Mitsubishi Electronics MR J2S CP User Manual

General-Purpose AC Servo  
J2-Super Series  
Built-In Positioning Function  
MODEL  
MR-J2S- CP  
SERVO AMPLIFIER  
INSTRUCTION MANUAL  
G
Safety Instructions  
(Always read these instructions before using the equipment.)  
Do not attempt to install, operate, maintain or inspect the servo amplifier and servo motor until you have read  
through this Instruction Manual, Installation guide, Servo motor Instruction Manual and appended documents  
carefully and can use the equipment correctly. Do not use the servo amplifier and servo motor until you have a  
full knowledge of the equipment, safety information and instructions.  
In this Instruction Manual, the safety instruction levels are classified into "WARNING" and "CAUTION".  
Indicates that incorrect handling may cause hazardous conditions,  
WARNING  
resulting in death or severe injury.  
Indicates that incorrect handling may cause hazardous conditions,  
CAUTION  
resulting in medium or slight injury to personnel or may cause physical  
damage.  
Note that the CAUTION level may lead to a serious consequence according to conditions. Please follow the  
instructions of both levels because they are important to personnel safety.  
What must not be done and what must be done are indicated by the following diagrammatic symbols:  
: Indicates what must not be done. For example, "No Fire" is indicated by  
: Indicates what must be done. For example, grounding is indicated by  
.
.
In this Instruction Manual, instructions at a lower level than the above, instructions for other functions, and so  
on are classified into "POINT".  
After reading this installation guide, always keep it accessible to the operator.  
A - 1  
1. To prevent electric shock, note the following:  
WARNING  
Before wiring or inspection, turn off the power and wait for 15 minutes or more until the charge lamp turns  
off. Then, confirm that the voltage between P and N is safe with a voltage tester and others. Otherwise, an  
electric shock may occur. In addition, always confirm from the front of the servo amplifier, whether the  
charge lamp is off or not.  
Connect the servo amplifier and servo motor to ground.  
Any person who is involved in wiring and inspection should be fully competent to do the work.  
Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, you  
may get an electric shock.  
Operate the switches with dry hand to prevent an electric shock.  
The cables should not be damaged, stressed, loaded, or pinched. Otherwise, you may get an electric shock.  
During power-on or operation, do not open the front cover of the servo amplifier. You may get an electric  
shock.  
Do not operate the servo amplifier with the front cover removed. High-voltage terminals and charging area  
are exposed and you may get an electric shock.  
Except for wiring or periodic inspection, do not remove the front cover even of the servo amplifier if the  
power is off. The servo amplifier is charged and you may get an electric shock.  
2. To prevent fire, note the following:  
CAUTION  
Install the servo amplifier, servo motor and regenerative resistor on incombustible material. Installing them  
directly or close to combustibles will lead to a fire.  
Always connect a magnetic contactor (MC) between the main circuit power supply and L1, L2, and L3 of  
the servo amplifier, and configure the wiring to be able to shut down the power supply on the side of the  
servo amplifier’s power supply. If a magnetic contactor (MC) is not connected, continuous flow of a large  
current may cause a fire when the servo amplifier malfunctions.  
When a regenerative resistor is used, use an alarm signal to switch main power off. Otherwise, a  
regenerative transistor fault or the like may overheat the regenerative resistor, causing a fire.  
3. To prevent injury, note the follow  
CAUTION  
Only the voltage specified in the Instruction Manual should be applied to each terminal, Otherwise, a  
burst, damage, etc. may occur.  
Connect the terminals correctly to prevent a burst, damage, etc.  
Ensure that polarity ( , ) is correct. Otherwise, a burst, damage, etc. may occur.  
Take safety measures, e.g. provide covers, to prevent accidental contact of hands and parts (cables, etc.)  
with the servo amplifier heat sink, regenerative resistor, servo motor, etc.since they may be hot while  
power is on or for some time after power-off. Their temperatures may be high and you may get burnt or a  
parts may damaged.  
During operation, never touch the rotating parts of the servo motor. Doing so can cause injury.  
A - 2  
4. Additional instructions  
The following instructions should also be fully noted. Incorrect handling may cause a fault, injury, electric  
shock, etc.  
(1) Transportation and installation  
CAUTION  
Transport the products correctly according to their weights.  
Stacking in excess of the specified number of products is not allowed.  
Do not carry the servo motor by the cables, shaft or encoder.  
Do not hold the front cover to transport the servo amplifier. The servo amplifier may drop.  
Install the servo amplifier in a load-bearing place in accordance with the Instruction Manual.  
Do not climb or stand on servo equipment. Do not put heavy objects on equipment.  
The servo amplifier and servo motor must be installed in the specified direction.  
Leave specified clearances between the servo amplifier and control enclosure walls or other equipment.  
Do not install or operate the servo amplifier and servo motor which has been damaged or has any parts  
missing.  
Provide adequate protection to prevent screws and other conductive matter, oil and other combustible  
matter from entering the servo amplifier and servo motor.  
Do not drop or strike servo amplifier or servo motor. Isolate from all impact loads.  
When you keep or use it, please fulfill the following environmental conditions.  
Conditions  
Environment  
Servo amplifier  
0 to 55 (non-freezing)  
32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
Servo motor  
0 to 40 (non-freezing)  
32 to 104 (non-freezing)  
15 to 70 (non-freezing)  
5 to 158 (non-freezing)  
In  
[
[
[
[
]
]
]
]
operation  
Ambient  
temperature  
In storage  
Ambient  
humidity  
In operation  
In storage  
90%RH or less (non-condensing)  
90%RH or less (non-condensing)  
80%RH or less (non-condensing)  
Ambience  
Altitude  
Indoors (no direct sunlight) Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280 ft) above sea level  
HC-KFS Series  
HC-MFS Series  
HC-UFS13 to 73  
HC-SFS81  
X
Y : 49  
HC-SFS52 to 152  
HC-SFS53 to 153  
HC-RFS Series  
HC-UFS 72 152  
HC-SFS121 201  
HC-SFS202 352  
HC-SFS203 353  
HC-UFS202  
X
Y : 24.5  
[m/s2]  
5.9 or less  
X : 24.5  
Y : 49  
X : 24.5  
Y : 29.4  
HC-SFS301  
(Note)  
Vibration  
HC-KFS Series  
HC-MFS Series  
HC-UFS 13 to 73  
HC-SFS81  
X
Y : 161  
HC-SFS52 to 152  
HC-SFS53 to 153  
HC-RFS Series  
HC-UFS 72 152  
HC-SFS121 201  
HC-SFS202 352  
HC-SFS203 353  
HC-UFS202  
X
Y : 80  
[ft/s2]  
19.4 or less  
X : 80  
Y : 161  
X : 80  
Y : 96  
HC-SFS301  
Note. Except the servo motor with reduction gear.  
A - 3  
CAUTION  
Securely attach the servo motor to the machine. If attach insecurely, the servo motor may come off during  
operation.  
The servo motor with reduction gear must be installed in the specified direction to prevent oil leakage.  
Take safety measures, e.g. provide covers, to prevent accidental access to the rotating parts of the servo  
motor during operation.  
Never hit the servo motor or shaft, especially when coupling the servo motor to the machine. The encoder  
may become faulty.  
Do not subject the servo motor shaft to more than the permissible load. Otherwise, the shaft may break.  
When the equipment has been stored for an extended period of time, consult Mitsubishi.  
(2) Wiring  
CAUTION  
Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate.  
Do not install a power capacitor, surge absorber or radio noise filter (FR-BIF option) between the servo  
motor and servo amplifier.  
Connect the output terminals (U, V, W) correctly. Otherwise, the servo motor will operate improperly.  
Connect the servo motor power terminal (U, V, W) to the servo motor power input terminal (U, V, W)  
directly. Do not let a magnetic contactor, etc. intervene.  
Servo amplifier  
Servo motor  
Servo amplifier  
Servo motor  
U
V
U
V
U
V
U
V
M
M
W
W
W
W
Do not connect AC power directly to the servo motor. Otherwise, a fault may occur.  
The surge absorbing diode installed on the DC output signal relay of the servo amplifier must be wired in  
the specified direction. Otherwise, the emergency stop (EMG) and other protective circuits may not  
operate.  
Servo amplifier  
Servo amplifier  
COM  
COM  
(24VDC)  
(24VDC)  
Control  
output  
signal  
Control  
output  
signal  
RA  
RA  
When the cable is not tightened enough to the terminal block (connector), the cable or terminal block  
(connector) may generate heat because of the poor contact. Be sure to tighten the cable with specified  
torque.  
A - 4  
(3) Test run adjustment  
CAUTION  
Before operation, check the parameter settings. Improper settings may cause some machines to perform  
unexpected operation.  
The parameter settings must not be changed excessively. Operation will be insatiable.  
(4) Usage  
CAUTION  
Provide an external emergency stop circuit to ensure that operation can be stopped and power switched  
off immediately.  
Any person who is involved in disassembly and repair should be fully competent to do the work.  
Before resetting an alarm, make sure that the run signal of the servo amplifier is off to prevent an accident.  
A sudden restart is made if an alarm is reset with the run signal on.  
Do not modify the equipment.  
Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be caused by  
electronic equipment used near the servo amplifier.  
Burning or breaking a servo amplifier may cause a toxic gas. Do not burn or break a servo amplifier.  
Use the servo amplifier with the specified servo motor.  
The electromagnetic brake on the servo motor is designed to hold the motor shaft and should not be used  
for ordinary braking.  
For such reasons as service life and mechanical structure (e.g. where a ballscrew and the servo motor are  
coupled via a timing belt), the electromagnetic brake may not hold the motor shaft. To ensure safety,  
install a stopper on the machine side.  
(5) Corrective actions  
CAUTION  
When it is assumed that a hazardous condition may take place at the occur due to a power failure or a  
product fault, use a servo motor with electromagnetic brake or an external brake mechanism for the  
purpose of prevention.  
Configure the electromagnetic brake circuit so that it is activated not only by the servo amplifier signals but  
also by an external forced stop (EMG).  
Contacts must be open when  
servo-off, when an trouble (ALM)  
and when an electromagnetic brake  
interlock (MBR).  
Circuit must be  
opened during  
forced stop (EMG).  
Servo motor  
RA EMG  
24VDC  
Electromagnetic brake  
When any alarm has occurred, eliminate its cause, ensure safety, and deactivate the alarm before  
restarting operation.  
When power is restored after an instantaneous power failure, keep away from the machine because the  
machine may be restarted suddenly (design the machine so that it is secured against hazard if restarted).  
A - 5  
(6) Maintenance, inspection and parts replacement  
CAUTION  
With age, the electrolytic capacitor of the servo amplifier will deteriorate. To prevent a secondary accident  
due to a fault, it is recommended to replace the electrolytic capacitor every 10 years when used in general  
environment.  
Please consult our sales representative.  
(7) General instruction  
To illustrate details, the equipment in the diagrams of this Specifications and Instruction Manual may have  
been drawn without covers and safety guards. When the equipment is operated, the covers and safety  
guards must be installed as specified. Operation must be performed in accordance with this Specifications  
and Instruction Manual.  
About processing of waste  
When you discard servo amplifier, a battery (primary battery), and other option articles, please follow the law of  
each country (area).  
FOR MAXIMUM SAFETY  
These products have been manufactured as a general-purpose part for general industries, and have not  
been designed or manufactured to be incorporated in a device or system used in purposes related to  
human life.  
Before using the products for special purposes such as nuclear power, electric power, aerospace,  
medicine, passenger movement vehicles or underwater relays, contact Mitsubishi.  
These products have been manufactured under strict quality control. However, when installing the product  
where major accidents or losses could occur if the product fails, install appropriate backup or failsafe  
functions in the system.  
EEP-ROM life  
The number of write times to the EEP-ROM, which stores parameter settings, etc., is limited to 100,000. If  
the total number of the following operations exceeds 100,000, the servo amplifier and/or converter unit may  
fail when the EEP-ROM reaches the end of its useful life.  
Write to the EEP-ROM due to parameter setting changes  
Home position setting in the absolute position detection system  
Write to the EEP-ROM due to device changes  
Write to the EEP-ROM due to point table changes  
PRECAUTIONS FOR CHOOSING THE PRODUCTS  
Mitsubishi will not be held liable for damage caused by factors found not to be the cause of Mitsubishi;  
machine damage or lost profits caused by faults in the Mitsubishi products; damage, secondary damage,  
accident compensation caused by special factors unpredictable by Mitsubishi; damages to products other  
than Mitsubishi products; and to other duties.  
A - 6  
COMPLIANCE WITH EC DIRECTIVES  
1. WHAT ARE EC DIRECTIVES?  
The EC directives were issued to standardize the regulations of the EU countries and ensure smooth  
distribution of safety-guaranteed products. In the EU countries, the machinery directive (effective in  
January, 1995), EMC directive (effective in January, 1996) and low voltage directive (effective in January,  
1997) of the EC directives require that products to be sold should meet their fundamental safety  
requirements and carry the CE marks (CE marking). CE marking applies to machines and equipment  
into which servo amplifiers have been installed.  
(1) EMC directive  
The EMC directive applies not to the servo units alone but to servo-incorporated machines and  
equipment. This requires the EMC filters to be used with the servo-incorporated machines and  
equipment to comply with the EMC directive. For specific EMC directive conforming methods, refer to  
the EMC Installation Guidelines (IB(NA)67310).  
(2) Low voltage directive  
The low voltage directive applies also to servo units alone. Hence, they are designed to comply with  
the low voltage directive.  
This servo is certified by TUV, third-party assessment organization, to comply with the low voltage  
directive.  
(3) Machine directive  
Not being machines, the servo amplifiers need not comply with this directive.  
2. PRECAUTIONS FOR COMPLIANCE  
(1) Servo amplifiers and servo motors used  
Use the servo amplifiers and servo motors which comply with the standard model.  
Servo amplifier series :MR-J2S-10CP to MR-J2S-700CP  
MR-J2S-10CP1 to MR-J2S40CP1  
Servo motor series  
:HC-KFS  
HC-MFS  
HC-SFS  
HC-RFS  
HC-UFS  
HA-LFS  
HC-LFS  
(2) Configuration  
Control box  
Reinforced  
insulating type  
24VDC  
power  
supply  
Reinforced  
insulating  
transformer  
No-fuse  
breaker  
Magnetic  
contactor  
Servo  
motor  
Servo  
amplifier  
MC  
M
NFB  
(3) Environment  
Operate the servo amplifier at or above the contamination level 2 set forth in IEC60664-1. For this  
purpose, install the servo amplifier in a control box which is protected against water, oil, carbon, dust,  
dirt, etc. (IP54).  
A - 7  
(4) Power supply  
(a) Operate the servo amplifier to meet the requirements of the overvoltage category II set forth in  
IEC60664-1. For this purpose, a reinforced insulating transformer conforming to the IEC or EN  
Standard should be used in the power input section.  
(b) When supplying interface power from external, use a 24VDC power supply which has been  
insulation-reinforced in I/O.  
(5) Grounding  
(a) To prevent an electric shock, always connect the protective earth (PE) terminals (marked ) of the  
servo amplifier to the protective earth (PE) of the control box.  
(b) Do not connect two ground cables to the same protective earth (PE) terminal (marked  
connect the cables to the terminals one-to-one.  
). Always  
PE terminals  
PE terminals  
(c) If a leakage current breaker is used to prevent an electric shock, the protective earth (PE) terminals  
(marked ) of the servo amplifier must be connected to the corresponding earth terminals.  
(6) Wiring  
(a) The cables to be connected to the terminal block of the servo amplifier must have crimping  
terminals provided with insulating tubes to prevent contact with adjacent terminals.  
Crimping terminal  
Insulating tube  
Cable  
(b) Use the servo motor side power connector which complies with the EN Standard. The EN Standard  
compliant power connector sets are available from us as options. (Refer to section 14.1.4)  
(7) Auxiliary equipment and options  
(a) The circuit breaker and magnetic contactor used should be the EN or IEC standard-compliant  
products of the models described in section 14.2.2.  
(b) The sizes of the cables described in section 14.2.1 meet the following requirements. To meet the  
other requirements, follow Table 5 and Appendix C in EN60204-1.  
Ambient temperature: 40 (104) [  
Sheath: PVC (polyvinyl chloride)  
(
)]  
Installed on wall surface or open table tray  
(c) Use the EMC filter for noise reduction.  
(8) Performing EMC tests  
When EMC tests are run on a machine/device into which the servo amplifier has been installed, it  
must conform to the electromagnetic compatibility (immunity/emission) standards after it has  
satisfied the operating environment/electrical equipment specifications.  
For the other EMC directive guidelines on the servo amplifier, refer to the EMC Installation  
Guidelines (IB(NA)67310).  
A - 8  
CONFORMANCE WITH UL/C-UL STANDARD  
(1) Servo amplifiers and servo motors used  
Use the servo amplifiers and servo motors which comply with the standard model.  
Servo amplifier series :MR-J2S-10CP to MR-J2S-700CP  
MR-J2S-10CP1 to MR-J2S-40CP1  
Servo motor series  
:HC-KFS  
HC-MFS  
HC-SFS  
HC-RFS  
HC-UFS  
HA-LFS  
HC-LFS  
(2) Installation  
Install a cooling fan of 100CFM (2.8m3/min) air flow 4 [in] (10.16 [cm]) above the servo amplifier or  
provide cooling of at least equivalent capability.  
(3) Short circuit rating  
This servo amplifier conforms to the circuit whose peak current is limited to 5000A or less. Having  
been subjected to the short-circuit tests of the UL in the alternating-current circuit, the servo  
amplifier conforms to the above circuit.  
(4) Capacitor discharge time  
The capacitor discharge time is as listed below. To ensure safety, do not touch the charging section for  
15 minutes after power-off.  
Servo amplifier  
Discharge time [min]  
MR-J2S-10CP(1) 20CP(1)  
MR-J2S-40CP(1) 60CP  
MR-J2S-70CP to 350CP  
MR-J2S-500CP 700CP  
1
2
3
5
(5) Options and auxiliary equipment  
Use UL/C-UL standard-compliant products.  
(6) Attachment of a servo motor  
For the flange size of the machine side where the servo motor is installed, refer to “CONFORMANCE  
WITH UL/C-UL STANDARD” in the Servo Motor Instruction Manual.  
(7) About wiring protection  
For installation in United States, branch circuit protection must be provided, in accordance with the  
National Electrical Code and any applicable local codes.  
For installation in Canada, branch circuit protection must be provided, in accordance with the Canada  
Electrical Code and any applicable provincial codes.  
<<About the manuals>>  
This Instruction Manual and the MELSERVO Servo Motor Instruction Manual are required if you use  
the MR-J2S-CP for the first time. Always purchase them and use the MR-J2S-CP safely.  
Relevant manuals  
Manual name  
MELSERVO-J2-Super Series To Use the AC Servo Safely  
MELSERVO Servo Motor Instruction Manual  
EMC Installation Guidelines  
Manual No.  
