)  
0000  
(initial  
value)  
000A  
Reference DRU parameter  
No.1 to 39  
DRU parameter  
No.1 to 11 40  
Write  
Reference DRU parameter  
No.1 to 39  
DRU parameter  
No.40  
Write  
000C  
Reference DRU parameter  
DRU parameter  
No.1 to 40  
No.1 to 39  
Write  
DRU parameter  
No.1 to 11 40  
DRU parameter  
No.1 to 40  
000E  
100E  
Reference DRU parameter  
No.1 to 39  
Write  
Reference DRU parameter  
DRU parameter  
No.1 to 40  
No.1 to 39  
Write  
DRU parameter  
No.40  
5 - 11  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class  
No. Symbol  
Name and function  
For manufacturer setting  
Unit  
41  
42  
43  
44  
45  
46  
47  
48  
500  
0000  
0111  
20  
Do not change this value by any means.  
50  
0
0
0
49  
*CDP  
Gain changing selection  
0000  
Refer to  
Name  
Used to select the gain changing condition. (Refer to Section 7.5.)  
and  
0 0 0  
function  
column  
Gain changing selection  
Gains are changed in accordance with the settings  
of parameters No. 52 to 55 under any of the following  
conditions:  
0: Invalid  
1: Control command from controller  
2: Command frequency is equal to higher than  
parameter No. 50 setting  
3: Droop pulse value is equal to higher than  
parameter No. 50 setting  
4: Servo motor speed is equal to higher than  
parameter No. 50 setting  
50  
51  
CDS  
CDT  
Gain changing condition  
10  
1
kpps  
pulse  
r/min  
0
to  
Used to set the value of gain changing condition (command  
frequency, droop pulses, servo motor speed) selected in parameter  
No. 49. The set value unit changes with the changing condition  
item. (Refer to Section 7.5.)  
9999  
Gain changing time constant  
ms  
0
Used to set the time constant at which the gains will change in  
response to the conditions set in parameters No. 49 and 50.  
(Refer to Section 7.5.)  
to  
100  
52  
53  
GD2B Ratio of load inertia moment to servo motor inertia moment 2  
Used to set the ratio of load inertia moment to servo motor inertia  
moment when gain changing is valid.  
7.0  
times  
%
0
to  
300.0  
10  
PG2B  
VG2B  
VICB  
Position control gain 2 changing ratio  
Used to set the ratio of changing the position control gain 2 when  
gain changing is valid.  
100  
to  
200  
Made valid when auto tuning is invalid.  
Speed control gain 2 changing ratio  
54  
55  
100  
100  
%
%
10  
to  
Used to set the ratio of changing the speed control gain 2 when gain  
changing is valid.  
200  
Made valid when auto tuning is invalid.  
Speed integral compensation changing ratio  
Used to set the ratio of changing the speed integral compensation  
when gain changing is valid. Made valid when auto tuning is  
invalid.  
50  
to  
1000  
56  
57  
58  
59  
For manufacturer setting  
0000  
0000  
0000  
0000  
Do not change this value by any means.  
5 - 12  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class  
No. Symbol  
60 *OPC  
Name and function  
Unit  
Optional function C  
Use to select the encoder output pulse direction.  
0000  
Refer to  
Name  
and  
0
0 0  
function  
column  
Encoder pulse output phase changing  
Changes the phases of A, B-phase encoder pulses output .  
Servo motor rotation direction  
Set value  
CCW  
CW  
A phase  
B phase  
A phase  
B phase  
0
A phase  
B phase  
A phase  
B phase  
1
61  
NH2  
Machine resonance suppression filter 2  
0000  
Refer to  
Name  
Used to selection the machine resonance suppression filter.  
(Refer to Section 7.2.)  
and  
function  
column  
0
Notch frequency selection  
Set "00" when you have set adaptive vibration  
suppression control to be "valid" or "held"  
(parameter No. 25:  
1
or  
2
).  
Setting Frequency Setting Frequency Setting Frequency Setting Frequency  
value  
value  
value  
value  
00  
Invalid  
4500  
2250  
1500  
1125  
900  
08  
562.5  
500  
10  
281.3  
264.7  
250  
18  
187.5  
180  
01  
09  
11  
19  
02  
0A  
0B  
0C  
0D  
0E  
0F  
450  
12  
1A  
1B  
1C  
1D  
1E  
1F  
173.1  
166.7  
160.1  
155.2  
150  
03  
409.1  
375  
13  
236.8  
225  
04  
14  
05  
346.2  
321.4  
300  
15  
214.3  
204.5  
195.7  
06  
750  
16  
07  
642.9  
17  
145.2  
Notch depth selection  
Setting  
value  
Depth  
Gain  
0
1
40dB  
14dB  
Deep  
to  
2
3
8dB  
4dB  
Shallow  
5 - 13  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class  
No. Symbol  
Name and function  
Unit  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
For manufacturer setting  
Do not change this value by any means.  
0000  
400  
100  
1
1
0
0
0
0
0
0
0
0
0
5 - 14  
5. PARAMETERS  
5.2 Interface unit  
5.2.1 IFU parameter write inhibit  
POINT  
Use the unit operation section pushbutton switches or MR Configurator  
(servo configuration software) to set the IFU parameters of the interface  
unit. They cannot be set from the servo system controller.  
Use the unit pushbutton switches or MR Configurator (servo configuration software) to set the interface  
unit parameters.  
The following table indicates the IFU parameters which are made valid for reference and write by setting  
the IFU parameter No. 19.  
Operation from unit operation section or MR Configurator  
Setting  
0000 (initial value)  
000A  
Setting operation  
(servo configuration software)  
Reference  
Write  
IFU parameter No. 1 to 19  
Reference  
Write  
IFU parameter No. 19  
5.2.2 Lists  
POINT  
For any IFU parameter whose symbol is preceded by*, set the IFU  
parameter value and switch power off once, then switch it on again to  
make that parameter setting valid. The parameter is set when  
communication between the servo system controller and servo amplifier is  
established (b* is displayed). After that, power the servo amplifier off once  
and then on again.  
(1) Item list  
Classifi-  
Initial  
Customer  
setting  
No. Symbol  
Name  
Unit  
cation  
Value  
0
1
*BPS Serial communication baudrate selection, alarm history clear  
0000  
0
SIC  
Serial communication time-out selection  
2
*OP1 Function selection 1  
0000  
0000  
0000  
0000  
0
3
MD1 Analog monitor 1 output  
MD2 Analog monitor 2 output  
MD3 Analog monitor 3 output  
MO1 Analog monitor 1 offset  
MO2 Analog monitor 2 offset  
MO3 Analog monitor 3 offset  
*SSC SSCNET type selection  
*OP2 Optional function 2  
4
5
6
mV  
mV  
mV  
7
0
8
0
9
0200  
0020  
0000  
0001  
0002  
0003  
0004  
0005  
0006  
0007  
0000  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
*SL1 Slot 1 axis number selection  
*SL2 Slot 2 axis number selection  
*SL3 Slot 3 axis number selection  
*SL4 Slot 4 axis number selection  
*SL5 Slot 5 axis number selection  
*SL6 Slot 6 axis number selection  
*SL7 Slot 7 axis number selection  
*SL8 Slot 8 axis number selection  
*BLK IFU parameter write inhibit  
5 - 15  
5. PARAMETERS  
(2) Details list  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
0
*BPS Serial communication function selection, alarm history clear  
Used to select the serial communication baudrate, select various  
communication conditions, and clear the alarm history.  
0000  
Refer to  
name  
and  
function  
column.  
0
Serial baudrate selection  
0: 9600 [bps]  
1: 19200[bps]  
2: 38400[bps]  
3: 57600[bps]  
Alarm history clear  
0: Invalid  
1: Valid  
When alarm history clear is made valid,  
the alarm history is cleared at next power-on.  
After the alarm history is cleared, the setting  
is automatically made invalid reset to "0".  
Serial communication response delay time  
0: Invalid  
1: Valid, reply sent after delay time of 800 s or more  
1
2
SIC  
Serial communication time-out selection  
0
0
Set the time-out period of the communication protocol in [s] unit.  
Setting "0" disables time-out check.  
s
1
to  
60  
*OP1 Function selection 1  
Used to select the protocol of serial communication.  
0000  
Refer to  
name  
and  
0 0  
0
function  
column.  
Protocol checksum selection  
0: Yes (checksum added)  
1: No (checksum not added)  
5 - 16  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
3
*MD1 Analog monitor 1 output  
0000  
Refer to  
name  
Choose the signal to be output to analog monitor 1.  
and  
0 0  
function  
column.  
Analog monitor 1 selection  
0: Servo motor speed ( 4V/max. Servo motor speed)  
1: Torque ( 4V/max. Torque)  
2: Servo motor speed ( 4V/max. Servo motor speed)  
3: Torque ( 4V/max. Torque)  
4: Current command ( 4V/max. Current command)  
5: Speed command ( 4V/max. Servo motor speed)  
6: Droop pulses ( 4V/128pulse)  
7: Droop pulses ( 4V/2048pulse)  
8: Droop pulses ( 4V/8192pulse)  
9: Droop pulses ( 4V/32768pulse)  
A: Droop pulses ( 4V/131072pulse)  
B: Bus voltage ( 4V/400V)  
C: In position ( 4V/ON)  
D: Ready ( 4V/ON)  
E: Trouble ( 4V/ON)  
Axis number of channel 1  
Choose the axis number output to analog monitor 1.  
Axis number set value. Selecting 0 disables output.  
4
*MD2 Analog monitor 2 output  
Choose the signal to be output to analog monitor 2.  
0000  
Refer to  
name  
and  
0 0  
function  
column.  
Analog monitor 2 selection  
0: Servo motor speed ( 4V/max. Servo motor speed)  
1: Torque ( 4V/max. Torque)  
2: Servo motor speed ( 4V/max. Servo motor speed)  
3: Torque ( 4V/max. Torque)  
4: Current command ( 4V/max. Current command)  
5: Speed command ( 4V/max. Servo motor speed)  
6: Droop pulses ( 4V/128pulse)  
7: Droop pulses ( 4V/2048pulse)  
8: Droop pulses ( 4V/8192pulse)  
9: Droop pulses ( 4V/32768pulse)  
A: Droop pulses ( 4V/131072pulse)  
B: Bus voltage ( 4V/400V)  
C: In position ( 4V/ON)  
D: Ready ( 4V/ON)  
E: Trouble ( 4V/ON)  
Axis number of channel 2  
Choose the axis number output to analog monitor 2.  
Axis number set value. Selecting 0 disables output.  
5 - 17  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
5
*MD3 Analog monitor 3 output  
0000  
Refer to  
name  
Choose the signal to be output to analog monitor 3.  
and  
0 0  
function  
column.  
Analog monitor 3 selection  
0: Servo motor speed ( 4V/max. Servo motor speed)  
1: Torque ( 4V/max. Torque)  
2: Servo motor speed ( 4V/max. Servo motor speed)  
3: Torque ( 4V/max. Torque)  
4: Current command ( 4V/max. Current command)  
5: Speed command ( 4V/max. Servo motor speed)  
6: Droop pulses ( 4V/128pulse)  
7: Droop pulses ( 4V/2048pulse)  
8: Droop pulses ( 4V/8192pulse)  
9: Droop pulses ( 4V/32768pulse)  
A: Droop pulses ( 4V/131072pulse)  
B: Bus voltage ( 4V/400V)  
C: In position ( 4V/ON)  
D: Ready ( 4V/ON)  
E: Trouble ( 4V/ON)  
Axis number of channel 3  
Choose the axis number output to analog monitor 3.  
Axis number set value. Selecting 0 disables output.  
MO1 Analog monitor 1 offset  
Used to set the offset voltage of the analog monitor 1 (MO1).  
999  
to  
999  
999  
to  
999  
999  
to  
6
7
8
0
0
0
mV  
mV  
mV  
MO2 Analog monitor 2 offset  
Used to set the offset voltage of the analog monitor 2 (MO2).  
MO3 Analog monitor 3 offset  
Used to set the offset voltage of the analog monitor 3 (MO2).  
999  
5 - 18  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
9
*SSC SSCNET type selection  
0200  
Refer to  
name  
Select the network type of the interface unit.  
and  
0 2  
function  
column.  
SSCNET type selection  
00: SSCNET3.5ms  
01: SSCNET1.7ms  
02: SSCNET0.8ms  
12: SSCNET  
POINT  
When using motion controller Q series, set the communication  
cycle according to the motion controller.  
The initial settings of communication cycle/number of control  
axes of motion controller Q series are as follows:  
1. Q173CPU  
SV13: SSCNET0.8ms/1 to 8 axes, SSCNET1.7ms/9 to 16  
axes, SSCNET3.5ms/17 to 32 axes  
SV22: SSCNET0.8ms/1 to 4 axes, SSCNET1.7ms/5 to 12  
axes, SSCNET3.5ms/13 to 32 axes  
2. Q172CPU  
SV13: SSCNET0.8ms/1 to 8 axes  
SV22: SSCNET0.8ms/1 to 4 axes, SSCNET1.7ms/5 to 8  
axes  
The communication cycle of motion controller can be  
changed using the parameter.  
In the case of MR-J2M, initialization of servo amplifier MR-  
J2M (LED indication "@ Ab#" or "@ AC#") will not be  
completed, if the communication cycle settings are different  
between the motion controller and servo amplifier MR-  
J2M.  
10  
*OP2 Optional function 2  
0020  
Refer to  
name  
Choose the input signal filter and test operation.  
and  
0
function  
column.  
Test operation selection  
0: Invalid  
1: Valid  
Input signal filter  
0: No  
1: 1.777ms  
2: 3.555ms  
Electromagnetic brake interlock output axis number selection  
Choose the axis number of the drive unit which uses  
electromagnetic brake interlock output (MBR).  
Setting  
Selected Axis  
All connected axes  
First axis  
Second axis  
Third axis  
Fourth axis  
Fifth axis  
Sixth axis  
Seventh axis  
Eighth axis  
0
1
2
3
4
5
6
7
8
5 - 19  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
11  
12  
13  
14  
15  
16  
17  
18  
19  
*SL1 Slot 1 axis number selection  
0000  
0001  
0002  
0003  
0004  
0005  
0006  
0007  
0000  
0000  
to  
Choose the axis number of the drive unit connected to the first slot  
of the base unit. (Refer to Section 2.8)  
0007h  
Axis number set value  
1
In the initial setting, the first axis is set to the first slot.  
*SL2 Slot 2 axis number selection  
0000  
to  
Choose the axis number of the drive unit connected to the second  
slot of the base unit. (Refer to Section 2.8)  
0007h  
Axis number set value  
1
In the initial setting, the second axis is set to the second slot.  
*SL3 Slot 3 axis number selection  
0000  
to  
Choose the axis number of the drive unit connected to the third slot  
of the base unit. (Refer to Section 2.8)  
0007h  
Axis number set value  
1
In the initial setting, the third axis is set to the third slot.  
*SL4 Slot 4 axis number selection  
0000  
to  
Choose the axis number of the drive unit connected to the fourth slot  
of the base unit. (Refer to Section 2.8)  
0007h  
Axis number set value  
1
In the initial setting, the fourth axis is set to the fourth slot.  
*SL5 Slot 5 axis number selection  
0000  
to  
Choose the axis number of the drive unit connected to the fifth slot  
of the base unit. (Refer to Section 2.8)  
0007h  
Axis number set value  
1
In the initial setting, the fifth axis is set to the fifth slot.  
*SL6 Slot 6 axis number selection  
0000  
to  
Choose the axis number of the drive unit connected to the sixth slot  
of the base unit. (Refer to Section 2.8)  
0007h  
Axis number set value  
1
In the initial setting, the sixth axis is set to the sixth slot.  
*SL7 Slot 7 axis number selection  
0000  
to  
Choose the axis number of the drive unit connected to the seventh  
slot of the base unit. (Refer to Section 2.8)  
0007h  
Axis number set value  
1
In the initial setting, the seventh axis is set to the seventh slot.  
*SL8 Slot 8 axis number selection  
0000  
to  
Choose the axis number of the drive unit connected to the eighth slot  
of the base unit. (Refer to Section 2.8)  
0007h  
Axis number set value  
1
In the initial setting, the eighth axis is set to the eighth slot.  
*BLK IFU parameter write inhibit  
Refer to  
name  
Operation from unit operation section or  
Setting  
and  
Setting  
MR Configurator  
operation  
Reference  
Write  
function  
column.  
(servo configuration software)  
0000  
(initial  
value)  
IFU parameter No. 1 to 19  
IFU parameter No. 19  
Reference  
Write  
000A  
5 - 20  
5. PARAMETERS  
5.2.3 Analog monitor  
The servo status can be output to 3 channels in terms of voltage. Using an ammeter enables monitoring  
the servo status.  
(1) Setting  
Change the following digits of IFU parameter No.3 to 5:  
IFU parameter No. 3  
Analog monitor 1 selection  
(Signal output to across MO1-LG)  
Axis number of analog monitor 1  
IFU parameter No. 4  
Analog monitor 2 selection  
(Signal output to across MO2-LG)  
Axis number of analog monitor 2  
IFU parameter No. 5  
Analog monitor 3 selection  
(Signal output to across MO3-LG)  
Axis number of analog monitor 3  
IFU parameters No.6 to 8 can be used to set the offset voltages to the analog output voltages. The  
setting range is between 999 and 999mV.  
IFU parameter No.  
Description  
Setting range [mV]  
6
7
8
Used to set the offset voltage for the analog monitor 1.  
Used to set the offset voltage for the analog monitor 2.  
Used to set the offset voltage for the analog monitor 3.  
999 to 999  
(2) Settings  
The three channels are all factory-set to output servo motor speeds. By changing the IFU parameter  
No. 3 to 5 values, you can change the data as shown in the following tale.  
Refer to (3) for measurement points.  
Setting  
Output item  
Data  
CCW direction  
Setting  
Output item  
Data  
Driving in  
CCW direction  
0
Servo motor speed  
1
Torque (Note)  
4[V]  
4[V]  
Max. speed  
Max. torque  
0
0
Max. torque  
4[V]  
Max. speed  
4[V]  
Driving in  
CW direction  
CW direction  
5 - 21  
5. PARAMETERS  
Setting  
Output item  
Data  
Setting  
Output item  
Data  
CCW direction  
2
Servo motor speed  
9
Droop pulses  
4[V]  
CW  
direction  
CCW  
direction  
( 4V/32768pulse)  
4[V]  
32768[pulse]  
0
32768[pulse]  
Max. speed 0 Max. speed  
4[V]  
CCW direction  
CW direction  
4[V]  
3
Torque (Note)  
A
Droop pulses  
Driving in  
Driving in  
( 4V/131072pulse)  
CW direction  
CCW direction  
4[V]  
131072[pulse]  
0
131072[pulse]  
Max. torque  
Max. torque  
0
4[V]  
CW direction  
4[V]  
CCW direction  
4
5
6
7
8
Current command  
B
C
D
E
Bus voltage  
In-position  
Ready  
4[V]  
Max. current  
command  
0
Max. current  
command  
0
400[V]  
4[V]  
CW direction  
CCW direction  
Speed command  
4[V]  
4[V]  
Max. speed  
OFF  
ON  
0
Max. speed  
0
4[V]  
CW direction  
4[V]  
CCW direction  
Droop pulses  
( 4V/128pulse)  
4[V]  
128[pulse]  
OFF  
ON  
0
128[pulse]  
0
4[V]  
CW direction  
4[V]  
CCW direction  
Droop pulses  
Failure  
4[V]  
( 4V/2048pulse)  
Alarm  
Alarm  
2048[pulse]  
provided not provided  
0
2048[pulse]  
0
4[V]  
CW direction  
4[V]  
CCW direction  
Droop pulses  
( 4V/8192pulse)  
8192[pulse]  
0
8192[pulse]  
4[V]  
CW direction  
Note. 4V is outputted at the maximum torque.  
5 - 22  
5. PARAMETERS  
(3) Analog monitor block diagram  
5 - 23  
5. PARAMETERS  
5.2.4 Test operation mode  
The test operation mode is designed for servo operation confirmation and not for  
machine operation confirmation. Do not use this mode with the machine. Always  
use the servo motor alone.  
CAUTION  
If an operation fault occurred, use the forced stop (EM1) to make a stop.  
By using a personal computer and the MR Configurator (servo configuration software), you can execute  
jog operation, positioning operation, motor-less operation and DO forced output without connecting the  
servo system controller.  
(1) Setting and indication  
1) Set "  
1" in the IFU parameter No. 10 to enable test operation. After setting, switch power off  
once, then on again to make the IFU parameter No. 10 valid.  
2) Switching power on changes the interface unit display as shown below. # in the figure below  
indicates the axis number of the drive unit.  
#
#
#
#
#
3) Perform test operation using the personal computer.  
(2) Test operation mode  
(a) Jog operation  
Jog operation can be performed without using the servo system controller. Use this operation with  
the forced stop reset. This operation may be used independently of whether the servo is on or off  
and whether the servo system controller is connected or not.  
Exercise control on the jog operation screen of the MR Configurator (servo configuration software).  
1) Operation pattern  
Item  
Initial value  
200  
Setting range  
0 to max. speed  
1 to 20000  
Speed [r/min]  
Acceleration/deceleration time constant [ms]  
1000  
2) Operation method  
Operation  
Forward rotation start  
Reverse rotation start  
Stop  
Screen control  
"Click Forward" button.  
"Click Reverse" button.  
"Click Stop" button.  
(b) Positioning operation  
Positioning operation can be performed without using the servo system controller. Use this  
operation with the forced stop reset. This operation may be used independently of whether the  
servo is on or off and whether the servo system controller is connected or not.  
Exercise control on the positioning operation screen of the MR Configurator (servo configuration  
software).  
5 - 24  
5. PARAMETERS  
1) Operation pattern  
Item  
Initial value  
100000  
200  
Setting range  
0 to 9999999  
0 to max. speed  
1 to 50000  
Travel [pulse]  
Speed [r/min]  
Acceleration/deceleration time constant [ms]  
1000  
2) Operation method  
Operation  
Screen control  
Forward rotation start  
Reverse rotation start  
Pause  
"Click Forward" button.  
"Click Reverse" button.  
"Click Pause" button.  
(c) Program operation  
Positioning operation can be performed in two or more operation patterns combined, without using  
the servo system controller. Use this operation with the forced stop reset. This operation may be  
used independently of whether the servo is on or off and whether the servo system controller is  
connected or not.  
Exercise control on the programmed operation screen of the MR Configurator (servo configuration  
software). For full information, refer to the MR Configurator (servo configuration software)  
Installation Guide.  