IB(NA)0300010  
SH(NA)3181  
IB(NA)67310  
A - 9  
MEMO  
A - 10  
CONTENTS  
1. FUNCTIONS AND CONFIGURATION  
1- 1 to 1-26  
1.1 Introduction.............................................................................................................................................. 1- 1  
1.1.1 Function block diagram ................................................................................................................... 1- 1  
1.1.2 System configuration........................................................................................................................ 1- 4  
1.1.3 I/O devices ......................................................................................................................................... 1- 9  
1.2 Servo amplifier standard specifications............................................................................................... 1-10  
1.3 Function list ............................................................................................................................................ 1-12  
1.4 Model code definition ............................................................................................................................. 1-13  
1.5 Combination with servo motor.............................................................................................................. 1-14  
1.6 Structure.................................................................................................................................................. 1-15  
1.6.1 Part names ....................................................................................................................................... 1-15  
1.6.2 Removal and reinstallation of the front cover .............................................................................. 1-19  
1.7 Servo system with auxiliary equipment............................................................................................... 1-21  
2. INSTALLATION  
2- 1 to 2- 4  
2.1 Environmental conditions ...................................................................................................................... 2- 1  
2.2 Installation direction and clearances .................................................................................................... 2- 2  
2.3 Keep out foreign materials ..................................................................................................................... 2- 3  
2.4 Cable stress.............................................................................................................................................. 2- 4  
3. SIGNALS AND WIRING  
3- 1 to 3-42  
3.1 Standard connection example ................................................................................................................ 3- 2  
3.2 Internal connection diagram of servo amplifier ................................................................................... 3- 3  
3.3 I/O signals................................................................................................................................................. 3- 4  
3.3.1 Connectors and signal arrangements............................................................................................. 3- 4  
3.3.2 Signal (devices) explanations .......................................................................................................... 3- 5  
3.4 Detailed description of signals (devices) .............................................................................................. 3-13  
3.4.1 Forward rotation start Reverse rotation start Temporary stop/restart................................. 3-13  
3.4.2 Movement finish Rough match In position............................................................................... 3-14  
3.4.3 Override............................................................................................................................................ 3-16  
3.4.4 Torque limit...................................................................................................................................... 3-17  
3.5 Alarm occurrence timing chart ............................................................................................................. 3-19  
3.6 Interfaces................................................................................................................................................. 3-20  
3.6.1 Common line .................................................................................................................................... 3-20  
3.6.2 Detailed description of the interfaces............................................................................................ 3-21  
3.7 Input power supply circuit..................................................................................................................... 3-25  
3.7.1 Connection example ........................................................................................................................ 3-25  
3.7.2 Terminals.......................................................................................................................................... 3-27  
3.7.3 Power-on sequence........................................................................................................................... 3-28  
3.8 Connection of servo amplifier and servo motor ................................................................................... 3-29  
3.8.1 Connection instructions .................................................................................................................. 3-29  
3.8.2 Connection diagram ........................................................................................................................ 3-29  
3.8.3 I/O terminals .................................................................................................................................... 3-31  
3.9 Servo motor with electromagnetic brake ............................................................................................. 3-33  
1
3.10 Grounding ............................................................................................................................................. 3-37  
3.11 Servo amplifier terminal block (TE2) wiring method....................................................................... 3-38  
3.11.1 For the servo amplifier produced later than Jan. 2006............................................................. 3-38  
3.11.2 For the servo amplifier produced earlier than Dec. 2005.......................................................... 3-40  
3.12 Instructions for the 3M connector....................................................................................................... 3-42  
4. OPERATION  
4- 1 to 4-46  
4.1 When switching power on for the first time.......................................................................................... 4- 1  
4.1.1 Pre-operation checks ........................................................................................................................ 4- 1  
4.1.2 Startup............................................................................................................................................... 4- 2  
4.2 Automatic operation mode...................................................................................................................... 4- 5  
4.2.1 What is automatic operation mode? ............................................................................................... 4- 5  
4.2.2 Absolute value command system.................................................................................................... 4- 8  
4.2.3 Incremental value command system............................................................................................. 4-10  
4.2.4 Absolute value command/incremental value command specifying system ............................... 4-12  
4.2.5 Automatic operation timing chart.................................................................................................. 4-14  
4.2.6 Automatic continuous operation .................................................................................................... 4-15  
4.3 Manual operation mode ......................................................................................................................... 4-22  
4.3.1 Jog operation.................................................................................................................................... 4-22  
4.3.2 Manual pulse generator operation................................................................................................. 4-24  
4.4 Manual home position return mode ..................................................................................................... 4-26  
4.4.1 Outline of home position return..................................................................................................... 4-26  
4.4.2 Dog type home position return....................................................................................................... 4-28  
4.4.3 Count type home position return ................................................................................................... 4-30  
4.4.4 Data setting type home position return ........................................................................................ 4-31  
4.4.5 Stopper type home position return ................................................................................................ 4-32  
4.4.6 Home position ignorance (servo-on position defined as home position)..................................... 4-34  
4.4.7 Dog type rear end reference home position return....................................................................... 4-35  
4.4.8 Count type front end reference home position return.................................................................. 4-36  
4.4.9 Dog cradle type home position return ........................................................................................... 4-37  
4.4.10 Home position return automatic return function....................................................................... 4-38  
4.4.11 Automatic positioning function to the home position ................................................................ 4-39  
4.5 Absolute position detection system....................................................................................................... 4-40  
4.6 Serial communication operation ........................................................................................................... 4-43  
4.6.1 Positioning operation in accordance with point tables ................................................................ 4-43  
4.6.2 Positioning operation....................................................................................................................... 4-44  
4.6.3 Multidrop system............................................................................................................................. 4-44  
4.6.4 Group designation ........................................................................................................................... 4-45  
5. PARAMETERS  
5- 1 to 5-24  
5.1 Parameter list .......................................................................................................................................... 5- 1  
5.1.1 Parameter write inhibit ................................................................................................................... 5- 1  
5.1.2 List ..................................................................................................................................................... 5- 2  
5.2 Detailed explanation .............................................................................................................................. 5-19  
5.2.1 Electronic gear ................................................................................................................................. 5-19  
5.2.2 Changing the status display screen............................................................................................... 5-20  
5.2.3 S-pattern acceleration/deceleration ............................................................................................... 5-21  
5.2.4 Analog output................................................................................................................................... 5-21  
2
5.2.5 Changing the stop pattern using a limit switch...........................................................................5-24  
5.2.6 Alarm history clear.......................................................................................................................... 5-24  
5.2.7 Rough match output........................................................................................................................ 5-24  
5.2.8 Software limit................................................................................................................................... 5-24  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
6- 1 to 6-20  
6.1 Specifications ........................................................................................................................................... 6- 1  
6.2 System configuration............................................................................................................................... 6- 1  
6.3 Station setting.......................................................................................................................................... 6- 3  
6.4 Parameters............................................................................................................................................... 6- 4  
6.5 Point table ................................................................................................................................................ 6- 6  
6.6 Device assignment method..................................................................................................................... 6- 8  
6.7 Test operation ......................................................................................................................................... 6-12  
6.7.1 Jog operation.................................................................................................................................... 6-12  
6.7.2 Positioning operation....................................................................................................................... 6-14  
6.7.3 Motor-less operation........................................................................................................................ 6-16  
6.7.4 Output signal (DO) forced output .................................................................................................. 6-17  
6.7.5 Single-step feed................................................................................................................................ 6-18  
6.8 Alarm history.......................................................................................................................................... 6-19  
7. DISPLAY AND OPERATION  
7- 1 to 7-26  
7.1 Display flowchart..................................................................................................................................... 7- 1  
7.2 Status display .......................................................................................................................................... 7- 2  
7.2.1 Display transition............................................................................................................................. 7- 2  
7.2.2 Display examples.............................................................................................................................. 7- 3  
7.2.3 Status display list............................................................................................................................. 7- 4  
7.3 Diagnosis mode........................................................................................................................................ 7- 5  
7.3.1 Display transition............................................................................................................................. 7- 5  
7.3.2 Diagnosis mode list........................................................................................................................... 7- 6  
7.4 Alarm mode.............................................................................................................................................. 7- 8  
7.4.1 Display transition............................................................................................................................. 7- 8  
7.4.2 Alarm mode list................................................................................................................................. 7- 9  
7.5 Point table mode..................................................................................................................................... 7-11  
7.5.1 Point table transition ...................................................................................................................... 7-11  
7.5.2 Point table mode setting screen sequence..................................................................................... 7-12  
7.5.3 Operation method............................................................................................................................ 7-13  
7.6 Parameter mode ..................................................................................................................................... 7-15  
7.6.1 Parameter mode transition............................................................................................................. 7-15  
7.6.2 Operation example .......................................................................................................................... 7-16  
7.7 External I/O signal display.................................................................................................................... 7-18  
7.8 Output signal (DO) forced output......................................................................................................... 7-19  
7.9 Test operation mode............................................................................................................................... 7-20  
7.9.1 Mode change..................................................................................................................................... 7-20  
7.9.2 Jog operation.................................................................................................................................... 7-21  
7.9.3 Positioning operation....................................................................................................................... 7-22  
7.9.4 Motor-less operation........................................................................................................................ 7-23  
7.10 Teaching function ................................................................................................................................. 7-24  
7.10.1 Preparations for teaching ............................................................................................................. 7-24  
3
7.10.2 Position data setting method........................................................................................................ 7-25  
8. GENERAL GAIN ADJUSTMENT 8- 1 to 8-12  
8.1 Different adjustment methods ............................................................................................................... 8- 1  
8.1.1 Adjustment on a single servo amplifier.......................................................................................... 8- 1  
8.1.2 Adjustment using MR Configurator (servo configuration software)........................................... 8- 2  
8.2 Auto tuning .............................................................................................................................................. 8- 3  
8.2.1 Auto tuning mode ............................................................................................................................. 8- 3  
8.2.2 Auto tuning mode operation............................................................................................................ 8- 4  
8.2.3 Adjustment procedure by auto tuning............................................................................................ 8- 5  
8.2.4 Response level setting in auto tuning mode .................................................................................. 8- 6  
8.3 Manual mode 1 (simple manual adjustment)....................................................................................... 8- 7  
8.3.1 Operation of manual mode 1 ........................................................................................................... 8- 7  
8.3.2 Adjustment by manual mode 1 ....................................................................................................... 8- 7  
8.4 Interpolation mode ................................................................................................................................. 8-10  
8.5 Differences in auto tuning between MELSERVO-J2 and MELSERVO-J2-Super.......................... 8-11  
8.5.1 Response level setting ..................................................................................................................... 8-11  
8.5.2 Auto tuning selection....................................................................................................................... 8-11  
9. SPECIAL ADJUSTMENT FUNCTIONS  
9- 1 to 9-10  
9.1 Function block diagram .......................................................................................................................... 9- 1  
9.2 Machine resonance suppression filter ................................................................................................... 9- 1  
9.3 Adaptive vibration suppression control................................................................................................. 9- 3  
9.4 Low-pass filter ......................................................................................................................................... 9- 4  
9.5 Gain changing function........................................................................................................................... 9- 5  
9.5.1 Applications....................................................................................................................................... 9- 5  
9.5.2 Function block diagram ................................................................................................................... 9- 5  
9.5.3 Parameters........................................................................................................................................ 9- 6  
9.5.4 Gain changing operation.................................................................................................................. 9- 8  
10. INSPECTION  
10- 1 to 10- 2  
11. TROUBLESHOOTING  
11- 1 to 11- 10  
11.1 Trouble at start-up ..............................................................................................................................11- 1  
11.2 When alarm or warning has occurred...............................................................................................11- 2  
11.2.1 Alarms and warning list ..............................................................................................................11- 2  
11.2.2 Remedies for alarms.....................................................................................................................11- 3  
11.2.3 Remedies for warnings.................................................................................................................11- 9  
11.3 MR-DP60 external digital display error...........................................................................................11-10  
12. OUTLINE DIMENSION DRAWINGS  
12- 1 to 12- 8  
12.1 Servo amplifiers...................................................................................................................................12- 1  
12.2 Connectors............................................................................................................................................12- 6  
4
13. CHARACTERISTICS  
13- 1 to 13- 8  
13.1 Overload protection characteristics...................................................................................................13- 1  
13.2 Power supply equipment capacity and generated loss....................................................................13- 2  
13.3 Dynamic brake characteristics...........................................................................................................13- 4  
13.3.1 Dynamic brake operation.............................................................................................................13- 4  
13.3.2 The dynamic brake at the load inertia moment........................................................................13- 6  
13.4 Encoder cable flexing life....................................................................................................................13- 6  
13.5 Inrush currents at power-on of main circuit and control circuit ....................................................13- 7  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14- 1 to 14-50  
14.1 Options..................................................................................................................................................14- 1  
14.1.1 Regenerative options....................................................................................................................14- 1  
14.1.2 FR-BU2 brake unit.......................................................................................................................14- 9  
14.1.3 Power regeneration converter ....................................................................................................14-15  
14.1.4 Cables and connectors.................................................................................................................14-18  
14.1.5 Junction terminal block (MR-TB20)..........................................................................................14-26  
14.1.6 Maintenance junction card (MR-J2CN3TM) ............................................................................14-28  
14.1.7 External digital display (MR-DP60)..........................................................................................14-30  
14.1.8 Manual pulse generator (MR-HDP01) ......................................................................................14-32  
14.1.9 Battery (MR-BAT, A6BAT).........................................................................................................14-33  
14.2 Auxiliary equipment ..........................................................................................................................14-34  
14.2.1 Recommended wires....................................................................................................................14-34  
14.2.2 Circuit breakers, fuses, magnetic contactors............................................................................14-36  
14.2.3 Power factor improving reactors................................................................................................14-36  
14.2.4 Relays............................................................................................................................................14-37  
14.2.5 Surge absorbers ...........................................................................................................................14-37  
14.2.6 Noise reduction techniques.........................................................................................................14-38  
14.2.7 Leakage current breaker ............................................................................................................14-45  
14.2.8 EMC filter.....................................................................................................................................14-47  
14.2.9 Setting potentiometers for analog inputs..................................................................................14-50  
15. COMMUNICATION FUNCTIONS  
15- 1 to 15-40  
15.1 Configuration .......................................................................................................................................15- 1  
15.1.1 RS-422 configuration....................................................................................................................15- 1  
15.1.2 RS-232C configuration.................................................................................................................15- 2  
15.2 Communication specifications............................................................................................................15- 3  
15.2.1 Communication overview.............................................................................................................15- 3  
15.2.2 Parameter setting.........................................................................................................................15- 4  
15.3 Protocol.................................................................................................................................................15- 5  
15.4 Character codes ...................................................................................................................................15- 7  
15.5 Error codes ...........................................................................................................................................15- 8  
15.6 Checksum.............................................................................................................................................15- 8  
15.7 Time-out operation..............................................................................................................................15- 9  
15.8 Retry operation....................................................................................................................................15- 9  
15.9 Initialization........................................................................................................................................15-10  
15.10 Communication procedure example ...............................................................................................15-10  
5
15.11 Command and data No. list.............................................................................................................15-11  
15.11.1 Read commands.........................................................................................................................15-11  
15.11.2 Write commands........................................................................................................................15-14  
15.12 Detailed explanations of commands...............................................................................................15-17  
15.12.1 Data processing..........................................................................................................................15-17  
15.12.2 Status display ............................................................................................................................15-19  
15.12.3 Parameter...................................................................................................................................15-20  
15.12.4 External I/O signal statuses.....................................................................................................15-22  
15.12.5 Input devices ON/OFF ..............................................................................................................15-24  
15.12.6 Disable/enable of I/O devices (DIO) .........................................................................................15-25  
15.12.7 Input devices ON/OFF (test operation)...................................................................................15-26  
15.12.8 Test operation mode..................................................................................................................15-27  
15.12.9 Output signal pin ON/OFF output signal (DO) forced output..............................................15-30  
15.12.10 Alarm history...........................................................................................................................15-31  
15.12.11 Current alarm..........................................................................................................................15-32  
15.12.12 Point table ................................................................................................................................15-33  
15.12.13 Servo amplifier group designation.........................................................................................15-39  
15.12.14 Software version ......................................................................................................................15-40  
APPENDIX  
App- 1 to App- 4  
App 1. Status indication block diagram ................................................................................................. App- 1  
App 2. Junction terminal block (MR-TB20) terminal block labels...................................................... App- 2  
App 3. Combination of servo amplifier and servo motor ...................................................................... App- 3  
App 4. Change of connector sets to the RoHS compatible products.................................................... App- 4  
6
Optional Servo Motor Instruction Manual CONTENTS  
The rough table of contents of the optional MELSERVO Servo Motor Instruction Manual is introduced  
here for your reference. Note that the contents of the Servo Motor Instruction Manual are not included in  
the Servo Amplifier Instruction Manual.  
1. INTRODUCTION  
2. INSTALLATION  
3. CONNECTORS USED FOR SERVO MOTOR WIRING  
4. INSPECTION  
5. SPECIFICATIONS  
6. CHARACTERISTICS  
7. OUTLINE DIMENSION DRAWINGS  
8. CALCULATION METHODS FOR DESIGNING  
7
MEMO  
8
1. FUNCTIONS AND CONFIGURATION  
1. FUNCTIONS AND CONFIGURATION  
1.1 Introduction  
The MR-J2S-CP AC servo amplifier with built-in positioning functions is the MR-J2S-A general-purpose  
AC servo amplifier which incorporate single-axis positioning functions. These functions perform  
positioning operation by merely setting the position data (target positions), servo motor speeds,  
acceleration and deceleration time constants, etc. to point tables as if setting them in parameters. The  
servo amplifier is the most appropriate to configure a program-free, simple positioning system or to  
simplify a system, for example.  
There are 3 points of point tables as standard, and they can be increased up to 31 points by using the MR  
Configurator (servo configuration software).  
You can choose a configuration suitable for your purpose, e.g. simple positioning system using external  
I/O signals (DI/O), operation using DI/O and RS-422 serial communication, or multi drop operation using  
RS-422 serial communication.  
All servo motors are equipped with an absolute position encoder as standard. An absolute position  
detection system can be configured by merely adding a battery to the servo amplifier. Once the home  
position has been set, home position return is not required at power on, alarm occurrence, etc.  
The MR-J2S-CP AC servo amplifier with positioning function is made easier to use and higher in function  
by using it with the MR Configurator (servo configuration software).  
1.1.1 Function block diagram  
The function block diagram of this servo is shown below.  
1 - 1  
1. FUNCTIONS AND CONFIGURATION  
(1) MR-J2S-350CP or less  
Regenerative option  
Servo amplifier  
Diode  
Servo motor  
P
C
D
(Note 1)  
NFB  
Relay  
stack  
MC  
L1  
L2  
L3  
U
U
(Note 2)  
Power  
supply  
Current  
detector  
V
V
Regenerative  
transistor  
M
W
W
CHARGE  
lamp  
Dynamic  
brake  
(Note 3) Cooling fan  
L11  
B1  
B2  
Control  
power  
supply  
Electro-  
magnetic  
brake  
L21  
Base  
amplifier  
Voltage  
detection  
Current  
detection  
Overcurrent  
protection  
Encoder  
Current  
control  
Point table  
Acceleration Deceleration  
Position  
data  
No.  
Dwell Auxiliary  
Speed time  
time  
constant  
80  
constant  
1
2
3
4
5
6
7
8
1000 1000  
80  
100  
60  
0
0
0
0
1
1
0
Speed  
control  
2000 2000  
4000 2000  
500 2000  
100  
70  
500  
1000  
0
60  
80  
70  
1000 2000  
2000 1000  
1000 1000  
80  
80  
80  
0
Position  
control  
80  
80  
100  
100  
80  
0
0
0
00  
100  
1000  
0
0
1000  
000  
31 2000 2000  
80  
0
0
Position  
command  
creation  
MR-BAT  
Optional battery  
(for absolute position  
detection system)  
RS-232C  
RS-422  
A/D  
D/A  
I/F  
CN1A CN1B  
CN3  
Analog monitor  
(2 channels)  
Controller  
D I/O control  
Servo on  
Start  
RS-422/RS-232C  
Analog  
(2 channels)  
Failure, etc.  
To other servo  
amplifier  
Note 1. The built-in regenerative resistor is not provided for the MR-J2S-10CP (1).  
2. For 1-phase 230VAC, connect the power supply to L1, L2 and leave L3 open. Refer to section 1.2 for the power supply  
specification. L3 is not provided for a 1-phase 100 to120VAC power supply.  
3. Servo amplifiers MR-J2S-200CP have a cooling fan.  
1 - 2  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J2S-500CP 700CP  
Regenerative option  
Servo amplifier  
Diode  
Servo motor  
P
C N  
NFB  
Relay  
stack  
MC  
L1  
L2  
L3  
U
U
(Note)  
Power  
supply  
Current  
detector  
V
V
Regenerative  
transistor  
M
W
W
CHARGE  
lamp  
Dynamic  
brake  
Cooling fan  
L11  
B1  
B2  
Control  
power  
supply  
Electro-  
magnetic  
brake  
L21  
Base  
amplifier  
Voltage  
detection  
Current  
detection  
Overcurrent  
protection  
Encoder  
Current  
control  
Point table  
Acceleration Deceleration  
Position  
data  
Dwell  
Auxiliary  
No.  
Speed time  
time  
constant  
80  
constant  
1
2
3
4
5
6
7
8
1000 1000  
80  
100  
60  
0
0
0
0
1
1
0
Speed  
control  
2000 2000  
4000 2000  
500 2000  
100  
70  
500  
1000  
0
60  
80  
70  
1000 2000  
2000 1000  
1000 1000  
80  
80  
80  
0
Position  
control  
80  
80  
100  
100  
80  
0
0
0
00  
100  
1000  
0
0
1000  
000  
31 2000 2000  
80  
0
0
Position  
command  
creation  
MR-BAT  
Optional battery  
(for absolute position  
detection system)  
RS-232C  
RS-422  
A/D  
D/A  
I/F  
CN1A CN1B  
CN3  
Analog monitor  
(2 channels)  
Controller  
D I/O control  
Servo on  
Start  
RS-422/RS-232C  
Analog  
(2 channels)  
Failure, etc.  
To other servo  
amplifier  
Note. Refer to section 1.2 for the power supply specification.  
1 - 3  
1. FUNCTIONS AND CONFIGURATION  
1.1.2 System configuration  
This section describes operations using this servo.  
You can arrange any configurations from a single-axis to max. 32-axis systems. Further, the connector  
pins in the interface section allow you to assign the optimum signals to respective systems. (Refer to  
sections 1.1.3 and 3.3.2.) The MR Configurator (servo configuration software) (refer to chapter 6) and  
personal computer are required to change or assign devices.  
Set the following values to the point table.  
Name  
Setting range  
Unit  
0.001[mm]  
0.01[mm]  
0.1[mm]  
1[mm]  
[r/min]  
[ms]  
Position data  
999999 to 999999  
Servo motor speed  
Acceleration time constant  
Deceleration time constant  
Dwell  
0 to max. speed  
0 to 20000  
0 to 20000  
[ms]  
0 to 20000  
[ms]  
0 to 3  
Auxiliary function  
(Refer to section 4.2)  
(1) Operation using external input signals  
(a) Description  
The following configuration example assumes that external input signals are used to control all  
signals (devices).  
The I/O signals are as factory-set.  
(b) Configuration  
The following configuration uses external I/O signals. The personal computer is used with MR  
Configurator (servo configuration software) to set, change and monitor the parameters and point  
tables.  
Personal  
computer  
MR Configurator  
(Servo configuration  
Software)  
External I/O  
signals  
Servo amplifier  
CN1A CN1B  
RS–232C  
CN2 CN3  
Power supply  
Servo motor  
1 - 4  
1. FUNCTIONS AND CONFIGURATION  
(2) Operation using external input signals and communication  
(a) Description  
Communication can be used to change the point table data, choose the point table, change  
parameter values, and confirm monitor data, for example. Enter a forward rotation start (ST1) or  
reverse rotation start (ST2) through the external I/O. Use this system when position data/speed  
setting or the host personal computer or the like is used to change the parameter values, for  
example.  
(b) Configuration  
1) One servo amplifier is connected with the personal computer by RS-232C.  
Personal  
computer  
MR Configurator  
(Servo configuration  
Software)  
External I/O  
signals  
Servo amplifier  
CN1A CN1B  
RS–232C  
CN2 CN3  
Power supply  
Servo motor  
1 - 5  
1. FUNCTIONS AND CONFIGURATION  
2) Several (up to 32) servo amplifiers are connected with the personal computer by RS-422.  
Use parameter No. 16 to change the communication system.  
Personal  
computer  
MR Configurator  
(Servo configuration  
Software)  
External I/O  
signals  
Servo amplifier (axis 1)  
CN1A CN1B  
RS–232C  
RS–422  
CN2 CN3  
RS–232C/RS-422 converter  
(to be prepared by the customer)  
Power supply  
Servo motor  
RS–422  
External I/O  
signals  
Servo amplifier (axis 2)  
CN1A CN1B  
CN2 CN3  
Power supply  
To the next axis  
Servo motor  
1 - 6  
1. FUNCTIONS AND CONFIGURATION  
(3) Operation using communication  
(a) Description  
Analog input, forced stop (EMG) and other signals are controlled by external I/O signals and the  
other devices controlled through communication. Also, you can set each point table, choose the  
point table, and change or set parameter values, for example. Up to 32 axes may be controlled.  
(b) Configuration  
1) One servo amplifier is connected with the personal computer by RS-232C.  
MR Configurator  
(Servo configuration  
Software)  
Personal  
computer  
External I/O  
signals  
Servo amplifier  
CN1A CN1B  
RS–232C  
CN2 CN3  
Power supply  
Servo motor  
1 - 7  
1. FUNCTIONS AND CONFIGURATION  
2) Several (up to 32) servo amplifiers are connected with the personal computer by RS-422.  
Use parameter No. 16 to change the communication system.  
MR Configurator  
(Servo configuration  
Software)  
Personal  
computer  
External I/O  
signals  
Servo amplifier (axis 1)  
CN1A CN1B  
RS–232C  
RS–422  
CN2 CN3  
RS–232C/RS-422 converter  
(to be prepared by the customer)  
Power supply  
Servo motor  
RS–422  
External I/O  
signals  
Servo amplifier (axis 2)  
CN1A CN1B  
CN2 CN3  
Power supply  
To the next axis  
Servo motor  
1 - 8  
1. FUNCTIONS AND CONFIGURATION  
1.1.3 I/O devices  
This servo amplifier allows devices to be allocated to the pins of connector CN1A/CN1B as desired. The  
following devices can be allocated. For device details, refer to section 3.3.2.  
Factory-  
Factory-  
Input device  
Proximity dog  
Symbol  
Output device  
Symbol  
allocated pin  
allocated pin  
DOG  
SON  
LSP  
LSN  
ST1  
ST2  
MD0  
DI0  
CN1A-8  
CN1B-15  
CN1B-16  
CN1B-17  
CN1B-8  
CN1B-9  
CN1B-7  
CN1B-5  
CN1B-14  
Home position return completion  
Rough match  
ZP  
CPO  
MEND  
ALM  
RD  
CN1A-18  
CN1B-4  
CN1B-6  
CN1B-18  
CN1B-19  
Servo-on  
Forward rotation stroke end  
Reverse rotation stroke end  
Forward rotation start  
Reverse rotation start  
Automatic/manual selection  
Point table No. selection 1  
Point table No. selection 2  
Point table No. selection 3  
Point table No. selection 4  
Point table No. selection 5  
Forced stop  
Movement finish  
Trouble  
Ready  
Electromagnetic brake interlock  
Position range output  
Warning output  
MBR  
POT  
WNG  
BWNG  
TLC  
PUS  
INP  
DI1  
Battery warning output  
Limiting torque  
DI2  
DI3  
Temporary stop  
DI4  
In position  
EMG  
RES  
OVR  
TL  
Point No. output 1  
Point No. output 2  
Point No. output 3  
Point No. output 4  
Point No. output 5  
PT0  
Reset  
PT1  
Override selection  
PT2  
External torque limit selection  
Internal torque limit selection  
PT3  
TL2  
PC  
PT4  
Proportion control  
Temporary stop/restart  
Manual pulse generator  
multiplication 1  
Manual pulse generator  
multiplication 2  
Gain switch  
STP  
TP0  
TP1  
CDP  
TCH  
Teach  
1 - 9  
1. FUNCTIONS AND CONFIGURATION  
1.2 Servo amplifier standard specifications  
Servo amplifier  
MR-J2S-  
10CP 20CP 40CP 60CP 70CP 100CP 200CP 350CP 500CP 700CP 10CP1 20CP1 40CP1  
Item  
3-phase 200 to 230VAC, 50/60Hz  
or 1-phase 230VAC, 50/60Hz  
3-phase 200 to 230VAC:  
170 to 253VAC  
1-phase 230VAC: 207 to 253VAC  
1-phase 100 to  
120VAC 50/60Hz  
Voltage/frequency  
3-phase 200 to 230VAC, 50/60Hz  
3-phase 170 to 253VAC  
1-phase  
85 to 127VAC  
Permissible voltage fluctuation  
Permissible frequency fluctuation  
Power supply capacity  
Inrush current  
Within 5%  
Refer to section13.2  
Refer to section13.5  
Control system  
Dynamic brake  
Sine-wave PWM control, current control system  
Built-in  
Overcurrent shut-off, regenerative overvoltage shut-off, overload shut-off (electronic  
thermal relay), servo motor overheat protection, encoder error protection, regenerative  
brake error protection, undervoltage, instantaneous power failure protection, overspeed  
protection, excessive error protection  
Protective functions  
Operational  
Positioning by specifying the point table No. (31 points)  
specifications  
Position command  
input  
Set in point table. 1-point feed length setting range: 1[ m] to 999.999[mm]  
Point table  
number  
input  
Speed command  
input  
Set in point table. Acceleration/deceleration time is set in point table.  
S-pattern acceleration/deceleration time constant is set in parameter No.14.  
Signed absolute value command system, incremental value command system, signed  
absolute value command/incremental value command specifying system  
Positioning using RS-422 (232C) communication data  
System  
Operational  
specifications  
Position command  
input  
Setting through RS-422 (232C) communication  
1-point feed length setting range: 1[ m] to 999.999[mm]  
Setting through RS-422 (232C) communication  
Position  
data input  
Speed command  
input  
Acceleration/deceleration time is also set through RS-422 (232C) communication.  
S-pattern acceleration/deceleration time constant is set in parameter No.14.  
Signed absolute value command system, incremental value command system, signed  
absolute value command/incremental value command specifying system  
Point table number input, position data input system  
System  
Automatic Point table  
operation  
Positioning operation is performed once in accordance with the position and speed  
commands.  
mode  
Automatic continuous Varied speed operation (2 to 31 speeds), automatic continuous positioning operation (2 to  
operation  
31 points)  
Jog operation is performed in accordance with the parameter-set speed command by  
contact input or through RS-422 (232C) communication.  
Manual feed is made by manual pulse generator.  
Command pulse multiplication: 1, 10 or 100 is selected using parameter.  
Home position return is made starting with Z-phase pulse after passage of proximity dog.  
Home position address may be set. Home position shift distance may be set. Home position  
return direction may be selected.  
Manual  
operation  
mode  
Jog  
Manual pulse  
generator  
Dog type  
Automatic at-dog home position return return/automatic stroke return function  
Home position return is made by counting encoder pulses after contact with proximity dog.  
Home position address may be set. Home position shift value may be set. Home position  
return direction may be set.  
Automatic at-dog home position return return/automatic stroke return function  
Home position return is made without dog.  
Manual  
home  
position  
return  
mode  
Count type  
Data setting type  
Stopper type  
Home position may be set at any position by manual operation, etc. Home position address  
may be set.  
Home position return is made by pressing machine part against stroke end.  
Home position address may be set. Home position return direction may be set.  
1 - 10  
1. FUNCTIONS AND CONFIGURATION  
Servo amplifier  
MR-J2S-  
10CP 20CP 40CP 60CP 70CP 100CP 200CP 350CP 500CP 700CP 10CP1 20CP1 40CP1  
Item  
Position where servo-on (SON) is switched on is defined as home position.  
Home position address may be set.  
Home position  
ignorance  
(Servo-on position as  
home position)  
Home position return is made with respect to the rear end of a proximity dog.  
Home position address may be set. Home position shift value may be set. Home position  
return direction may be set.  
Automatic at-dog home position return return/automatic stroke return function  
Home position return is made with respect to the front end of a proximity dog.  
Home position address may be set. Home position shift value may be set. Home position  
return direction may be set.  
Dog type rear end  
reference  
Manual  
home  
position  
return  
mode  
Count type front end  
reference  
Automatic at-dog home position return return/automatic stroke return function  
Home position return is made with respect to the front end of a proximity dog by the first  
Z-phase pulse.  
Home position address may be set. Home position shift value may be set. Home position  
return direction may be set.  
Dog cradle type  
Automatic at-dog home position return return/automatic stroke return function  
High-speed automatic return to a defined home position.  
Automatic positioning to home  
position  
Absolute position detection, backlash function  
Overtravel prevention using external limit switch  
Software stroke limit, override using external analog signal  
Amplifier front button-operated teaching function/external teaching pendant input  
signal interface  
Other functions  
Structure  
Self-cooled,  
Self-cooled, open (IP00)  
Force-cooling, open (IP00)  
open (IP00)  
[
[
[
[
] 0 to 55 (non-freezing)  
] 32 to 131 (non-freezing)  
In Operation  
In storage  
Ambient  
temperature  
]
]
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
Ambient  
humidity  
In Operation  
In storage  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Ambient  
Altitude  
Vibration  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280ft) above sea level  
5.9 [m/s2] or less  
19.4 [ft/s2] or less  
[kg] 0.7  
[lb] 1.5  
0.7  
1.5  
1.1  
2.4  
1.1  
2.4  
1.7  
1.7  
2.0  
4.4  
2.0  
4.4  
4.9  
7.2  
0.7  
0.7  
1.5  
1.1  
2.4  
Mass  
3.75 3.75  
10.8 15.87 1.5  
1 - 11  
1. FUNCTIONS AND CONFIGURATION  
1.3 Function list  
The following table lists the functions of this servo. For details of the functions, refer to the reference field.  
Function  
Description  
Reference  
Select the required ones from among 31 preset point tables and  
perform operation in accordance with the set values.  
Use the external input signal or communication function to choose  
the point tables.  
Positioning by automatic operation  
Section 4.2  
Servo motor speed can be varied continuously until the preset  
moving distance is reached. (Max. set speeds: 31 speeds)  
By merely choosing one point table and starting operation,  
positioning can be executed continuously in accordance with  
several point tables.  
Varied speed operation  
Section 4.2.6 (2)  
Section 4.2.6 (1)  
Automatic continuous positioning  
operation  
Dog type, count type, data setting type, stopper type, home  
position ignorance, dog type rear end reference, count type front  
end reference, dog cradle type  
Manual home position return  
Section 4.4  
Up to 32 axes of MR-J2S-CP are controllable simultaneously by  
RS-422 communication.  
Section 4.6.3  
Chapter 15  
Multidrop communication  
High-resolution encoder  
High-resolution encoder of 131072 pulses/rev is used as a servo  
motor encoder.  
By merely setting the home position once, home position return  
need not be done at each power on.  
Absolute position detection system  
Gain changing function  
Section 4.5  
Section 9.5  
Section 9.3  
Section 9.4  
You can switch between gains during rotation and gains during  
stop or use an external signal to change gains during operation.  
Servo amplifier detects mechanical resonance and sets filter  
characteristics automatically to suppress mechanical vibration.  
Suppresses high-frequency resonance which occurs as servo  
system response is increased.  
Adaptive vibration suppression control  
Low-pass filter  
Analyzes the frequency characteristic of the mechanical system by  
simply connecting a MR Configurator (servo configuration  
software)-installed personal computer and servo amplifier.  
Can simulate machine motions on a personal computer screen on  
the basis of the machine analyzer results.  
Machine analyzer function  
Machine simulation  
Personal computer changes gains automatically and searches for  
overshoot-free gains in a short time.  
Gain search function  
Slight vibration suppression control  
Vibration of 1 pulse at servo motor stop is suppressed.  
The electronic gear is used to make adjustment so that the servo  
amplifier setting matches the machine moving distance. Also,  
changing the electronic gear value allows the machine to be moved  
at any multiplication ratio to the moving distance using the servo  
amplifier.  
Parameter No. 20  
Section 5.2.1  
Electronic gear  
Automatically adjusts the gain to optimum value if load applied to  
the servo motor shaft varies. Higher in performance than MR-J2  
series servo amplifier.  
Auto tuning  
Chapter 8  
Section 5.2.3  
Section 14.1.1  
S-pattern acceleration/deceleration time  
constant  
Acceleration/deceleration can be made smoothly.  
Used when the built-in regenerative resistor of the servo amplifier  
does not have sufficient regenerative capability for the  
regenerative power generated.  
Regenerative option  
Brake unit  
Used when the regenerative option cannot provide enough  
regenerative power.  
Can be used with the MR-J2S-500CP MR-J2S-700CP.  
Used when the regenerative option cannot provide enough  
regenerative power.  
Section 14.1.2  
Section 14.1.3  
Return converter  
Can be used with the MR-J2S-500CP MR-J2S-700CP.  
1 - 12  
1. FUNCTIONS AND CONFIGURATION  
Function  
Description  
Reference  
Analog monitor  
Alarm history  
The servo status is output in terms of voltage in real time.  
By using the MR Configurator (servo configuration software), the  
current alarm and five past alarm numbers are stored and  
displayed.  
Section 5.2.4  
Section 6.8  
Section 6.6  
Section 3.4.4  
By using the MR Configurator (servo configuration software), any  
devices can be assigned to 9 input, 5 output and 1 I/O pins.  
Servo motor-torque is limited.  
I/O signal selection (Device setting)  
Torque limit  
Parameter  
2 limit value  
1 limit value  
Analog input  
The servo motor speed is limited by analog input.  
The ratio of override to the set speed can be changed between 0 to  
200%.  
Override (speed limit)  
Section 3.4.3  
Status display  
The servo status is displayed.  
Section 7.2  
Section 6.7  
Jog operation, positioning operation, motor-less operation, DO  
forced output, 1-step feed  
Test operation mode  
The servo motor travel region can be limited using the forward  
rotation stroke end (LSP)/reverse rotation stroke end (LSN).  
The travel region is limited using parameters in terms of address.  
The function similar to that of a limit switch is limited by  
parameter.  
Limit switch  
Section 5.2.5  
Section 5.2.8  
Software limit  
1.4 Model code definition  
(1) Rating plate  
AC SERVO  
MITSUBISHI  
Model  
MODEL  
MR-J2S-60CP  
Capacity  
POWER : 600W  
INPUT : 3.2A 3PH 1PH200-230V 50Hz  
3PH 1PH200-230V 60Hz  
5.5A 1PH 230V 50/60Hz  
Applicable power supply  
OUTPUT : 170V 0-360Hz 3.6A  
Rated output current  
Serial number  
SERIAL : A5  
TC3  
AAAAG52  
PASSED  
MITSUBISHI ELECTRIC CORPORATION  
MADE IN JAPAN  
1 - 13  
1. FUNCTIONS AND CONFIGURATION  
(2) Model  
MR–J2S– CP  
MR–J2S–100CP or less  
MR–J2S–200CP 350CP  
Series  
Power Supply  
Symbol  
Power supply  
3-phase 200 to 230VAC  
(Note 1) 1-phase 230VAC  
None  
(Note 2)  
Rating plate  
1-phase 100V to 120VAC  
1
Rating plate  
Note 1. 1-phase 230V is supported  
by 750W or less.  
2. 1-phase 100V to 120V is  
supported by 400W or less.  
MR-J2S-500CP  
MR-J2S-700CP  
Built-in positioning functions  
Rated output  
Rated  
output [W]  
Rated  
output [W]  
Symbol  
Symbol  
10  
20  
40  
60  
70  
100  
200  
400  
600  
750  
100  
200  
350  
500  
700  
1000  
2000  
3500  
5000  
7000  
Rating plate  
Rating plate  
1.5 Combination with servo motor  
The following table lists combinations of servo amplifiers and servo motors. The same combinations apply  
to the models with electromagnetic brakes and the models with reduction gears.  
Servo motors  
Servo amplifier  
HC-SFS  
HC-UFS  
HC-KFS  
HC-MFS  
HC-RFS  
1000r/min 2000r/min 3000r/min  
2000r/min  
3000r/min  
MR-J2S-10CP(1)  
MR-J2S-20CP (1)  
MR-J2S-40CP (1)  
MR-J2S-60CP  
053 13  
23  
053 13  
23  
13  
23  
43  
43  
43  
52  
53  
MR-J2S-70CP  
73  
73  
72  
73  
MR-J2S-100CP  
MR-J2S-200CP  
MR-J2S-350CP  
MR-J2S-500CP  
MR-J2S-700CP  
81  
102  
103  
121 201 152 202 153 203  
103 153  
203  
152  
202  
301  
352  
502  
702  
353  
353 503  
352 502  
Servo motors  
Servo amplifier  
HA-LFS  
(Note 1)  
HC-LFS  
1000r/min  
1500r/min  
2000r/min  
MR-J2S-60CP  
MR-J2S-100CP  
MR-J2S-200CP  
MR-J2S-350CP  
MR-J2S-500CP  
MR-J2S-700CP  
52  
102  
152  
202  
302  
502  
702  
(Note 2)601 (Note 2)701M  
Note 1. These servo motors may not be connected depending on the production time of the servo amplifier. Please refer to Appendix 3.  
2. Consult us since the servo amplifier to be used with any of these servo motors is optional.  
1 - 14  
1. FUNCTIONS AND CONFIGURATION  
1.6 Structure  
1.6.1 Part names  
(1) MR-J2S-100CP or less  
Name/Application  
Reference  
Battery holder  
Contains the battery for absolute position data backup.  
Section4.5  
Battery connector (CON1)  
Used to connect the battery for absolute position data  
backup.  
Section4.5  
Chapter7  
Display  
The 5-digit, seven-segment LED shows the servo  
status and alarm number.  
Operation section  
Used to perform status display, diagnostic, alarm,  
parameter and point table setting operations.  
MODE  
SET  
UP  
DOWN  
UP DOWN  
MODE  
SET  
Used to set data.  
Chapter7  
Used to change the  
display or data in each  
mode.  
Used to change the  
mode.  
I/O signal connector (CN1A)  
Used to connect digital I/O signals.  
Section3.3  
Section3.3  
I/O signal connector (CN1B)  
Used to connect digital I/O signals.  
Communication connector (CN3)  
Used to connect a command device (RS-422/RS-232C)  
and output analog monitor data.  
Chapter6  
Chapter15  
Section14.1.4  
Name plate  
Section1.4  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Section3.3  
Section14.1.4  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Main circuit terminal block (TE1)  
Used to connect the input power supply and servo  
motor.  
Section3.7.2  
Section12.1  
Section3.7.2  
Section12.1  
Section14.1.1  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply and  
regenerative option.  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section3.10  
Fixed part (2 places)  
(For MR-J2S-70CP 100CP 3 places)  
1 - 15  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J2S-200CP MR-J2S-350CP  
POINT  
This servo amplifier is shown without the front cover. For removal of the  
front cover, refer to section 1.6.2.  
Reference  
Name/Application  
Battery holder  
Contains the battery for absolute position data backup.  
Section4.5  
Battery connector (CON1)  
Used to connect the battery for absolute position data  
backup.  
Section4.5  
Chapter7  
Display  
The 5-digit, seven-segment LED shows the servo  
status and alarm number.  
Operation section  
Used to perform status display, diagnostic, alarm,  
parameter and point table setting operations.  
MODE  
UP  
DOWN  
SET  
UP DOWN  
MODE  
SET  
Used to set data.  
Chapter7  
Used to change the  
display or data in each  
mode.  
Used to change the  
mode.  
I/O signal connector (CN1A)  
Used to connect digital I/O signals.  
Section3.3  
Section3.3  
I/O signal connector (CN1B)  
Used to connect digital I/O signals.  
Communication connector (CN3)  
Used to connect a command device (RS-422/RS-232C)  
and output analog monitor data.  
Chapter6  
Chapter15  
Section14.1.4  
Name plate  
Section1.4  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Section3.3  
Section14.1.4  
Main circuit terminal block (TE1)  
Used to connect the input power supply and servo  
motor.  
Section3.7.2  
Section12.1  
Section3.7.2  
Section12.1  
Section14.1.1  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply and  
regenerative option.  
Cooling fan  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section3.10  
Fixed part (4 places)  
1 - 16  
1. FUNCTIONS AND CONFIGURATION  
(3) MR-J2S-500CP  
POINT  
The servo amplifier is shown without the front cover. For removal of the  
front cover, refer to section 1.6.2.  
Name/Application  
Reference  
Battery connector (CON1)  
Used to connect the battery for absolute position data  
backup.  
Section4.5  
Battery holder  
Contains the battery for absolute position data backup.  
Section4.5  
Chapter7  
Display  
The 5-digit, seven-segment LED shows the servo  
status and alarm number.  
Operation section  
Used to perform status display, diagnostic, alarm,  
parameter and point table setting operations.  
MODE  
UP  
DOWN  
SET  
MODE UP  
DOWN SET  
Used to set data.  
Chapter7  
Used to change the  
display or data in each  
mode.  
Used to change the  
mode.  
Fixed part  
(4 places)  
I/O signal connector (CN1A)  
Section3.3  
Section3.3  
Used to connect digital I/O signals.  
I/O signal connector (CN1B)  
Used to connect digital I/O signals.  
Communication connector (CN3)  
Used to connect a command device (RS-422/RS-232C)  
and output analog monitor data.  
Chapter6  
Chapter15  
Section14.1.4  
Encoder connector (CN2)  
Section3.3  
Used to connect the servo motor encoder.  
Section14.1.4  
Charge lamp  
Lit to indicate that the main circuit is charged.  
While this lamp is lit, do not reconnect the cables.  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply and  
regenerative option.  
Section3.7.2  
Section12.1  
Main circuit terminal block (TE1)  
Used to connect the input power supply and servo  
motor.  
Section3.7.2  
Section12.1  
Section14.1.1  
Name plate  
Section1.4  
Cooling fan  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section3.10  
1 - 17  
1. FUNCTIONS AND CONFIGURATION  
(4) MR-J2S-700CP  
POINT  
The servo amplifier is shown without the front cover. For removal of the  
front cover, refer to next page.  
Reference  
Name/Application  
Battery connector (CON1)  
Used to connect the battery for absolute position data  
backup.  