Operation  
Start  
Screen Control  
"Click Start" button.  
"Click Reset" button.  
Stop  
(d) Motorless operation  
POINT  
Motor-less operation may be used with the MR Configurator (servo  
configuration software). Usually, however, use motor-less operation which  
is available by making the servo system controller parameter setting.  
Without connecting the servo motor, output signals or status displays can be provided in response  
to the servo system controller commands as if the servo motor is actually running. This operation  
may be used to check the servo system controller sequence. Use this operation with the forced stop  
reset. Use this operation with MELSERVO-J2M connected to the servo system controller.  
Exercise control on the motor-less operation screen of the MR Configurator (servo configuration  
software).  
1) Load conditions  
Load Item  
Condition  
Load torque  
Load inertia moment ratio  
0
Same as servo motor inertia moment  
2) Alarms  
The following alarms and warning do not occur. However, the other alarms and warnings occur  
as when the servo motor is connected:  
Encoder error 1 (A.16)  
Encoder error 2 (A.20)  
Absolute position erasure (A.25)  
Battery cable breakage warning (A.92)  
5 - 25  
5. PARAMETERS  
(e) Output signal (DO) forced output  
Output signals can be switched on/off forcibly independently of the servo status. Use this function  
for output signal wiring check, etc.  
Exercise control on the DO forced output screen of the MR Configurator (servo configuration  
software).  
(3) Configuration  
Configuration should be as in Section 3.1. Always install a forced stop switch to enable a stop at  
occurrence of an alarm.  
5 - 26  
6. GENERAL GAIN ADJUSTMENT  
6. GENERAL GAIN ADJUSTMENT  
6.1 Different adjustment methods  
6.1.1 Adjustment on a MELSERVO-J2M  
The gain adjustment in this section can be made on MELSERVO-J2M. For gain adjustment, first execute  
auto tuning mode 1. If you are not satisfied with the results, execute auto tuning mode 2, manual mode 1  
and manual mode 2 in this order.  
(1) Gain adjustment mode explanation  
Gain adjustment  
mode  
DRU parameter  
No. 8 setting  
Estimation of load  
Automatically set parameters  
Manually set parameters  
inertia moment ratio  
Auto tuning mode 1  
(initial value)  
0001  
0003  
Always estimated  
GD2 (DRU parameter No. 12)  
PG1 (DRU parameter No. 13)  
VG1 (DRU parameter No. 14)  
PG2 (DRU parameter No. 15)  
VG2 (DRU parameter No. 16)  
VIC (DRU parameter No. 17)  
PG1 (DRU parameter No. 13)  
VG1 (DRU parameter No. 14)  
PG2 (DRU parameter No. 15)  
VG2 (DRU parameter No. 16)  
VIC (DRU parameter No. 17)  
VG1 (DRU parameter No. 14)  
PG2 (DRU parameter No. 15)  
RSP (DRU parameter No. 9)  
Auto tuning mode 2  
Fixed to parameter  
No. 12 value  
GD2 (DRU parameter No. 12)  
RSP (DRU parameter No. 9)  
Manual mode 1  
Manual mode 2  
0004  
0002  
GD2 (DRU parameter No. 12)  
PG1 (DRU parameter No. 13)  
VG2 (DRU parameter No. 16)  
VIC (DRU parameter No. 17)  
GD2 (DRU parameter No. 12)  
PG1 (DRU parameter No. 13)  
VG1 (DRU parameter No. 14)  
PG2 (DRU parameter No. 15)  
VG2 (DRU parameter No. 16)  
VIC (DRU parameter No. 17)  
PG1 (DRU parameter No. 13)  
VG1 (DRU parameter No. 14)  
Interpolation mode  
0000  
Always estimated  
GD2 (DRU parameter No. 12)  
PG2 (DRU parameter No. 15)  
VG2 (DRU parameter No. 16)  
VIC (DRU parameter No. 17)  
6 - 1  
6. GENERAL GAIN ADJUSTMENT  
(2) Adjustment sequence and mode usage  
START  
Usage  
Yes  
Used when you want to  
match the position gain 1  
(PG1) between 2 or more  
axes. Normally not used for  
other purposes.  
Interpolation  
made for 2 or more  
axes?  
Interpolation mode  
Operation  
No  
Allows adjustment by  
merely changing the  
response level setting.  
First use this mode to make  
adjustment.  
Auto tuning mode 1  
Operation  
Yes  
No  
Used when the conditions of  
auto tuning mode 1 are not  
met and the load inertia  
moment ratio could not be  
estimated properly, for  
example.  
OK?  
OK?  
Yes  
No  
Auto tuning mode 2  
Operation  
Yes  
OK?  
No  
This mode permits  
adjustment easily with three  
gains if you were not  
satisfied with auto tuning  
results.  
Manual mode 1  
Operation  
Yes  
OK?  
You can adjust all gains  
manually when you want to  
do fast settling or the like.  
No  
Manual mode 2  
END  
6 - 2  
6. GENERAL GAIN ADJUSTMENT  
6.1.2 Adjustment using MR Configurator (servo configuration software)  
This section gives the functions and adjustment that may be performed by using MELSERVO-J2M with  
the MR Configurator (servo configuration software) which operates on a personal computer.  
Function  
Description  
Adjustment  
Machine analyzer  
With the machine and servo motor  
coupled, the characteristic of the  
mechanical system can be measured by  
giving a random vibration command from  
the personal computer to the servo and  
measuring the machine response.  
You can grasp the machine resonance frequency and  
determine the notch frequency of the machine  
resonance suppression filter.  
You can automatically set the optimum gains in  
response to the machine characteristic. This simple  
adjustment is suitable for a machine which has large  
machine resonance and does not require much settling  
time.  
Gain search  
Executing gain search under to-and-fro  
positioning command measures settling  
characteristic while simultaneously  
changing gains, and automatically  
searches for gains which make settling  
time shortest.  
You can automatically set gains which make positioning  
settling time shortest.  
Machine simulation  
Response at positioning settling of a  
machine can be simulated from machine  
analyzer results on personal computer.  
You can optimize gain adjustment and command  
pattern on personal computer.  
6 - 3  
6. GENERAL GAIN ADJUSTMENT  
6.2 Auto tuning  
6.2.1 Auto tuning mode  
MELSERVO-J2M has a real-time auto tuning function which estimates the machine characteristic (load  
inertia moment ratio) in real time and automatically sets the optimum gains according to that value. This  
function permits ease of gain adjustment of MELSERVO-J2M.  
(1) Auto tuning mode 1  
MELSERVO-J2M is factory-set to the auto tuning mode 1.  
In this mode, the load inertia moment ratio of a machine is always estimated to set the optimum gains  
automatically.  
The following DRU parameters are automatically adjusted in the auto tuning mode 1.  
DRU parameter No.  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Position control gain 1  
12  
13  
14  
15  
16  
17  
PG1  
VG1  
Speed control gain 1  
PG2  
Position control gain 2  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
POINT  
The auto tuning mode 1 may not be performed properly if the following  
conditions are not satisfied.  
Time to reach 2000r/min is the acceleration/deceleration time constant of 5s or  
less.  
Speed is 150r/min or higher.  
The ratio of load inertia moment to servo motor inertia moment is not  
more than 100 times.  
The acceleration/deceleration torque is 10% or more of the rated torque.  
Under operating conditions which will impose sudden disturbance torque  
during acceleration/deceleration or on a machine which is extremely loose,  
auto tuning may not function properly, either. In such cases, use the auto  
tuning mode 2 or manual mode 1 2 to make gain adjustment.  
(2) Auto tuning mode 2  
Use the auto tuning mode 2 when proper gain adjustment cannot be made by auto tuning mode 1.  
Since the load inertia moment ratio is not estimated in this mode, set the value of a correct load  
inertia moment ratio (DRU parameter No. 12).  
The following DRU parameters are automatically adjusted in the auto tuning mode 2.  
DRU parameter No.  
Abbreviation  
PG1  
Name  
13  
14  
15  
16  
17  
Position control gain 1  
Speed control gain 1  
VG1  
PG2  
Position control gain 2  
Speed control gain 2  
VG2  
VIC  
Speed integral compensation  
6 - 4  
6. GENERAL GAIN ADJUSTMENT  
6.2.2 Auto tuning mode operation  
The block diagram of real-time auto tuning is shown below.  
Load inertia  
moment  
Automatic setting  
Encoder  
Control gains  
PG1,VG1  
PG2,VG2,VIC  
Command  
Current  
control  
Servo  
motor  
Current feedback  
Real-time auto  
tuning section  
Position/speed  
feedback  
Set 0 or 1 to turn on.  
Load inertia  
moment ratio  
estimation section  
Gain  
table  
Switch  
Speed feedback  
DRU parameter No.12  
Load inertia moment  
ratio estimation value  
DRU parameter  
No.8  
DRU parameter  
No.9  
Response level setting  
Auto tuning selection  
When a servo motor is accelerated/decelerated, the load inertia moment ratio estimation section always  
estimates the load inertia moment ratio from the current and speed of the servo motor. The results of  
estimation are written to DRU parameter No. 12 (the ratio of load inertia moment to servo motor). These  
results can be confirmed on the status display screen of the MR Configurator (servo configuration  
software section).  
If the value of the load inertia moment ratio is already known or if estimation cannot be made properly,  
chose the "auto tuning mode 2" (DRU parameter No.8:0003) to stop the estimation of the load inertia  
moment ratio (Switch in above diagram turned off), and set the load inertia moment ratio (DRU  
parameter No. 12) manually.  
From the preset load inertia moment ratio (DRU parameter No. 12) value and response level (DRU  
parameter No. 9), the optimum control gains are automatically set on the basis of the internal gain tale.  
The auto tuning results are saved in the servo system controller every 10 minutes since power-on. At  
power-on, auto tuning is performed with the value of each control gain saved in the servo system  
controller being used as an initial value.  
POINT  
If sudden disturbance torque is imposed during operation, the estimation  
of the inertia moment ratio may malfunction temporarily. In such a case,  
choose the "auto tuning mode 2" (DRU parameter No. 8: 0003) and set the  
correct load inertia moment ratio in DRU parameter No. 12.  
When any of the auto tuning mode 1, auto tuning mode 2 and manual  
mode 1 settings is changed to the manual mode 2 setting, the current  
control gains and load inertia moment ratio estimation value are saved in  
the EEP-ROM.  
6 - 5  
6. GENERAL GAIN ADJUSTMENT  
6.2.3 Adjustment procedure by auto tuning  
Since auto tuning is made valid before shipment from the factory, simply running the servo motor  
automatically sets the optimum gains that match the machine. Merely changing the response level  
setting value as required completes the adjustment. The adjustment procedure is as follows.  
Auto tuning adjustment  
Acceleration/deceleration repeated  
Yes  
Load inertia moment ratio  
estimation value stable?  
No  
Auto tuning  
conditions not satisfied.  
(Estimation of load inertia  
moment ratio is difficult)  
No  
Yes  
Choose the auto tuning mode 2  
(DRU parameter No. 8: 0003) and  
set the load inertia moment ratio  
(DRU parameter No. 12) manually.  
Adjust response level setting  
so that desired response is  
achieved on vibration-free level.  
Acceleration/deceleration repeated  
Requested  
No  
performance satisfied?  
Yes  
END  
To manual mode  
6 - 6  
6. GENERAL GAIN ADJUSTMENT  
6.2.4 Response level setting in auto tuning mode  
Set the response (DRU parameter No.9) of the whole servo system. As the response level setting is  
increased, the trackability and settling time for a command decreases, but a too high response level will  
generate vibration. Hence, make setting until desired response is obtained within the vibration-free  
range.  
If the response level setting cannot be increased up to the desired response because of machine resonance  
beyond 100Hz, adaptive vibration suppression control (DRU parameter No. 25) or machine resonance  
suppression filter (DRU parameter No. 18) may be used to suppress machine resonance. Suppressing  
machine resonance may allow the response level setting to increase. Refer to Section 7.2, 7.3 for adaptive  
vibration suppression control and machine resonance suppression filter.  
DRU parameter No. 9  
Response level setting  
Machine characteristic  
Response level setting  
Machine resonance  
frequency guideline  
Machine rigidity  
Guideline of corresponding machine  
1
2
Low  
15Hz  
20Hz  
25Hz  
30Hz  
35Hz  
45Hz  
55Hz  
70Hz  
3
Large conveyor  
4
5
6
Arm robot  
7
General machine  
tool conveyor  
8
Middle  
9
85Hz  
105Hz  
130Hz  
160Hz  
200Hz  
240Hz  
300Hz  
Precision  
working  
machine  
A
B
C
D
E
F
Inserter  
Mounter  
Bonder  
High  
6 - 7  
6. GENERAL GAIN ADJUSTMENT  
6.3 Manual mode 1 (simple manual adjustment)  
If you are not satisfied with the adjustment of auto tuning, you can make simple manual adjustment with  
three DRU parameters.  
6.3.1 Operation of manual mode 1  
In this mode, setting the three gains of position control gain 1 (PG1), speed control gain 2 (VG2) and  
speed integral compensation (VIC) automatically sets the other gains to the optimum values according to  
these gains.  
GD2  
User setting  
PG1  
PG2  
VG2  
VG1  
Automatic setting  
VIC  
Therefore, you can adjust the model adaptive control system in the same image as the general PI control  
system (position gain, speed gain, speed integral time constant). Here, the position gain corresponds to  
PG1, the speed gain to VG2 and the speed integral time constant to VIC. When making gain adjustment  
in this mode, set the load inertia moment ratio (DRU parameter No. 12) correctly.  
6.3.2 Adjustment by manual mode 1  
POINT  
If machine resonance occurs, adaptive vibration suppression control (DRU  
parameter No. 25) or machine resonance suppression filter (DRU parameter  
No. 18) may be used to suppress machine resonance. (Refer to Section 7.2,  
7.3.)  
(1) For speed control  
(a) Parameters  
The following parameters are used for gain adjustment:  
DRU parameter No.  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Speed control gain 2  
12  
16  
17  
VG2  
VIC  
Speed integral compensation  
(b) Adjustment procedure  
Step  
Operation  
Description  
Set an estimated value to the ratio of load inertia moment to servo  
motor inertia moment (DRU parameter No. 12).  
Increase the speed control gain 2 (DRU parameter No. 16) within the  
vibration- and unusual noise-free range, and return slightly if vibration  
takes place.  
1
Increase the speed control gain.  
2
Decrease the speed integral compensation (DRU parameter No. 17)  
within the vibration-free range, and return slightly if vibration takes  
place.  
Decrease the time constant of the speed  
integral compensation.  
3
If the gains cannot be increased due to mechanical system resonance or Suppression of machine resonance  
the like and the desired response cannot be achieved, response may be Refer to Section 7.2, 7.3.  
increased by suppressing resonance with adaptive vibration  
suppression control or machine resonance suppression filter and then  
executing steps 2 and 3.  
4
5
While checking the settling characteristic and rotational status, fine-  
adjust each gain.  
Fine adjustment  
6 - 8  
6. GENERAL GAIN ADJUSTMENT  
(c) Adjustment description  
1) Speed control gain 2 (DRU parameter No. 16)  
This parameter determines the response level of the speed control loop. Increasing this value  
enhances response but a too high value will make the mechanical system liable to vibrate. The  
actual response frequency of the speed loop is as indicated in the following expression:  
Speed control gain setting  
(1 ratio of load inertia moment to servo motor inertia moment)  
Speed loop response frequency(Hz)  
2
2) Speed integral compensation (DRU parameter No. 17)  
To eliminate stationary deviation against a command, the speed control loop is under  
proportional integral control. For the speed integral compensation, set the time constant of this  
integral control. Increasing the setting lowers the response level. However, if the load inertia  
moment ratio is large or the mechanical system has any vibratory element, the mechanical  
system is liable to vibrate unless the setting is increased to some degree. The guideline is as  
indicated in the following expression:  
2000 to 3000  
Speed integral  
Speed control gain 2 setting/ (1 ratio of load inertia moment  
to servo motor inertia moment.)  
composition setting (ms)  
(2) For position control  
(a) Parameters  
The following parameters are used for gain adjustment:  
DRU parameter No.  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Position control gain 1  
12  
13  
16  
17  
PG1  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
(b) Adjustment procedure  
Step  
Operation  
Description  
Set an estimated value to the ratio of load inertia moment to servo  
motor inertia moment (DRU parameter No. 12).  
Set a slightly smaller value to the position control gain 1 (DRU  
parameter No. 13).  
1
2
Increase the speed control gain 2 (DRU parameter No. 16) within the  
vibration- and unusual noise-free range, and return slightly if vibration  
takes place.  
Increase the speed control gain.  
3
Decrease the speed integral compensation (DRU parameter No. 17)  
within the vibration-free range, and return slightly if vibration takes  
place.  
Decrease the time constant of the speed  
integral compensation.  
4
5
Increase the position control gain 1 (DRU parameter No. 13).  
Increase the position control gain.  
If the gains cannot be increased due to mechanical system resonance or Suppression of machine resonance  
the like and the desired response cannot be achieved, response may be Refer to Section 7.2 and 7.3.  
increased by suppressing resonance with adaptive vibration  
6
7
suppression control or machine resonance suppression filter and then  
executing steps 3 to 5.  
While checking the settling characteristic and rotational status, fine-  
adjust each gain.  
Fine adjustment  
6 - 9  
6. GENERAL GAIN ADJUSTMENT  
(c) Adjustment description  
1) Position control gain 1 (DRU parameter No. 13)  
This parameter determines the response level of the position control loop. Increasing position  
control gain 1 improves trackability to a position command but a too high value will make  
overshooting liable to occur at the time of settling.  
1
3
1
5
Position control  
gain 1 guideline  
Speed control gain 2 setting  
to  
)
(
(1 ratio of load inertia moment to servo motor inertia moment)  
2) Speed control gain 2 (DRU parameter No. 16)  
This parameter determines the response level of the speed control loop. Increasing this value  
enhances response but a too high value will make the mechanical system liable to vibrate. The  
actual response frequency of the speed loop is as indicated in the following expression:  
Speed control gain 2 setting  
Speed loop response  
(1 ratio of load inertia moment to servo motor inertia moment)  
2
frequency(Hz)  
3) Speed integral compensation (DRU parameter No. 17)  
To eliminate stationary deviation against a command, the speed control loop is under  
proportional integral control. For the speed integral compensation, set the time constant of this  
integral control. Increasing the setting lowers the response level. However, if the load inertia  
moment ratio is large or the mechanical system has any vibratory element, the mechanical  
system is liable to vibrate unless the setting is increased to some degree. The guideline is as  
indicated in the following expression:  
Speed integral  
compensation setting(ms)  
2000 to 3000  
Speed control gain 2 setting/ (1 ratio of load inertia moment to  
servo motor inertia moment set value)  
6 - 10  
6. GENERAL GAIN ADJUSTMENT  
6.4 Interpolation mode  
The interpolation mode is used to match the position control gains of the axes when performing the  
interpolation operation of servo motors of two or more axes for an X-Y table or the like. In this mode, the  
position control gain 1 and speed control gain 1 which determine command trackability are set manually  
and the other gain adjusting parameters are set automatically.  
(1) Parameter  
(a) Automatically adjusted parameters  
The following parameters are automatically adjusted by auto tuning.  
DRU parameter No.  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Position control gain 2  
12  
15  
16  
17  
PG2  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
(b) Manually adjusted parameters  
The following parameters are adjustable manually.  
DRU parameter No.  
Abbreviation  
Name  
13  
14  
PG1  
Position control gain 1  
Speed control gain 1  
VG1  
(2) Adjustment procedure  
Step  
Operation  
Description  
Choose the auto tuning mode 1 (DRU parameter No. 8: 0001) and set the  
machine resonance frequency of the response level to 15Hz 1 (DRU parameter  
No. 9: 0001).  
During operation, increase the response level setting (DRU parameter No. 9),  
and return the setting if vibration occurs.  
1
2
Select the auto tuning mode 1.  
Adjustment in auto tuning mode  
1.  
Check the values of position control gain 1 (DRU parameter No. 13) and speed  
control gain 1 (DRU parameter No. 14).  
Choose the interpolation mode (DRU parameter No. 8: 0000).  
Using the position control gain 1 value checked in step 3 as the guideline of the  
3
4
Check the upper setting limits.  
Select the interpolation mode.  
5
upper limit, set in position control gain 1 the value identical to the position loop Set position control gain 1.  
gain of the axis to be interpolated.  
Using the speed control gain 1 value checked in step 3 as the guideline of the  
upper limit, look at the rotation status and set in speed control gain 1 the value Set speed control gain 1.  
three or more times greater than the position control gain 1 setting.  
6
7
Looking at the interpolation characteristic and rotation status, fine-adjust the  
Fine adjustment.  
gains and response level setting.  
(3) Adjustment description  
(a) Position control gain 1 (DRU parameter No.13)  
This parameter determines the response level of the position control loop. Increasing PG1 improves  
trackability to a position command but a too high value will make overshooting liable to occur at  
the time of settling. The droop pulse value is determined by the following expression.  
Rotation speed (r/min)  
131,072(pulse)  
60  
Droop pulse value (pulse)  
Position control gain set value  
(b) Speed control gain 1 (DRU parameter No. 14)  
Set the response level of the speed loop of the model. Make setting using the following expression  
as a guideline.  
Speed control gain 1 setting Position control gain 1 setting 3  
6 - 11  
6. GENERAL GAIN ADJUSTMENT  
MEMO  
6 - 12  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7. SPECIAL ADJUSTMENT FUNCTIONS  
POINT  
The functions given in this chapter need not be used generally. Use them  
if you are not satisfied with the machine status after making adjustment  
in the methods in Chapter 6.  
If a mechanical system has a natural resonance level point, increasing the servo system response may  
cause the mechanical system to produce resonance (vibration or unusual noise) at that resonance  
frequency.  
Using the machine resonance suppression filter and adaptive vibration suppression control functions can  
suppress the resonance of the mechanical system.  
7.1 Function block diagram  
DRU parameter  
Current  
command  
DRU parameter  
No.25  
DRU parameter  
Speed  
control  
No.18  
00  
No.25  
0
0
Low-pass  
filter  
Servo  
motor  
1
Machine resonance  
Encoder  
suppression filter 1  
00  
except  
Adaptive vibration  
suppression control  
1
or  
2
7.2 Machine resonance suppression filter  
(1) Function  
The machine resonance suppression filter is a filter function (notch filter) which decreases the gain of  
the specific frequency to suppress the resonance of the mechanical system. You can set the gain  
decreasing frequency (notch frequency) and gain decreasing depth.  