Section4.5  
Battery holder  
Contains the battery for absolute position data backup.  
Section4.5  
Chapter7  
Display  
The 5-digit, seven-segment LED shows the servo  
status and alarm number.  
Operation section  
Used to perform status display, diagnostic, alarm,  
parameter and point table setting operations.  
MODE  
UP  
DOWN  
SET  
MODE  
UP  
DOWN SET  
Used to set data.  
Chapter7  
Used to change the  
display or data in each  
mode.  
Used to change the  
mode.  
I/O signal connector (CN1A)  
Used to connect digital I/O signals.  
Section3.3  
Section3.3  
I/O signal connector (CN1B)  
Used to connect digital I/O signals.  
Communication connector (CN3)  
Used to connect a command device (RS-422/RS-232C)  
and output analog monitor data.  
Chapter6  
Chapter15  
Section14.1.4  
Charge lamp  
Lit to indicate that the main circuit is charged.  
While this lamp is lit, do not reconnect the cables.  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply.  
Section3.7.2  
Section12.1  
Encoder connector (CN2)  
Section3.3  
Used to connect the servo motor encoder.  
Section14.1.4  
Section1.4  
Name plate  
Main circuit terminal block (TE1)  
Used to connect the input power supply, regenerative  
option and servo motor.  
Section3.7.2  
Section12.1  
Section14.1.1  
Cooling fan  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section3.10  
Fixed part  
(4 places)  
1 - 18  
1. FUNCTIONS AND CONFIGURATION  
1.6.2 Removal and reinstallation of the front cover  
Before removing or installing the front cover, turn off the power and wait for 15  
minutes or more until the charge lamp turns off. Then, confirm that the voltage  
between P and N is safe with a voltage tester and others. Otherwise, an electric  
shock may occur. In addition, always confirm from the front of the servo amplifier  
whether the charge lamp is off or not.  
WARNING  
(1) For MR-J2S-200CP or more  
Removal of the front cover  
1)  
Reinstallation of the front cover  
Front cover hook  
(2 places)  
2)  
2)  
Front cover  
1)  
Front cover socket  
(2 places)  
1) Hold down the removing knob.  
2) Pull the front cover toward you.  
1) Insert the front cover hooks into the front cover sockets of  
the servo amplifier.  
2) Press the front cover against the servo amplifier until the  
removing knob clicks.  
(2) For MR-J2S-500CP  
Removal of the front cover  
1)  
Reinstallation of the front cover  
Front cover hook  
(2 places)  
2)  
2)  
1)  
Front cover  
Front cover socket  
(2 places)  
1) Hold down the removing knob.  
2) Pull the front cover toward you.  
1) Insert the front cover hooks into the front cover sockets of  
the servo amplifier.  
2) Press the front cover against the servo amplifier until the  
removing knob clicks.  
1 - 19  
1. FUNCTIONS AND CONFIGURATION  
(3) For MR-J2S-700CP  
Removal of the front cover  
Reinstallation of the front cover  
Front cover  
hook  
(2 places)  
A)  
B)  
2)  
2)  
1)  
A)  
1)  
Front cover socket  
(2 places)  
1) Push the removing knob A) or B), and put you  
finger into the front hole of the front cover.  
2) Pull the front cover toward you.  
1) Insert the two front cover hooks at the bottom into the  
sockets of the servo amplifier.  
2) Press the front cover against the servo amplifier until the  
removing knob clicks.  
1 - 20  
1. FUNCTIONS AND CONFIGURATION  
1.7 Servo system with auxiliary equipment  
To prevent an electric shock, always connect the protective earth (PE) terminal  
(terminal marked ) of the servo amplifier to the protective earth (PE) of the control  
box.  
WARNING  
(1) MR-J2S-100CP or less  
(a) For 3-phase 200V to 230VAC or 1-phase 230VAC  
(Note 2)  
Power supply  
Options and auxiliary equipment  
Circuit breaker  
Options and auxiliary equipment  
Reference  
Reference  
Section 14.2.2 Cables  
Section 14.2.1  
Section 14.1.8  
Magnetic contactor  
Section 14.2.2 Manual pulse generator  
MR Configurator  
(Servo configuration software)  
External digital display  
Chapter 6  
Section 14.1.7  
Power factor improving reactor Section 14.2.3  
Regenerative option  
Section 14.1.1  
Circuit breaker  
(NFB) or fuse  
Command device  
Servo amplifier  
Junction terminal block  
To CN1A  
Manual pulse generator  
External digital display  
Magnetic  
contactor  
(MC)  
To CN1B  
To CN3  
Power  
factor  
improving  
reactor  
(FR-BAL)  
MR Configurator  
CHARGE  
(Servo configuration  
software  
Personal  
computer  
MRZJW3-SETUP151E)  
To CN2  
L1  
L2  
L3  
U
V
W
Protective earth (PE) terminal  
(Note 1)  
Encoder cable  
(Note 1)  
Power supply lead  
D
Control circuit terminal block  
L21  
L11  
P
Regenerative option  
Servo motor  
C
Note 1. The HC-SFS, HC-RFS, HC-UFS 2000r/min series have cannon connectors.  
2. A 1-phase 230VAC power supply may be used with the servo amplifier of MR-J2S-70CP or less.  
For 1-phase 230VAC, connect the power supply to L1 L2 and leave L3 open. Refer to section 1.2 for the power supply  
specification.  
1 - 21  
1. FUNCTIONS AND CONFIGURATION  
(b) For 1-phase 100V to 120VAC  
(Note 2)  
Power supply  
Options and auxiliary equipment  
Circuit breaker  
Options and auxiliary equipment  
Reference  
Reference  
Section 14.2.2 Cables  
Section 14.2.1  
Section 14.1.8  
Section 14.1.7  
Magnetic contactor  
Section 14.2.2 Manual pulse generator  
MR Configurator  
(Servo configuration software)  
External digital display  
Chapter 6  
Power factor improving reactor  
Section 14.1.1  
Section 14.2.3  
Circuit breaker  
(NFB) or fuse  
Regenerative option  
Servo amplifier  
Command device  
Junction terminal block  
To CN1A  
Magnetic  
contactor  
(MC)  
Manual pulse generator  
To CN1B  
To CN3  
External digital display  
MR Configurator  
(Servo configuration  
software  
CHARGE  
Personal  
computer  
Power  
factor  
MRZJW3-SETUP151E)  
To CN2  
improving  
reactor  
(FR-BAL)  
L1  
L2  
U
V
W
Protective earth (PE) terminal  
(Note 1)  
Encoder cable  
(Note 1)  
Power supply lead  
D
Control circuit terminal block  
L21  
L11  
P
Regenerative option  
Servo motor  
C
Note 1. The HC-SFS, HC-RFS, HC-UFS 2000 r/min series have cannon connectors.  
2. Refer to section 1.2 for the power supply specification.  
1 - 22  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J2S-200CP MR-J2S-350CP  
(Note)  
Options and auxiliary equipment  
Power supply  
Reference  
Options and auxiliary equipment  
Cables  
Reference  
Circuit breaker  
Section 14.2.2  
Section 14.2.2  
Section 14.2.1  
Section 14.1.8  
Magnetic contactor  
Manual pulse generator  
External digital display  
MR Configurator  
(Servo configuration software)  
Section 14.1.7  
Section 14.2.3  
Chapter 6  
Circuit  
Power factor improving reactor  
breaker  
(NFB) or  
fuse  
Regenerative option  
Section 14.1.1  
Servo amplifier  
Command device  
Junction terminal  
block  
To CN1A  
Magnetic  
contactor  
(MC)  
Manual pulse  
generator  
To CN1B  
To CN3  
External digital display  
Power  
factor  
improving  
reactor  
(FR-BAL)  
MR Configurator  
(Servo  
To CN2  
configuration  
software  
MRZJW3-  
SETUP151E)  
Personal  
computer  
L11  
L21  
L1  
L2  
L3  
U
V
W
P
C
Regenerative option  
Note. Refer to section 1.2 for the power supply specification.  
1 - 23  
1. FUNCTIONS AND CONFIGURATION  
(3) MR-J2S-500CP  
(Note 2)  
Power supply  
Options and auxiliary equipment  
Reference  
Options and auxiliary equipment  
Cables  
Reference  
Circuit breaker  
Section 14.2.2  
Section 14.2.2  
Section 14.2.1  
Section 14.1.8  
Circuit  
breaker  
(NFB) or  
Magnetic contactor  
Manual pulse generator  
External digital display  
MR Configurator  
fuse  
Section 14.1.7  
Chapter 6  
(Servo configuration software)  
Power factor improving reactor Section 14.2.3  
Regenerative option  
Section 14.1.1  
Magnetic  
contactor  
(MC)  
Command device  
Power  
factor  
improving  
reactor  
Servo amplifier  
Junction terminal  
block  
(FR-BAL)  
To CN1A  
Manual pulse  
generator  
L1  
L2  
L3  
To CN1B  
To CN3  
To CN2  
External digital display  
(Note 1)  
Regenerative option  
C
P
U
V
W
MR Configurator  
(Servo  
configuration  
software  
MRZJW3-  
Personal  
computer  
L11  
L21  
SETUP151E)  
Note 1. When using the regenerative option, remove the lead wires of the built-in regenerative resistor.  
2. Refer to section 1.2 for the power supply specification.  
1 - 24  
1. FUNCTIONS AND CONFIGURATION  
(4) MR-J2S-700CP  
Options and auxiliary equipment  
Reference  
Options and auxiliary equipment  
Reference  
Circuit breaker  
Section 14.2.2 Cables  
Section 14.2.1  
Section 14.1.8  
Magnetic contactor  
Section 14.2.2 Manual pulse generator  
(Note 2)  
Power supply  
MR Configurator  
(Servo configuration software)  
External digital display  
Chapter 6  
Section 14.1.7  
Power factor improving reactor Section 14.2.3  
Regenerative option  
Section 14.1.1  
Command device  
Circuit  
breaker  
(NFB) or  
fuse  
Junction terminal  
block  
Servo amplifier  
L11  
To CN1A  
L21  
Manual pulse  
generator  
Magnetic  
contactor  
(MC)  
To CN1B  
To CN3  
To CN2  
External digital display  
Power  
factor  
improving  
reactor  
(FR-BAL)  
MR Configurator  
(Servo  
configuration  
software  
Personal  
computer  
MRZJW3-  
SETUP151E)  
L3  
L2  
L1  
U
V
W
C
P
(Note 1)  
Regenerative option  
Note 1. When using the regenerative option, remove the lead wires of the built-in regenerative resistor.  
2. Refer to section 1.2 for the power supply specification.  
1 - 25  
1. FUNCTIONS AND CONFIGURATION  
MEMO  
1 - 26  
2. INSTALLATION  
2. INSTALLATION  
Stacking in excess of the limited number of products is not allowed.  
Install the equipment on incombustible material. Installing them directly or close to  
combustibles will lead to a fire.  
Install the equipment in a load-bearing place in accordance with this Instruction  
Manual.  
Do not get on or put heavy load on the equipment to prevent injury.  
Use the equipment within the specified environmental condition range. (For the  
environmental conditions, refer to section 2.1.)  
Provide an adequate protection to prevent screws, metallic detritus and other  
conductive matter or oil and other combustible matter from entering the servo  
amplifier.  
CAUTION  
Do not block the intake/exhaust ports of the servo amplifier. Otherwise, a fault may  
occur.  
Do not subject the servo amplifier to drop impact or shock loads as they are  
precision equipment.  
Do not install or operate a faulty servo amplifier.  
When the product has been stored for an extended period of time, consult  
Mitsubishi.  
When treating the servo amplifier, be careful about the edged parts such as the  
corners of the servo amplifier.  
2.1 Environmental conditions  
Environment  
Conditions  
In  
[
[
[
[
]
]
]
]
0 to 55 (non-freezing)  
32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
operation  
Ambient  
temperature  
In storage  
In operation  
In storage  
Ambient  
humidity  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Ambience  
Altitude  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280 ft) above sea level  
[m/s2] 5.9 [m/s2] or less  
[ft/s2] 19.4 [ft/s2] or less  
Vibration  
2 - 1  
2. INSTALLATION  
2.2 Installation direction and clearances  
Do not hold the front cover to transport the servo amplifier. The servo amplifier  
may drop.  
The equipment must be installed in the specified direction. Otherwise, a fault may  
CAUTION  
occur.  
Leave specified clearances between the servo amplifier and control box inside  
walls or other equipment.  
(1) Installation of one servo amplifier  
Control box  
Control box  
40mm  
(1.6 in.)  
or more  
Servo amplifier  
Wiring clearance  
70mm  
Up  
(2.8 in.)  
10mm  
10mm  
(0.4 in.)  
or more  
(0.4 in.)  
or more  
Down  
40mm  
(1.6 in.)  
or more  
2 - 2  
2. INSTALLATION  
(2) Installation of two or more servo amplifiers  
Leave a large clearance between the top of the servo amplifier and the internal surface of the control  
box, and install a cooling fan to prevent the internal temperature of the control box from exceeding the  
environmental conditions.  
Control box  
10mm  
(0.4 in.)  
or more  
100mm  
(4.0 in.)  
or more  
30mm  
30mm  
(1.2 in.)  
or more  
(1.2 in.)  
or more  
40mm  
(1.6 in.)  
or more  
(3) Others  
When using heat generating equipment such as the regenerative option, install them with full  
consideration of heat generation so that the servo amplifier is not affected.  
Install the servo amplifier on a perpendicular wall in the correct vertical direction.  
2.3 Keep out foreign materials  
(1) When installing the unit in a control box, prevent drill chips and wire fragments from entering the  
servo amplifier.  
(2) Prevent oil, water, metallic dust, etc. from entering the servo amplifier through openings in the control  
box or a cooling fan installed on the ceiling.  
(3) When installing the control box in a place where there are much toxic gas, dirt and dust, conduct an  
air purge (force clean air into the control box from outside to make the internal pressure higher than  
the external pressure) to prevent such materials from entering the control box.  
2 - 3  
2. INSTALLATION  
2.4 Cable stress  
(1) The way of clamping the cable must be fully examined so that flexing stress and cable's own weight  
stress are not applied to the cable connection.  
(2) For use in any application where the servo motor moves, fix the cables (encoder, power supply, brake)  
supplied with the servo motor, and flex the optional encoder cable or the power supply and brake  
wiring cables. Use the optional encoder cable within the flexing life range. Use the power supply and  
brake wiring cables within the flexing life of the cables.  
(3) Avoid any probability that the cable sheath might be cut by sharp chips, rubbed by a machine corner  
or stamped by workers or vehicles.  
(4) The flexing lives of the cables are shown below. In actuality, provide a little allowance for these values.  
For installation on a machine where the servo motor will move, the flexing radius should be made as  
large as possible. Refer to section 13.4 for the flexing life.  
2 - 4  
3. SIGNALS AND WIRING  
3. SIGNALS AND WIRING  
Any person who is involved in wiring should be fully competent to do the work.  
Before wiring, turn off the power and wait for 15 minutes or more until the charge  
lamp turns off. Then, confirm that the voltage between P and N is safe with a  
voltage tester and others. Otherwise, an electric shock may occur. In addition,  
always confirm from the front of the servo amplifier whether the charge lamp is off  
or not.  
WARNING  
Ground the servo amplifier and the servo motor securely.  
Do not attempt to wire the servo amplifier and servo motor until they have been  
installed. Otherwise, you may get an electric shock.  
The cables should not be damaged, stressed excessively, loaded heavily, or  
pinched. Otherwise, you may get an electric shock.  
Wire the equipment correctly and securely. Otherwise, the servo motor may  
misoperate, resulting in injury.  
Connect cables to correct terminals to prevent a burst, fault, etc.  
Ensure that polarity ( , ) is correct. Otherwise, a burst, damage, etc. may occur.  
The surge absorbing diode installed to the DC relay designed for control output  
should be fitted in the specified direction. Otherwise, the signal is not output due to  
a fault, disabling the forced stop (EMG) and other protective circuits.  
Servo amplifier  
Servo amplifier  
COM  
COM  
(24VDC)  
(24VDC)  
Control output  
signal  
Control output  
signal  
RA  
RA  
CAUTION  
Use a noise filter, etc. to minimize the influence of electromagnetic interference,  
which may be given to electronic equipment used near the servo amplifier.  
Do not install a power capacitor, surge suppressor or radio noise filter (FR-BIF  
option) with the power line of the servo motor.  
When using the regenerative resistor, switch power off with the alarm signal.  
Otherwise, a transistor fault or the like may overheat the regenerative resistor,  
causing a fire.  
Do not modify the equipment.  
During power-on, do not open or close the motor power line. Otherwise, a  
malfunction or faulty may occur.  
POINT  
CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of  
the connectors will lead to a failure. Connect them correctly.  
3 - 1  
3. SIGNALS AND WIRING  
3.1 Standard connection example  
Servo amplifier  
(Note 3, 7) (Note 3, 7)  
CN1A  
9
CN1A  
8
DOG  
COM  
Proximity dog  
(Note 4)  
RA5  
Home position  
return completion  
SG 10  
18 ZP  
10m (32.79ft.) or less  
(Note 3, 7) (Note 3, 7)  
10m (32.81ft.) or less  
(Note 12)  
CN1B  
15  
CN1B  
3
SON  
LSP  
VDD  
Servo-on  
16  
Forward rotation stroke end  
Reverse rotation stroke end  
COM  
CPO  
MEND  
13  
4
(Note 5)  
(Note 2, 4)  
17  
7
LSN  
MD0  
DI0  
RA1  
Rough match  
Automatic/manual selection  
Point table No. selection 1  
Point table No. selection 2  
Forward rotation start  
Movement finish  
6
RA2  
RA3  
RA4  
5
14  
8
DI1  
ST1  
ST2  
SG  
ALM  
RD  
18  
19  
Trouble (Note 6)  
Ready  
Reverse rotation start  
9
10  
Upper limit setting  
(Note 8) Override  
P15R 11  
(Note 3, 7)  
CN3  
2
1
VC  
LG  
4
3
MO1  
LG  
A
A
(Note 10)  
10k  
10k  
Monitor output  
Max. 1mA  
meter  
Upper limit setting  
(Note 9) Analog torque limit  
14 MO2  
LG  
12  
TLA  
SD  
Zero center  
13  
Plate  
Plate SD  
2m (6.56ft.) or less  
(Note 11)  
2m (6.56ft.) or less  
Personal  
computer  
MR Configurator  
(Servo Configuration  
software)  
(Note 10)  
Communication cable  
CN3  
(Note 1)  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal of the servo amplifier to the protective earth  
(PE) of the control box.  
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output  
signals, disabling the forced stop and other protective circuits.  
3. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.  
4. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA, supply interface power from  
external.  
5. When starting operation, always connect the forward/reverse rotation stroke end (LSN/LSP) with SG. (Normally closed  
contacts)  
6. Trouble (ALM) is connected with COM in normal alarm-free condition.  
7. The pins with the same signal name are connected in the servo amplifier.  
8. When using override (VC), make the override selection (OVR) device available.  
9. When using analog torque limit (TLA), make the external torque limit selection (TL) devices available.  
10. When connecting the personal computer together with monitor outputs 1, 2, use the maintenance junction card (MR-  
J2CN3TM). (Refer to section 14.1.6).  
11. Use MRZJW3-SETUP 151E.  
12. When using the internal power supply (VDD), always connect VDD-COM. Do not connect them when supplying external  
power. Refer to section 3.6.2.  
3 - 2  
3. SIGNALS AND WIRING  
3.2 Internal connection diagram of servo amplifier  
This section gives the internal connection diagram where the signal assignment is in the initial status.  
Servo amplifier  
CN1B  
24VDC  
3
VDD  
13  
COM  
CN1A  
18  
CN1A  
9
COM  
DOG  
SG  
ZP  
Approx. 4.7k  
8
10, 20  
CN1B  
4
CPO  
CN1B  
5
DI0  
MD0  
ST1  
ST2  
DI1  
6
MEND  
Approx. 4.7k  
Approx. 4.7k  
Approx. 4.7k  
Approx. 4.7k  
Approx. 4.7k  
7
8
9
18  
19  
ALM  
RD  
14  
15  
16  
17  
SON  
LSP  
LSN  
Approx. 4.7k  
Approx. 4.7k  
CN1A  
6
LA  
16  
SG 10, 20  
CN1A  
LAR  
7
17  
5
LB  
LBR  
OPC  
PG  
PP  
11  
13  
LZ  
Approx. 100  
Approx. 100  
Approx. 1.2k  
3
15  
14  
1
LZR  
OP  
LG  
NG  
NP  
12  
Approx. 1.2k  
2
Casing  
SD  
CN3  
4
MO1  
MO2  
RXD  
CN1B  
2
VC  
14  
2
TLA  
12  
15VDC  
P15R  
LG  
11  
1
TXD  
SDP  
SDN  
RDP  
RDN  
12  
9
SD Casing  
19  
5
CN1A  
P15R  
15  
PE  
4
3 - 3  
3. SIGNALS AND WIRING  
3.3 I/O signals  
3.3.1 Connectors and signal arrangements  
POINT  
The connector pin-outs shown above are viewed from the cable connector  
wiring section side.  
(1) Signal arrangement  
CN1A  
CN1B  
1
LG  
3
11  
OPC  
13  
1
11  
P15R  
13  
2
NP  
4
12  
2
12  
LG  
3
TLA  
VC  
14  
OP  
16  
4
14  
DI1  
16  
PP  
5
VDD  
5
COM  
15  
CPO  
P15R  
6
15  
6
Servo amplifier  
DI0  
7
LZ  
7
SON  
17  
LZR  
17  
MEND  
LSP  
LAR  
18  
LA  
8
8
18  
ALM  
20  
LB  
9
MD0  
9
LBR  
19  
LSN  
19  
ST1  
ZP  
20  
DOG  
10  
10  
COM  
RD  
ST2  
SG  
SG  
SG  
SG  
CN2  
CN3  
1
LG  
3
11  
LG  
13  
1
LG  
3
11  
LG  
13  
2
12  
LG  
14  
2
RXD  
4
12  
TXD  
14  
LG  
4
LG  
5
LG  
15  
MO1  
6
MO2  
16  
5
15  
6
MD  
8
16  
MDR  
18  
RDP  
7
RDN  
17  
7
MR  
9
17  
The connector frames are  
connected with the PE (earth)  
terminal inside the servo amplifier.  
8
18  
MRR  
19  
P5  
9
19  
10  
20  
10  
20  
BAT  
P5  
SDP  
SDN  
P5  
TRE  
P5  
3 - 4  
3. SIGNALS AND WIRING  
3.3.2 Signal (devices) explanations  
(1) I/O devices  
POINT  
The devices not indicated in the Connector Pin No. field of the I/O devices  
can be assigned to the connector CN1A/CN1B using the MR Configurator  
(servo configuration software).  
(a) Pins whose devices can be changed  
Refer to section 3.6.2 for the I/O interfaces (symbols in the I/O Division field in the table) of the  
corresponding connector pins.  
Pin type  
Connector pin No.  
CN1B-5  
I/O division  
Device in initial status  
Point table No. selection 1 (DI0)  
Point table No. selection 2 (DI1)  
Proximity dog (DOG)  
CN1B-14  
CN1A-8  
CN1B-15  
CN1B-16  
CN1B-17  
CN1B-7  
Servo-on (SON)  
Input-only pins  
DI-1  
Forward rotation stroke end (LSP)  
Reverse rotation stroke end (LSN)  
Automatic/manual selection (MD0)  
Forward rotation start (ST1)  
Reverse rotation start (ST2)  
No device has been assigned in the initial  
status. You can assign an I/O device using  
the MR Configurator (servo configuration  
software).  
CN1B-8  
CN1B-9  
I/O pin  
CN1A-19  
DI-1 or DO-1  
CN1B-4  
CN1B-6  
Rough match (CPO)  
Movement finish (MEND)  
Trouble (ALM)  
Output-only pins  
DO-1  
CN1B-18  
CN1B-19  
CN1A-18  
Ready (RD)  
Home position return completion(ZP)  
(b) Input devices  
Devices  
Connector  
pin No.  
Device name  
Functions/Applications  
symbol  
Forced stop  
EMG  
When EMG-SG are opened, the servo amplifier is placed in the forced stop status,  
the servo switches off, and the dynamic brake is operated to bring the servo motor  
to a sudden stop.  
Short EMG-SG in the forced stop status to cancel the forced stop status.  
Connect SON-SG to switch on the base circuit and make the servo amplifier ready  
to operate (servo-on).  
Servo-on  
Reset  
SON  
RES  
CN1B  
15  
Disconnect SON-SG to shut off the base circuit and coast the servo motor (servo-  
off) .  
Disconnect RES-SG for more than 50ms to reset the alarm.  
Some alarms cannot be deactivated by the reset signal. Refer to section 11.2.1  
If RES-SG are shorted in no alarm status, the base circuit is not shut off.  
Set "  
1
" in parameter No. 55 to shut off the base circuit.  
Since this device is not designed for stopping. Do not switch it on during operation.  
3 - 5  
3. SIGNALS AND WIRING  
Devices Connector  
Device name  
Functions/Applications  
symbol  
pin No.  
CN1B To start operation, short LSP-SG and/or LSN-SG. Open them to bring the motor to  
Forward rotation  
stroke end  
LSP  
16  
a sudden stop and make it servo-locked.  
Set "  
1" in parameter No. 22 to make a slow stop.  
(Refer to section 5.2.5.)  
(Note) Input signal  
Operation  
CCW  
direction  
CW  
LSP  
LSN  
direction  
1
0
1
0
1
1
0
0
Reverse rotation stroke  
end  
LSN  
ST1  
CN1B  
17  
Note. 0: LSP/LSN-SG off (open)  
1: SP/LSN-SG on (short)  
Forward rotation start  
CN1B 1. In the case of the absolute value command system.  
8
When ST1-SG are shorted in the automatic operation mode, positioning is  
executed once on the basis of the position data set to the point table.  
In home position return mode, home position return starts as soon as ST1-SG  
are shorted.  
In jog operation mode, the servo motor rotates in the forward rotation direction  
while ST1-SG are shorted.  
2. In the case of the incremental value command system.  
When ST1-SG are shorted in the automatic operation mode, positioning is  
executed once on the basis of the position data set to the point table.  
In home position return mode, home position return starts as soon as ST1-SG  
are shorted.  
In jog operation mode, the servo motor rotates in the forward rotation direction  
while ST1-SG are shorted.  
Forward rotation denotes the direction in which the address is incremented.  
3. In absolute value command /incremental value command specifying system  
When ST1-SG are shorted in the automatic operation mode, positioning is  
executed once on the basis of the position data set to the point table.  
In home position return mode, home position return starts as soon as ST1-SG  
are shorted.  
In jog operation mode, the servo motor rotates in the forward rotation direction  
while ST1-SG are shorted.  
Reverse rotation start  
ST2  
CN1B This device is used in the incremental value command system.  
9
When ST2-SG are shorted in the automatic operation mode, positioning is executed  
once in the reverse rotation direction on the basis of the position data set to the  
point table.  
In jog operation mode, the servo motor rotates in the reverse rotation direction  
while ST2-SG are shorted.  
Reverse rotation denotes the direction in which the address is decremented.  
The reverse rotation start (ST2) is also used as the start signal of the function to  
perform high-speed positioning to the home position. (Refer to section 4.4.11.)  
Automatic/manual  
selection  
MD0  
DOG  
CN1B Short MD0-SG to choose the automatic operation mode, or open them to choose the  
manual operation mode.  
CN1A When terminals DOG-SG are shorted, the proximity dog signal is detected. The  
7
Proximity dog  
8
polarity of dog detection input can be changed with the parameter.  
Polarity of proximity dog  
Parameter No.8  
detection input  
0
1
(initial value)  
DOG-SG are opened.  
DOG-SG are shorted.  
3 - 6  
3. SIGNALS AND WIRING  
Devices Connector  
Device name  
Functions/Applications  
symbol  
pin No.  
Point table No.  
selection 1  
DI0  
CN1B The following table lists the point table numbers that may be chosen by the  
5
combinations of DI0, DI1, DI2, DI3 and DI4.  
(Note)Input signal  
Point table No.  
Point table No.  
selection 2  
DI1  
CN1B  
14  
DI4  
DI3  
DI2  
DI1  
DI0  
0 (Manual home  
position return)  
0
0
0
0
0
Point table No.  
selection 3  
DI2  
DI3  
DI4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
2
Point table No.  
selection 4  
3
4
Point table No.  
selection 5  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Note. 0: DI0/DI1/DI2/DI3/DI4-SG off (open)  
1: DI0/DI1/DI2/DI3/DI4-SG on (short)  
Override selection  
External torque limit  
selection  
OVR  
TL  
Short OVR-SG to make override (VC) valid.  
Short TL-SG to make external analog torque limit valid.  
For more information, refer to section 3.4.4.  
Internal torque limit  
selection  
TL2  
PC  
Open TL2-SG to make the torque limit value set in parameter No.28 (TL1) valid, or  
short them to make the value set in parameter No.29 (TL2) valid.  
For more information, refer to section 3.4.4.  
Proportion control  
Connect PC-SG to switch the speed amplifier from the proportional integral type to  
the proportional type.  
If the servo motor at a stop is rotated even one pulse due to any external factor, it  
generates torque to compensate for a position shift. In such a case where the axis  
will be locked mechanically after Movement finish (MEND) has turned off, turning  
Proportion control (PC) on as soon as Movement finish (MEND) turns off can  
suppress unnecessary torque that attempts to compensate for a position shift.  
When the shaft is to be locked for a long time, switch on the proportion control (PC)  
and torque (TL) at the same time to make the torque less than the rated by the  
analog torque limit (TLA).  
3 - 7  
3. SIGNALS AND WIRING  
Devices Connector  
Functions/Applications  
Device name  
Temporary  
symbol  
pin No.  
STP  
Short STP-SG during automatic operation to make a temporary stop. Short STP-  
SG again to make a restart.  
stop/Restart  
Shorting the forward rotation start (ST1) or reverse rotation start (ST2) during a  
temporary stop is ignored. Switching from automatic operation mode to manual  
operation mode during a temporary stop clears the remaining moving distance.  
During home position return and jog operation, the temporary stop/restart input is  
ignored. Refer to section 4.2.6 (3).  
Manual pulse  
generator  
multiplication 1  
Manual pulse  
generator  
multiplication 2  
TP0  
TP1  
Used to select the multiplication factor of the manual pulse generator.  
When it is not selected, the parameter No.1 setting is made valid.  
(Note) Input signal  
Manual pulse generator  
multiplication factor  
TP1  
TP0  
0
0
1
1
0
1
0
1
Parameter No.1 setting  
1 time  
10 times  
100 times  
Note. 0: TP1/TP0-SG open  
1: TP1/TP0-SG shorted  
Gain switch  
Teach  
CDP  
TCH  
Connect CDP-SG to change the load inertia moment ratio into the parameter No.  
64 setting and the gain values into the values multiplied by the parameter No. 65  
to 67 settings.  
Used when performing teaching. Shorting TCH-SG in the teaching setting mode  
chooses this device and changes the position data of the point table No. to the  
current position. (Refer to section 7.10.)  
3 - 8  
3. SIGNALS AND WIRING  
(c) Output devices  
Devices Connector  
Device name  
Trouble  
Functions/Applications  
symbol  
pin No.  
CN1B ALM-SG are disconnected when power is switched off or the protective circuit is  
ALM  
18  
activated to shut off the base circuit. Without alarm, ALM-SG are connected within  
about 1s after power-on.  
Ready  
RD  
CN1B RD-SG are connected when the servo is switched on and the servo amplifier is  
19 ready to operate.  
CN1B MEND-SG are connected when the in-position device (INP) turns on and the  
Movement finish  
MEND  
6
command remaining distance is "0". (Refer to section 3.4.2.)  
MEND-SG are connected at servo on.  
Rough match  
CPO  
ZP  
CN1B CPO-SG are connected when the remaining command distance falls within the  
4
parameter-set rough match output range.  
This signal is not output while the base circuit is off. Servo-on connects CPO-SG.  
During home position return and manual operation, CPO-SG are kept connected.  
Home position return  
completion  
CN1A ZP-SG are connected on completion of home position return.  
18  
In the absolute position system, ZP-SG are connected when the servo amplifier is  
ready to operate but are disconnected if.  
1) SON-SG are opened.  
2) EMG-SG are opened.  
3) RES-SG are shorted.  
4) Alarm occurs.  
5) Limit switch opens.  
6) Home position return has not been made after the purchase of the product.  
7) Home position return has not been made after the occurrence of absolute position  
erasure (AL. 25) or absolute position counter warning (AL. E3).  
8) Home position return has not been made after the changing of the electronic gear  
value.  
9) Home position return has not been made after the absolute position system was  
made valid.  
10) The ST1 coordinate system (000 in parameter No.1) has been changed.  
11) Software limit is valid.  
12) Home position return completion.  
If the status is not any of 1) to 12) and the home position setting has already been  
completed at least once, home position return completion (ZP) is placed in the same  
output status as ready (RD).  
Electromagnetic brake  
interlock  
MBR  
POT  
In the servo-off or alarm status, MBR-SG are disconnected.  
When an alarm occurs, they are disconnected independently of the base circuit  
status.  
Position range (POT) is on when the current position is within the range set in  
parameters No. 50 to 53. If the current position is within the set range, the device  
is off when a home position return is not yet complete or while the base circuit is off  
(during servo off, alarm occurrence or alarm reset).  
When warning has occurred, WNG-SG are connected.  
When there is no warning, WNG-SG are disconnected within about 1s after power-  
on.  
Position range  
Warning  
WNG  
Battery warning  
BWNG  
BWNG-SG are connected when battery cable breakage warning (AL.92) or battery  
warning (AL.9F) has occurred.  
When there is no battery warning, BWNG-SG are disconnected within about 1s  
after power-on.  
Limiting torque  
Temporary stop  
In position  
TLC  
PUS  
INP  
TLC-SG are connected when the torque generated reaches the value set to the  
internal torque limit 1 (parameter No. 28), internal torque limit 1 (parameter No.  
29) or analog torque limit (TLA).  
PUS-SG are connected when deceleration to a stop is started by the temporary stop  
signal. PUS-SG is disconnected when operation is resumed by making the  
temporary stop signal valid again.  
INP-SG are connected when the number of droop pulses is in the preset in-position  
range. The in-position range can be changed using parameter No. 6.  
When the in-position range is increased, INP-SG may be kept connected during  
low-speed rotation. Servo-on connects INP-SG.  
3 - 9  
3. SIGNALS AND WIRING  
Devices Connector  
Device name  
Functions/Applications  
symbol  
pin No.  
Point table No. output 1  
PT0  
As soon as Movement finish (MEND) turns on, the point table No. is output as a 5-  
bit code.  
Point table No. output 2  
Point table No. output 3  
Point table No. output 4  
Point table No. output 5  
PT1  
PT2  
PT3  
PT4  
(Note) Output signal  
Point table No.  
PT4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PT3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
PT2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
PT1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
PT0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Note. 0: DI-SG open  
1: DI-SG shorted  
In any of the following states, PT0 to PT4-SG are opened.  
Power on  
Servo off  
During home position return  
Home position return completion  
In any of the following states, PT0 to PT4 maintain the status (shorted/open) prior  
to a change.  
At operation mode changing  
When the automatic/manual selection device (MD0) is turned from OFF to ON or  
from ON to OFF to switch the operation mode.  
During manual operation  
During execution of automatic positioning to the home position  
3 - 10  
3. SIGNALS AND WIRING  
(2) Input signal  
For the input interfaces (symbols in I/O column in the table), refer to section 3.6.2.  
Signal Connector  
I/O  
Signal  
Functions/Applications  
symbol  
PP  
pin No.  
CN1A-3 Used to connect the manual pulse generator (MR-HDP01).  
division  
Manual pulse  
generator  
For details, refer to section 14.1.8.  
NP  
CN1A-2  
CN1B-2  
Override  
VC  
10 to 10V is applied to across VC-LG to limit the servo motor speed.  
Apply 10[V] for 0[%] override, 0[V] for 100[%], or 10[V] for 200[%].  
Analog  
input  
Analog torque limit  
TLA  
CN1B To use this signal, set any of MR Configurator (servo configuration  
12 software) to make the external torque limit selection (TL) available.  
When the analog torque limit (TLA) is valid, torque is limited in the full Analog  
servo motor output torque range. Apply 0 to 10VDC across TLA-LG.  
Connect the positive terminal of the power supply to TLA. Maximum  
torque is generated at 10V. (Refer to in section 3.4.4.) Resolution:10bits  
input  
(3) Output signal  
For the output interfaces (symbols in I/O column in the table), refer to section 3.6.2.  
Signal Connector  
I/O  
Signal  
Functions/Applications  
symbol  
pin No.  
CN1A Outputs the zero-point signal of the encoder. One pulse is output per  
division  
Encoder Z-phase pulse  
(open collector)  
OP  
14  
servo motor revolution. OP and LG are connected when the zero-point  
position is reached. (Negative logic)  
DO-2  
The minimum pulse width is about 400 s. For home position return  
using this pulse, set the creep speed to 100r/min. or less.  
Encoder A-phase pulse  
(differential line driver)  
LA  
LAR  
LB  
CN1A Outputs pulses per servo motor revolution set in parameter No. 27 in the  
differential line driver system. In CCW rotation of the servo motor, the  
CN1A encoder B-phase pulse lags the encoder A-phase pulse by a phase angle  
6
DO-2  
DO-2  
DO-2  
16  
CN1A  
7
of /2.  
The relationships between rotation direction and phase difference of the  
A- and B-phase pulses can be changed using parameter No. 58.  
Encoder B-phase pulse  
(differential line driver)  
LBR  
LZ  
CN1A  
17  
Encoder Z-phase pulse  
(differential line driver)  
CN1A The same signal as OP is output in the differential line driver system.  
5
LZR  
MO1  
MO2  
CN1A  
15  
Analog monitor 1  
Analog monitor 2  
CN3  
4
Used to output the data set in parameter No.17 to across MO1-LG in  
terms of voltage. Resolution 10 bits  
Analog  
output  
Analog  
output  
CN3  
14  
Used to output the data set in parameter No.17 to across MO2-LG in  
terms of voltage. Resolution 10 bits  
3 - 11  
3. SIGNALS AND WIRING  
(4) Communication  
POINT  
Refer to chapter 15 for the communication function.  
Signal Connector  
Signal  
RS-422 I/F  
Functions/Applications  
symbol  
pin No.  
SDP  
CN3  
9
RS-422 and RS-232C functions cannot be used together.  
Choose either one in parameter No. 16.  
SDN  
RDP  
RDN  
TRE  
CN3  
19  
CN3  
5
CN3  
15  
RS-422 termination  
RS-232C I/F  
CN3  
10  
Termination resistor connection terminal of RS-422 interface.  
When the servo amplifier is the termination axis, connect this terminal to RDN  
(CN3-15).  
TXD  
RXD  
CN3  
2
RS-422 and RS-232C functions cannot be used together.  
Choose either one in parameter No. 16.  
CN3  
12  
(5) Power supply  
Signal Connector  
Signal  
Functions/Applications  
symbol  
pin No.  
I/F internal power  
supply  
VDD  
CN1B Used to output 24V 10% to across VDD-SG.  
3
When using this power supply for digital interface, connect it with COM.  
Permissible current : 80mA  
Digital I/F power  
supply input  
COM  
CN1A Used to input 24VDC (200mA or more) for input interface.  
Connect the positive ( ) terminal of the 24VDC external power supply.  
9
CN1B 24VDC 10%  
13  
Open collector power  
input  
OPC  
SG  
CN1A When you use a manual pulse generator , supply this terminal with the positive ( )  
11  
power of 24VDC.  
Digital I/F common  
CN1A Common terminal for input signals such as SON and EMG. Pins are connected  
10  
20  
internally.  
Separated from LG.  
CN1B  
10  
20  
15VDC power supply  
Control common  
P15R  
LG  
CN1A Outputs 15VDC to across P15R-LG. Available as power for VC and VLA.  
4
Permissible current: 30mA  
CN1B  
11  
CN1A Common terminal for TLA, VC, OP, MO1, MO2 and P15R.  
1
Pins are connected internally.  
CN1B  
1
CN3  
1, 11  
3, 13  
Shield  
SD  
Plate Connect the external conductor of the shield cable.  
3 - 12  
3. SIGNALS AND WIRING  
3.4 Detailed description of signals (devices)  
3.4.1 Forward rotation start Reverse rotation start Temporary stop/restart  
(1) A forward rotation start (ST1) or a reverse rotation start (ST2) should make the sequence which can  
be used after the main circuit has been established. These signals are invalid if it is switched on before  
the main circuit is established.  
Normally, it is interlocked with the ready signal (RD).  
(2) A start in the servo amplifier is made when the external start signal changes from OFF to ON. The  
delay time of the servo amplifier's internal processing is max. 3ms. The delay time of other signals is  
max. 10ms.  
3ms or less  
3ms or less  
Servo motor speed  
10ms  
or less  
Forward rotation start (ST1)  
or reverse rotation start (ST2)  
5ms or more  
Temporary stop/Restart (STP)  
(3) When a programmable controller is used, the ON time of the start/stop signal should be 5ms or longer  
to prevent a malfunction.  
(4) During operation, the forward rotation start (ST1) or reverse rotation start (ST2) is not accepted. The  
next operation should always be started after the rough match (CPO) is output with the rough match  
output range set to 0 or after the movement finish (MEND) is output.  
3 - 13  
3. SIGNALS AND WIRING  
3.4.2 Movement finish Rough match In position  
POINT  
If an alarm cause, etc. are removed and servo-on occurs after a stop is  
made by servo-off, alarm occurrence or Forced stop (EMG) ON during  
automatic operation, Movement finish (MEND), Rough-match, (CPO) and  
In position (INP) are turned on. To resume operation, confirm the current  
position and the selected point table No. for preventing unexpected  
operation.  
(1) Movement finish  
The following timing charts show the output timing relationships between the position command  
generated in the servo amplifier and the movement finished (MEND). This timing can be changed  
using parameter No. 6 (in-position range). MEND-SG are connected in the servo-on status.  
ON  
Forward rotation start (ST1)  
or reverse rotation start (ST2)  
OFF  
Position command  
3ms or less  
Servo motor speed  
Position command and  
servo motor speed  
In-position range  
ON  
Movement finish (MEND)  
OFF  
When parameter No. 6 is small  
ON  
Forward rotation start (ST1)  
or reverse rotation start (ST2)  
OFF  
Position command  
3ms or less  
Servo motor speed  
Position command and  
servo motor speed  
In-position range  
ON  
Movement finish (MEND)  
OFF  
When parameter No. 6 is large  
(2) Rough match  
The following timing charts show the relationships between the signal and the position command  
generated in the servo amplifier. This timing can be changed using parameter No. 12 (rough match  
output range). CPO-SG are connected in the servo-on status.  
Forward rotation start  
(ST1) or  
reverse rotation start  
(ST2)  
ON  
ON  
Forward rotation start  
(ST1) or  
reverse rotation start  
(ST2)  
OFF  
OFF  
Rough match output range  
3ms or less  
3ms or less  
Position command  
Position command  
ON  
ON  
Rough match (CPO)  
Rough match (CPO)  
OFF  
OFF  
When "0" is set in parameter No. 12  
When more than "0" is set in parameter No. 12  
3 - 14  
3. SIGNALS AND WIRING  
(3) In position  
The following timing chart shows the relationship between the signal and the feedback pulse of the  
servo motor. This timing can be changed using parameter No. 6 (in-position range). INP-SG are  
connected in the servo-on status.  