Mechanical  
system  
Machine resonance point  
response  
level  
Frequency  
Notch  
depth  
Frequency  
Notch frequency  
POINT  
The machine resonance suppression filter is a delay factor for the servo  
system. Hence, vibration may increase if you set a wrong resonance  
frequency or a too deep notch.  
7 - 1  
7. SPECIAL ADJUSTMENT FUNCTIONS  
(2) Parameters  
Set the notch frequency and notch depth of the machine resonance suppression filter 1 (DRU  
parameter No. 18).  
DRU parameter No. 18  
Notch frequency selection  
Setting Frequency Setting Frequency Setting Frequency Setting Frequency  
562.5  
500  
10  
11  
12  
13  
14  
15  
16  
17  
281.3  
264.7  
250  
18  
19  
187.5  
180  
00  
01  
02  
03  
04  
05  
06  
07  
Invalid  
4500  
2250  
1500  
1125  
900  
08  
09  
450  
173.1  
166.7  
160.1  
155.2  
150  
0A  
0B  
0C  
0D  
0E  
0F  
1A  
1B  
1C  
1D  
1E  
1F  
409.1  
375  
236.8  
225  
346.2  
321.4  
300  
214.3  
204.5  
195.7  
750  
642.9  
145.2  
Notch depth selection  
Setting Depth (Gain)  
Deep ( 40dB)  
( 14dB)  
( 8dB)  
Shallow ( 4dB)  
0
1
2
3
POINT  
If the frequency of machine resonance is unknown, decrease the notch  
frequency from higher to lower ones in order. The optimum notch  
frequency is set at the point where vibration is minimal.  
A deeper notch has a higher effect on machine resonance suppression but  
increases a phase delay and may increase vibration.  
The machine characteristic can be grasped beforehand by the machine  
analyzer on the MR Configurator (servo configuration software). This  
allows the required notch frequency and depth to be determined.  
7 - 2  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7.3 Adaptive vibration suppression control  
(1) Function  
Adaptive vibration suppression control is a function in which the drive unit detects machine resonance  
and sets the filter characteristics automatically to suppress mechanical system vibration. Since the  
filter characteristics (frequency, depth) are set automatically, you need not be conscious of the  
resonance frequency of a mechanical system. Also, while adaptive vibration suppression control is  
valid, MELSERVO-J2M always detects machine resonance, and if the resonance frequency changes, it  
changes the filter characteristics in response to that frequency.  
Machine resonance point  
Machine resonance point  
Mechanical  
system  
Mechanical  
system  
response  
level  
response  
level  
Frequency  
Frequency  
Notch  
depth  
Notch  
depth  
Frequency  
Frequency  
Notch frequency  
Notch frequency  
When machine resonance is large and frequency is low When machine resonance is small and frequency is high  
POINT  
The machine resonance frequency which adaptive vibration suppression  
control can respond to is about 150 to 500Hz. Adaptive vibration  
suppression control has no effect on the resonance frequency outside this  
range. Use the machine resonance suppression filter for the machine  
resonance of such frequency.  
Adaptive vibration suppression control may provide no effect on a  
mechanical system which has complex resonance characteristics or which  
has too large resonance.  
Under operating conditions in which sudden disturbance torque is imposed  
during operation, the detection of the resonance frequency may malfunction  
temporarily, causing machine vibration. In such a case, set adaptive  
vibration suppression control to be "held" (DRU parameter No. 25:  
2
)
to fix the characteristics of the adaptive vibration suppression control filter.  
7 - 3  
7. SPECIAL ADJUSTMENT FUNCTIONS  
(2) Parameters  
The operation of adaptive vibration suppression control selection (DRU parameter No.25).  
DRU parameter No. 25  
Adaptive vibration suppression control selection  
0: Invalid  
1: Valid  
Machine resonance frequency is always detected to  
generate the filter in response to resonance, suppressing  
machine vibration.  
2: Held  
Filter characteristics generated so far is held, and detection of  
machine resonance is stopped.  
Adaptive vibration suppression control sensitivity selection  
Set the sensitivity of detecting machine resonance.  
0: Normal  
1: Large sensitivity  
POINT  
Adaptive vibration suppression control is factory-set to be "invalid" (DRU  
parameter No. 25: 0000).  
Selection the adaptive vibration suppression control sensitivity can change  
the sensitivity of detecting machine resonance. Selection of "large  
sensitivity" detects smaller machine resonance and generates a filter to  
suppress machine vibration. However, since a phase delay will also  
increase, the response of the servo system may not increase.  
7.4 Low-pass filter  
(1) Function  
When a ballscrew or the like is used, resonance level of high frequency may occur as the response of  
the servo system is increased. To prevent this, the low-pass filter is factory-set to be valid for a torque  
command. The filter frequency of this low-pass filter is automatically adjusted to the value in the  
following expression:  
Filter frequency  
(Hz)  
Speed control gain 2 set value 10  
(1 ratio of load inertia moment to servo motor inertia moment set value 0.1)  
2
(2) Parameter  
Set the operation of the low-pass filter (DRU parameter No.25).  
DRU parameter No. 25  
Low-pass filter selection  
0: Valid (automatic adjustment) initial value  
1: Invalid  
POINT  
In a mechanical system where rigidity is extremely high and resonance is  
difficult to occur, setting the low-pass filter to be "invalid" may increase  
the servo system response to shorten the settling time.  
7 - 4  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7.5 Gain changing function  
This function can change the gains. You can change between gains during rotation and gains during stop  
or can use an external signal to change gains during operation.  
7.5.1 Applications  
This function is used when:  
(1) You want to increase the gains during servo lock but decrease the gains to reduce noise during rotation.  
(2) You want to increase the gains during settling to shorten the stop settling time.  
(3) You want to change the gains using an external signal to ensure stability of the servo system since the  
load inertia moment ratio varies greatly during a stop (e.g. a large load is mounted on a carrier).  
7.5.2 Function block diagram  
The valid control gains PG2, VG2, VIC and GD2 of the actual loop are changed according to the conditions  
selected by gain changing selection CDP (DRU parameter No. 49) and gain changing condition CDS (DRU  
parameter No. 50).  
CDP  
DRU Parameter No.49  
External signal  
CDP  
Command pulse  
frequency  
Droop pulses  
Changing  
Model speed  
Comparator  
CDS  
DRU Parameter No.50  
GD2  
DRU Parameter No.12  
Valid  
GD2B  
GD2 value  
DRU Parameter No.52  
PG2  
DRU Parameter No.15  
Valid  
PG2 PG2B  
100  
PG2 value  
VG2  
DRU Parameter No.16  
Valid  
VG2 VG2B  
100  
VG2 value  
VIC  
DRU Parameter No.17  
Valid  
VIC VICB  
100  
VIC value  
7 - 5  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7.5.3 Parameters  
When using the gain changing function, always set "  
4
" in DRU parameter No.2 (auto tuning) to  
choose the manual mode 1 of the gain adjustment modes. The gain changing function cannot be used in  
the auto tuning mode.  
DRU  
Abbrevi  
Parameter  
No.  
Name  
Unit  
Description  
ation  
13  
14  
PG1  
VG1  
Position control gain 1  
Speed control gain 1  
rad/s  
rad/s  
0.1  
Position and speed gains of a model used to set the response  
level to a command. Always valid.  
Ratio of load inertia moment to  
servo motor inertia moment  
Position control gain 2  
Speed control gain 2  
Control parameters before changing  
12  
GD2  
times  
rad/s  
rad/s  
ms  
15  
16  
17  
PG2  
VG2  
VIC  
Speed integral compensation  
Ratio of load inertia moment to  
servo motor inertia moment 2  
Position control gain 2 changing  
ratio  
0.1  
Used to set the ratio of load inertia moment to servo motor  
52  
53  
54  
GD2B  
PG2B  
VG2B  
VICB  
times inertia moment after changing.  
Used to set the ratio (%) of the after-changing position  
%
control gain 2 to position control gain 2.  
Speed control gain 2 changing  
ratio  
Used to set the ratio (%) of the after-changing speed control  
%
gain 2 to speed control gain 2.  
Speed integral compensation  
changing ratio  
Used to set the ratio (%) of the after-changing speed integral  
55  
49  
%
compensation to speed integral compensation.  
CDP Gain changing selection  
Used to select the changing condition.  
kpps  
pulse  
r/min  
Used to set the changing condition values.  
50  
51  
CDS Gain changing condition  
You can set the filter time constant for a gain change at  
changing.  
CDT Gain changing time constant  
ms  
7 - 6  
7. SPECIAL ADJUSTMENT FUNCTIONS  
(1) DRU Parameters No. 12 to 17  
These parameters are the same as in ordinary manual adjustment. Gain changing allows the values of  
ratio of load inertia moment to servo motor inertia moment, position control gain 2, speed control gain  
2 and speed integral compensation to be changed.  
(2) Ratio of load inertia moment to servo motor inertia moment 2 (GD2B: DRU parameter No. 52)  
Set the ratio of load inertia moment to servo motor inertia moment after changing. If the load inertia  
moment ratio does not change, set it to the same value as ratio of load inertia moment to servo motor  
inertia moment (parameter No. 34).  
(3) Position control gain 2 changing ratio (DRU parameter No. 53), speed control gain 2 changing ratio (DRU  
parameter No. 54), speed integral compensation changing ratio (DRU parameter No. 55)  
Set the values of after-changing position control gain 2, speed control gain 2 and speed integral  
compensation in ratio (%). 100% setting means no gain change.  
For example, at the setting of position control gain 2 100, speed control gain 2 2000, speed integral  
compensation 20 and position control gain 2 changing ratio 180%, speed control gain 2 changing  
ratio 150% and speed integral compensation changing ratio 80%, the after-changing values are as  
follows:  
Position control gain 2 Position control gain 2 Position control gain 2 changing ratio /100 180rad/s  
Speed control gain 2 Speed control gain 2  
Speed control gain 2 changing ratio /100 3000rad/s  
Speed integral compensation Speed integral compensation Speed integral compensation changing  
ratio /100 16ms  
(4) Gain changing selection (DRU parameter No. 49)  
Used to set the gain changing condition. Choose the changing condition in the first digit. If you set "1"  
here, gains can be changed by the control command of controller.  
DRU Parameter No. 49  
Gain changing selection  
Gains are changed in accordance with the settings of  
DRU parameters No. 52 to 55 under any of the following conditions:  
0: Invalid  
1: Control command from controller  
2: Command frequency is equal to higher than parameter No. 66 setting  
3: Droop pulse value is equal to higher than parameter No. 66 setting  
4: Servo motor speed is equal to higher than parameter No. 66 setting  
(5) Gain changing condition (DRU parameter No. 50)  
When you selected "command frequency", "droop pulses" or "servo motor speed" in gain changing  
selection (parameter No.65), set the gain changing level.  
The setting unit is as follows:  
Gain changing condition  
Command frequency  
Droop pulses  
Unit  
kpps  
pulse  
r/min  
Servo motor speed  
(6) Gain changing time constant (DRU parameter No. 51)  
You can set the primary delay filter to each gain at gain changing. This parameter is used to suppress  
shock given to the machine if the gain difference is large at gain changing, for example.  
7 - 7  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7.5.4 Gain changing operation  
This operation will be described by way of setting examples.  
(1) When you choose changing by external input  
(a) Setting  
DRU Parameter No.  
Abbreviation  
PG1  
Name  
Setting  
100  
Unit  
rad/s  
rad/s  
13  
14  
Position control gain 1  
Speed control gain 1  
VG1  
1000  
Ratio of load inertia moment to  
servo motor inertia moment  
Position control gain 2  
Speed control gain 2  
12  
GD2  
4
0.1 times  
15  
16  
17  
PG2  
VG2  
VIC  
120  
3000  
20  
rad/s  
rad/s  
ms  
Speed integral compensation  
Ratio of load inertia moment to  
servo motor inertia moment 2  
Position control gain 2  
changing ratio  
52  
53  
54  
55  
GD2B  
PG2B  
VG2B  
VICB  
100  
70  
0.1 times  
%
%
%
Speed control gain 2 changing  
ratio  
133  
250  
Speed integral compensation  
changing ratio  
0001  
(Control command from  
controller)  
49  
51  
CDP  
CDT  
Gain changing selection  
Gain changing time constant  
100  
ms  
(b) Changing operation  
OFF  
OFF  
ON  
Gain changing  
(CDP)  
After-changing gain  
Before-changing gain  
Change of  
each gain  
CDT 100ms  
Position control gain 1  
100  
Speed control gain 1  
1000  
Ratio of load inertia moment  
to servo motor inertia moment  
Position control gain 2  
4.0  
10.0  
4.0  
120  
3000  
20  
84  
4000  
50  
120  
3000  
20  
Speed control gain 2  
Speed integral compensation  
7 - 8  
7. SPECIAL ADJUSTMENT FUNCTIONS  
(2) When you choose changing by droop pulses  
(a) Setting  
DRU Parameter No.  
Abbreviation  
PG1  
Name  
Setting  
100  
Unit  
rad/s  
rad/s  
13  
14  
Position control gain 1  
Speed control gain 1  
VG1  
1000  
Ratio of load inertia moment to  
servo motor inertia moment  
Position control gain 2  
Speed control gain 2  
12  
GD2  
40  
0.1 times  
15  
16  
17  
PG2  
VG2  
VIC  
120  
3000  
20  
rad/s  
rad/s  
ms  
Speed integral compensation  
Ratio of load inertia moment to  
servo motor inertia moment 2  
Position control gain 2  
changing ratio  
52  
53  
54  
55  
49  
GD2B  
PG2B  
VG2B  
VICB  
CDP  
100  
70  
0.1 times  
%
%
%
Speed control gain 2 changing  
ratio  
133  
250  
Speed integral compensation  
changing ratio  
0003  
Gain changing selection  
(Changed by droop pulses)  
50  
51  
CDS  
CDT  
Gain changing condition  
50  
pulse  
ms  
Gain changing time constant  
100  
(b) Changing operation  
Command pulse  
Droop pulses  
CDS  
CDS  
Droop pulses [pulses]  
0
After-changing gain  
Before-changing gain  
Change of each gain  
CDT 100ms  
Position control gain 1  
100  
Speed control gain 1  
1000  
Ratio of load inertia moment  
4.0  
10.0  
4.0  
10.0  
to servo motor inertia moment  
Position control gain 2  
120  
3000  
20  
84  
4000  
50  
120  
3000  
20  
84  
4000  
50  
Speed control gain 2  
Speed integral compensation  
7 - 9  
7. SPECIAL ADJUSTMENT FUNCTIONS  
MEMO  
7 - 10  
8. INSPECTION  
8. INSPECTION  
Before starting maintenance and/or inspection, make sure that the charge lamp is  
off more than 15 minutes after power-off. Then, confirm that the voltage is safe in  
the tester or the like. Otherwise, you may get an electric shock.  
WARNING  
Any person who is involved in inspection should be fully competent to do the work.  
Otherwise, you may get an electric shock. For repair and parts replacement,  
contact your safes representative.  
POINT  
Do not test MELSERVO-J2M with a megger (measure insulation  
resistance), or it may become faulty.  
Do not disassemble and/or repair the equipment on customer side.  
(1) Inspection  
It is recommended to make the following checks periodically:  
(a) Check for loose terminal block screws. Retighten any loose screws.  
(b) Check the cables and the like for scratches and cracks. Perform periodic inspection according to  
operating conditions.  
(2) Life  
The following parts must be changed periodically as listed below. If any part is found faulty, it must be  
changed immediately even when it has not yet reached the end of its life, which depends on the  
operating method and environmental conditions. For parts replacement, please contact your sales  
representative.  
Part name  
Life guideline  
Smoothing capacitor  
10 years  
Number of power-on and number of forced  
Stop times:100,000times.  
Relay  
Cooling fan  
10,000 to 30,000hours (2 to 3 years)  
Refer to Section 13.2  
Absolute position battery unit  
(a) Smoothing capacitor  
Affected by ripple currents, etc. and deteriorates in characteristic. The life of the capacitor greatly  
depends on ambient temperature and operating conditions. The capacitor will reach the end of its  
life in 10 years of continuous operation in normal air-conditioned environment.  
(b) Relays  
Their contacts will wear due to switching currents and contact faults occur. Relays reach the end of  
their life when the cumulative number of power-on and forced stop times is 100,000, which depends  
on the power supply capacity.  
(c) Drive unit cooling fan  
The cooling fan bearings reach the end of their life in 10,000 to 30,000 hours. Normally, therefore,  
the fan must be changed in a few years of continuous operation as a guideline.  
It must also be changed if unusual noise or vibration is found during inspection.  
8 - 1  
8. INSPECTION  
MEMO  
8 - 2  
9. TROUBLESHOOTING  
9. TROUBLESHOOTING  
9.1 Alarms and warning list  
POINT  
The alarm/warning whose indication is not given does not exist in that  
unit.  
When a fault occurs during operation, the corresponding alarm or warning is displayed. If any alarm or  
warning has occurred, refer to Section 9.2 or 9.3 and take the appropriate action.  
After its cause has been removed, the alarm can be deactivated in any of the methods marked  
alarm deactivation column.  
in the  
When an alarm/warning occurs, the interface unit display shows the corresponding unit and alarm  
number.  
Interface unit display  
Drive unit axis number  
Alarm/warning number  
Symbol  
Definition (Slot)  
Interface unit  
First slot  
Second slot  
Third slot  
Fourth slot  
Fifth slot  
Sixth slot  
F
1
2
3
4
5
6
7
8
Seventh slot  
Eight slot  
9 - 1  
9. TROUBLESHOOTING  
Alarm deactivation  
Error reset CPU reset  
Display  
Name  
A.10  
A.12  
A.13  
A.14  
A.15  
A.16  
A.17  
A.19  
A.1A  
A.1B  
A.1C  
A.1D  
A.1E  
A.20  
A.24  
A.25  
A.30  
A.31  
A.32  
A.33  
A.34  
A.35  
A.36  
Undervoltage  
Memory error 1  
Clock error  
Watchdog  
Memory error 2  
Encoder error 1  
Board error  
Memory error 3  
Motor combination error  
Axis set error  
Base unit bus error 1  
Base unit bus error 2  
Drive unit mounting error  
Encoder error 2  
Main circuit error  
Absolute position erase  
Regenerative error  
Overspeed  
Overcurrent  
Overvoltage  
CRC error  
Command frequency error  
Transfer error  
(Note 1)  
(Note 1)  
IFU parameter error  
DRU parameter error  
DRU parameter adjustment error  
Main circuit device overheat  
Servo motor overheat  
Overload 1  
Overload 2  
Error excessive  
Multiple axis overload  
Drive unit alarm  
Option slot fault  
Option slot loading error  
Serial communication time-out  
Serial communication error  
Watchdog  
Open battery cable warning  
Home position setting warning  
Battery warning  
Excessive regenerative warning  
Overload warning  
Absolute position counter warning  
Parameter warning  
Servo forced stop warning  
Controller forced stop warning  
Main circuit off warning  
A.37  
A.38  
A.45  
A.46  
A.50  
A.51  
A.52  
A.53  
A.54  
A.78  
A.79  
A.8A  
A.8E  
A.88  
A.92  
A.96  
A.9F  
A.E0  
A.E1  
A.E3  
A.E4  
A.E6  
A.E7  
A.E9  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 2)  
(Note 2)  
Removing the cause of  
occurrence  
deactivates the alarm  
automatically.  
Note 1. Deactivate the alarm about 30 minutes of cooling time after removing the cause of occurrence.  
2. Resetting the drive unit alarm automatically deactivates the alarm display.  
9 - 2  
9. TROUBLESHOOTING  
9.2 Remedies for alarms  
When any alarm has occurred, eliminate its cause, ensure safety, then reset the  
alarm, and restart operation. Otherwise, injury may occur.  
If an absolute position erase (A.25) occurred, always make home position setting  
again. Otherwise, misoperation may occur.  
CAUTION  
As soon as an alarm occurs, make the Servo off status and interrupt the main  
circuit power.  
POINT  
When any of the following alarms has occurred, always remove its cause  
and allow about 30 minutes for cooling before resuming operation. If  
operation is resumed by switching control circuit power off, then on to reset  
the alarm, each unit and servo motor may become faulty. To protect the  
main circuit elements, any of these servo alarms cannot be deactivated from  
the servo system controller until the specified time elapses after its  
occurrence. Judging the load changing condition until the alarm occurs, the  
servo amplifier calculates this specified time automatically.  
Regenerative error (A.30)  
Overload 1 (A.50)  
Overload 2 (A.51)  
Multi axis overload (A.53)  
The alarm can be deactivated by switching power off, then on or by the  
error reset command CPU reset from the servo system controller. For  
details, refer to Section 9.1.  
When an alarm occurs, the dynamic brake is operated to stop the servomotor. At this time, the display  
indicates the alarm No. The servo motor comes to a stop. Remove the cause of the alarm in accordance  
with this section. The optional MR Configurator (servo configuration software) may be used to refer to the  
cause.  
@ in the Indication field denotes the slot number of the base unit and # the axis number of the drive unit.  
Display  
Name  
Definition  
Cause  
Action  
IFU  
DRU  
FA.10  
Undervoltage  
Power supply voltage 1. Power supply voltage is low.  
Review the power supply.  
fell to or below 160VAC.  
2. There was an instantaneous control  
circuit power failure of 30ms or  
longer.  
3. Shortage of power supply capacity  
caused the power supply voltage to  
drop at start, etc.  
4. Power was restored after the bus  
voltage had dropped to 200VDC.  
(Main circuit power switched on  
within 5s after it had switched off.)  
5. Faulty parts in the base unit.  
Change the base unit.  
Checking method  
Alarm (A.10) occurs if interface  
unit is changed.  
6. Faulty parts in interface unit.  
Checking method  
Change the interface unit.  
Alarm (A.10) occurs if base unit  
is changed.  
7. CNP3 or CNP1B connector  
unplugged.  
Connect properly.  
FA.12  
FA.13  
FA.14  
Memory error 1 RAM, memory fault  
Faulty parts in the interface unit.  
Change the interface unit.  
Clock error  
Watchdog  
Printed board fault.  
CPU/parts fault  
Checking method  
Alarm (any of A.11 and 13)  
occurs if power is switched on  
after disconnection of all cables  
but the control circuit power  
supply cables.  
Checking method  
Alarm (A.15) occurs if power is  
switched on after disconnection  
of all cables but the control  
circuit power supply cables.  
FA.15  
Memory error 2 EEP-ROM fault  
Change the interface unit.  
9 - 3  
9. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
IFU  
DRU  
@A.12# Memory error 1 RAM, memory fault  
Faulty parts in the drive unit.  
Change the drive unit.  
@A.13# Clock error  
@A.14# Watchdog  
Printed board fault.  
CPU/parts fault  
Checking method  
Alarm (any of A.12 to 15)  
occurs if power is switched on  
after disconnection of all cables  
but the control circuit power  
supply cables.  
@A.15# Memory error 2 EEP-ROM fault  
@A.16# Encoder error 1 Communication error 1. Encoder connector (CN2)  
Connect correctly.  
occurred between  
encoder and servo  
amplifier.  
disconnected.  
2. Encoder fault.  
Change the servo motor.  
Repair or change cable.  
3. Encoder cable faulty.  
(Wire breakage or shorted)  
1. Faulty parts in the drive unit.  
Checking method  
@A.17# Board error 2  
CPU/parts fault  
Change the drive unit.  
Alarm (A.17) occurs if power is  
switched on after disconnection of all  
cables but the control circuit power  
supply cables.  
The output terminals 2. The wiring of U, V, W is  
U, V, W of drive unit disconnected or not connected.  
and the input  
Correctly connect the output  
terminals U, V, W of the drive  
unit and the input terminals U,  
V, W of the servo motor.  
terminals U, V, W of  
the servo motor are  
not connected.  
Faulty parts in the interface unit or  
drive unit.  
FA.19 @A.19# Memory error 3 ROM memory fault  
Change the interface unit or  
drive unit.  
Checking method  
Alarm (A.19) occurs if power is  
switched on after disconnection of all  
cables but the control circuit power  
supply cables.  
@A.1A# Servo motor  
combination  
error  
Wrong combination of Wrong combination of drive unit and Use correct combination.  
drive unit and servo  
motor.  
servo motor connected.  
FA.1B  
FA.1C  
Axis set error  
Drive units installed IFU parameter No. 11 to 18 setting  
on the same drive unit mistake.  
have the same axis  
Make correct setting.  
number.  
Base unit bus  
error 1  
There is error in  
communication  
1. Interface unit connection fault.  
Connect the interface unit to the  
base unit properly.  
between interface unit  
and drive unit.  
2. Interface unit failure.  
3. Base unit failure.  
Change the interface unit.  
Change the base unit.  
Connect the drive unit to the  
base unit properly.  
FA.1D  
FA.1E  
Base unit bus  
error 2  
There is error in  
communication  
1. Drive unit connection fault.  
between interface unit  
and drive unit.  
2. Drive unit failure.  
Change the drive unit.  
Change the base unit.  
Connect the drive unit to the  
base unit properly.  
3. Base unit failure.  
Drive unit  
Drive unit came off  
1. Drive unit connection fault.  
mounting error the base unit after  
initialization.  
2. Base unit failure.  
Change the base unit.  
Change the drive unit.  
3. Faulty parts in drive unit.  
Checking method  
Alarm (A.1E) occurs if power is  
switched on after disconnection of  
the U, V, W power cables.  
9 - 4  
9. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
Connect correctly.  
IFU  
DRU  
@A.20# Encoder error 2 Communication error 1. Encoder connector (CN2)  
occurred between  
encoder and drive  
unit.  
disconnected.  
2. Encoder fault.  
Change the servo motor.  
Repair or change cable.  
3. Encoder cable faulty.  
(Wire breakage or shorted)  
@A.24# Main circuit  
error  
Ground fault occurred 1. Power input wires and servo motor Connect correctly.  
at the servo motor  
outputs (U,V and W)  
of the drive unit.  
output wires are in contact at CNP2.  
2. Sheathes of servo motor power  
cables deteriorated, resulting in  
ground fault.  
Change the cable.  
3. Main circuit of drive unit failed.  
Checking method  
Change the drive unit.  
Alarm (A.24) occurs if power is  
switched on after disconnection of  
the U, V, W power cables.  
@A.25# Absolute  
position erase  
Absolute position data 1. Battery voltage low.  
Change battery.  
in error.  
Always make home position  
setting again.  
2. Battery cable or battery is faulty.  
Power was switched  
on for the first time in  
the absolute position  
detection system.  
Permissible  
3. Super capacitor of the absolute  
position encoder is not charged.  
After leaving the alarm occurring  
for a few minutes, switch power  
off, then on again. Always make  
home position setting again.  
Set correctly.  
FA.30  
Regenerative  
alarm  
1. Mismatch between used  
regenerative power of  
regenerative brake option and DRU  
the regenerative brake parameter No. 2 setting.  
option is exceeded.  
2. Regenerative brake option is not  
connected.  
Connect correctly.  
3. High-duty operation or continuous 1. Reduce the frequency of  
regenerative operation caused the  
permissible regenerative power of  
the regenerative brake option to be  
exceeded.  
positioning.  
2. Use the regenerative brake  
option of larger capacity.  
3. Reduce the load.  
Checking method  
Call the status display and check  
the regenerative load ratio.  
4. Power supply voltage rose to or  
above 200VAC.  
Review power supply.  
5. Regenerative brake option faulty.  
Change regenerative brake  
option.  
Regenerative  
6. Regenerative transistor faulty.  
Change the drive unit.  
transistor fault  
Checking method  
1) The regenerative brake option  
has overheated abnormally.  
2) The alarm occurs even after  
removal of the built-in  
regenerative brake resistor or  
regenerative brake option.  
9 - 5  
9. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
IFU  
DRU  
@A.31# Overspeed  
Speed has exceeded  
the instantaneous  
permissible speed.  
1. Small acceleration/deceleration time Increase acceleration/  
constant caused overshoot to be  
large.  
deceleration time constant.  
2. Servo system is instable to cause  
overshoot.  
1. Reset servo gain to proper  
value.  
2. If servo gain cannot be set to  
proper value:  
1) Reduce load inertia moment  
ratio; or  
2) Reexamine acceleration/  
deceleration time constant.  
Change the servo motor.  
3. Encoder faulty.  
@A.32# Overcurrent  
Current that flew is  
higher than the  
1. Short occurred in drive unit output Correct the wiring.  
U, V and W.  
permissible current of  
the drive unit.  
2. Transistor of the servo drive unit  
faulty.  
Change the drive unit.  
Checking method  
Alarm (A.32) occurs if power is  
switched on after disconnection of  
the U, V, W power cables.  
3. Ground fault occurred in servo  
amplifier output U, V and W.  
4. External noise caused the  
overcurrent detection circuit to  
misoperate.  
Correct the wiring.  
Take noise suppression  
measures.  
FA.33  
Overvoltage  
Converter bus voltage 1. Regenerative brake option is not  
Use the regenerative brake  
option.  
exceeded 400VDC.  
used.  
2. Though the regenerative brake  
option is used, the DRU parameter  
Make correct setting.  
No. 2 setting is "  
00 (not used)".  
3. Regenerative brake option is open or 1. Change lead.  
disconnected.  
2. Connect correctly.  
Change drive unit.  
4. Regenerative transistor faulty.  
5. Wire breakage of regenerative brake For wire breakage of regenerative  
option.  
brake option, change regenerative  
brake option.  
6. Power supply voltage high.  
1. Bus cable disconnected.  
2. Bus cable fault.  
Review the power supply.  
Connect correctly.  
FA.34  
CRC error  
Bus cable is faulty.  
Input frequency of  
Change the cable.  
3. Noise entered bus cable.  
Take measures against noise.  
4. Termination connector disconnected. Connect termination connector.  
5. The same No. exists in the interface Set correctly.  
unit side axis setting.  
@A.35# Command  
1. Command given is greater than the Review operation program.  
maximum speed of the servo motor.  
frequency error command pulse is too  
high.  
2. Noise entered bus cable.  
Take action against noise.  
Change the servo system  
controller.  
3. Servo system controller failure.  
FA.36  
Transfer error Bus cable or printed  
board is faulty.  
1. Bus cable is disconnected.  
Connect the connector of the bus  
cable.  
2. Bus cable fault.  
Change the cable.  
3. Printed board is faulty.  
Change the interface unit  
4. Termination connector disconnected Connect termination connector.  
9 - 6  
9. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
IFU  
DRU  
FA.37  
IFU parameter IFU parameter setting 1. Interface unit fault caused the IFU Change the interface unit.  
error  
is wrong.  
parameter setting to be rewritten.  
2. There is a IFU parameter whose  
Change the IFU parameter value  
value was set to outside the setting to within the setting range.  
range by the controller.  
3. The number of write times to EEP- Change the servo amplifier.  
ROM exceeded 100,000 due to  
parameter write, etc  
@A.37# DRU parameter DRU parameter  
error setting is wrong.  
1. Drive unit fault caused the DRU  
parameter setting to be rewritten.  
2. There is a DRU parameter whose  
Change the drive unit.  
Change the DRU parameter  
value was set to outside the setting value to within the setting range.  
range by the controller.  
FA.38  
DRU parameter In some drive unit, the There is a drive unit whose DRU  
Make correct setting.  
adjustment  
error  
parameter which  
requires all axes to be different from others.  
set for the same value  
parameter No. 2 or 23 setting is  
differs from those of  
the other axes.  
@A.45# Main circuit  
Main circuit device  
1. Drive unit faulty.  
Change the drive unit.  
device overheat overheat.  
2. The power supply was turned on  
and off continuously by overloaded  
status.  
The drive method is reviewed.  
3. Air cooling fan of drive unit stops.  
1. Change the drive unit or  
cooling fan.  
2. Reduce ambient temperature.  
@A.46# Servo motor  
overheat  
Servo motor  
1. Ambient temperature of servo motor Review environment so that  
is over 40 ambient temperature is 0 to  
40  
temperature rise  
actuated the thermal  
sensor.  
.
.
2. Servo motor is overloaded.  
1. Reduce load.  
2. Review operation pattern.  
3. Use servo motor that provides  
larger output.  
3. Thermal sensor in encoder is faulty. Change servo motor.  
@A.50# Overload 1  
Load exceeded  
1. Drive unit is used in excess of its  
continuous output current.  
1. Reduce load.  
overload protection  
characteristic of servo  
amplifier.  
2. Review operation pattern.  
3. Use servo motor that provides  
larger output.  
2. Servo system is instable and  
hunting.  
1. Repeat acceleration/  
deceleration to execute auto  
tuning.  
2. Change auto tuning response  
level setting.  
3. Set auto tuning to OFF and  
make gain adjustment  
manually.  
3. Machine struck something.  
1. Review operation pattern.  
2. Install limit switches.  
Connect correctly.  
4. Wrong connection of servo motor.  
Drive unit's output U, V, W do not  
match servo motor's input U, V, W.  
5. Encoder faulty.  
Change the servo motor.  
Checking method  
When the servo motor shaft is  
rotated with the servo off, the  
cumulative feedback pulses do  
not vary in proportion to the  
rotary angle of the shaft but the  
indication skips or returns midway.  
9 - 7  
9. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
IFU  
DRU  
@A.51# Overload 2  
Machine collision or  
the like caused max.  
output current to flow  
successively for  
1. Machine struck something.  
1. Review operation pattern.  
2. Install limit switches.  
Connect correctly.  
2. Wrong connection of servo motor.  
Drive unit's output U, V, W do not  
match servo motor's input U, V, W.  
3. Servo system is instable and  
hunting.  
several seconds.  
Servo motor locked:  
0.3s or more  
1. Repeat acceleration/  
deceleration to execute auto  
tuning.  
During rotation:  
2.5s or more  
2. Change auto tuning response  
level setting.  
3. Set auto tuning to OFF and  
make gain adjustment  
manually.  
4. Encoder faulty.  
Checking method  
Change the servo motor.  
When the servo motor shaft is  
rotated with the servo off, the  
cumulative feedback pulses do  
not vary in proportion to the  
rotary angle of the shaft but the  
indication skips or returns midway.  
@A.52# Error excessive The deviation  
between the model  
1. Acceleration/deceleration time  
constant is too small.  
Increase the acceleration/  
deceleration time constant.  
Increase the torque limit value.  
1. Review the power supply  
capacity.  
position and the  
actual servo motor  
position exceeds the  
DRU parameter  
No.31 setting value  
(initial value: 2  
revolutions  
2. Torque limit value is too small.  
3. Motor cannot be started due to  
torque shortage caused by power  
supply voltage drop.  
2. Use servo motor which  
provides larger output.  
Increase set value and adjust to  
ensure proper operation.  
1. When torque is limited,  
increase the limit value.  
2. Reduce load.  
4. Position control gain 1 (DRU  
parameter No.13) value is small.  
5. Servo motor shaft was rotated by  
external force.  
3. Use servo motor that provides  
larger output.  
6. Machine struck something.  
1. Review operation pattern.  
2. Install limit switches.  
Change the servo motor.  
Connect correctly.  
7. Encoder faulty.  
8. Wrong connection of servo motor.  
Drive unit's output U, V, W do not  
match servo motor's input U, V, W.  
9 - 8  
9. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
IFU  
DRU  
FA.53  
Multiple axis  
overload  
Drive unit whose  
effective load factor is  
85% or more is  
adjacent.  
1. Drive unit having large load is  
adjacent.  
1. Change the slot of the drive  
unit whose load is large.  
2. Reduce the load.  
3. Reexamine the operation  
pattern.  
4. Use a servo motor whose  
output is large.  
2. Servo system is instable and  
hunting.  
1. Repeat acceleration/  
deceleration and perform auto  
tuning.  
2. Change the response setting of  
auto tuning.  
3. Turn off auto tuning and make  
gain adjustment manually.  
Make correct connection.  
3. Encoder cable and power cable (U,  
V, W) coming out of one drive unit  
are connected to the incorrect servo  
motor.  
FA.54  
FA.78  
Drive unit  
alarm  
Alarm occurred in one Alarm occurred in one or more axes of Remove the alarm causes of all  
or more axes of drive drive units installed to the base unit. drive units where alarm has  
units installed to the  
base unit.  
occurred.  
Option slot fault Extension IO unit is 1. Extension IO unit is not inserted  
Insert correctly.  
faulty.  
properly.  
2. Incompatibility with the extension Change the interface unit for the  
IO unit.  
one compatible with the  
extension IO unit.  
3. Extension IO unit is faulty.  
4. Base unit is faulty.  
Change the extension IO unit.  
Change the base unit.  
FA.79  
FA.8A  
Option slot  
loading error  
Serial  
Extension IO unit is  
connected improperly.  
Extension IO unit is disconnected.  
Switch power off and reinsert the  
extension IO unit.  
Serial communication 1. Communication cable fault.  
(Wire break or short circuit)  
2. Communication cycle is longer than Set the IFU parameter value  
Repair or change the cable.  
communication stopped for longer  
time-out  
than the time set in  
IFU parameter No. 1.  
the IFU parameter No. 1 setting.  
3. Protocol is incorrect.  
correctly.  
Correct the protocol.  
Repair or change the cable.  
Serial communication  
error occurred  
between interface unit  
and communication  
device (e.g. personal  
computer).  
FA.8E  
88888  
Serial  
1. Communication cable fault.  
(Open cable or short circuit)  
communication  
error  
2. Communication device (e.g. personal Change the communication  
computer) faulty.  
device (e.g. personal computer).  
Watchdog  
CPU, parts faulty  
Fault of parts in interface unit.  
Change interface unit.  
Checking method  
Alarm (8888) occurs if power is  
switched on after disconnection  
of all cables but the control  
circuit power supply cables.  
9 - 9  
9. TROUBLESHOOTING  
9.3 Remedies for warnings  
POINT  
When any of the following alarms has occurred, do not resume operation by  
switching power of the servo amplifier OFF/ON repeatedly. The servo  
amplifier and servo motor may become faulty. If the power of the servo  
amplifier is switched OFF/ON during the alarms, allow more than 30  
minutes for cooling before resuming operation.  
Excessive regenerative warning (A.E0)  
Overload warning 1 (A.E1)  
If A.E6, A.E7 or A.E9 occurs, the servo off status is established. If any other warning occurs, operation  
can be continued but an alarm may take place or proper operation may not be performed. Eliminate the  
cause of the warning according to this section. Use the optional MR Configurator (servo configuration  
software) to refer to the cause of warning.  
@ in the Indication field denotes the slot number of the base unit and # the axis number of the drive unit.  
Display  
Name  
Definition  
Cause  
Action  
IFU  
DRU  
@A.92# Open battery  
Absolute position  
1. Battery cable is open.  
Repair cable or changed.  
Change battery.  
cable warning detection system  
battery voltage is low.  
2. Battery voltage supplied from the  
battery unit to the encoder fell to  
about 3.2V or less.  
(Detected with the encoder)  
3. Encoder cable is open.  
Change the encoder cable.  
@A.96# Home position Home position return 1. Droop pulses remaining are greater Remove the cause of droop pulse  
setting warning could not be made in  
the precise position.  
than the in-position range setting.  
occurrence.  
2. Home position return was executed Reduce creep speed.  
during operation command.  
3. Creep speed high.  
FA.9F  
FA.E0  
Battery  
warning  
Voltage of battery for Battery voltage fell to 3.2V or less.  
Change the battery.  
absolute position  
detection system  
reduced.  
(Detected with the servo amplifier)  
Excessive  
regenerative  
warning  
There is a possibility Regenerative power increased to 85% 1. Reduce frequency of  
that regenerative  
power may exceed  
permissible  
or more of permissible regenerative  
power of regenerative brake option.  
positioning.  
2. Change regenerative brake  
option for the one with larger  
capacity.  
Checking method  
Call the status display and check  
regenerative load ratio.  
regenerative power of  
regenerative brake  
option.  
3. Reduce load.  
@A.E1# Overload  
There is a possibility Load increased to 85% or more of  
that overload alarm 1 overload alarm 1 or 2 occurrence level.  
Refer to A.50, A.51.  
warning  
or 2 may occur.  
Cause, checking method  
Refer to A.50, A.51.  
@A.E3# Absolute  
Absolute position  
1. Noise entered the encoder.  
Take noise suppression  
measures.  
position counter encoder pulses faulty.  
warning  
2. Encoder faulty.  
Change servo motor.  
@A.E4# Parameter  
Parameter outside  
setting range.  
Parameter value set from servo system Set it correctly.  
controller is outside setting range.  
warning  
FA.E6  
FA.E7  
Servo forced  
stop warning  
Controller  
forced stop  
warning  
EM1-SG are open.  
External forced stop was made valid. Ensure safety and deactivate  
(EM1-SG opened.)  
forced stop.  
Forced stop signal was entered into the Ensure safety and deactivate  
servo system controller.  
forced stop.  
FA.E9  
Main circuit off Servo-on command  
Switch on main circuit power.  
warning  
was issued with main  
circuit power off.  
9 - 10  
10. OUTLINE DRAWINGS  
10. OUTLINE DRAWINGS  
10.1 MELSERVO-J2M configuration example  
The following diagram shows the MR-J2M-BU8 base unit where one interface unit and eight drive units  
are installed.  
[Unit: mm]  
([Unit: in])  
30  
(1.12)  
240 (9.45)  
35  
50  
25  
(1.38)  
(1.67)  
(0.98)  
350 (13.78)  
338 (13.31)  
6 (0.24)  
6 (0.24)  
SON  
ALM  
SON  
ALM  
SON  
ALM  
SON  
ALM  
SON  
ALM  
SON  
ALM  
SON  
ALM  
SON  
ALM  
MELSERVO  
MELSERVO  
MELSERVO  
MELSERVO  
MELSERVO  
MELSERVO  
MELSERVO  
MELSERVO  
CC  
NN  
PP  
11  
AB  
C
N
1
C
N
1
MITSUBISHI ELECTRIC  
MITSUBISHI ELECTRIC  
MITSUBISHI ELECTRIC  
MITSUBISHI ELECTRIC  
MITSUBISHI ELECTRIC  
MITSUBISHI ELECTRIC  
MITSUBISHI ELECTRIC  
MITSUBISHI ELECTRIC  
A
B
C
N
2
C
N
2
C
N
2
C
N
2
C
N
2
C
N
2
C
N
2
C
N
2
C
N
3
C
N
P
3
CON4  
CON5  
C
N
P
2
C
N
P
2
C
N
P
2
C
N
P
2
C
N
P
2
C
N
P
2
C
N
P
2
C
N
P
2
Approx. 70 (2.76)  
Approx. 70 (2.76)  
158 (6.22)  
RATING PLATE  
NAME PLATE  
10 - 1  
10 OUTLINE DRAWINGS  
10.2 Unit outline drawings  
10.2.1 Base unit (MR-J2M-BU )  
[Unit: mm]  
([Unit: in])  
Variable Dimensions  
Mass  
[kg]([lb])  
Base Unit  
A
B
MR-J2M-BU4 230 (9.06) 218 (8.58)  
MR-J2M-BU6 290 (11.42) 278 (10.95)  
MR-J2M-BU8 350 (13.78) 338 (13.307)  
1.1 (2.43)  
1.3 (2.87)  
1.5 (3.31)  
A
B
6 (0.24)  
6 (0.24)  
Connector layout  
CNP3  
CNP1A, CNP1B  
PE  
NAME  
PLATE  
A
B
3 L3  
2 L2  
1 L1  
1 N L11  
2 P L21  
3 C  
CC  
NN  
P P  
1 1  
A B  
C
N
P
3
Terminal screw: M4  
Tightening torque:1.2 [N m]  
(10.6 [lb in])  
2 (0.08)  
2- 6 ( 0.24) mounting hole  
Mounting screw: M5  
Tightening torque:3.24 [N m]  
(28.7 [lb in])  
10.2.2 Interface unit (MR-J2M-P8B)  
[Unit: mm]  
([Unit: in])  
4.5 ( 0.18)  
mounting hole  
Approx. 70  
(2.76)  
139 (5.47)  
130 (5.12)  
6.5 (0.26)  
50 (1.97)  
25  
(0.98)  
Display/setting  
cover  
MELSERV  
MITSUBISHI  
MR-J2M-J2M  
C
N
1
C
N
1
A
B
RATING PLATE  
NAME PLATE  
C
N
3
CHARGE  
Mass: 0.5kg(1.10lb)  
Mounting screw: M4  
Tightening torque:1.5 [N m]  
(13.3 [lb in])  
10 - 2  
10 OUTLINE DRAWINGS  
10.2.3 Drive unit (MR-J2M- DU)  
(1) MR-J2M-10DU to MR-J2M-40DU  
[Unit: mm]  
([Unit: in])  
Approx. 70 (2.76)  
138.5 (5.45)  
130 (4.72)  
5
Connector layout  
CNP2  
4.5 ( 0.18)  
mounting hole  
30  
(1.18)  
(0.20)  
6.5 (0.26)  
2
V
1
4
SON  
ALM  
MITSUBISHI  
MELSERVO  
3
NAME  
U
W
PLATE  
MITSUBISHI  
Mounting screw: M4  
Tightening torque:1.5 [N m]  
(13.3 [lb in])  
NAME PLATE  
C
N
2
C
N
P
2
Mass: 0.4kg (0.88lb)  
(2) MR-J2M-70DU  
[Unit: mm]  
([Unit: in])  
2- 5 ( 0.2)  
Approx. 70 (2.76)  
60 (2.36)  
138.5 (5.47)  
130 (4.72)  
mounting hole  
Connector layout  
5 (0.20) 30 (1.18)  
6.5 (0.26)  
CNP2  
2
V
1
4
SON  
ALM  
MITSUBISHI  
MELSERVO  
3
NAME  
PLATE  
U
W
MITSUBISHI  
Mounting screw  
: M4  
Tightening torque  
:1.5 [N m]  
NAME PLATE  
C
N
2
C
N
P
2
(13.3 [lb in])  
Mass: 0.7kg (1.54lb)  
10 - 3  
10 OUTLINE DRAWINGS  
10.2.4 Extension IO unit (MR-J2M-D01)  
[Unit: mm]  
([Unit: in])  
138.5 (5.45)  
130 (4.72)  
Approx. 80 (3.15)  
25  
(0.89)  
5 (0.20)  
6.5 (0.26)  
2- 4.5 ( 0.18)  
mounting hole  
Mounting screw: M4  
Tightening torque:1.5 [N m]  
(13.3 [lb in])  
C
N
4
A
C
N
4
B
NAME PLATE  
Mass: 0.2kg (1.10lb)  
10.2.5 Battery unit (MR-J2M-BT)  
[Unit: mm]  
([Unit: in])  
25 (0.89)  
Approx. 70 (2.76)  
130 (5.45)  
5 (0.20)  
6.5 (0.26)  
2- 4.5 ( 0.18)  
mounting hole  
Mounting screw: M4  
Tightening torque:1.5 [N m]  
(13.3 [lb in])  
C
N
1
C
NAME PLATE  
Mass: 0.3kg (0.66lb)  
10 - 4  
10 OUTLINE DRAWINGS  
10.3 Connector  
(1) CN1A CN1B CN2 CN3 connector  
<3M>  
(a) Soldered type  
Model Connector : 10120-3000VE  
Shell kit  
: 10320-52F0-008  
[Unit: mm]  
([Unit: in])  
12.0 (0.47)  
14.0 (0.55)  
22.0 (0.87)  
Logo, etc. are  
indicated here.  