ON  
Forward rotation start (ST1)  
or reverse rotation start (ST2)  
Servo motor speed  
OFF  
In-position range  
3ms or less  
ON  
In position (INP)  
OFF  
When positioning operation is performed once  
ON  
Forward rotation start (ST1)  
or reverse rotation start (ST2)  
OFF  
3ms or less  
In-position range  
Forward  
rotation  
Servo motor speed  
Reverse  
rotation  
ON  
In position (INP)  
OFF  
When servo motor reverses rotation direction during automatic continuous operation  
3 - 15  
3. SIGNALS AND WIRING  
3.4.3 Override  
POINT  
When using the override (VC), make the override selection (OVR) device  
available.  
The override (VC) may be used to change the servo motor speed. The following table lists the signals and  
parameter related to the override.  
Item  
Name  
Remarks  
Analog input signal  
Override (VC)  
MR Configurator (servo configuration software)  
setting required.  
Contact input signal  
Parameter  
Override selection (OVR)  
No.25 override offset  
999 to 999mV  
(1) Override (VC)  
By applying a voltage ( 10 to 10V) to the override (VC) terminal, change values can be set from  
outside consecutively. The following graph shows the relationship between the input voltage and the  
ratio of actual speed to preset speed.  
Servo amplifier  
[%]  
200  
OVR  
Override selection (OVR)  
SG  
100  
VC  
LG  
SD  
Override (VC)  
10 to 10V  
0
0
10  
10  
[V]  
Override (VC) application voltage  
(2) Override selection (OVR)  
Used to make the override (VC) valid or invalid.  
Servo amplifier  
Motor  
Override selection  
(OVR)  
Override (VC)  
10 to 10V  
Using the override selection (OVR), choose a change value as follows.  
(Note)  
Speed change value  
External input signal  
OVR  
0
1
No change  
Override (VC) setting is made valid.  
Note. 0 : Off (open) across OVR-SG  
1 : On (shorted) across OVR-SG  
(3) Override offset (parameter No.25)  
Using parameter No.25, the offset voltage can be set relative to the input voltage for the override (VC).  
The setting is between 999 to 999mV.  
3 - 16  
3. SIGNALS AND WIRING  
3.4.4 Torque limit  
POINT  
To use the torque limit, make the external torque limit selection (TL) and  
internal torque limit selection (TL2) available.  
The following table lists the signals and parameters related to the torque limit.  
Item  
Name  
Remarks  
Analog input signal  
Analog torque limit (TLA)  
External torque limit selection (TL)  
Internal torque limit selection (TL2)  
Limiting torque (TLC)  
Contact input signals  
Contact output signal  
MR Configurator (servo configuration  
software) setting required.  
No.28 (internal torque limit 1)  
No.29 (internal torque limit 2)  
No.26 (torque limit offset)  
0 to 100%  
0 to 100%  
Parameters  
999 to 999mV  
Selection of the rotation direction in which  
torque limit is executed  
No.59 (function selection 2)  
The torque limit is available in two types: internal torque limit set in parameters and analog torque limit  
(TLA) using analog input signal. This function limits torque on the assumption that the maximum torque  
of the servo motor is 100%.  
(1) Internal torque limits 1, 2  
Use parameter No.28 and 29 to set the internal torque limit values. The following graph shows the  
torque relative to the setting.  
Max. torque  
0
0
100  
Torque limit value [%]  
(2) Analog torque limit (TLA)  
By applying a voltage (0 to 10V) to the analog torque limit (TLA) terminal, limit values can be set from  
outside consecutively. The following graph shows the relationship between input voltage and limit  
value.  
Depending on the servo amplifier, the limit value has about 5% variations to the input voltage. As this  
may not cause torque to be limited sufficiently at less than 0.05V, use this function at the voltage of  
0.05V or more.  
Refer to the following diagram when using the 15V power output (P15R) of the servo amplifier:  
Servo amplifier  
100  
TL  
SG  
P15R  
5%  
2k  
2k  
TLA  
LG  
0
Japan Resistor RRS10  
or equivalent  
0 0.05  
10  
SD  
TLA application voltage [V]  
TLA Application Voltage vs.  
Torque Limit Value  
Connection Example  
3 - 17  
3. SIGNALS AND WIRING  
(3) External torque limit selection (TL), internal torque limit selection (TL2)  
To use the external torque limit selection (TL) and internal torque limit selection (TL2), make them  
available using the MR Configurator (servo configuration software) (refer to chapter 6).  
These input signals may be used to choose the torque limit values made valid.  
(Note) External input signals  
Torque limit value made valid  
TL2  
TL  
0
0
Internal torque limit value 1 (parameter No. 28)  
TLA Parameter No. 28: Parameter No. 28  
TLA Parameter No. 28: TLA  
0
1
1
1
0
1
Parameter No. 29 Parameter No. 28: Parameter No. 28  
Parameter No. 29 Parameter No. 28: Parameter No. 29  
TLA Parameter No. 29: Parameter No. 29  
TLA Parameter No. 29: TLA  
Note. 0: TL/TL2-SG off (open)  
1: TL/TL2-SG on (short)  
(4) External torque limit offset (parameter No.26)  
Using parameter No.26, the offset voltage can be set relative to the input voltage of the analog torque  
limit (TLA). The setting is between 999 to 999mV.  
(5) Selection of rotation direction for torque limit execution (parameter No.59)  
Using parameter No.59, the rotation direction for torque limit execution can be selected.  
Rotation direction for torque limit execution  
Parameter No.59 setting  
CCW direction  
CW direction  
0
1
2
(initial value)  
For example, when “  
1
” is set in parameter No.59, torque limit is executed in the CCW direction  
but not in CW direction.  
CCW rotation: Torque limit is executed.  
CW rotation: Torque limit is not executed.  
3 - 18  
3. SIGNALS AND WIRING  
3.5 Alarm occurrence timing chart  
When an alarm has occurred, remove its cause, make sure that the operation  
signal is not being input, ensure safety, and reset the alarm before restarting  
operation.  
CAUTION  
As soon as an alarm occurs, turn off Servo-on (SON) and power off.  
When an alarm occurs in the servo amplifier, the base circuit is shut off and the servo motor is coated to a  
stop. Switch off the main circuit power supply in the external sequence. To reset the alarm, switch the  
control circuit power supply from off to on, press the "SET" button on the current alarm screen, or turn  
the reset (RES) from off to on. However, the alarm cannot be reset unless its cause is removed.  
(Note)  
Main circuit  
control circuit  
power supply  
ON  
OFF  
ON  
Power off  
Power on  
Base circuit  
OFF  
Dynamic brake Valid  
Invalid  
Brake operation  
Brake operation  
Servo-on  
(SON)  
ON  
OFF  
ON  
Ready  
(RD)  
OFF  
ON  
Trouble  
(ALM)  
OFF  
ON  
1s  
Reset  
(RES)  
OFF  
50ms or more  
60ms or more  
Alarm occurs.  
Remove cause of trouble.  
Note. Switch off the main circuit power as soon as an alarm occurs.  
(1) Overcurrent, overload 1 or overload 2  
If operation is repeated by switching control circuit power off, then on to reset the overcurrent  
(AL.32), overload 1 (AL.50) or overload 2 (AL.51) alarm after its occurrence, without removing  
its cause, the servo amplifier and servo motor may become faulty due to temperature rise.  
Securely remove the cause of the alarm and also allow about 30 minutes for cooling before  
resuming operation.  
(2) Regenerative alarm  
If operation is repeated by switching control circuit power off, then on to reset the regenerative  
(AL.30) alarm after its occurrence, the external regenerative resistor will generate heat,  
resulting in an accident.  
(3) Instantaneous power failure  
Undervoltage (AL.10) occurs when the input power is in either of the following statuses.  
A power failure of the control circuit power supply continues for 60ms or longer and the  
control circuit is not completely off.  
The bus voltage dropped to 200VDC or less for the MR-J2S- CP, or to 158VDC or less for the  
MR-J2S- CP1.  
(4) Incremental system  
When an alarm occurs, the home position is lost. When resuming operation after deactivating  
the alarm, make a home position return.  
3 - 19  
3. SIGNALS AND WIRING  
3.6 Interfaces  
3.6.1 Common line  
The following diagram shows the power supply and its common line.  
CN1A  
CN1B  
CN1A  
CN1B  
24VDC  
RA  
VDD  
ALM,etc  
COM  
DO-1  
SON,etc.  
Dl-1  
SG  
OPC  
Manual pulse generator  
MR-HDP01  
5V  
A(B)  
0V  
PP(NP)  
SG  
SG  
<Isolated>  
OP  
LG  
5V  
15VDC 10% 30mA  
P15R  
LA,etc  
Differential line driver  
LAR,etc  
output  
LG  
SD  
35mA or less  
TLA  
VC,  
etc.  
Analog input  
(
10V/max. current)  
MO1  
MO2  
CN3  
Analog monitor  
LG  
SD  
LG  
Single-phase  
100 to 200VAC  
SDP  
SDN  
RDP  
RXD L1  
RXD L2  
TXD  
RDN  
LG  
SD  
TXD  
LG  
E
Servo motor encoder  
CN2  
MR  
Servo motor  
M
MRR  
SD  
Ground  
3 - 20  
3. SIGNALS AND WIRING  
3.6.2 Detailed description of the interfaces  
This section gives the details of the I/O signal interfaces (refer to I/O Division in the table) indicated in  
sections 3.3.2. Refer to this section and connect the interfaces with the external equipment.  
(1) Digital input interface DI-1  
Give a signal with a relay or open collector transistor. Source input is also possible. Refer to (6) of this  
section.  
For use of internal power supply  
For use of external power supply  
Servo amplifier  
Do not connect  
VDD-COM.  
24VDC  
VDD  
Servo amplifier  
R: Approx. 4.7k  
COM  
24VDC  
VDD  
24VDC  
R: Approx. 4.7k  
200mA or more  
COM  
(Note)  
For a transistor  
SON, etc.  
Approx. 5mA  
SON, etc.  
Switch  
TR  
SG  
Switch  
V CES 1.0V  
I CEO 100  
SG  
A
Note. This also applies to the use of the external power supply.  
(2) Digital output interface DO-1  
A lamp, relay or photocoupler can be driven. Provide a diode (D) for an inductive load, or an inrush  
current suppressing resister (R) for a lamp load. (Permissible current: 40mA or less, inrush current:  
100mA or less) A maximum of 2.6V voltage drop occurs in the servo amplifier.  
(a) Inductive load  
For use of internal power supply  
For use of external power supply  
Servo amplifier  
Servo amplifier  
Do not connect  
VDD-COM.  
24VDC  
24VDC  
VDD  
VDD  
COM  
COM  
(Note)  
24VDC  
10%  
Load  
Load  
ALM, etc  
SG  
ALM, etc  
SG  
If the diode is not  
connected as shown,  
the servo amplifier  
will be damaged.  
If the diode is not  
connected as shown,  
the servo amplifier  
will be damaged.  
Note. If the voltage drop (maximum of 2.6V) interferes with the  
relay operation, apply high voltage (up to 26.4V) from  
external source.  
3 - 21  
3. SIGNALS AND WIRING  
(b) Lamp load  
For use of internal power supply  
For use of external power supply  
Servo amplifier  
Servo amplifier  
Do not connect  
24VDC  
24VDC  
VDD  
VDD  
VDD-COM.  
COM  
COM  
R
R
(Note)  
24VDC  
10%  
ALM, etc  
SG  
ALM, etc  
SG  
Note. If the voltage drop (maximum of 2.6V) interferes with the  
relay operation, apply high voltage (up to 26.4V) from  
external source.  
(3) Encoder pulse output DO-2  
(a) Open collector system  
Interface  
Max. output current : 35mA  
Servo amplifier  
Servo amplifier  
5 to 24VDC  
OP  
LG  
OP  
LG  
Photocoupler  
SD  
SD  
(b) Differential line driver system  
1) Interface  
Max. output current: 35mA  
Servo amplifier  
Servo amplifier  
LA  
(LB, LZ)  
LA  
(LB, LZ)  
Am26LS32 or equivalent  
150  
High-speed photocoupler  
100  
LAR  
LAR  
(LBR, LZR)  
(LBR, LZR)  
LG  
SD  
SD  
3 - 22  
3. SIGNALS AND WIRING  
2) Output pulse  
Servo motor CCW rotation  
LA  
LAR  
LB  
The time cycle (T) is determined by  
the setting of the parameter No. 27 and 58.  
T
LBR  
/2  
LZ  
LZR  
400 s or more  
OP  
(4) Analog input  
Input impedance 10k to 12k  
Servo amplifier  
15VDC  
P15R  
Upper limit setting 2k  
VC‚ etc  
2k  
Approx.  
10k  
LG  
SD  
(5) Analog output  
Output voltage 10V  
Max.1mA  
Max. output current  
Resolution : 10bits  
Servo amplifier  
10k  
MO1  
(MO2)  
Reading in one or  
both directions  
1mA meter  
A
LG  
SD  
3 - 23  
3. SIGNALS AND WIRING  
(6) Source input interface  
When using the input interface of source type, all Dl-1 input signals are of source type. Source output  
cannot be provided.  
For use of internal power supply  
For use of external power supply  
Servo amplifier  
Servo amplifier  
SG  
SG  
R: Approx. 4.7k  
COM  
(Note)  
R: Approx. 4.7k  
COM  
For a transistor  
Approx. 5mA  
SON,  
etc.  
Switch  
Switch  
SON,etc.  
24VDC  
VDD  
TR  
24VDC  
200mA or more  
VCES 1.0V  
ICEO 100 A  
Note. This also applies to the use of the external power supply.  
Since source output is not provided, make the following circuit.  
For use of internal power supply For use of external power supply  
Servo amplifier  
Servo amplifier  
Do not connect  
VDD-COM.  
24VDC  
24VDC  
VDD  
VDD  
COM  
COM  
(Note)  
24VDC  
10%  
Load  
Load  
ALM, etc  
SG  
ALM, etc  
SG  
If the polarity of diode  
is not correct, the  
servo amplifier will  
become faulty.  
If the polarity of diode  
is not correct, the  
servo amplifier will  
become faulty.  
Note. If the voltage drop (maximum of 2.6V) interferes with the  
relay operation, apply high voltage (up to 26.4V) from  
external source.  
3 - 24  
3. SIGNALS AND WIRING  
3.7 Input power supply circuit  
Always connect a magnetic contactor (MC) between the main circuit power supply  
and L1, L2, and L3 of the servo amplifier, and configure the wiring to be able to shut  
down the power supply on the side of the servo amplifier’s power supply. If a  
magnetic contactor (MC) is not connected, continuous flow of a large current may  
cause a fire when the servo amplifier malfunctions.  
CAUTION  
Use the trouble signal to switch power off. Otherwise, a regenerative transistor  
fault or the like may overheat the regenerative resistor, causing a fire.  
3.7.1 Connection example  
Wire the power supply and main circuit as shown below so that the servo-on (SON) turns off as soon as  
alarm occurrence is detected and power is shut off.  
A circuit breaker (NFB) must be used with the input cables of the power supply.  
(1) For 3-phase 200 to 230VAC power supply  
Forced  
ON  
OFF  
stop  
RA  
MC  
SK  
MC  
NFB  
MC  
Servo amplifier  
L1  
3-phase  
200 to 230 VAC  
L2  
L3  
L11  
L21  
EMG  
SON  
SG  
Forced stop  
Servo-on  
VDD  
COM  
ALM  
Trouble  
RA  
3 - 25  
3. SIGNALS AND WIRING  
(2) For 1-phase 100 to 120VAC or 1-phase 230VAC power supply  
Forced  
stop  
ON  
MC  
OFF  
RA  
MC  
SK  
NFB  
MC  
Power supply  
1-phase 100 to  
120VAC or  
Servo amplifier  
(Note)  
L1  
L2  
1-phase 230VAC  
L3  
L11  
L21  
EMG  
SON  
SG  
Forced stop  
Servo-on  
VDD  
COM  
ALM  
Trouble  
RA  
Note : Not provided for 1-phase 100 to 120VAC.  
3 - 26  
3. SIGNALS AND WIRING  
3.7.2 Terminals  
The positions and signal arrangements of the terminal blocks change with the capacity of the servo  
amplifier. Refer to section 12.1.  
Connection Target  
Symbol  
Description  
(Application)  
Supply L1, L2 and L3 with the following power.  
For 1-phase 230VAC, connect the power supply to L1/L2 and leave L3 open.  
Servo amplifier MR-J2S-10CP MR-J2S-100CP MR-J2S-10CP1  
Power supply  
to 70CP  
L1 L2 L3  
L1 L2  
to 700CP  
to 40CP1  
3-phase 200 to 230VAC,  
50/60Hz  
L1, L2, L3  
Main circuit power supply  
1-phase 230VAC,  
50/60Hz  
1-phase 100 to 120VAC,  
50/60Hz  
L1 L2  
Connect to the servo motor power supply terminals (U, V, W).  
U, V, W  
Servo motor output  
During power-on, do not open or close the motor power line. Otherwise, a  
malfunction or faulty may occur.  
Servo amplifier  
MR-J2S-10CP to  
700CP  
MR-J2S-10CP1 to  
40CP1  
Power supply  
1-phase 200 to 230VAC,  
50/60Hz  
L11, L21  
Control circuit power supply  
L11 L21  
1-phase 100 to 120VAC,  
50/60Hz  
L11 L21  
1) MR-J2S-350CP or less  
When using servo amplifier built-in regenerative resistor, connect between P-D  
terminals. (Wired by default)  
When using regenerative option, disconnect between P-D terminals and  
connect regenerative option to P terminal and C terminal.  
2) MR-J2S-500CP or 700CP  
P, C, D  
Regenerative option  
MR-J2S-500CP and 700CP do not have D terminal.  
When using servo amplifier built-in regenerative resistor, connect P terminal  
and C terminal. (Wired by default)  
When using regenerative option, disconnect P terminal and C terminal and  
connect regenerative option to P terminal and C terminal.  
Refer to section 14.1.1 for details.  
When using brake unit, connect to P terminal and N terminal.  
Do not connect to servo amplifier MR-J2S-200CP or less.  
For details, refer to section 14.1.2, 14.1.3.  
Return converter  
Brake unit  
N
Connect this terminal to the protective earth (PE) terminals of the servo motor  
and control box for grounding.  
Protective earth (PE)  
3 - 27  
3. SIGNALS AND WIRING  
3.7.3 Power-on sequence  
(1) Power-on procedure  
1) Always wire the power supply as shown in above section 3.7.1 using the magnetic contactor with  
the main circuit power supply (three-phase 200V: L1, L2, L3, single-phase 230V single-phase  
100V: L1, L2). Configure up an external sequence to switch off the magnetic contactor as soon as an  
alarm occurs.  
2) Switch on the control circuit power supply L11, L21 simultaneously with the main circuit power  
supply or before switching on the main circuit power supply. If the main circuit power supply is not  
on, the display shows the corresponding warning. However, by switching on the main circuit power  
supply, the warning disappears and the servo amplifier will operate properly.  
3) The servo amplifier can accept the servo-on (SON) about 1 to 2s after the main circuit power supply  
is switched on. Therefore, when servo-on (SON) is switched on simultaneously with the main circuit  
power supply, the base circuit will switch on in about 1 to 2s, and the ready (RD) will switch on in  
further about 20ms, making the servo amplifier ready to operate. (Refer to paragraph (2) of this  
section.)  
4) When the reset (RES) is switched on, the base circuit is shut off and the servo motor shaft coasts.  
(2) Timing chart  
SON accepted  
(1 to 2s)  
ON  
Power supply  
OFF  
ON  
Base circuit  
OFF  
60ms  
10ms  
10ms  
10ms  
Servo-on  
(SON)  
ON  
OFF  
60ms  
Reset  
(RES)  
ON  
OFF  
20ms  
20ms  
10ms  
20ms  
10ms  
Ready  
(RD)  
ON  
OFF  
(3) Forced stop  
Provide an external forced stop circuit to ensure that operation can be stopped and  
power switched off immediately.  
CAUTION  
Forced stop (EMG) can be used by making device setting on the MR Configurator (servo configuration  
software).  
Make up a circuit which shuts off main circuit power as soon as EMG-SG are opened at a forced stop.  
To ensure safety, always install an external forced stop switch across EMG-SG. By disconnecting  
EMG-SG, the dynamic brake is operated to bring the servo motor to a sudden stop. At this time, the  
display shows the servo forced stop warning (AL.E6).  
During ordinary operation, do not use the external forced stop (EMG) to alternate stop and run.  
The servo amplifier life may be shortened.  
Servo amplifier  
VDD  
COM  
EMG  
Forced stop  
SG  
3 - 28  
3. SIGNALS AND WIRING  
3.8 Connection of servo amplifier and servo motor  
3.8.1 Connection instructions  
Insulate the connections of the power supply terminals to prevent an electric  
WARNING  
shock.  
Connect the wires to the correct phase terminals (U, V, W) of the servo amplifier  
and servo motor. Otherwise, the servo motor will operate improperly.  
CAUTION  
Do not connect AC power supply directly to the servo motor. Otherwise, a fault  
may occur.  
POINT  
Do not apply the test lead bars or like of a tester directly to the pins of the  
connectors supplied with the servo motor. Doing so will deform the pins,  
causing poor contact.  
The connection method differs according to the series and capacity of the servo motor and whether or not  
the servo motor has the electromagnetic brake. Perform wiring in accordance with this section.  
(1) For grounding, connect the earth cable of the servo motor to the protective earth (PE) terminal of the  
servo amplifier and connect the ground cable of the servo amplifier to the earth via the protective  
earth of the control box. Do not connect them directly to the protective earth of the control panel.  
Control box  
Servo  
amplifier  
Servo motor  
PE terminal  
(2) Do not share the 24VDC interface power supply between the interface and electromagnetic brake.  
Always use the power supply designed exclusively for the electromagnetic brake.  
3.8.2 Connection diagram  
During power-on, do not open or close the motor power line. Otherwise, a  
CAUTION  
malfunction or faulty may occur.  
The following table lists wiring methods according to the servo motor types. Use the connection diagram  
which conforms to the servo motor used. For cables required for wiring, refer to section 14.2.1. For  
encoder cable connection, refer to section 14.1.4. For the signal layouts of the connectors, refer to section  
3.8.3.  
For the servo motor connector, refer to chapter 3 of the Servo Motor Instruction Manual.  
3 - 29  
3. SIGNALS AND WIRING  
Servo motor  
Connection diagram  
Servo amplifier  
Servo motor  
Motor  
U (Red)  
U
V
V (White)  
W (Black)  
(Green)  
W
24VDC  
(Note 1)  
B1  
B2  
(Note 2)  
HC-KFS053 (B) to 73 (B)  
HC-MFS053 (B) to 73 (B)  
HC-UFS13 (B) to 73 (B)  
Electromagnetic  
brake  
EMG  
To be shut off when servo-on (SON)  
switches off or by Trouble (ALM)  
CN2  
Encoder  
Encoder cable  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal ( ) of the  
servo amplifier to the protective earth (PE) of the control box.  
2. This circuit applies to the servo motor with electromagnetic brake.  
Servo amplifier  
Servo motor  
Motor  
U
V
U
V
W
W
(Note 1) 24VDC  
EMG  
B1  
B2  
HC-SFS121 (B) to 301 (B)  
HC-SFS202 (B) to 702 (B)  
HC-SFS203 (B) 353 (B)  
HC-UFS202 (B) to 502 (B)  
HC-RFS353 (B) to 503 (B)  
(Note 2)  
Electromagnetic  
brake  
To be shut off when servo-on (SON)  
switches off or by Trouble (ALM)  
CN2  
Encoder  
Encoder cable  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal ( ) of the  
servo amplifier to the protective earth (PE) of the control box.  
2. This circuit applies to the servo motor with electromagnetic brake.  
Servo amplifier  
Servo motor  
Motor  
U
V
U
V
W
W
24VDC  
(Note 1)  
HC-SFS81(B)  
B1  
B2  
(Note 2)  
HC-SFS52 (B) to 152 (B)  
HC-SFS53 (B) to 153 (B)  
HC-RFS103 (B) to 203 (B)  
HC-UFS72 (B) 152 (B)  
EMG  
Electromagnetic  
brake  
To be shut off when servo-on (SON)  
switches off or by Trouble (ALM)  
CN2  
Encoder  
Encoder cable  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal ( ) of the  
servo amplifier to the protective earth (PE) of the control box.  
2. This circuit applies to the servo motor with electromagnetic brake.  
3 - 30  
3. SIGNALS AND WIRING  
3.8.3 I/O terminals  
(1) HC-KFS HC-MFS HC-UFS3000r/min series  
Encoder connector signal arrangement  
Power supply lead  
4-AWG19 0.3m (0.98ft.)  
1
MR  
4
2
MRR  
5
3
BAT  
6
Power supply connector (Molex)  
Without electromagnetic brake  
5557-04R-210 (receptacle)  
5556PBTL (Female terminal)  
With electromagnetic brake  
5557-06R-210 (receptacle)  
5556PBTL (Female terminal)  
a
MD  
7
MDR  
8
Encoder cable 0.3m (0.98ft.)  
With connector 1-172169-9  
(Tyco Electronics)  
b
9
P5  
LG  
SHD  
Power supply  
connector  
View a  
Power supply  
connector  
5557-06R-210  
Pin  
1
2
3
4
Signal  
Pin  
1
2
3
4
Signal  
U
V
5557-04R-210  
U
V
W
1
2
3
4
1
2
3
4
5
6
W
(Earth)  
(Earth)  
(Note)  
View b  
5
6
B1  
B2  
View b  
(Note)  
Note:For the motor with  
electromagnetic brake,  
supply electromagnetic  
brake power (24VDC).  
There is no polarity.  
3 - 31  
3. SIGNALS AND WIRING  
(2) HC-SFS HC-RFS HC-UFS2000 r/min series  
Servo motor side connectors  
Servo motor  
Electromagnetic  
For power supply For encoder  
brake connector  
HC-SFS81(B)  
The connector  
for power is  
shared.  
CE05-2A22-  
23PD-B  
HC-SFS52(B) to 152(B)  
HC-SFS53(B) to 153(B)  
HC-SFS121(B) to 301(B)  
HC-SFS202(B) to 502 (B)  
HC-SFS203(B) 353(B)  
CE05-2A24-  
10PD-B  
MS3102A10SL-  
4P  
CE05-2A32-  
HC-SFS702(B)  
17PD-B  
MS3102A20-  
29P  
CE05-2A22-  
23PD-B  
HC-RFS103(B) to 203 (B)  
HC-RFS353(B) 503(B)  
HC-UFS72(B) 152(B)  
HC-UFS202(B) to 502(B)  
a
The connector  
for power is  
shared.  
CE05-2A24-  
10PD-B  
Encoder connector  
b
CE05-2A22-  
23PD-B  
c
Brake connector  
Power supply connector  
CE05-2A24-  
10PD-B  
MS3102A10SL-  
4P  
Power supply connector signal arrangement  
CE05-2A22-23PD-B  
Key  
CE05-2A24-10PD-B  
CE05-2A32-17PD-B  
Key  
Key  
Pin  
Signal  
U
V
W
(Earth)  
Pin  
A
B
C
D
E
Signal  
Pin  
A
B
C
D
Signal  
U
V
W
(Earth)  
U
V
W
A
B
C
D
E
F
F
E
F
A
C
A
G
H
A
B
D
C
B
E
B
G
C
D
(Earth)  
(Note) B1  
(Note) B2  
D
View c  
View c  
F
(Note) B1  
(Note) B2  
G
H
G
Note:For the motor with  
Note:For the motor with  
electromagnetic brake,  
supply electromagnetic  
brake power (24VDC).  
There is no polarity.  
electromagnetic brake,  
supply electromagnetic  
brake power (24VDC).  
There is no polarity.  
Encoder connector signal arrangement  
Electromagnetic brake connector signal arrangement  
MS3102A20-29P  
Key  
MS3102A10SL-4P  
Key  
Pin  
A
B
Signal  
(Note)B1  
(Note)B2  
Pin  
Signal  
Pin  
Signal  
M
B
A
C
L
N
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
S
T
MD  
MDR  
MR  
D
K
T
P
A
B
J
E
S
R
Note:For the motor with  
electromagnetic brake,  
supply electromagnetic  
brake power (24VDC).  
There is no polarity.  
F
H
G
MRR  
SD  
View a  
View b  
BAT  
LG  
LG  
P5  
3 - 32  
3. SIGNALS AND WIRING  
3.9 Servo motor with electromagnetic brake  
Configure the electromagnetic brake operation circuit so that it is activated not only  
by the servo amplifier signals but also by an external forced stop (EMG).  
Contacts must be open when  
Circuit must be  
opened during  
forced stop (EMG).  
servo-on (SON) is off or when a trouble (ALM)  
is present when a electromagnetic brake  
interlock (MBR).  
Servo motor  
RA EMG  
24VDC  
CAUTION  
Electromagnetic brake  
The electromagnetic brake is provided for holding the motor shaft. Do not use it for  
ordinary braking.  
Before performing the operation, be sure to confirm that the electromagnetic brake  
operates properly.  
POINT  
For the power supply capacity, operation delay time and other  
specifications of the electromagnetic brake, refer to the Servo Motor  
Instruction Manual.  
Note the following when the servo motor equipped with electromagnetic brake is used.  
1) In the device setting of the MR Configurator (servo configuration software), make the  
electromagnetic brake interlock (MBR) available.  
2) Do not share the 24VDC interface power supply between the interface and electromagnetic brake.  
Always use the power supply designed exclusively for the electromagnetic brake.  
3) The brake will operate when the power (24VDC) switches off.  
4) While the reset (RES) is on, the base circuit is shut off. When using the servo motor with a vertical  
shaft, use the electromagnetic brake interlock (MBR).  
5) Turn off the servo-on (SON) after the servo motor has stopped.  
(1) Connection diagram  
Servo amplifier  
Servo motor  
Forced  
stop  
RA  
B1  
Z
VDD  
COM  
MBR  
RA  
24VDC  
B2  
(2) Setting  
1) In the device setting of the MR Configurator (servo configuration software), make the  
electromagnetic brake interlock (MBR) available.  
2) Using parameter No. 33 (electromagnetic brake sequence output), set a time delay (Tb) at servo-off  
from electromagnetic brake operation to base circuit shut-off as in the timing chart shown in (3) of  
this section.  
3 - 33  
3. SIGNALS AND WIRING  
(3) Timing charts  
(a) Servo-on (SON) command (from controller) ON/OFF  
Tb (ms) after servo-on (SON) is switched off, servo lock is released and the servo motor coasts.  
If the electromagnetic brake is made valid in the servo lock status, the brake life may be shorter.  
For use in vertical lift and similar applications, therefore, set delay time (Tb) to the time which is  
about equal to the electromagnetic brake operation delay time and during which the load will not  
drop.  
Coasting  
Servo motor speed  
Base circuit  
0 r/min  
ON  
(60ms)  
(80ms)  
Tb  
OFF  
Electromagnetic  
brake operation  
delay time  
Electromagnetic  
brake interlock  
(MBR)  
(Note 1) ON  
OFF  
ON  
Servo-on(RYn0)  
OFF  
(Note 3)  
Forward rotation start  
(ST1) or reverse rotation  
start (ST2)  
ON  
OFF  
Release  
Activate  
Electromagnetic  
brake  
Release delay time and external relay (Note 2)  
Note 1. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
2. Electromagnetic brake is released after delaying for the release delay time of electromagnetic brake and operation time of  
external circuit relay. For the release delay time of electromagnetic brake, refer to the Servo Motor Instruction Manual.  
3. After the electromagnetic brake is released, turn ON the ST1 or ST2.  
(b) Forced stop (EMG) ON/OFF  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Electromagnetic brake  
Forward  
rotation  
0r/min  
Servo motor speed  
Base circuit  
Electromagnetic brake release  
(180ms)  
(10ms)  
ON  
OFF  
(180ms)  
(Note) ON  
Electromagnetic brake  
operation delay time  
Electromagnetic  
brake interlock (MBR)  
OFF  
Invalid(ON)  
Valid (OFF)  
Forced stop (EMG)  
Note. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
3 - 34  
3. SIGNALS AND WIRING  
(c) Alarm occurrence  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Forward  
rotation  
0r/min  
Servo motor speed  
Base circuit  
Electromagnetic brake  
(10ms)  
ON  
OFF  
(Note) ON  
Electromagnetic brake  
operation delay time  
Electromagnetic  
brake interlock (MBR)  
OFF  
No (ON)  
Yes (OFF)  
Trouble (ALM)  
Note. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
(d) Both main and control circuit power supplies off  
Dynamic brake  
Dynamic brake  
(10ms)  
(Note 1)  
15 to 60ms  
Electromagnetic brake  
Forward  
rotation  
Servo motor speed  
Base circuit  
Electromagnetic brake  
0r/min  
ON  
OFF  
(Note 2) ON  
Electromagnetic  
brake interlock (MBR)  
OFF  
No (ON)  
Yes (OFF)  
ON  
Electromagnetic brake  
operation delay time  
Trouble (ALM)  
Main circuit  
power  
Control circuit  
OFF  
Note 1. Changes with the operating status.  
2. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
3 - 35  
3. SIGNALS AND WIRING  
(e) Only main circuit power supply off (control circuit power supply remains on)  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Electromagnetic brake  
(10ms)  
(Note 1)  
15 or more  
Forward  
rotation  
Servo motor speed  
Base circuit  
0r/min  
ON  
OFF  
(Note 3) ON  
Electromagnetic  
brake interlock (MBR)  
OFF  
No (ON)  
Yes (OFF)  
ON  
Electromagnetic brake  
operation delay time  
(Note 2)  
Trouble (ALM)  
Main circuit  
power supply  
OFF  
Note 1. Changes with the operating status.  
2. When the main circuit power supply is off in a motor stop status, the main circuit off warning (AL.E9) occurs and the trouble  
(ALM) does not turn off.  
3. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
3 - 36  
3. SIGNALS AND WIRING  
3.10 Grounding  
Ground the servo amplifier and servo motor securely.  
To prevent an electric shock, always connect the protective earth (PE) terminal of  
the servo amplifier with the protective earth (PE) of the control box.  
WARNING  
The servo amplifier switches the power transistor on-off to supply power to the servo motor. Depending on  
the wiring and ground cable routing, the servo amplifier may be affected by the switching noise (due to  
di/dt and dv/dt) of the transistor. To prevent such a fault, refer to the following diagram and always  
ground.  
To conform to the EMC Directive, refer to the EMC Installation Guidelines (IB (NA) 67310).  
Control box  
Servo motor  
NFB  
MC  
Servo amplifier  
L1  
CN2  
Encoder  
(Note)  
Power supply  
L2  
L3  
L11  
L21  
U
U
V
V
M
W
W
CN1A CN1B  
Ensure to connect it to PE  
terminal of the servo amplifier.  
Do not connect it directly to  
the protective earth of  
the control panel.  
Outer  
box  
Protective earth(PE)  
Note. For 1-phase 230VAC, connect the power supply to L1 L2 and leave L3 open.  
There is no L3 for 1-phase 100 to 120VAC power supply. Refer to section 1.2 for the power supply specification.  
3 - 37  
3. SIGNALS AND WIRING  
3.11 Servo amplifier terminal block (TE2) wiring method  
POINT  
Refer to Table 14.1 in section 14.2.1 for the wire sizes used for wiring.  
3.11.1 For the servo amplifier produced later than Jan. 2006  
(1) Termination of the cables  
(a) Solid wire  
After the sheath has been stripped, the cable can be used as it is.  
Sheath  
Core  
Approx. 10mm  
(b) Twisted wire  
1) When the wire is inserted directly  
Use the cable after stripping the sheath and twisting the core. At this time, take care to  
avoid a short caused by the loose wires of the core and the adjacent pole. Do not solder the  
core as it may cause a contact fault. Alternatively, a bar terminal may be used to put the  
wires together.  
2) When the wires are put together  
Using a bar terminal.  
Cable Size  
Bar Terminal Type  
For 1 cable For 2 cables  
AI-TWIN 1.5-10BK  
Crimping Tool  
Manufacturer  
2
[mm ] AWG  
1.25/1.5 16 AI1.5-10BK  
2/2.5 14 AI2.5-10BU  
CRIMPFOX ZA 3  
Phoenix Contact  
Cut the wire running out of bar terminal to less than 0.5mm.  
Less than 0.5mm  
When using a bar terminal for two wires, insert the wires in the direction where the  
insulation sleeve does not interfere with the next pole and pressure them.  
Pressure  
Pressure  
3 - 38  
3. SIGNALS AND WIRING  
(2) Termination of the cables  
(a) When the wire is inserted directly  
Insert the wire to the end pressing the button with a small flat blade screwdriver or the like.  
Button  
Small flat blade  
screwdriver or the like  
When removing the short-circuit bar  
from across P-D, press the buttons  
of P and D alternately pulling the  
short-circuit bar. For the installation,  
insert the bar straight to the end.  
Twisted wire  
(b) When the wires are put together using a bar terminal  
Insert a bar terminal with the odd-shaped side of the pressured terminal on the button side.  
Bar terminal for one  
wire or solid wire  
Bar terminal for two wires  
3 - 39  
3. SIGNALS AND WIRING  
3.11.2 For the servo amplifier produced earlier than Dec. 2005  
1) Termination of the cables  
Solid wire: After the sheath has been stripped, the cable can be used as it is.  
Approx. 10mm  
(0.39inch)  
Twisted wire: Use the cable after stripping the sheath and twisting the core. At this time, take  
care to avoid a short caused by the loose wires of the core and the adjacent pole.  
Do not solder the core as it may cause a contact fault. Alternatively, a bar  
terminal may be used to put the wires together.  
Cable size  
Bar terminal type  
For 1 cable For 2 cables  
AI-TWIN 1.5-10BK  
Manufacturer  
Crimping tool  
2
[mm ] AWG  
1.25/1.5 16 AI1.5-10BK  
2/2.5 14 AI2.5-10BU  
CRIMPFOX ZA3  
or  
Phoenix Contact  
CRIMPFOX UD 6  
2) Connection  
Insert the core of the cable into the opening and tighten the screw with a flat-blade screwdriver  
so that the cable does not come off. (Tightening torque: 0.3 to 0.4N m (2.7 to 3.5Ib in)) Before  
inserting the cable into the opening, make sure that the screw of the terminal is fully loose.  
2
When using a cable of 1.5mm or less, two cables may be inserted into one opening.  
3 - 40  
3. SIGNALS AND WIRING  
Flat-blade screwdriver  
Tip thickness 0.4 to 0.6mm (0.016 to 0.024in.)  
Overall width 2.5 to 3.5mm (0.098 to 0.138in.)  
To loosen. To tighten.  
Cable  
Opening  
Control circuit terminal block  
Use of a flat-blade torque screwdriver is recommended to manage the screw tightening torque. The  
following table indicates the recommended products of the torque screwdriver for tightening torque  
management and the flat-blade bit for torque screwdriver. When managing torque with a Phillips bit,  
please consult us.  
Product  
Torque screwdriver  
Model  
Manufacturer/Representative  
Nakamura Seisakusho  
Shiro Sangyo  
N6L TDK  
Bit for torque screwdriver  
B-30, flat-blade, H3.5 X 73L  
3 - 41  
3. SIGNALS AND WIRING  
3.12 Instructions for the 3M connector  
When fabricating an encoder cable or the like, securely connect the shielded external conductor of the  
cable to the ground plate as shown in this section and fix it to the connector shell.  
External conductor  
Sheath  
Core  
External conductor  
Pull back the external conductor to cover the sheath  
Sheath  
Strip the sheath.  
Screw  
Cable  
Screw  
Ground plate  
3 - 42  
4. OPERATION  
4. OPERATION  
4.1 When switching power on for the first time  
4.1.1 Pre-operation checks  
Before starting operation, check the following.  
(1) Wiring  
(a) A correct power supply is connected to the power input terminals (L1, L2, L3, L11, L21) of the servo  
amplifier.  
(b) The servo motor power supply terminals (U, V, W) of the servo amplifier match in phase with the  
power input terminals (U, V, W) of the servo motor.  
(c) The servo motor power supply terminals (U, V, W) of the servo amplifier are not shorted to the  
power input terminals (L1, L2, L3) of the servo motor.  
(d) The earth terminal of the servo motor is connected to the PE terminal of the servo amplifier.  
(e) Note the following when using the regenerative option, brake unit or power regeneration converter.  
1) For the MR-J2S-350CP or less, the lead has been removed from across D-P of the control circuit  
terminal block, and twisted cables are used for its wiring.  
2) For the MR-J2S-500CP or more, the lead has been removed from across P-C of the servo  
amplifier built-in regenerative resistor, and twisted cables are used for its wiring.  
(f) When stroke end limit switches are used, the signals across LSP-SG and LSN-SG are on during  
operation.  
(g) 24VDC or higher voltages are not applied to the pins of connectors CN1A and CN1B.  
(h) SD and SG of connectors CN1A and CN1B are not shorted.  
(i) The wiring cables are free from excessive force.  
(2) Environment  
Signal cables and power cables are not shorted by wire offcuts, metallic dust or the like.  
(3) Machine  
(a) The screws in the servo motor installation part and shaft-to-machine connection are tight.  
(b) The servo motor and the machine connected with the servo motor can be operated.  
4 - 1  
4. OPERATION  
4.1.2 Startup  
Do not operate the switches with wet hands. You may get an electric shock.  
Before starting operation, check the parameters. Some machines may perform  
WARNING  
unexpected operation.  
Take safety measures, e.g. provide covers, to prevent accidental contact of hands  
and parts (cables, etc.) with the servo amplifier heat sink, regenerative resistor,  
servo motor, etc.since they may be hot while power is on or for some time after  
power-off. Their temperatures may be high and you may get burnt or a parts may  
damaged.  
CAUTION  
During operation, never touch the rotating parts of the servo motor. Doing so can  
cause injury.  
Connect the servo motor with a machine after confirming that the servo motor operates properly alone.  
For startup reference, a single machine structure will be described. Refer to this section and start up the  
machine safely.  
(1) Machine conditions  
P
Reduction ratio  
1/n 1/2  
Servo amplifier  
Ballscrew  
PB 10mm(0.39inch)  
PB  
Position data (P) 200mm(787.40inch)  
Speed (V) 2500r/min  
Acceleration time constant (Ta) 200ms  
Deceleration time constant (Tb) 300ms  
Servo motor  
HC-MFS131072pulse/rev  
Ta  
Tb  
V
Regenerative  
option  
MR-RB032  
Servo motor  
speed  
0r/min  
Point table No. 1  
1) Absolute position detection system used  
2) Command resolution: 10 m  
3) Command system: Absolute value command system  
4) Electronic gear calculation  
CMX(pulse)  
CDV( m)  
131072  
131072  
131072  
5000  
32768  
1250  
........................................................(4.1)  
1
n
1
2
1000  
10 1000  
PB  
CMX 32768  
CDV 1250  
5) For the device command method, external input signals are used by the point table selection,  
forward rotation start (ST1), servo-on (SON) and other commands.  
6) Point table No.1 is used to execute automatic operation once.  
4 - 2  
4. OPERATION  
(2) Startup procedure  
(a) Power on  
1) Switch off the servo-on (SON).  
2) When main circuit power/control circuit power is switched on, "PoS" (Current position) appears  
on the servo amplifier display.  
In the absolute position detection system, first power-on results in the absolute position lost  
(AL.25) alarm and the servo system cannot be switched on. This is not a failure and takes place  
due to the uncharged capacitor in the encoder.  
The alarm can be deactivated by keeping power on for a few minutes in the alarm status and  
then switching power off once and on again.  