33.3 (1.31)  
12.7  
(0.50)  
(b) Threaded type  
Model Connector : 10120-3000VE  
Shell kit : 10320-52A0-008  
Note. This is not available as option and should be user-prepared.  
[Unit: mm]  
([Unit: in])  
12.0 (0.47)  
22.0 (0.87)  
14.0 (0.55)  
27.4  
(1.08)  
Logo, etc. are  
indicated here.  
33.3  
(1.31)  
12.7  
(0.50)  
10 - 5  
10 OUTLINE DRAWINGS  
(c) Insulation displacement type  
Model Connector : 10120-6000EL  
Shell kit  
: 10320-3210-000  
[Unit: mm]  
([Unit: in])  
6.7 ( 0.26)  
Logo, etc. are  
indicated here.  
20.9 (0.82)  
2- 0.5  
(
0.02)  
29.7  
(1.17)  
10 - 6  
10 OUTLINE DRAWINGS  
(2) CN4A CN4B connector  
<3M>  
(a) Soldered type  
Model Connector : 10150-3000VE  
Shell kit  
: 10350-52F0-008  
[Unit: mm]  
([Unit: in])  
17.0 (0.67)  
46.5 (1.83)  
18.0 (0.71)  
41.1 (1.62)  
Logo, etc. are  
indicated here.  
52.4 (2.06)  
12.7  
(0.50)  
(b) Threaded type  
Model Connector : 10150-3000VE  
Shell kit : 10350-52A0-008  
Note. This is not available as option and should be user-prepared.  
[Unit: mm]  
([Unit: in])  
17.0 (0.67)  
46.5 (1.83)  
18.0 (0.71)  
41.1 (1.62)  
Logo, etc. are  
indicated here.  
52.4 (2.06)  
12.7  
(0.50)  
10 - 7  
10 OUTLINE DRAWINGS  
(3) CNP1A CNP1B connector  
<Tyco Electronics>  
Model CNP1A housing  
CNP1B housing  
: 1-178128-3  
: 2-178128-3  
Contact  
: 917511-2 (max. sheath OD: 2.8 [mm])  
353717-2 (max. sheath OD: 3.4 [mm])  
: 91560-1 (for 917511-2)  
937315-1 (for 353717-2)  
[Unit: mm]  
Applicable tool  
5.08 (0.2)  
([Unit: in])  
7.15 (0.28)  
29.7 (0.12)  
3
2
1
P
A M  
3 0 -  
X
19.24 (0.76)  
6.55  
(0.26)  
(4) CNP3 connector  
< Tyco Electronics >  
Model Housing  
Contact  
: 1-179958-3  
: 316041-2  
: 234171-1  
Applicable tool  
[Unit: mm]  
([Unit: in)  
10.16 (0.4)  
9.8 (0.39)  
45.29 (1.79)  
3
2
1
P
A M  
5 0 -  
Y
33.92 (1.33)  
10 - 8  
10 OUTLINE DRAWINGS  
(5) CNP1 CNP2 CNP3 connector  
<molex>  
[Unit: mm]  
([Unit: in])  
0.6 (0.024)  
1
2
3
4
5
6
7
9
0 1  
R0.3  
Circuit number  
3 (0.118)  
1.2  
Layout diagrams classified by the number of poles  
(0.047)  
5.4 (0.213)  
1
3
2
4
11.6  
(0.457)  
5.4 (0.213)  
4 poles  
1.5  
(0.059)  
3
Variable Dimensions  
3.5  
(0.138)  
(0.118)  
Model  
5557-04R  
A
B
4.2 (0.165)  
9.6 (0.378)  
(Pitch)  
4.2  
(0.165)  
2.7 (0.106)  
2.7 (0.106)  
A
B
Terminal  
[Unit: mm]  
([Unit: in])  
Model: 5556  
1.9 (0.075)  
14.7 (0.579)  
6.6 (0.26)  
5.5 (0.217)  
4.3 (0.169)  
2.6  
(0.102)  
1.2 (0.047)  
OMIN  
1
(0.039)  
Applicable wire  
2
(0.079)  
Core size : AWG#18 to #24 (5556-PBTL)  
AWG28 (5556-PBT2L)  
Sheath OD: 3.1mm ( 0.122 in) max.  
Strip length: 3.0 to 3.5 [mm] (0.118 to 0.138 [in])  
Exclusive tools  
Wire specifications  
Sheath OD [mm(inch)]  
Terminal  
Tool number  
Core size  
1.5 to 2.2 (0.06 to 0.09)  
2.3 to 3.1 (0.06 to 0.12)  
57026-5000  
57027-5000  
57064-5000  
57022-5300  
5556-PBL  
AWG18 to AWG24  
5556-PBT2L  
5556-PBT3L  
AWG28  
AWG16  
10 - 9  
10 OUTLINE DRAWINGS  
(6) Bus cable connector  
Honda Tsushin Industry HDR type  
Model HDR  
Number of Pins  
Connector  
Connector case  
(Note) Crimping terminal  
Wire straightening tool : FHAT-0029  
Insulation displacement tool : FHPT-0004C  
14  
26  
HDR-E14MG1  
HDR-E26MG1  
HDR-E14LPA5  
HDR-E26LPA5  
Note. Not available from us and to be supplied by the customer.  
Model Connector  
: HDR-E14MG1  
Model Connector  
: HDR-E26MG1  
Connector case : HDR-E14LPA5  
Connector case : HDR-E26LPA5  
[Unit: mm]  
([Unit: in])  
21.8 (0.86)  
17 (0.67)  
5.6 ( 0.22)  
6
7 (0.24 0.28)  
21 (0.83)  
25.8 (1.02)  
10 - 10  
11. CHARACTERISTICS  
11. CHARACTERISTICS  
11.1 Overload protection characteristics  
An electronic thermal relay is built in the drive unit to protect the servo motor and drive unit from  
overloads.  
Overload 1 alarm (A.50) occurs if overload operation performed is above the electronic thermal relay  
protection curve shown in any of Figs. 13.1, or overload 2 alarm (A.51) occurs if the maximum current  
flows continuously for several seconds due to machine collision, etc. Use the equipment on the left-hand  
side area of the continuous or broken line in the graph.  
In a machine like the one for vertical lift application where unbalanced torque will be produced, it is  
recommended to use the machine so that the unbalanced torque is 70% or less of the rated torque.  
The overload protection characteristic is about 20% lower than that of the MELSERVO-J2-Super series.  
However, operation at the 100% continuous rating can be performed.  
1000  
1000  
During rotation  
100  
100  
During rotation  
During servo lock  
10  
1
10  
1
During servo lock  
0.1  
0
0.1  
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
(Note) Load ratio [%]  
(Note) Load ratio [%]  
a. MR-J2M-10DU to MR-J2M-40DU  
b. MR-J2M-70DU  
Note. If operation that generates torque more than 100% of the rating is performed with an abnormally high frequency in a servo motor stop  
status (servo lock status) or in a 30r/min or less low-speed operation status, the servo amplifier may fail even when the electronic  
thermal relay protection is not activated.  
Fig 11.1 MR-J2M multiple axis overload curve  
11 - 1  
11. CHARACTERISTICS  
11.2 Power supply equipment capacity and generated loss  
(1) Amount of heat generated by the drive unit  
Table 11.1 indicates drive unit's power supply capacities and losses generated under rated load. For  
thermal design of an enclosure, use the values in Table 11.1 in consideration for the worst operating  
conditions. The actual amount of generated heat will be intermediate between values at rated torque  
and servo off according to the duty used during operation. When the servo motor is run at less than  
the maximum speed, the power supply capacity will be smaller than the value in the table, but  
generated heat will not change.  
Table 11.1 Power supply capacity and generated heat at rated output  
(Note 2)  
(Note 1)  
Area required for heat dissipation  
Generated heat[W]  
Unit  
Servo motor  
Power supply  
capacity[kVA]  
At rated torque  
At servo off  
[m2]  
0.2  
0.2  
0.2  
0.3  
0.3  
0.3  
0.4  
0.4  
0.7  
0.7  
0.7  
0.2  
0.1  
0.1  
0.1  
[ft2]  
HC-KFS053 13  
HC-MFS053 13  
HC-UFS13  
0.3  
0.3  
0.3  
0.5  
0.5  
0.5  
0.9  
0.9  
1.3  
1.3  
1.3  
0.1  
0
11  
11  
11  
14  
14  
14  
20  
20  
40  
40  
40  
9
6
6
6
6
6
6
6
6
6
6
6
9
4
4
4
2.16  
2.16  
2.16  
3.24  
3.24  
3.24  
4.32  
4.32  
7.54  
7.54  
7.54  
2.16  
1.08  
1.08  
1.08  
MR-J2M-10DU  
HC-KFS23  
MR-J2M-20DU  
MR-J2M-40DU  
MR-J2M-70DU  
HC-MFS23  
HC-UFS23  
HC-KFS43  
HC-MFS43  
HC-KFS73  
HC-MFS73  
HC-UFS73  
MR-J2M-P8B  
MR-J2M-BU4  
MR-J2M-BU6  
MR-J2M-BU8  
4
0
4
0
4
Note 1. Note that the power supply capacity will vary according to the power supply impedance.  
This value applies to the case where the power factor improving reactor is not used.  
2. Heat generated during regeneration is not included in generated heat. To calculate heat generated by the regenerative brake  
option, use Equation 12.1 in Section 12.1.1.  
11 - 2  
11. CHARACTERISTICS  
(2) Heat dissipation area for enclosed drive unit  
The enclosed control box (hereafter called the control box) which will contain the drive unit should be  
designed to ensure that its temperature rise is within 10 at the ambient temperature of 40 .  
(With a 5 (41 ) safety margin, the system should operate within a maximum 55 (131 ) limit.)  
The necessary enclosure heat dissipation area can be calculated by Equation 11.1:  
P
............................................................................................................................................. (11.1)  
A
K
T
where, A  
P
: Heat dissipation area [m2]  
: Loss generated in the control box [W]  
T : Difference between internal and ambient temperatures [  
: Heat dissipation coefficient [5 to 6]  
]
K
When calculating the heat dissipation area with Equation 11.1, assume that P is the sum of all losses  
generated in the enclosure. Refer to Table 11.1 for heat generated by the drive unit. "A" indicates the  
effective area for heat dissipation, but if the enclosure is directly installed on an insulated wall, that  
extra amount must be added to the enclosure's surface area.  
The required heat dissipation area will vary wit the conditions in the enclosure. If convection in the  
enclosure is poor and heat builds up, effective heat dissipation will not be possible. Therefore,  
arrangement of the equipment in the enclosure and the use of a fan should be considered.  
Table 11.1 lists the enclosure dissipation area for each drive unit when the drive unit is operated at  
the ambient temperature of 40 (104 ) under rated load.  
(Outside)  
(Inside)  
Air flow  
Fig. 11.2 Temperature distribution in enclosure  
When air flows along the outer wall of the enclosure, effective heat exchange will be possible, because  
the temperature slope inside and outside the enclosure will be steeper.  
11 - 3  
11. CHARACTERISTICS  
11.3 Dynamic brake characteristics  
Fig. 11.3 shows the pattern in which the servo motor comes to a stop when the dynamic brake is operated.  
Use Equation 11.2 to calculate an approximate coasting distance to a stop. The dynamic brake time  
constant varies with the servo motor and machine operation speeds. (Refer to Fig. 11.4)  
ON  
Forced stop(EM1)  
OFF  
Time constant  
V0  
Machine speed  
Time  
te  
Fig. 11.3 Dynamic brake operation diagram  
JL  
JM  
V0  
60  
Lmax  
te  
....................................................................................................................... (11.2)  
1
Lmax  
Vo  
: Maximum coasting distance .................................................................................................[mm][in]  
: Machine rapid feedrate......................................................................................... [mm/min][in/min]  
: Servo motor inertial moment.................................................................................[kg cm2][oz in2]  
: Load inertia moment converted into equivalent value on servo motor shaft.....[kg cm2][oz in2]  
: Brake time constant........................................................................................................................[s]  
M
J
L
J
te  
: Delay time of control section ..........................................................................................................[s]  
(There is internal relay delay time of about 30ms.)  
11 - 4  
11. CHARACTERISTICS  
0.02  
0.018  
0.016  
0.014  
0.012  
0.01  
16  
14  
12  
23  
10  
8
6
73  
23  
053  
0.008  
0.006  
0.004  
0.002  
0
43  
73  
4
2
0
053  
43  
13  
13  
0
500 1000 1500 2000 2500 3000  
Speed [r/min]  
0
500 1000 1500 2000 2500 3000  
Speed [r/min]  
a. HC-KFS series  
b. HC-MFS series  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
73  
43  
23  
13  
0
50  
500  
1000 1500 2000 2500 3000  
Speed [r/min]  
c. HC-UFS3000r/min series  
Fig. 11.4 Dynamic brake time constant  
Use the dynamic brake at the load inertia moment indicated in the following table. If the load inertia  
moment is higher than this value, the built-in dynamic brake may burn. If there is a possibility that the  
load inertia moment may exceed the value, contact Mitsubishi.  
Drive unit  
Load inertia moment ratio [times]  
MR-J2M-10DU  
MR-J2M-20DU  
MR-J2M-40DU  
MR-J2M-70DU  
30  
11 - 5  
11. CHARACTERISTICS  
11.4 Encoder cable flexing life  
The flexing life of the cables is shown below. This graph calculated values. Since they are not guaranteed  
values, provide a little allowance for these values.  
1
5
108  
107  
a
1
5
107  
106  
a : Long flexing-life encoder cable  
MR-JCCBL M-H  
1
5
106  
105  
b : Standard encoder cable  
MR-JCCBL M-L  
1
5
105  
104  
1
5
104  
103  
b
1
103  
4
7
10  
20  
40  
70 100  
200  
Flexing radius [mm]  
11 - 6  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12. OPTIONS AND AUXILIARY EQUIPMENT  
Before connecting any option or auxiliary equipment, make sure that the charge  
lamp is off more than 15 minutes after power-off, then confirm the voltage with a  
tester or the like. Otherwise, you may get an electric shock.  
WARNING  
CAUTION  
Use the specified auxiliary equipment and options. Unspecified ones may lead to a  
fault or fire.  
12.1 Options  
12.1.1 Regenerative brake options  
The specified combinations of regenerative brake options and base units may only  
be used. Otherwise, a fire may occur.  
CAUTION  
(1) Combinations and regenerative powers  
The power values in the table are resistor-generated regenerative powers and not rated powers.  
Regenerative power [W]  
Base unit  
MR-RB032  
[40  
MR-RB14  
[26  
MR-RB34  
[26  
MR-RB54  
[26  
]
]
]
]
MR-J2M-BU4  
MR-J2M-BU6  
MR-J2M-BU8  
30  
100  
300  
500  
(2) Selection of regenerative brake option  
(a) Simple judgment of regenerative brake option necessity  
The MELSERVO-J2M series does not contain a regenerative brake resistor. Check whether the  
regenerative brake option is needed or not in the following method.  
1) Requirements  
The drive units mounted to the same base unit are all horizontal axes.  
The operation pattern is clear and the load inertia moments of the axes to be decelerated  
simultaneously are clear.  
2) Checking method  
The following table gives the permissible load inertia moment that does not require the  
regenerative brake option when speed is reduced from 3000r/min.  
Drive unit  
Permissible Load Inertia Moment  
MR-J2M-10DU  
MR-J2M-20DU  
MR-J2M-40DU  
MR-J2M-70DU  
2
1.42kg cm  
2
4.94kg cm  
Calculate the 3000r/min-equivalent inertia moment of each drive unit.  
(Load inertia moment equivalent for 3000r/min) (JL JM) (running speed/3000)2  
12 - 1  
12. OPTIONS AND AUXILIARY EQUIPMENT  
Calculate the total of the 3000r/min-equivalent inertia moments of the axes to be decelerated  
simultaneously, and find the maximum total of 3000r/min-equivalent inertia moments.  
Also find the sum total of permissible load inertia moments of the drive units installed on the  
same base unit.  
(Maximum total of 3000r/min-equivalent inertia moments) (Sum total of permissible load  
inertia moments of drive units) 1.42  
Regenerative brake option is unnecessary.  
(Maximum total of 3000r/min-equivalent inertia moments) (Sum total of permissible load  
inertia moments of drive units) 1.42  
Regenerative brake option is necessary.  
3) Confirmation example  
In the following 8-axis system, the total 3000r/min-equivalent inertia moment is maximum  
(9.75kg cm) at the timing of 7). The permissible inertia moment of this 8-axis system is  
11.36[kg cm2] as indicated by the following expression.  
8 [axes] 1.42[kg cm2] 11.36[kg cm2]  
Hence,  
(Maximum total of 3000r/min-equivalent load inertia moments 9.75) 11.36[kg cm2]  
The regenerative brake option is unnecessary.  
Speed  
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13)  
First axis  
Second axis  
Third axis  
Fourth axis  
Fifth axis  
Operation pattern  
Sixth axis  
Seventh axis  
Eighth axis  
Servo  
Load Inertia  
Total  
Running 3000r/min-  
Servo  
Motor  
Model  
Motor  
Moment  
inertia  
moment  
speed  
equivalent  
Total Inertia  
Moment  
kg/cm2  
Axis  
No.  
Inertia  
Moment  
kg/cm2  
(Servo motor  
shaft equivalent)  
kg/cm2  
kg/cm2  
r/min  
HC-KFS13  
HC-KFS23  
HC-KFS43  
HC-KFS13  
HC-MFS13  
HC-MFS23  
HC-KFS13  
HC-KFS43  
0.084  
0.42  
1.3  
2.1  
2.0  
0.8  
0.9  
2.5  
0.4  
5.83  
1.384  
2.52  
3000  
3000  
3000  
2500  
2500  
3000  
3300  
3000  
1.38  
2.52  
2.67  
0.61  
0.65  
2.59  
0.59  
6.5  
1.38  
2.52  
2.67  
1.38  
2.52  
2.67  
1.38  
2.52  
2.67  
First axis  
Second axis  
Third axis  
Fourth axis  
Fifth axis  
0.67  
2.67  
0.084  
0.03  
0.884  
0.93  
0.61  
0.65  
0.61  
0.65  
0.088  
0.084  
0.67  
2.588  
0.484  
6.5  
2.59  
0.59  
Sixth axis  
Seventh axis  
Eighth axis  
6.5  
6.5 6.57  
kg/cm2  
3000r/min-equivalent total inertia moment  
6.57 1.26  
9.75  
1.26  
Simultaneous deceleration total inertia moment maximum value  
12 - 2  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) To make selection according to regenerative energy  
Use the following method when regeneration occurs continuously in vertical motion applications or  
when it is desired to make an in-depth selection of the regenerative brake option:  
1) Regenerative energy calculation  
Use the following table to calculate the regenerative energy.  
Formulas for calculating torque and energy in operation  
Regenerative power  
Torque applied to servo motor [N m]  
Energy [J]  
(JL JM)  
1
0.1047  
2
No  
No  
No  
No  
E1  
T1  
TU TF  
TU TF  
TU TF  
TU TF  
No T1 Tpsa1  
1)  
2)  
104  
Tpsa1  
9.55  
T2 TU TF  
E2 0.1047 No T2 t1  
0.1047  
(JL JM)  
1
E3  
T3  
No T3 Tpsd1  
3)  
104  
2
Tpsd1  
9.55  
4), 8)  
5)  
T4 TU  
E4 0 (No regeneration)  
0.1047  
(JL JM)  
1
E5  
T5  
No T5 Tpsa2  
104  
2
Tpsa2  
9.55  
T6 TU TF  
(JL JM)  
6)  
E6 0.1047 No T6 t3  
0.1047  
1
E7  
T7  
No T7 Tpsd2  
7)  
104  
2
Tpsd2  
9.55  
From the calculation results in 1) to 8), find the absolute value (Es) of the sum total of negative  
energies.  
2) Losses of servo motor and drive unit in regenerative mode  
The following table lists the efficiencies and other data of the servo motor and drive unit in the  
regenerative mode.  
Drive unit  
MR-J2M-10DU  
MR-J2M-20DU  
MR-J2M-40DU  
MR-J2M-70DU  
Inverse efficiency [%]  
C charging [J]  
55  
70  
85  
80  
5.5  
18  
Using the following expression, find the total of C charging [J] of the MELSERVO-J2M.  
Number of drive unit axes 5.5J  
Then, find the energy at each timing in a single-cycle operation pattern. The energy is positive in  
the driving mode and negative in the regenerative mode. Enter signed driving/regenerative  
energy values into the following calculation table. The shaded areas indicate negative values.  
12 - 3  
12. OPTIONS AND AUXILIARY EQUIPMENT  
<Entry example>  
Timing  
First axis  
Second axis  
Third axis  
Fourth axis  
Fifth axis  
Sixth axis  
Seventh axis  
Eighth axis  
Total  
1)  
E1  
E1  
E1  
E4  
E4  
E1  
E1  
E1  
E 1)  
2)  
E2  
E2  
E2  
E4  
E4  
E2  
E2  
E2  
E 2)  
3)  
E3  
4)  
E4  
5)  
E1  
E1  
E5  
E3  
E4  
E4  
E4  
E4  
E 5)  
6)  
E2  
E2  
E6  
E4  
E1  
E4  
E4  
E4  
E 6)  
7)  
E3  
E3  
E7  
E4  
E2  
E1  
E1  
E1  
E 7)  
8)  
E4  
E4  
E8  
E4  
E3  
E2  
E2  
E2  
E 8)  
E3  
E4  
E3  
E4  
E1  
E2  
E4  
E4  
E2  
E3  
E2  
E3  
E2  
E3  
E 3)  
ES 3)  
ER  
E 4)  
ES 4)  
ER  
Regenerative ES  
|ES|-EC  
PR(W)  
ER/t  
f
Calculate the total of energies at each timing. Only when the total is negative (timings 3), 4) in  
the example), use the following expression for calculation.  
Energy total ER regenerative energy ES (absolute value) C charging total (EC)  
If the subtraction results are negative at all timings, the regenerative brake option is not  
needed. From the total of ER's whose subtraction results are positive and a single-cycle period,  
the power consumption of the regenerative brake option can be calculated with the following  
expression.  
Power consumption PR [W] (total of positive ER's)/1-cycle operation period (tf)  
12 - 4  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Connection of the regenerative brake option  
POINT  
When using the MR-RB54, cooling by a fan is required. Please obtain a  
cooling fan at your discretion.  
Set DRU parameter No.2 according to the option to be used. The regenerative brake option will cause  
a temperature rise of 100 degrees relative to the ambient temperature. Fully examine heat  
dissipation, installation position, used cables, etc. before installing the option. For wiring, use flame-  
resistant cables and keep them clear of the regenerative brake option body. Always use twisted cables  
of max. 5m(16.4ft) length for connection with the base unit.  
The G3 and G4 terminals act as a thermal sensor. G3-G4 are disconnected when the regenerative  
brake option overheats abnormally.  
DRU parameter No.2  
Selection of regenerative  
00: Not used.  
06: MR-RB34  
07: MR-RB54  
10: MR-RB032  
12: MR-RB14  
Base unit  
Regenerative brake option  
CNP1A  
P
2
3
P
C
C
G3  
G4  
(Note)  
5m (16.4 ft) max.  
Note. Make up a sequence which will switch off the magnetic contactor  
(MC) when abnormal heating occurs.  
G3-G4 contact specifications  
Maximum voltage: 120V AC/DC  
Maximum current: 0.5A/4.8VDC  
Maximum capacity: 2.4VA  
12 - 5  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Outline drawing  
(a) MR-RB032 MR-RB14  
[Unit: mm (in)]  
LA  
6 (0.24) mounting hole  
LB  
MR-RB  
TE1  
Terminal block  
5 (0.20)  
G3  
G4  
P
G3  
G4  
TE1  
P
C
C
Terminal screw: M3  
Tightening torque:  
0.5 to 0.6 [N m](4 to 5 [lb in])  
Mounting screw  
1.6 (0.06)  
6 (0.23)  
Screw size: M5  
20  
(0.79)  
LD  
LC  
Tightening torque:  
3.2 [N m](28.32 [lb in])  
Variable dimensions  
LB LC  
Mass  
[kg] [lb]  
Regenerative  
brake option  
LA  
LD  
MR-RB032  
MR-RB14  
30 (1.18) 15 (0.59) 119 (4.69) 99 (3.9) 0.5 1.1  
40 (1.57) 15 (0.59) 169 (6.69) 149 (5.87) 1.1 2.4  
12 - 6  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-RB34  
[Unit: mm (in)]  
Terminal block  
P
Terminal screw: M4  
C
G3 Tightening torque: 1.2 [N m] (10.6 [lb in])  
G4  
Mounting screw  
Screw : M6  
Tightening torque: 5.4 [N m](47.79 [lb in])  
7
318 (12.52)  
335 (13.19)  
17  
(0.67)  
90 (3.54)  
100 (3.94)  
10 (0.39)  
Mass  
[kg(lb)]  
Regenerative  
Brake Option  
MR-RB34  
2.9 (6.393)  
(c) MR-RB54  
[Unit: mm (in)]  
Terminal block  
P
Fan mounting screw  
(2-M3 screw)  
On opposite side  
82.5  
(3.25)  
49  
(1.93)  
C
Terminal screw: M4  
G3  
G4  
Tightening torque: 1.2 [N m](10.6 [lb in])  
7
14 slot  
Mounting screw  
Screw : M6  
Tightening torque: 5.4 [N m](47.79 [lb in])  
Wind blows in the  
arrow direction.  
7 (0.28)  
2.3  
(0.09)  
Approx. 30 (1.18)  
17 (0.67)  
200 (7.87)  
223 (8.78)  
108 (4.25)  
120 (4.73)  
12  
(0.47)  
8 (0.32)  
Mass  
[kg(lb)]  
Regenerative  
Brake Option  
MR-RB54  
5.6 (12.346)  
12 - 7  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.1.2 Cables and connectors  
(1) Cable make-up  
The following cables are used for connection with the servo motor and other models.  
The broken line areas in the diagram are not options.  
Servo amplifier  
Servo system controller  
(Note)  
Bus cable  
(Note)  
Bus cable  
CN1A CN1B  
CN2 CN3  
or 10)  
Termination  
connector  
(Note)  
Connector set  
Battery unit  
MR-J2M-BT  
Extension IO unit  
DRU MR-J2M-D01  
BU  
IFU  
DRU  
CN1C  
CNP1A CNP1B  
CN4A  
To regenerative  
brake option  
5)  
CN1A CN1B  
To control circuit  
power supply  
CN2  
CN2  
16)  
CNP3  
CN4B  
To main circuit  
power supply  
CN3  
CON5  
17)  
CNP2  
CNP2  
Personal  
computer  
15)  
13) 14)  
HC-KFS  
HC-MFS  
HC-UFS 3000r/min  
11)  
12)  
(Note)  
1) 2) 3)  
4)  
Note. The bus cable used with the SSCNET depends on the preceding or subsequent controller or servo amplifier connected.  
Refer to the following table and choose the bus cable.  
MR-J2M-P8B  
MR-J2S-  
B
MR-J2-03B5  
QD75M  
7) Bus cable :MR-J2HBUS  
18) Bus cable :Q172J2BCBL M(-B)  
M
9) Connector set:MR-J2CN1  
Q172CPU(N)  
Q173CPU(N)  
A motion  
Motion  
19) Bus cable :Q173J2B  
CBL  
M
controller  
6) Bus cable :MR-J2HBUS M-A  
8) Connector set:MR-J2CN1-A  
9) Connector set:MR-J2CN1  
MR-J2M-P8B  
MR-J2S-  
MR-J2-03B5  
Maintenance junction card  
B
7) Bus cable :MR-J2HBUS  
M
12 - 8  
12. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
Product  
Model  
Description  
Housing: 1-172161-9  
Pin: 170359-1  
Application  
1) Standard encoder MR-JCCBL M-L  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Standard  
flexing life  
cable  
Refer to (2) (a) in  
this section.  
(Tyco Electronics or equivalent) IP20  
Cable clamp: MTI-0002  
(Toa Electric Industry)  
2) Long flexing life MR-JCCBL M-H  
Long flexing  
life  
IP20  
encoder cable  
Refer to (2) (a) in  
this section.  
3)  
MR-JC4CBL M-H  
Refer to (2) (b) in  
this section.  
4 line type  
Long flexing  
life  
IP20  
4) Encoder  
connector set  
MR-J2CNM  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Housing: 1-172161-9  
Pin: 170359-1  
IP20  
(Tyco Electronics or equivalent)  
Cable clamp: MTI-0002  
(Toa Electric Industry)  
5) Connector set  
6) Bus cable  
MR-J2MCN1  
Connector: 10150-3000VE  
Shell kit: 10350-52F0-008  
(3M or equivalent)  
Qty: 2 each  
MR-J2HBUS M-A Connector: PCR-S20FS  
Refer to (4) in this Case: PCR-LS20LA1  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
section.  
(Honda Tsushin)  
7) Bus cable  
MR-J2HBUS M  
Connector: 10120-6000EL  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
Refer to (4) in this Shell kit: 10320-3210-000  
section.  
(3M or equivalent)  
8) Connector set  
MR-J2CN1-A  
Connector: PCR-S20FS  
Connector: 10120-3000EL  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Refer to (4) in this Case: PCR-LS20LA1  
section  
(Honda Tsushin)  
9) Control signal  
connector set  
MR-J2CN1  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Qty: 2 each  
10) Termination  
connector  
MR-A-TM  
11) Maintenance  
junction card  
MR-J2CN3TM  
Refer to Section 12.1.3.  
12) Communication MR-CPCATCBL3M Connector: DE-9SF-N  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
For  
cable  
Refer to (3) in this Case: DE-C1-J6-S6  
connection  
with PC-AT-  
compatible  
personal  
computer  
IP20  
section.  
(Japan Aviation Electronics)  
13) Power supply  
connector set  
MR-PWCNK1  
MR-PWCNK2  
Plug: 5559-04P-210  
Terminal: 5558PBT3L (For AWG16)(6 pcs.)  
(Molex)  
14) Power supply  
connector set  
Plug: 5559-06P-210  
For motor  
with brake  
IP20  
Terminal: 5558PBT3L (For AWG16)(8 pcs.)  
(Molex)  
12 - 9  
12. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
Product  
Model  
Description  
Application  
15) Power supply  
connector  
MR-PWCNK3  
Plug: 5557-04R-210  
Servo motor  
power cable  
Terminal: 5556PBT3L (for AWG16) (6 pcs.)  
(Molex)  
16) Base unit  
connector set  
MR-J2MCNM  
Housing: 2-178128-3 (5 pcs.)  
Contact: 917511-2 (max. sheath OD 2.8 [mm]  
15 pcs.)  
For CNP1B  
For CNP1A  
For CNP3  
Y
X
(Tyco Electronics)  
Housing: 1-178128-3 (5 pcs.)  
Contact: 917511-2 (max. sheath OD 2.8 [mm]  
15 pcs.)  
(Tyco Electronics)  
Housing: 1-179958-3 (5 pcs.)  
Contact: 316041-2 (20 pcs.)  
(Tyco Electronics)  
17) Battery cable  
MR-J2MBTCBL M Housing: 51030-0230  
Terminal: 50083-8160  
(Molex)  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
18) Bus cable  
Q172J2BCBL  
(-B)  
M
Connector: HDR-E14MG1  
Shell kit: HDR-E14LPA5  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
Refer to (4) in this (Honda Tsushin)  
section  
(Note)  
Socket: HCN2-2.5S-2  
Terminal: HCN2-2.5S-D-B  
(Hirose Electric)  
Note. When using the battery unit Q170BAT, use the  
Q172J2BCBL M-B.  
Q173J2B CBL M Connector: HDR-E26MG1  
Refer to (4) in this Shell kit: HDR-E26LPA5  
19) Bus cable  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
section  
(Honda Tsushin)  
12 - 10  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Encoder cable  
If you have fabricated the encoder cable, connect it correctly.  
CAUTION  
Otherwise, misoperation or explosion may occur.  
POINT  
The encoder cable is not oil resistant.  
Refer to Section 11.4 for the flexing life of the encoder cable.  
When the encoder cable is used, the sum of the resistance values of the  
cable used for P5 and the cable used for LG should be within 2.4 .  
When soldering the wire to the connector pin, insulate and protect the  
connection portion using heat-shrinkable tubing.  
Generally use the encoder cable available as our options. If the required length is not found in the  
options, fabricate the cable on the customer side.  
(a) MR-JCCBL M-L/H  
1) Model explanation  
Model: MR-JCCBL M-  
Symbol  
Specifications  
Standard flexing life  
Long flexing life  
L
H
Symbol  
Cable length [m(ft)]  
2
5
2 (6.56)  
5 (16.4)  
10  
20  
10 (32.8)  
20 (65.6)  
2) Connection diagram  
The signal assignment of the encoder connector is as viewed from the pin side. For the pin  
assignment on the drive unit side, refer to Section 3.5.3  
Encoder cable  
supplied to servo motor  
Drive unit  
Encoder connector  
1-172169-9  
(Tyco Electronics)  
Encoder connector  
Servo motor  
Encoder cable  
(option or fabricated)  
1
2
3
MR MRR BAT  
CN2  
Encoder  
4
5
6
MD MDR  
30m(98.4ft) max.  
30cm  
(0.98ft)  
7
8
9
P5  
LG SHD  
12 - 11  
12. OPTIONS AND AUXILIARY EQUIPMENT  
MR-JCCBL10M-L  
MR-JCCBL20M-L  
MR-JCCBL10M-H  
MR-JCCBL20M-H  
MR-JCCBL2M-L  
MR-JCCBL5M-L  
MR-JCCBL2M-H  
MR-JCCBL5M-H  
Drive unit side  
Encoder side  
7
Drive unit side  
Encoder side  
7
Drive unit side  
Encoder side  
7
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
18  
2
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
18  
2
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
18  
2
8
1
2
4
5
3
8
1
2
4
5
3
8
1
2
4
5
3
MR  
7
MR  
7
MR  
7
MRR 17  
MD  
MDR 16  
MRR 17  
MD  
MDR 16  
MRR 17  
MD  
MDR 16  
6
6
6
BAT  
LG  
9
1
BAT  
LG  
9
1
BAT  
LG  
9
1
(Note)  
(Note)  
(Note)  
Plate  
Plate  
Plate  
SD  
9
SD  
9
SD  
9
Note. Always make connection for use in an absolute position detection system.  
This wiring is not needed for use in an incremental system.  
When fabricating an encoder cable, use the recommended wires given in Section 12.2.1 and the  
MR-J2CNM connector set for encoder cable fabrication, and fabricate an encoder cable as shown  
in the following wiring diagram. Referring to this wiring diagram, you can fabricate an encoder  
cable of up to less than 30m (98.4ft) length including the length of the encoder cable supplied to  
the servo motor.  
When the encoder cable is to be fabricated by the customer, the wiring of MD and MDR is not  
required.  
Refer to Chapter 3 of the servo motor instruction manual and choose the encode side connector  
according to the servo motor installation environment.  
For use of AWG22  
Drive unit side  
(3M)  
Encoder side  
19  
11  
20  
12  
18  
2
7
P5  
LG  
P5  
LG  
P5  
LG  
8
1
2
7
MR  
17  
MRR  
9
1
3
BAT  
LG  
(Note)  
9
Plate  
SD  
Note. Always make connection for use in an absolute position detection system.  
This wiring is not needed for use in an incremental system.  
12 - 12  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-JC4CBL M-H  
POINT  
When using this encoder cable, set "  
1
" in DRU parameter No. 23.  
1) Model explanation  
Model: MR-JC4CBL M-H  
Long flexing life  
Symbol Cable Length [m(ft)]  
30  
40  
50  
30 (98.4)  
40 (131.2)  
50 (164.0)  
2) Connection diagram  
The signal assignment of the encoder connector is as viewed from the pin side. For the pin  
assignment on the drive unit side, refer to Section 3.5.3  
Encoder cable  
supplied to servo motor  
Drive unit  
Encoder connector  
1-172169-9  
(Tyco Electronics)  
Encoder connector  
Servo motor  
Encoder cable  
(option or fabricated)  
1
2
3
MR MRR BAT  
CN2  
Encoder  
4
5
6
MD MDR CNT  
50m(164.0ft) max.  
30cm  
(0.98ft)  
7
8
9
P5  
LG SHD  
MR-JC4CBL30M-H to MR-JC4CBL50M-H  
Drive unit side  
Encoder side  
P5  
19  
11  
20  
12  
18  
2
7
LG  
P5  
LG  
P5  
LG  
6
8
1
2
4
5
3
MR  
7
17  
6
MRR  
MD  
MDR  
BAT  
LG  
16  
9
1
(Note)  
Plate  
SD  
9
Note. Always make connection for use in an absolute position detection system.  
This wiring is not needed for use in an incremental system.  
12 - 13  
12. OPTIONS AND AUXILIARY EQUIPMENT  
When fabricating an encoder cable, use the recommended wires given in Section 12.2.1 and the  
MR-J2CNM connector set for encoder cable fabrication, and fabricate an encoder cable as shown  
in the following wiring diagram. Referring to this wiring diagram, you can fabricate an encoder  
cable of up to 50m (164.0ft) length.  
When the encoder cable is to be fabricated by the customer, the wiring of MD and MDR is not  
required.  
Refer to Chapter 3 of the servo motor instruction manual and choose the encode side connector  
according to the servo motor installation environment.  
Drive unit side  
(3M)  
Encoder side  
7
P5  
19  
11  
20  
12  
18  
2
LG  
P5  
LG  
P5  
LG  
6
8
1
2
4
5
3
MR  
7
MRR 17  
MD  
MDR 16  
6
BAT  
LG  
9
1
(Note)  
9
SD  
Plate  
Note. Always make connection for use in an absolute position detection system.  
This wiring is not needed for use in an incremental system.  
12 - 14  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Communication cable  
POINT  
This cable may not be used with some personal computers. After fully  
examining the signals of the RS-232C connector, refer to this section and  
fabricate the cable.  
(a) Model definition  
Model : MR-CPCATCBL3M  
Cable length 3[m](10[ft])  
(b) Connection diagram  
MR-CPCATCBL3M  
Personal computer side  
Interface unit side  
Plate FG  
TXD  
3
2
1
RXD  
LG  
RXD  
GND  
RTS  
CTS  
DSR  
DTR  
2
5
7
8
6
4
12  
11  
TXD  
LG  
D-SUB9 pins  
Half-pitch 20 pins  
When fabricating the cable, refer to the connection diagram in this section.  
The following must be observed in fabrication:  
1) Always use a shielded, multi-core cable and connect the shield with FG securely.  
2) The optional communication cable is 3m(10ft) long. When the cable is fabricated, its maximum  
length is 15m(49ft) in offices of good environment with minimal noise.  
12 - 15  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Bus cable  
When fabricating the bus cable, do not make incorrect connection. Doing so can  
cause misoperation or explosion.  
CAUTION  
When fabricating this cable, use the recommended cable given in Section 12.2.1 and fabricate it in  
accordance with the connection diagram shown in this section. The overall distance of the bus cable on  
the same bus is 30m(98.4ft).  
(a) MR-J2HBUS M-A  
1) Model definition  
Model:MR-J2HBUS M-A  
Symbol Cable Length [m(ft)]  
05  
1
5
0.5 (1.64)  
1 (3.28)  
5 (16.4)  
2) Connection diagram  
MR-J2HBUS M-A  
PCR-S20FS(Connector)  
PCR-LS20LA1(Case)  
10120-6000EL(Connector)  
10320-3210-000(Shell kit)  
LG  
LG  
1
11  
2
1
11  
2
RD  
RD*  
TD  
12  
4
12  
4
TD*  
LG  
14  
5
14  
5
LG  
15  
6
15  
7
EMG  
EMG*  
16  
17  
SD  
20  
Plate  
12 - 16  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-J2HBUS M  
1) Model definition  
Model:MR-J2HBUS  
M
Symbol Cable Length [m(ft)]  
05  
1
5
0.5 (1.64)  
1 (3.28)  
5 (16.4)  
2) Connection diagram  
MR-J2HBUS  
M
10120-6000EL(Connector)  
10320-3210-000(Shell kit)  
10120-6000EL(Connector)  
10320-3210-000(Shell kit)  
LG  
1
11  
2
1
11  
2
LG  
RD  
RD*  
12  
3
12  
3
13  
4
13  
4
TD  
TD* 14  
14  
5
LG  
LG  
5
15  
6
15  
6
16  
7
16  
7
EMG  
EMG*  
17  
8
17  
8
18  
9
18  
9
BAT  
SD  
19  
10  
20  
19  
10  
20  
Plate  
Plate  
12 - 17  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(c) Q172J2BCBL M(-B)  
When using the battery unit Q170BAT, use the Q172J2BCBL M-B. For the Q170BAT, refer to  
the Motion Controller Q Series User's Manual (IB(NA)0300021).  
1) Model definition  
Model:Q172J2BCBL M-  
Symbol Connection of Battery Unit  
No  
-B  
No  
Yes  
Symbol  
Cable Length [m(ft)]  
05  
1
5
0.5 (1.64)  
1 (3.28)  
5 (16.4)  
2) Connection diagram  
Q172J2BCBL  
M
Q172J2BCBL M-B  
HDR-E14MG1(Connector) 10120-6000EL(Connector)  
HDR-E14-LPA5(Connectorcase) 10320-3210-000(Shell kit)  
HDR-E14MG1(Connector)  
10120-6000EL(Connector)  
HDR-E14-LPA5(Connector case) 10320-3210-000(Shell kit)  
TD1  
TD1*  
LG  
1
8
2
12  
1
RD  
TD1  
TD1*  
LG  
1
8
2
12  
1
RD  
RD*  
LG  
RD*  
LG  
2
2
LG  
9
11  
4
LG  
LG  
9
11  
4
LG  
RD  
3
TD  
RD  
3
TD  
RD*  
LG  
10  
6
14  
5
TD*  
LG  
RD*  
LG  
10  
6
14  
5
TD*  
LG  
BT  
13  
4
9
BT  
BT  
13  
4
9
BT  
EMG  
EMG*  
SD  
7
EMG  
EMG*  
SD  
EMG  
EMG*  
SD  
7
EMG  
EMG*  
SD  
11  
Shell  
17  
Plate  
11  
Shell  
17  
Plate  
BAT  
LG  
1
2
HCN2-2.5S-2(Socket)  
HNC2-2.5S-D-B(Terminal)  
(d) Q173J2B CBL M  
1) Model definition  
Model:Q173J2B CBL  
M
Symbol  
Cable Length [m(ft)]  
05  
1
5
0.5 (1.64)  
1 (3.28)  
5 (16.4)  
Symbol  
SSCNET Line Number  
SSCNET1 Line  
SSCNET2 Line  
SSCNET3 Line  
SSCNET4 Line  
No  
2
3
4
12 - 18  
12. OPTIONS AND AUXILIARY EQUIPMENT  
2) Connection diagram  
Q173J2B CBL  
M
When =4  
HDR-E26MG1(Connector)  
HDR-E26-LPA5(Connector case)  
10120-6000EL(Connector)  
10320-3210-000(Connector case)  
SSCNET1 Line  
TD1  
1
14  
3
2
12  
1
RD  
TD1*  
LG  
RD*  
LG  
LG  
16  
2
11  
4
LG  
RD1  
RD1*  
LG  
TD  
15  
13  
26  
6
14  
5
TD*  
LG  
= No  
BT  
9
BT  
EMG12  
EMG12*  
7
EMG  
EMG*  
SD  
19  
17  
Plate  
= 2  
SSCNET2 Line  
SSCNET3 Line  
SSCNET4 Line  
TD2  
4
2
12  
1
RD  
TD2*  
17  
RD*  
LG  
11  
4
LG  
RD2  
5
TD  
RD2*  
18  
14  
5
TD*  
LG  
= 3  
9
BT  
7
EMG  
EMG*  
SD  
17  
Plate  
= 4  
TD3  
TD3*  
LG  
7
20  
9
2
12  
1
RD  
RD*  
LG  
LG  
22  
8
11  
4
LG  
RD3  
RD3*  
TD  
21  
14  
5
TD*  
LG  
9
BT  
EMG34  
12  
25  
7
EMG  
EMG*  
SD  
EMG34*  
17  
Plate  
TD4  
10  
23  
2
12  
1
RD  
TD4*  
RD*  
LG  
11  
4
LG  
RD4  
11  
24  
TD  
RD4*  
14  
5
TD*  
LG  
9
BT  
7
EMG  
EMG*  
SD  
17  
Plate  
SD  
Shell  
12 - 19  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(5) Battery cable  
When fabricating, use the recommended wire given in Section 12.2.1 and fabricate as in the  
connection diagram shown in this section.  
(a) Definition of model  
Model: MR-J2MBTCBL M  
Symbol Cable Length L [m(ft)]  
03  
1
0.3 (0.1)  
1 (3.28)  
(b) Outline drawing  
L
(c) Connection diagram  
Base unit side  
Battery unit side  
Housing: 51030-0230  
Terminal: 50083-8160  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
LG  
1
2
1
9
LG  
BAT  
BAT  
SD  
Plate  
12 - 20  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.1.3 Maintenance junction card (MR-J2CN3TM)  
(1) Usage  
The maintenance junction card (MR-J2CN3TM) is designed for use when a personal computer and  
analog monitor are used at the same time.  
Interface unit  
Maintenance junction card (MR-J2CN3TM) Communication cable  
CN3B  
Bus cable  
MR-J2HBUS  
M
CN3  
CN3A  
CN3C  
3
20  
8
SG  
EM1  
VIN  
DC24V  
13 MBR  
MO1  
RA  
A
A
A
4
10k  
10k  
10k  
Monitor output  
Max. 1mA  
Reading in both  
directions  
14 MO2  
MO3  
7
11 LG  
Plate SD  
A1 A2 A3 A4 B4 B3 B2 B1 B5 B6 A5 A6  
LG LG MO1 MO2  
Analog monitor output 1  
Analog monitor output 2  
(2) Connection diagram  
TE1  
B5  
B6  
A5  
A6  
LG  
LG  
CN3A  
1
2
3
4
5
6
7
CN3B  
CN3C  
1
LG  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
MO1  
MO2  
RXD  
SG  
MO1  
3
4
5
MO3  
VIN  
8
9
8
9
8
9
10  
A1  
A2  
A3  
A4  
B4  
B3  
B2  
B1  
10  
11  
TXD 12  
MBR 13  
MO2 14  
15  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
LG  
13  
14  
15  
16  
17  
18  
19  
Not used.  
19  
20  
EM1 20  
Shell  
Shell  
Shell  
12 - 21  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outline drawing  
[Unit: mm]  
([Unit: in])  
CN3A  
CN3B  
CN3C  
2- 5.3(0.21)(mounting hole)  
A1  
B1  
A6  
B6  
TE1  
3(0.12)  
88(3.47)  
41.5(1.63)  
100(3.94)  
Mass: 110g(0.24Ib)  
12 - 22  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.1.4 MR Configurator (servo configurations software)  
POINT  
Required to assign devices to the pins of CN4A and CN4B of the MR-  
J2M-D01 extension IO unit.  
The MR Configurator (servo configuration software) uses the communication function of the interface unit  
to perform parameter setting changes, graph display, test operation, etc. on a personal computer.  
(1) Specifications  
Item  
Description  
Communication signal  
Baudrate [bps]  
Conforms to RS-232C.  
57600, 38400, 19200, 9600  
Batch display, high-speed display, multiple axis display, graph display  
Minimum resolution changes with the processing speed of the personal computer.  
Alarm display, alarm history, alarm occurrence time  
Monitor  
Alarm  
I/O display, function device display no-rotation reason display, cumulative power-on time display,  
software number display, motor information display, tuning data display, ABS data display, shaft  
name setting, unit composition list display.  
Diagnostic  
Parameter setting, list display, change list display, detailed display, turning, Device setting,  
parameter (IFU), parameter (DRU).  
Parameters  
Test operation  
Advanced function  
File operation  
Others  
Jog operation, positioning operation, motor-less operation, DO forced output, program operation.  
Machine analyzer, gain search, machine simulation.  
Data read, save, print  
Automatic operation, help display  
(2) System configuration  
(a) Components  
To use this software, the following components are required in addition to MELSERVO-J2M and  
servo motor:  
Model  
(Note 1) Description  
IBM PC-AT compatible where the English version of Windows® 95, Windows® 98, Windows® Me,  
Windows NT® Workstation 4.0 or Windows® 2000 Professional operates  
Processor: Pentium® 133MHz or more (Windows® 95, Windows® 98, Windows NT® Workstation 4.0,  
Windows® 2000 Professional)  
(Note 2)  
Personal  
computer  
Pentium® 150MHz or more (Windows® Me)  
Memory: 16MB or more (Windows® 95), 24MB or more (Windows® 98)  
32MB or more (Windows® Me, Windows NT® Workstation 4.0, Windows® 2000 Professional)  
Free hard disk space: 60MB or more  
Serial port used  
Windows® 95, Windows® 98, Windows® Me, Windows NT® Workstation 4.0, Windows® 2000 Professional  
OS  
(English version)  
One whose resolution is 800 600 or more and that can provide a high color (16 bit) display.  
Connectable with the above personal computer.  
Display  
Keyboard  
Mouse  
Connectable with the above personal computer.  
Connectable with the above personal computer. Note that a serial mouse is not used.  
Connectable with the above personal computer.  
Printer  
Communication MR-CPCATCBL3M  
cable  
When this cannot be used, refer to (3) Section 12.1.2 and fabricate.  
Note 1. Windows and Windows NT are the registered trademarks of Microsoft Corporation in the United State and other countries.  
Pentium is the registered trademarks of Intel Corporation.  
2. On some personal computers, this software may not run properly.  
12 - 23  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Configuration diagram  
Personal computer  
BU  
DRU (First axis)  
CN2  
IFU  
Communication cable  
CN3  
Servo motor  
Servo motor  
To RS-232C  
connector  
DRU (Eighth axis)  
CN2  
12 - 24  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2 Auxiliary equipment  
Always use the devices indicated in this section or equivalent. To comply with the EN Standard or UL/C-  
UL(CSA) Standard, use the products which conform to the corresponding standard.  
12.2.1 Recommended wires  
(1) Wires for power supply wiring  
The following diagram shows the wires used for wiring. Use the wires given in this section or  
equivalent.  
1) Main circuit power supply lead  
3) Motor power supply lead  
Base unit  
Drive unit  
Servo motor  
Power supply  
L1  
U
V
U
V
L2  
L3  
Motor  
W
W
(Earth)  
L11  
5) Electromagnetic  
brake lead  
L21  
2) Control circuit power supply lead  
Regenerative brake option  
Electro-  
magnetic  
brake  
B1  
B2  
CN2  
C
P
Encoder  
Encoder cable (refer to Section 12.1.2)  
4) Regenerative brake option lead  
The following table lists wire sizes. The wires used assume that they are 600V vinyl wires and the  
wiring distance is 30m(98.4ft) max. If the wiring distance is over 30m(98.4ft), choose the wire size in  
consideration of voltage drop.  
The servo motor side connection method depends on the type and capacity of the servo motor. Refer to  
Section 3.5.3.  
To comply with the UL/C-UL (CSA) Standard, use UL-recognized copper wires rated at 60 (140 ) or  
more for wiring.  
Table 12.1 Recommended wires  
2
Wires [mm ]  
Unit  
1) L1 L2 L3  
2 (AWG14)  
2) L11 L21  
3) U  
V
W
4) P  
C
5) B1 B2  
MR-J2M-BU4  
MR-J2M-BU6  
MR-J2M-BU8  
MR-J2M-10DU  
MR-J2M-20DU  
MR-J2M-40DU  
MR-J2M-70DU  
3.5 (AWG12)  
5.5 (AWG10)  
2 (AWG14)  
2 (AWG14)  
1.25 (AWG16)  
1.25 (AWG16)  
12 - 25  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Wires for cables  
When fabricating a cable, use the wire models given in the following table or equivalent:  
Table 12.2 Wires for option cables  
Characteristics of one core  
(Note 3)  
Finishing  
OD [mm]  
Length  
[m(ft)]  
Core size Number  
Type  
Model  
Wire model  
Structure  
Conductor  
Insulation coating  
[mm2]  
of Cores  
[Wires/mm] resistance[ /mm] ODd[mm] (Note 1)  
2 to 10  
(6.56 to 32.8)  
20 30  
12  
(6 pairs)  
12  
(6 pairs)  
12  
(6 pairs)  
14  
(7 pairs)  
14  
(7 pairs)  
6
UL20276 AWG#28  
6pair (BLACK)  
UL20276 AWG#22  
6pair (BLACK)  
(Note 2)  
A14B2343 6P  
(Note 2)  
A14B0238 7P  
(Note 2)  
0.08  
0.3  
7/0.127  
12/0.18  
40/0.08  
40/0.08  
40/0.08  
7/0.127  
222  
62  
0.38  
1.2  
5.6  
8.2  
7.2  
8.0  
8.0  
4.6  
MR-JCCBL M-L  
(65.6 98.4)  
2 5  
(6.56 16.4)  
10 to 50  
(32.8 to 164)  
30 to 50  
Encoder cable  
0.2  
105  
105  
105  
222  
0.88  
0.88  
0.88  
0.38  
MR-JCCBL M-H  
0.2  
MR-JC4CBL M-H  
MR-CPCATCBL3M  
0.2  
(98.4 to 164)  
A14B0238 7P  
UL20276 AWG#28  
3pair (BLACK)  
Communication  
cable  
3 (9.84)  
0.08  
(3 pairs)  
MR-J2HBUS  
MR-J2HBUS M-A  
Q172J2BCBL  
Q173J2B CBL  
MR-J2MBATCBL  
M
M
20  
(10 pairs)  
UL20276 AWG#28  
10pair (CREAM)  
0.5 to 5  
(1.64 to 16.4)  
Bus cable  
0.08  
0.3  
7/0.127  
12/0.18  
222  
63  
0.38  
1.5  
6.1  
5.1  
M
14  
(7 pairs)  
UL20276 AWG#28  
7pair (CREAM)  
M
Battery unit  
cable  
0.3 1  
(0.98 3.28)  
2
2
MVVS IP 0.3mm  
(1 pairs)  
Note 1. d is as shown below:  
d
Conductor Insulation sheath  
2. Purchased from Toa Electric Industry  
3. Standard OD. Max. OD is about 10% greater.  
12.2.2 No-fuse breakers, fuses, magnetic contactors  
Always use one no-fuse breaker and one magnetic contactor with one drive unit. Make selection as  
indicated below according to the total output value of the servo motors connected to one base unit. When  
using a fuse instead of the no-fuse breaker, use the one having the specifications given in this section.  
(1) No-fuse breaker  
Servo motor output total  
550W max.  
No-fuse breaker  
30A frame5A  
30A frame10A  
30A frame15A  
30A frame20A  
30A frame30A  
Rated current [A]  
5
More than 550W to 1100W max.  
More than 1100W to 1650W max.  
More than 1650W to 2200W max.  
More than 2200W to 3300W max.  
10  
15  
20  
30  
(2) Fuse  
Fuse  
Servo motor output total  
Class  
K5  
Current [A]  
Voltage [V]  
AC250  
AC250  
AC250  
AC250  
AC250  
800W max.  
15  
20  
30  
40  
70  
More than 800W to 1100W max.  
More than 1100W to 1650W max.  
More than 1650W to 2200W max.  
More than 2200W to 3300W max.  
K5  
K5  
K5  
K5  
(3) Magnetic contactor  
Servo motor output total  
1700W max.  
Magnetic contactor  
S-N10  
More than 1700W to 2800W max.  
More than 2800W to 3300W max.  
S-N18  
S-N20  
12 - 26  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2.3 Power factor improving reactors  
The input power factor is improved to be about 90%. Make selection as described below according to the  
sum of the outputs of the servo motors connected to one base unit.  
[Unit : mm]  
([Unit : in.])  
Base unit  
MR-J2M-BU  
NFB  
MC  
FR-BAL  
R
S
T
X
L1  
L2  
L3  
Y
Z
3-phase  
200 to 230VAC  
Base unit  
MR-J2M-BU  
D1  
W
NFB  
Installation screw  
MC  
FR-BAL  
X
(Note)  
1-plase  
200 to 230VAC  
R
S
T
L1  
L2  
L3  
Y
Z
RXSYT Z  
W1  
C
Note. Connect a 1-phase 200 to 230VAC power supply to L1/L2 and keep L3 open.  
Dimensions [mm (in) ]  
Servo motor  
output total  
Mounting Terminal  
screw size screw size  
Mass  
Model  
[kg (lb)]  
W
W1  
H
D
D1  
C
0
0
45 2.5(1.77  
)
300W max.  
FR-BAL-0.4K 135 (5.31) 120 (4.72) 115 (4.53) 59 (2.32)  
FR-BAL-0.75K 135 (5.31) 120 (4.72) 115 (4.53) 69 (2.72)  
FR-BAL-1.5K 160 (6.30) 145 (5.71) 140 (5.51) 71 (2.79)  
FR-BAL-2.2K 160 (6.30) 145 (5.71) 140 (5.51) 91 (3.58)  
FR-BAL-3.7K 220 (8.66) 200 (7.87) 192 (7.56) 90 (3.54)  
FR-BAL-5.5K 220 (8.66) 200 (7.87) 192 (7.56) 96 (3.78)  
FR-BAL-7.5K 220 (8.66) 200 (7.87) 194 (7.64) 120 (4.72)  
7.5 (0.29)  
7.5 (0.29)  
7.5 (0.29)  
7.5 (0.29)  
10 (0.39)  
10 (0.39)  
10 (0.39)  
M4  
M4  
M4  
M4  
M5  
M5  
M5  
M3.5  
M3.5  
M3.5  
M3.5  
M4  
2.0 (4.4)  
2.8 (6.17)  
3.7 (8.16)  
5.6 (12.35)  
8.5 (18.74)  
9.5 (20.94)  
14.5 (32.0)  
0.098  
More than 300W to  
450W max.  
0
0
57 2.5(2.24  
)
0.098  
More than 450W to  
750W max.  
0
0
55 2.5(2.17  
)
0.098  
More than 750W to  
1100W max.  
0
0
75 2.5(2.95  
)
0.098  
More than 1100W to  
1900W max.  
0
0
70 2.5(2.76  
)
0.098  
More than 1900W to  
2500W max.  
M4  
75 5(2.95 0.2)  
100 5(3.94 0.2)  
More than 2500W to  
3800W max.  
M5  
12 - 27  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2.4 Relays  
The following relays should be used with the interfaces:  
Interface  
Selection example  
Relay used for digital input signals (interface DI-1)  
To prevent defective contacts , use a relay for small signal  
(twin contacts).  
(Ex.) Omron : type G2A , MY  
Relay used for digital output signals (interface DO-1)  
Small relay with 12VDC or 24VDC of 40mA or less  
(Ex.) Omron : type MY  
12.2.5 Surge absorbers  
A surge absorber is required for the electromagnetic brake. Use the following surge absorber or equivalent.  
Insulate the wiring as shown in the diagram.  
Maximum rating  
Static  
capacity  
(reference  
value)  
Maximum  
Varistor voltage  
Permissible circuit  
voltage  
Surge  
Energy  
Rated  
power  
limit voltage  
rating (range) V1mA  
immunity  
immunity  
AC[Vma]  
140  
DC[V]  
180  
[A]  
[J]  
5
[W]  
0.4  
[A]  
25  
[V]  
[pF]  
[V]  
220  
(Note)  
360  
300  
500/time  
(198 to 242)  
Note. 1 time  
8
20 s  
(Example) ERZV10D221 (Matsushita Electric Industry)  
TNR-10V221K (Nippon Chemi-con)  
Outline drawing [mm] ( [in] ) (ERZ-C10DK221)  
13.5 (0.53)  
4.7 1.0 (0.19 0.04)  
Vinyl tube  
Crimping terminal  
for M4 screw  
0.8 (0.03)  
12.2.6 Noise reduction techniques  
Noises are classified into external noises which enter MELSERVO-J2M to cause it to malfunction and  
those radiated by MELSERVO-J2M to cause peripheral devices to malfunction. Since MELSERVO-J2M  
is an electronic device which handles small signals, the following general noise reduction techniques are  
required.  
Also, the drive unit can be a source of noise as its outputs are chopped by high carrier frequencies. If  
peripheral devices malfunction due to noises produced by the drive unit, noise suppression measures  
must be taken. The measures will vary slightly with the routes of noise transmission.  
(1) Noise reduction techniques  
(a) General reduction techniques  
Avoid laying power lines (input cables) and signal cables side by side or do not bundle them  
together. Separate power lines from signal cables.  
Use shielded, twisted pair cables for connection with the encoder and for control signal  
transmission, and connect the shield to the SD terminal.  
Ground the base unit, servo motor, etc. together at one point (refer to Section 3.8).  
12 - 28  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Reduction techniques for external noises that cause MELSERVO-J2M to malfunction  
If there are noise sources (such as a magnetic contactor, an electromagnetic brake, and many  
relays which make a large amount of noise) near MELSERVO-J2M and MELSERVO-J2M may  
malfunction, the following countermeasures are required.  
Provide surge absorbers on the noise sources to suppress noises.  
Attach data line filters to the signal cables.  
Ground the shields of the encoder connecting cable and the control signal cables with cable clamp  
fittings.  
(c) Techniques for noises radiated by MELSERVO-J2M that cause peripheral devices to malfunction  
Noises produced by MELSERVO-J2M are classified into those radiated from the cables connected  
to MELSERVO-J2M and its main circuits (input and output circuits), those induced  
electromagnetically or statically by the signal cables of the peripheral devices located near the  
main circuit cables, and those transmitted through the power supply cables.  
Noises produced  
by MELSERVO-J2M  
Noise radiated directly  
from MELSERVO-J2M  
Noises transmitted  
in the air  
Route 1)  
Route 2)  
Route 3)  
Noise radiated from the  
power supply cable  
Noise radiated from  
servo motor cable  
Magnetic induction  
noise  
Routes 4) and 5)  
Static induction  
noise  
Route 6)  
Noises transmitted  
through electric  
channels  
Noise transmitted through  
power supply cable  
Route 7)  
Route 8)  
Noise sneaking from  
grounding cable due to  
leakage current  
5)  
7)  
7)  
2)  
7)  
Sensor  
power  
supply  
1)  
MELSERVO-  
J2M  
2)  
Instrument  
Receiver  
3)  
8)  
6)  
Sensor  
4)  
3)  
Servo motor  
M
12 - 29  
12. OPTIONS AND AUXILIARY EQUIPMENT  
Noise transmission route  
Suppression techniques  
When measuring instruments, receivers, sensors, etc. which handle weak signals and may  
malfunction due to noise and/or their signal cables are contained in a control box together with the  
MELSERVO-J2M or run near MELSERVO-J2M, such devices may malfunction due to noises  
transmitted through the air. The following techniques are required.  
1. Provide maximum clearance between easily affected devices and MELSERVO-J2M.  
2. Provide maximum clearance between easily affected signal cables and the I/O cables of  
MELSERVO-J2M.  
1) 2) 3)  
3. Avoid laying the power lines (I/O cables of MELSERVO-J2M) and signal cables side by side or  
bundling them together.  
4. Insert a line noise filter to the I/O cables or a radio noise filter on the input line.  
5. Use shielded wires for signal and power cables or put cables in separate metal conduits.  
When the power lines and the signal cables are laid side by side or bundled together, magnetic  
induction noise and static induction noise will be transmitted through the signal cables and  
malfunction may occur. The following techniques are required.  
1. Provide maximum clearance between easily affected devices and MELSERVO-J2M.  
2. Provide maximum clearance between easily affected signal cables and the I/O cables of  
MELSERVO-J2M.  
4) 5) 6)  
3. Avoid laying the power lines (I/O cables of MELSERVO-J2M) and signal cables side by side or  
bundling them together.  
4. Use shielded wires for signal and power cables or put the cables in separate metal conduits.  
When the power supply of peripheral devices is connected to the power supply of MELSERVO-J2M  
system, noises produced by MELSERVO-J2M may be transmitted back through the power supply  
cable and the devices may malfunction. The following techniques are required.  
1. Insert the radio noise filter (FR-BIF) on the power cables (input cables) of MELSERVO-J2M.  
2. Insert the line noise filter (FR-BSF01 FR-BLF) on the power cables of MELSERVO-J2M.  
When the cables of peripheral devices are connected to MELSERVO-J2M to make a closed loop  
circuit, leakage current may flow to malfunction the peripheral devices. If so, malfunction may be  
prevented by disconnecting the grounding cable of the peripheral device.  
7)  
8)  
(2) Noise reduction products  
(a) Data line filter  
Noise can be prevented by installing a data line filter onto the encoder cable, etc.  
For example, the ZCAT3035-1330 of TDK and the ESD-SR-25 of NEC TOKIN are available as data  
line filters.  
As a reference example, the impedance specifications of the ZCAT3035-1330 (TDK) are indicated  
below.  
This impedances are reference values and not guaranteed values.  
Impedance[ ]  
[Unit: mm]([Unit: in.])  
10 to 100MHZ  
80  
100 to 500MHZ  
150  
39 1(1.54 0.04)  
Loop for fixing the  
cable band  
34 1  
(1.34 0.04)  
TDK  
Product name Lot number  
Outline drawing (ZCAT3035-1330)  
12 - 30  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Surge suppressor  
The recommended surge suppressor for installation to an AC relay, AC valve, AC electromagnetic  
brake or the like near MELSERVO-J2M is shown below. Use this product or equivalent.  
MC  
Relay  
Surge suppressor  
Surge suppressor  
This distance should be short  
Surge suppressor  
(within 20cm(0.79 in.)).  
(Ex.) 972A.2003 50411  
(Matsuo Electric Co.,Ltd. 200VAC rating)  
Outline drawing [Unit: mm] ([Unit: in.])  
Vinyl sheath  
Rated  
voltage  
AC[V]  
C [ F]  
R [ ]  
Test voltage AC[V]  
18 1.5  
(0.71 0.06)  
Blue vinyl cord  
Red vinyl cord  
50  
Across  
6(0.24)  
200  
0.5  
(1W)  
T-C 1000(1 to 5s)  
10(0.39)or less 10(0.39)or less  
15 1(0.59 0.04)  
4(0.16)  
10 3  
(0.39  
0.12)  
10 3  
(0.39  
0.15)  
31(1.22)  
200(7.87)  
48 1.5  
200(7.87)  
or more (1.89 0.06) or more  
Note that a diode should be installed to a DC relay, DC valve or  
the like.  
RA  
Maximum voltage: Not less than 4 times the drive voltage of  
the relay or the like  
Maximum current: Not less than twice the drive current of  
the relay or the like  
Diode  
(c) Cable clamp fitting (AERSBAN -SET)  
Generally, the earth of the shielded cable may only be connected to the connector's SD terminal.  
However, the effect can be increased by directly connecting the cable to an earth plate as shown  
below.  
Install the earth plate near the drive unit for the encoder cable. Peel part of the cable sheath to  
expose the external conductor, and press that part against the earth plate with the cable clamp. If  
the cable is thin, clamp several cables in a bunch.  
The clamp comes as a set with the earth plate.  
Cable  
Cable clamp  
Earth plate  
(A,B)  
Strip the cable sheath of  
the clamped area.  
cutter  
cable  
External conductor  
Clamp section diagram  
12 - 31  
12. OPTIONS AND AUXILIARY EQUIPMENT  
Outline drawing  
[Unit: mm]  
([Unit: in.])  
Earth plate  
Clamp section diagram  
2- 5(0.20) hole  
installation hole  
17.5(0.69)  
L or less  
10(0.39)  
22(0.87)  
6
(Note)M4 screw  
35(1.38)  
(0.24)  
Note. Screw hole for grounding. Connect it to the earth plate of the control box.  
Type  
A
B
C
Accessory fittings  
Clamp fitting  
L
100  
86  
30  
70  
(2.76)  
45  
AERSBAN-DSET  
clamp A: 2pcs.  
A
(3.94) (3.39) (1.18)  
70 56  
(2.76) (2.20)  
AERSBAN-ESET  
clamp B: 1pc.  
B
(1.77)  
12 - 32  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(d) Line noise filter (FR-BSF01)  
This filter is effective in suppressing noises radiated from the power supply side and output side of  
MELSERVO-J2M and also in suppressing high-frequency leakage current side (zero-phase  
current) especially within 0.5MHz to 5MHz band.  
Connection diagram  
Outline drawing [Unit: mm] ([Unit: in.])  
Wind the 3-phase wires by the equal number of times in the  
same direction, and connect the filter to the power supply side  
and output side of MELSERVO-J2M  
FR-BSF01  
110 (4.33)  
The effect of the filter on the power supply side is higher as the  
number of winds is larger. The number of turns is generally four.  
If the wires are too thick to be wound, use two or more filters  
and make the total number of turns as mentioned above.  
On the output side, the number of turns must be four or less.  
Do not wind the grounding wire together with the 3-phase wires.  
The filter effect will decrease. Use a separate wire for grounding.  
95 0.5 (3.74 0.02)  
2- 5 (0.20)  
65 (2.56)  
33 (1.3)  
Example 1  
NFB MC  
Base unit  
Power  
supply  
L1  
L2  
L3  
Line noise  
filter  
(Number of turns: 4)  
NFB MC  
Example 2  
Base unit  
Power  
supply  
L1  
L2  
L3  
Line noise  
filter  
Two filters are used  
(Total number of turns: 4)  
(e) Radio noise filter (FR-BIF)...for the input side only  
This filter is effective in suppressing noises radiated from the power supply side of MELSERVO-  
J2M especially in 10MHz and lower radio frequency bands. The FR-BIF is designed for the input  
only.  
Connection diagram  
Outline drawing (Unit: mm) ([Unit: in.])  
Make the connection cables as short as possible.  
Grounding is always required.  
When using the FR-BIF with a single-phase wire, always  
insulate the wires that are not used for wiring.  
Leakage current: 4mA  
Red WhiteBlue  
Green  
NFB  
MC  
Base unit  
L1  
L2  
L3  
Power  
supply  
29 (1.14)  
5 (0.20)  
hole  
29 (1.14)  
44 (1.73)  
58 (2.28)  
Radio noise  
filter FR-BIF  
7 (0.28)  
12 - 33  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2.7 Leakage current breaker  
(1) Selection method  
High-frequency chopper currents controlled by pulse width modulation flow in the AC servo circuits.  
Leakage currents containing harmonic contents are larger than those of the motor which is run with a  
commercial power supply.  
Select a leakage current breaker according to the following formula, and ground the base unit, servo  
motor, etc. securely.  
Make the input and output cables as short as possible, and also make the grounding cable as long as  
possible (about 30cm (11.8 in)) to minimize leakage currents.  
Rated sensitivity current 10 {Ig1 Ign Iga K (Ig2 Igm)} [mA] ..........(12.1)  
K: Constant considering the harmonic contents  
Cable  
Leakage current breaker  
K
1
3
Mitsubishi  
products  
Noise  
filter  
Type  
NV  
MELSERVO  
-J2M  
Cable  
Ig2  
M
NV-SP  
NV-SW  
NV-CP  
NV-CW  
NV-HW  
BV-C1  
NFB  
Models provided with  
harmonic and surge  
reduction techniques  
Ig1 Ign  
Iga  
Igm  
General models  
NV-L  
Ig1:  
Ig2:  
Leakage current on the electric channel from the leakage current breaker to the input terminals  
of the base unit (Found from Fig. 12.1.)  
Leakage current on the electric channel from the output terminals of the drive unit to the  
servo motor (Found from Fig. 12.1.)  
Ign:  
Iga:  
Igm:  
Leakage current when a filter is connected to the input side (4.4mA per one FR-BIF)  
Leakage current of the drive unit (Found from Table 12.4.)  
Leakage current of the servo motor (Found from Table 12.3.)  
Table 12.3 Servo motor's  
leakage current  
Table 12.4 Drive unit's  
leakage current  
example (Iga)  
Leakage current  
120  
100  
80  
60  
40  
20  
0
example (Igm)  
Servo motor  
output [kW]  
Leakage  
Drive unit  
current [mA]  
capacity [kW]  
[mA]  
0.3  
0.05 to 0.4  
0.1  
0.1 to 0.4  
0.75  
0.6  
[mA]  
2
3.5 8 1422 38 80 150  
5.5 30 60 100  
Cable size[mm2]  
Fig. 12.1 Leakage current example  
(Ig1, Ig2) for CV cable run  
in metal conduit  
12 - 34  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2.8 EMC filter  
For compliance with the EMC directive of the EN standard, it is recommended to use the following filter:  
(1) Combination with the base unit  
Recommended filter  
Base unit  
Mass [kg(lb)]  
Model  
Leakage current [mA]  
MR-J2M-BU4  
MR-J2M-BU6  
MR-J2M-BU8  
SF1253  
57  
1.37 (3.02)  
(2) Connection example  
EMC filter  
Base unit  
NFB LINE  
LOAD  
L1  
L2  
L3  
L1  
L2  
L3  
L1  
L2  
L3  
(Note 2)  
Power supply  
(Note 1)  
L11  
L21  
Note 1. Connect when the power supply has earth.  
2. Connect a 1-phase 200 to 230VAC power supply to L1/L2 and keep L3 open.  
(3) Outline drawing  
[Unit: mm(in)]  
6.0(0.236)  
SF1253  
209.5(8.248)  
L1  
L2  
L3  
LINE  
(input side)  
L1'  
L2'  
L3'  
LOAD  
(output side)  
23.0(0.906)  
8.5  
(0.335)  
49.0  
(1.929)  
12 - 35  
12. OPTIONS AND AUXILIARY EQUIPMENT  
MEMO  
12 - 36  
13. ABSOLUTE POSITION DETECTION SYSTEM  
13. ABSOLUTE POSITION DETECTION SYSTEM  
If an absolute position erase (A.25) or an absolute position counter warning (A.E3)  
has occurred, always perform home position setting again. Not doing so can cause  
runaway.  
CAUTION  
13.1 Features  
For normal operation, as shown below, the encoder consists of a detector designed to detect a position  
within one revolution and a cumulative revolution counter designed to detect the number of revolutions.  
The absolute position detection system always detects the absolute position of the machine and keeps it  
battery-backed, independently of whether the servo system controller power is on or off.  
Therefore, once home position return is made at the time of machine installation, home position return is  
not needed when power is switched on thereafter.  
If a power failure or a fault occurs, restoration is easy.  
Also, the absolute position data, which is battery-backed by the super capacitor in the encoder, can be  
retained within the specified period (cumulative revolution counter value retaining time) if the cable is  
unplugged or broken.  
Servo system controller  
MELSERVO-J2M  
Position data  
Current  
position  
Detecting  
the number  
Detecting the  
position within  
Home position data  
LS0  
CYC0  
Battery  
unit  
of revolutions one revolution  
MR-J2M-BT  
Servo motor  
1 pulse/rev accumulative revolution counter  
Super capacitor  
High speed serial  
communication  
Within one-revolution counter  
13 - 1  
13. ABSOLUTE POSITION DETECTION SYSTEM  
13.2 Specifications  
(1) Specification list  
POINT  
The revision (Edition 44) of the Dangerous Goods Rule of the  
International Air Transport Association (IATA) went into effect on  
January 1, 2003 and was enforced immediately. In this rule, "provisions of  
the lithium and lithium ion batteries" were revised to tighten the  
restrictions on the air transportation of batteries. However, since this  
battery is dangerous goods (Class 9), requires packing compliant with the  
Packing Standard 903. When a self-certificate is necessary for battery  
safety tests, contact our branch or representative. For more information,  
consult our branch or representative. (As of October, 2005).  
Item  
Description  
MR-J2M-BT  
Model  
System  
Electronic battery backup system  
Lithium battery ( primary battery, nominal 3.6V)  
Home position 32767 rev.  
Battery unit  
Maximum revolution range  
(Note 1) Maximum speed at power failure  
(Note 2) Battery backup time  
(Note 3) Data holding time during battery  
replacement  
500r/min  
Approx. 10,000 hours (battery life with power off)  
2 hours at delivery, 1 hour in 5 years after delivery  
Battery storage period  
5 years from date of manufacture  
Note 1. Maximum speed available when the shaft is rotated by external force at the time of power failure or the like.  
2. Time to hold data by a battery with power off. It is recommended to replace the battery in three years  
independently of whether power is kept on or off.  
3. Period during which data can be held by the super capacitor in the encoder after power-off, with the battery unit  
voltage low or the battery unit removed, or during which data can be held with the encoder cable disconnected.  
Battery replacement should be finished within this period.  
(2) Configuration  
Servo system controller  
Base unit  
Drive unit  
CN2  
Interface unit  
CN1A  
CON5  
MR-J2MBTCBL  
Servo motor  
Battery unit  
MR-J2M-BT  
(3) Parameter setting  
Set "0001" in DRU parameter No.1 to make the absolute position detection system valid.  
Absolute position detection selection  
0: Valid (used in incremental system.)  
1: Invalid (used in absolute position  
detection system.)  
13 - 2  
13. ABSOLUTE POSITION DETECTION SYSTEM  
13.3 Confirmation of absolute position detection data  
You can confirm the absolute position data with MR Configurator (servo configuration software).  
Choose "Diagnostics" and "Absolute Encoder Data" to open the absolute position data display screen.  
(1) Click "Diagnostics" in the menu and click "Absolute Encoder Data" in the menu:  
(2) Clicking "Absolute Encoder Data" displays the following window.  
(3) Click the "Close" button to close the window.  
13 - 3  
13. ABSOLUTE POSITION DETECTION SYSTEM  
MEMO  
13 - 4  
APPENDIX  
App 1. Status indication block diagram  
App - 1  
REVISIONS  
*The manual number is given on the bottom left of the back cover.  
Print Data  
*Manual Number  
Revision  
Apr., 2001  
Jan., 2002  
SH(NA)030012-A First edition  
SH(NA)030012-B Addition of FOR MAXIMUM SAFETY  
CONFORMANCE WITH UL/C-UL STANDARD: Capacitor discharge time  
changed to 1[min]  
Addition of (6) Attachment of a servo motor  
Section 1.2: Addition of the case with 1-phase 200 to 230VAC power supply  
Section 1.3: Addition of MR-J2M-70DU  
Addition of the case with 1-phase 200 to 230VAC power supply  
Section 1.5: Addition of MR-J2M-70DU  
Section 1.6: Addition of MR-J2M-70DU  
Addition of HC-KFS73, HC-MFS73 and HC-UFS73 servo motors  
Section 1.8: Addition of the case with 1-phase 200 to 230VAC power supply  
Section 2.5 (3): Addition  
Section 3.2.3 (1): Overall modification to common line  
Section 3.2.3 (2) (c): Maximum output current changed to 0.5mA  
Section 3.3: Addition of extension IO unit signals and wiring  
Section 3.4.1 (2): Addition of the case with 1-phase 200 to 230VAC power  
supply  
Section 3.4.3: Addition of the case of using 1-phase power supply  
Section 3.7 (3): Overall modification  
Section 3.8: Addition of the case with 1-phase 200 to 230VAC power supply  
Section 5.1.2 (1): Reexamination of sentence for parameter No. 12  
Modification to parameter No. 19  
Addition of POINT to parameter No. 38  
Section 9.2: Reexamination of sentence for investigation method  
Section 10.2: Outline drawing modification  
Section 10.2.2: Outline drawing modification  
Section 10.2.3 (2): Addition of MR-J2M-70DU drive unit outline drawing  
Section 10.2.4: Outline drawing modification  
Section 10.2.5: Outline drawing modification  
Section 11.1 (2): Addition of the case with MR-J2M-70DU  
Addition of sentence  
Section 11.2: Addition of MR-JM-70DU  
Addition of HC-KFS73, HC-MFS73 and HC-UFS73 servo motors  
Section 11.3: Addition of dynamic brake time constants of HC-KFS73, HC-  
MFS73 and HC-UFS73 servo motors  
Addition of load inertia moment ratio table of MR-J2M-70DU  
Section 12.1.1 (2) (a) 1), 2): Overall modification  
Section 12.1.1 (2) (b) 2): Addition of MR-J2M-70DU  
Section 12.1.4: Addition of POINT  
Section 12.1.4 (1): Partial addition to table  
Section 12.1.4 (2) (a): Overall modification to table  
Section 12.2.1 (1): Addition of MR-J2M-70DU  
Section 12.2.2 (2): No-fuse breaker model name changing  
Section 12.2.3: Addition of the case with 1-phase 200 to 230VAC power supply  
Print Data  
*Manual Number  
Revision  
Jan., 2002  
SH(NA)030012-B Section 12.2.6 (2) (b): Diode mounting diagram modification  
Section 12.2.7 (1): Our leakage current breaker product model name changing  
Addition of MR-J2M-70DU to Table 12.4  
Section 12.2.8 (2): Addition of the case with 1-phase 200 to 230VAC power  
supply  
Section 13.2 (1): Reexamination of table  
Sept., 2002  
SH(NA)030012-C Safety Instructions: Addition of About wiring protection  
Addition of EEP-ROM life  
Section 1.5 (2) (a): Change of rating plate  
Section 2.4 (2): Reexamination of description  
Section 2.6 (1) (d): Reexamination of sentence  
Section 3.4.2: Addition of cable side connector 353717-2  
Addition of Note  
Section 3.5.1: Addition of POINT  
Section 3.6: Addition of Note to timing chart  
Section 5.1.2 (2): Addition of DRU parameter No. 23 encoder cable selection  
Section 5.2.2 (1): Addition of IFU parameter No. 9 SSCNET type selection  
Section 5.2.2 (2): Addition of IFU parameter No. 9 SSCNET type selection  
Section 6.2.2: Addition of POINT  
Section 9.1: Addition of A. 78 and A. 79  
Section 9.2: Addition of A. 78 and A. 79  
Section 10.3 (3): Addition of contact 353717-2  
Addition of applicable tool 937315-1  
Section 11.1: Layout change  
Addition of Note  
Section 12.1.1 (1): Addition of sentence  
Deletion of Note  
Section 12.1.1 (4): Addition of terminal block, terminal screw and tightening  
torque  
Section 12.1.2 (1): Addition of encoder cable MR-JC4CBL M-H  
Section 12.1.2 (2) (a): Addition of POINT  
Section 12.1.2 (2) (b): Addition  
Section 12.1.3 (1): Change of Usage and Connection diagram  
Section 12.1.4 (2): Reexamination of display description and representation  
Section 12.2.1 (2): Addition of encoder cable MR-JC4CBL M-H  
Section 13.3: Change of representation  
Apr., 2003  
SH(NA)030012-D CONFORMANCE WITH UL/C-UL STANDARD (2) Installation: Addition of air  
volume 2.8m3/min  
Section 1.3 (1): Addition of inrush current  
Section 3.1: Partial reexamination of connection diagram  
Reexamination of motion controller-compatible bus cable in Note  
13  
Section 3.4: Partial change of CAUTION sentence  
Section 3.4.4 (3): Partial reexamination of connection diagram  
Section 3.5.3 (2): Reexamination of diagram  
Section 4.2.4 (2): Partial reexamination of sentence  
Section 5.1.2 (2): Addition of "When built-in regenerative brake resistor is used"  
to DRU parameter No. 2  
Print Data  
*Manual Number  
Revision  
Apr., 2003  
SH(NA)030012-D Section 9.2: Reexamination of cause and action in FA. 12 to 15  
Addition of cause and action to FA. 37  
Reexamination of A.50# definition  
Addition of "During rotation: 2.5s or more" to A.51#  
Section 10.3 (3): Change to applicable tool 91560-1  
Section 10.3 (6): Addition  
Section 12.1.2 (1): Reexamination of motion controller-compatible bus cable in  
Note  
Bus cable addition  
Section 12.1.2 (4): Reexamination of contents  
Section 12.2.1 (2): Bus cable addition  
Mar., 2004  
SH(NA)030012-E Reexamination of description on configuration software  
Safety Instructions: 1. To prevent electric shock: Addition of sentence  
3. To prevent injury: Change of sentence  
4. Additional instructions (1): Change of sentence  
COMPLIANCE WITH EC DIRECTIVES: Modified to IEC60664-1 in (3)  
Modified to IEC60664-1 in (4).  
Section 2.7: Partial modification of CAUTION sentence  
Section 3.7 (4) (a): Partial change of timing chart  
Section 5.1.2: Change of POINT sentence  
Section 5.2.1: Change of POINT sentence  
: Addition of IFU parameter No.9 and POINT  
Section 9.2: Reexamination of A.52# content  
Section 12.1.1 (3): Partial reexamination of sentence  
Section 12.1.1 (4): Reexamination of outline drawing  
Section 12.1.4 (2) (a): Reexamination of content  
Section 12.2.6 (2) (d): Modification of FR-BSF01 outline drawing  
Section 12.2.6 (2) (e): Reexamination of connection diagram  
Section 13.2 (1): Addition of POINT  
Feb., 2005  
Oct., 2005  
SH(NA)030012-F Section 13.2 (1): Error in writing correction of POINT  
SH(NA)030012-G Safety Instructions  
: 1. To prevent electric shock:  
Description is corrected as 15 minutes.  
4. Additional instructions (2) (4):  
Caution sentence addition  
Usage: Sentence change  
Compliance with EC Directives: Partial sentence change  
Conformance with UL/C-UL Standard (4): Partial sentence change  
Chapter 2: CAUTION sentence addition  
Section 3.6: CAUTION sentence addition  
Section 3.6 (3): Sentence change  
Section 3.7: CAUTION sentence addition  
Section 5.2.1 (1) (2): Addition of parameter No. 49 to 55, 60, 61  
Section 5.2.3: (2): Note addition  
Section 7.5: Addition of gain changing function  
Chapter 8: WARNING sentence partial change  
Section 9.1: Note addition in the table for alarm code No. A45, A46  
Section 9.2: CAUTION sentences addition  
Addition of the contents of DRU parameter No.@A. 17#  
Print Data  
*Manual Number  
Revision  
Oct., 2005  
SH(NA)030012-G Section 9.3: Reexamination of Cause 2 of DRU parameter No.@A. 92#  
Partial addition of the cause of IFU parameter No.FA. 9F  
Correction of the contents of IFU parameter No.FA. E9  
Section 10.2: Addition of mounting screw and tightening torque  
Section 11.1: Reexamination of CAUTION sentence  
Chapter 12: WARNING sentence partial change  
Section 12.1.1 (4) (b): Reexamination of outline dimension drawing  
Section 12.1.4 (2): Partial reexamination of table value  
Section 12.2.6 (2) (d): Reexamination of outline dimension drawing of  
FR-BSF01  
Section 12.2.6 (2) (c): Sentence addition  
Chapter 13: Reexamination of CAUTION sentence  
MODEL  
MODEL  
CODE  
HEAD OFFICE:TOKYO BLDG MARUNOUCHI TOKYO 100-8310  
This Instruction Manual uses recycled paper.  
Specifications subject to change without notice.  
SH (NA) 030012-G (0510) MEE  
Printed in Japan  

RCA EZ 105 User Manual
PYLE Audio PLHR58 User Manual
Pass Labs Car Amplifier XP 10 User Manual
Panasonic Blu ray Player DMR PWT635 User Manual
Panasonic Blu ray Player DMPBDT320EB User Manual
Nikon MB D100 User Manual
Melissa 643 197 User Manual
Lochinvar SOLUTION CB 135 User Manual
Kenwood DEM 999D User Manual
JVC M4S3 User Manual