Also in the absolute position detection system, if power is switched on at the servo motor speed  
of 500r/min or higher, position mismatch may occur due to external force or the like. Power must  
therefore be switched on when the servo motor is at a stop.  
(b) Test operation  
Using jog operation in the "test operation mode" of the MR Configurator (servo configuration  
software), confirm that the servo motor operates at the slowest speed. (Refer to section 6.7.1, 7.9.2)  
(c) Parameter setting  
Set the parameters according to the structure and specifications of the machine. Refer to chapter 5  
for the parameter definitions and to sections 6.4 and 7.6 for the setting method.  
Parameter  
Name  
Setting  
Description  
20  
Command system, regenerative  
option selection  
Absolute value command system.  
MR-RB032 regenerative option is used.  
No.0  
10  
When forward rotation start (ST1) is  
valid, address is incremented in CCW  
direction.  
No.1  
No.2  
Feeding function selection  
Function selection 1  
Since command resolution is 10 times,  
feed length multiplication factor of 10  
times is selected.  
1
Absolute position detection system.  
No.4  
No.5  
Electronic gear numerator (CMX)  
Electronic gear denominator (CDV)  
32768  
1250  
From calculation result of formula (4.1)  
From calculation result of formula (4.1)  
After setting the above parameters, switch power off once. Then switch power on again to make the  
set parameter values valid.  
(d) Point table setting  
Set the point table according to the operation pattern. Refer to section 4.2 for the point table  
definitions and to sections 6.5 and 7.5 for the setting method.  
Position data  
Servo motor  
Acceleration time  
constant [ms]  
Deceleration time  
constant [ms]  
Auxiliary  
function  
Dwell [ms]  
[
10STM m]  
speed [r/min]  
20000  
2500  
200  
300  
0
0
(e) Servo-on  
Switch the servo-on in the following procedure.  
1) Switch on main circuit/control circuit power.  
2) Switch on the servo-on (SON).  
When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor is  
locked. By using the sequence in the diagnostic mode in section 7.3, the ready status can be shown  
on the servo amplifier display. In the operation-ready status, the following screen appears.  
4 - 3  
4. OPERATION  
(f) Home position return  
Perform home position return as required. Refer to section 4.4 for home position return types. A  
parameter setting example for dog type home position return is given here.  
Parameter  
Name  
Setting  
Description  
000  
Dog type home position return is selected.  
Home position return is started in address  
incremented direction.  
No.8  
Home position return type  
Proximity dog (DOG) is valid when DOG-  
SG are opened.  
No.9  
No.10  
No.11  
Home position return speed  
Creep speed  
1000  
10  
Motion is made up to proximity dog at 1000r/min.  
Motion is made up to home position at 10r/min.  
No home position shift  
Home position shift distance  
0
Use to set the current position on completion of home  
position return.  
No.42  
No.43  
Home position return position data  
Moving distance after proximity dog  
Not used in dog type home position return.  
After setting the above parameters, switch power off once. Then switch power on again to make the  
set parameter values valid.  
Set the input signals as listed below and switch on the forward rotation start (ST1) to execute  
home position return.  
Device name  
Automatic/manual selection  
Point table No. selection 1  
Point table No. selection 2  
Forward rotation stroke end  
Reverse rotation stroke end  
Servo-on  
Symbol  
MD0  
DI0  
ON/OFF  
Description  
ON  
Home position return mode is selected.  
OFF  
OFF  
ON  
DI1  
LSP  
CCW rotation side limit switch is turned on.  
CW rotation side limit switch is turned on.  
Servo is switched on.  
LSN  
SON  
ON  
ON  
(g) Automatic operation  
Set the input signals as listed below and switch on the forward rotation start (ST1) to execute  
automatic operation in accordance with point table No.1.  
Device name  
Automatic/manual selection  
Servo-on  
Symbol  
MD0  
SON  
LSP  
ON/OFF  
Description  
ON  
ON  
Automatic operation mode is selected.  
Servo is switched on.  
Forward rotation stroke end  
Reverse rotation stroke end  
Point table No. selection 1  
Point table No. selection 2  
ON  
CCW rotation side limit switch is turned on.  
CW rotation side limit switch is turned on.  
LSN  
DI0  
ON  
ON  
Point table No.1 is selected.  
DI1  
OFF  
(h) Stop  
In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo  
motor.  
When the servo motor used is equipped with an electromagnetic brake, refer to section 3.9 (3). Note  
that forward rotation stroke end (LSP), reverse rotation stroke end (LSN) off has the same  
stopping pattern as described below.  
1) Servo-on (SON) OFF  
The base circuit is shut off and the servo motor coasts.  
2) Alarm occurrence  
When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the  
servo motor to a sudden stop.  
3) Forced stop (EMG) OFF  
The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a  
sudden stop. Servo forced warning (AL.E6) occurs.  
4) Forward rotation stroke end (LSP), reverse rotation stroke end (LSN) OFF  
The droop pulse value is erased and the servo motor is stopped and servo-locked. It can be run in  
the opposite direction.  
4 - 4  
4. OPERATION  
4.2 Automatic operation mode  
4.2.1 What is automatic operation mode?  
(1) Command system  
After selection of preset point tables using the input signals or communication, operation is started by  
the forward rotation start (ST1) or reverse rotation start (ST2). Automatic operation has the absolute  
value command system, incremental value command system and absolute value  
command/incremental value command specifying system.  
(a) Absolute value command system  
As position data, set the target address to be reached.  
Setting range: 999999 to 999999 [ 10STM m] (STM feed length multiplication parameter No.1)  
999999  
999999  
Position data setting range  
10STM m]  
[
(b) Incremental value command system  
As position data, set the moving distance from the current address to the target address.  
Setting range: 0 to 999999 [ 10STM m] (STM feed length multiplication parameter No.1)  
Current address  
Target address  
Position data |target address - current address|  
(c) Absolute value command/incremental value command specifying system  
You can set the absolute value address or incremental value address to each point table as position  
data. After the axis has been positioned at the target address, it can be moved a given distance.  
4 - 5  
4. OPERATION  
(2) Point table  
(a) Point table setting  
Up to 15 point tables may be set. To use point table No.s 4 to 31, however, the point table No.  
selection 3 (DI2), point table No. selection 4 (DI3) and point table No. selection 5 (DI4) should be  
made valid in "I/O Devices" on the MR Configurator (servo configuration software).  
Set the point tables using the MR Configurator (servo configuration software) or the servo  
amplifier operation section.  
The following table lists what to set. Refer to section 4.2.2, section 4.2.3 and section 4.2.4 for details  
of the settings.  
Name  
Description  
Position data  
Set the position data for movement.  
Servo motor speed  
Acceleration time constant  
Deceleration time constant  
Dwell  
Set the command speed of the servo motor for execution of positioning.  
Set the acceleration time constant.  
Set the deceleration time constant.  
Set the waiting time when performing automatic continuous operation.  
Set when performing automatic continuous operation.  
Auxiliary function  
(b) Selection of point table  
Using the input signal or communication function, select the point table No. with a command from  
the command device (controller) such as a personal computer.  
The following table lists the point table No. selected in response to the input signals/commands.  
Note that when the input signals are used, the point tables used as standard are No.1 to 3. To use  
No.4 to 31, the point table No. selection 3 (DI2), point table No. selection 4 (DI3) and point table  
No. selection 5 (DI4) should be made valid in "I/O Devices" (Refer to chapter 6) on the MR  
Configurator (servo configuration software).  
When the communication function is used to select the point tables, refer to chapter 15 for details  
of the command transmission method, etc.  
4 - 6  
4. OPERATION  
(Note 2) Input signals  
(Note 1) DI4 (Note 1) DI3 (Note 1) DI2  
Selected point table No.  
DI1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
DI0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0 (Manual home position return mode)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Note 1. Make signals valid in "I/O Devices" on the MR Configurator (servo configuration software).  
2. "1": short  
"0": open  
4 - 7  
4. OPERATION  
4.2.2 Absolute value command system  
(1) Point table  
Set the point table values using the MR Configurator (servo configuration software) or from the  
operating section.  
Set the position data, motor speed, acceleration time constant, deceleration time constant, dwell and  
auxiliary function to the point table. The following table gives a setting example.  
Name  
Setting range  
Unit  
Description  
Set the target address (absolute value).  
This value can also be set using the teaching function. (Refer to section  
10STM m] 7.10.)  
The unit can be changed using feed length multiplication factor selection of  
Position data  
999999 to 999999  
[
parameter No. 1.  
Set the command speed of the servo motor for execution of positioning.  
The setting should be equal to or less than the instantaneous permissible  
speed of the servo motor.  
Motor speed  
0 to permissible speed  
r/min  
Acceleration  
time constant  
Deceleration  
time constant  
Set the acceleration time constant.  
0 to 20000  
0 to 20000  
ms  
ms  
Set the time until the rated speed of the servo motor is reached.  
Set the deceleration time constant.  
Set the time until the servo motor running at rated speed comes to a stop.  
Set the dwell.  
Set "0" in the auxiliary function to make the dwell invalid.  
Set "1" in the auxiliary function and 0 in the dwell to perform continuous  
operation.  
Dwell  
0 to 20000  
ms  
When the dwell is set, the position command of the selected point table is  
completed, and after the set dwell has elapsed, the position command of the  
next point table is started.  
Set the auxiliary function.  
0: Automatic operation is performed in accordance with a single point table  
chosen.  
1: Operation is performed in accordance with consecutive point tables  
without a stop.  
Auxiliary  
function  
0
1
When a different rotation direction is set, smoothing zero (command  
output) is confirmed and the rotation direction is then reversed.  
Setting "1" in point table No.31 results in an error.  
For full information, refer to section 4.2.6.  
(2) Parameter setting  
Set the following parameters to perform automatic operation.  
(a) Command mode selection (parameter No.0)  
Select the absolute value command system.  
Parameter No. 0  
0
Absolute value command system  
4 - 8  
4. OPERATION  
(b) ST1 coordinate system selection (parameter No.1)  
Choose the servo motor rotation direction at the time when the forward rotation start (ST1) is  
switched on.  
Servo motor rotation direction  
Parameter No. 1 setting  
when forward rotation start (ST1) is switched on  
CCW rotation with position data  
0
CW rotation with  
position data  
CW rotation with position data  
1
CCW rotation with  
position data  
CCW  
CW  
(c) Feed length multiplication selection (parameter No.1)  
Set the unit multiplication factor (STM) of position data.  
Parameter No.1 setting  
Position data input range [mm]  
0
1
2
3
999.999 to 999.999  
9999.99 to 9999.99  
99999.9 to 99999.9  
999999 to 999999  
(3) Operation  
Choose the point table using DI0 to DI4 and short ST1-SG to perform positioning to the position data  
under the conditions of the preset speed, acceleration time constant and deceleration time constant. At  
this time, reverse rotation start (ST2) is invalid.  
Item  
Setting method  
Description  
Automatic operation mode selection  
Automatic/manual selection (MD0)  
Point table No. selection 1 (DI0)  
Point table No. selection 2 (DI1)  
Point table No. selection 3 (DI2)  
Point table No. selection 4 (DI3)  
Point table No. selection 5 (DI4)  
Forward rotation start (ST1)  
MD0 is turned on.  
Point table selection  
Start  
Refer to section 4.2.1, (2).  
Short ST1-SG (ON) to start.  
4 - 9  
4. OPERATION  
4.2.3 Incremental value command system  
(1) Point table  
Set the point table values using the MR Configurator (servo configuration software) or from the  
operating section.  
Set the position data, motor speed, acceleration time constant, deceleration time constant, dwell and  
auxiliary function to the point table. The following table gives a setting example.  
Name  
Setting range  
Unit  
Description  
Set the moving distance.  
The teaching function is unusable.  
Position data 0 to 999999  
Servo motor  
10STM  
m
The unit can be changed using feed length multiplication factor selection of  
parameter No. 1.  
Set the command speed of the servo motor for execution of positioning.  
The setting should be equal to or less than the instantaneous permissible  
speed of the servo motor.  
0 to permissible speed  
r/min  
speed  
Acceleration  
time constant  
Deceleration  
time constant  
Set the acceleration time constant.  
0 to 20000  
0 to 20000  
ms  
ms  
Set the time until the rated speed of the servo motor is reached.  
Set the deceleration time constant.  
Set the time until the servo motor running at rated speed comes to a stop.  
Set the dwell.  
Set "0" in the auxiliary function to make the dwell invalid.  
Set "1" in the auxiliary function and 0 in the dwell to perform continuous  
operation.  
Dwell  
0 to 20000  
ms  
When the dwell is set, the position command of the selected point table is  
completed, and after the set dwell has elapsed, the position command of the  
next point table is started.  
Set the auxiliary function.  
0: Automatic operation is performed in accordance with a single point table  
chosen.  
Auxiliary  
function  
0
1
1: Operation is performed in accordance with consecutive point tables  
without a stop.  
Setting "1" in point table No.31 results in an error.  
For full information, refer to section 4.2.6.  
(2) Parameter setting  
Set the following parameters to perform automatic operation.  
(a) Command mode selection (parameter No.0)  
Select the incremental value command system.  
Parameter No. 0  
1
Incremental value command system  
4 - 10  
4. OPERATION  
(b) ST1 coordinate system selection (parameter No.1)  
Choose the servo motor rotation direction at the time when the forward rotation start (ST1) signal  
or reverse rotation start (ST2) signal is switched on.  
Servo motor rotation direction  
Parameter No.1 setting  
Forward rotation start (ST1) ON  
CCW rotation (address incremented)  
CW rotation (address incremented)  
Reverse rotation start (ST2) ON  
CW rotation (address decremented)  
CCW rotation (address decremented)  
0
1
ST1:ON  
CCW  
ST2:ON  
CCW  
CW  
ST1:ON  
Parameter No. 1  
CW  
ST2:ON  
Parameter No. 1  
0
1
(c) Feed length multiplication selection (parameter No.1) Set the unit multiplication factor (STM) of  
position data.  
Parameter No.1 setting  
Position data input range [mm]  
0
1
2
3
0 to 999.999  
0 to 9999.99  
0 to 99999.9  
0 to 999999  
(3) Operation  
Choose the point table using DI0 to DI4 and short ST1-SG to make a motion in the forward rotation  
direction over the distance of the position data under the conditions of the preset speed, acceleration  
time constant and deceleration time constant. Short ST2-SG to make a motion in the reverse rotation  
direction in accordance with the point table settings.  
Item  
Setting method  
Description  
Automatic operation mode selection  
Automatic/manual selection (MD0)  
Point table No. selection 1 (DI0)  
Point table No. selection 2 (DI1)  
Point table No. selection 3 (DI2)  
Point table No. selection 4 (DI3)  
Point table No. selection 5 (DI4)  
MD0 is turned on.  
Point table selection  
Refer to section 4.2.1, (2).  
Short ST1-SG (ON) to start motion  
in forward rotation direction.  
Forward rotation start (ST1)  
Reverse rotation start (ST2)  
Start  
Short ST2-SG (ON) to start motion  
in reverse rotation direction.  
4 - 11  
4. OPERATION  
4.2.4 Absolute value command/incremental value command specifying system  
This system is an auxiliary function for point tables to use them by specifying the absolute value  
command and incremental value command.  
(1) Point table  
Set each value of point tables by using MR Configurator (Setup software) or operation section.  
Set to point tables the following, "Position data", "Servo motor speed", "Acceleration time constant",  
"Deceleration time constant", "Dwell time" and "Auxiliary function".  
To specify the command system, set "Auxiliary function" as shown below.  
For absolute value command system, set "0" or "1".  
For incremental value command system, set "2" or "3".  
Name  
Setting range  
Unit  
Description  
(1) When this point table is used in an absolute value command system  
Set the target address (absolute value).  
This value can also be set using the teaching function. (Refer to section  
7.10.)  
(2) When this point table is used in an incremental value command system  
Set the moving distance. A " " sign indicates a reverse rotation  
command.  
10STM  
m
Position data  
999999 to 999999  
The teaching function is unusable.  
Set the command speed of the servo motor for execution of positioning.  
The setting should be equal to or less than the instantaneous permissible  
speed of the servo motor.  
Servo motor  
speed  
0 to permissible speed  
r/min  
Acceleration  
time constant  
Deceleration  
time constant  
Set the acceleration time constant.  
Set the time until the rated speed of the servo motor is reached.  
Set the deceleration time constant.  
Set the time until the servo motor running at rated speed comes to a stop.  
Set the dwell.  
0 to 20000  
0 to 20000  
ms  
ms  
Set "0" or "2" in the auxiliary function to make the dwell invalid.  
Set "1" or "3" in the auxiliary function and 0 in the dwell to perform  
continuous operation.  
Dwell  
0 to 20000  
ms  
When the dwell is set, the position command of the selected point table is  
completed, and after the set dwell has elapsed, the position command of the  
next point table is started.  
Set the auxiliary function.  
(1) When this point table is used in an absolute value command system  
0: Automatic operation is performed in accordance with a single point table  
chosen.  
1: Operation is performed in accordance with consecutive point tables  
without a stop.  
(2) When this point table is used in an incremental value command system  
2: Automatic operation is performed in accordance with a single point table  
chosen.  
Auxiliary  
function  
0 to 3  
3: Operation is performed in accordance with consecutive point tables  
without a stop.  
When a different rotation direction is set, smoothing zero (command  
output) is confirmed and the rotation direction is then reversed.  
Setting "1" or "3" in point table No.31 results in an error.  
For full information, refer to section 4.2.6.  
4 - 12  
4. OPERATION  
(2) Parameter setting  
Set the following parameters to perform automatic operation.  
(a) Command mode selection (parameter No.0)  
Choose the absolute value command/incremental value command specifying system.  
Parameter No. 0  
2
Absolute value command/incremental value command specifying system  
(b) ST1 coordinate system selection (parameter No.1)  
Choose the servo motor rotation direction at the time when the forward rotation start (ST1) is  
switched on.  
Servo motor rotation direction  
Parameter No. 1 setting  
when forward rotation start (ST1) is switched on  
CCW rotation with position data  
0
CW rotation with  
position data  
CW rotation with position data  
1
CCW rotation with  
position data  
CCW  
CW  
(c) Feed length multiplication selection (parameter No.1) Set the unit multiplication factor (STM) of  
position data.  
Parameter No.1 setting  
Position data input range [mm]  
0
1
2
3
0 to 999.999  
0 to 9999.99  
0 to 99999.9  
0 to 999999  
(3) Operation  
Choose the point table using DI0 to DI4 and short ST1-SG to perform positioning to the position data  
under the conditions of the preset speed, acceleration time constant and deceleration time constant. At  
this time, reverse rotation start (ST2) is invalid.  
Item  
Setting method  
Description  
Automatic operation mode selection  
Automatic/manual selection (MD0)  
Point table No. selection 1 (DI0)  
Point table No. selection 2 (DI1)  
Point table No. selection 3 (DI2)  
Point table No. selection 4 (DI3)  
Point table No. selection 5 (DI4)  
Forward rotation start (ST1)  
MD0 is turned on.  
Point table selection  
Start  
Refer to section 4.2.1, (2).  
Short ST1-SG (ON) to start.  
4 - 13  
4. OPERATION  
4.2.5 Automatic operation timing chart  
The timing chart is shown below.  
ON  
OF  
ON  
OF  
ON  
OF  
ON  
OF  
Automatic/manual  
selection (MD0)  
Servo-on (SON)  
(Note 2)  
3ms or more  
Forward rotation  
start (ST1)  
5ms or more  
Reverse rotation  
start (ST2) (Note 1)  
3ms or more  
5ms or more  
2
1
Point table No.  
3ms or less  
Forward  
rotation  
0r/min  
Point table No. 1  
Servo motor speed  
Reverse  
Point table No. 2  
rotation  
ON  
OF  
ON  
OF  
ON  
OF  
In position (INP)  
Rough match (CPO)  
Movement finish  
(MEND)  
Point No. output  
(PT0 to PT4)  
1
2
ON  
OF  
ON  
OF  
Ready (RD)  
Trouble (ALM)  
Note 1: Reverse rotation start (ST2) is invalid in the absolute value command system and absolute value command/incremental  
value command specifying system.  
2: External input signal detection delays by the input filter setting time of parameter No. 2. Also, make up a sequence  
that will change the point table selection earlier by the time that takes into account the output signal sequence from  
the controller and the variation of a signal change due to the hardware.  
4 - 14  
4. OPERATION  
4.2.6 Automatic continuous operation  
(1) What is automatic continuous operation?  
By merely choosing one point table and making a start (ST1 or ST2), operation can be performed in  
accordance with the point tables having consecutive numbers.  
Automatic operation is available in two types: varied speed operation and automatic continuous  
positioning operation.  
Either type may be selected as follows.  
(a) In absolute value command system or incremental value command system  
Point table setting  
Dwell  
0
Auxiliary function  
Speed changing operation  
Automatic continuous  
operation  
1
1
Automatic continuous  
positioning operation  
1 or more  
(b) In absolute value command /incremental value command specifying system  
Point table setting  
Auxiliary function  
Dwell  
When position data is  
absolute value  
When position data is  
incremental value  
Speed changing operation  
Automatic continuous  
operation  
0
1
1
3
3
Automatic continuous  
positioning operation  
1 or more  
(2) Varied speed operation  
Speed during positioning operation can be changed by setting the auxiliary function of the point table.  
Use the number of point tables equal to the number of speeds to be set.  
By setting "1" to the auxiliary function, operation is performed at the speed set in the next point table  
during positioning. The position data valid at this time is the data selected at start and the  
acceleration and deceleration time constants of the subsequent point tables are made invalid.  
By setting "1" to the auxiliary function of up to point table No.30, operation can be performed at a  
maximum of 31 speeds. Set "0" to the auxiliary function of the last point table.  
When performing varied speed operation, always set "0" to the dwell. If "1" or more is set, automatic  
continuous positioning operation is made valid.  
The following table gives a setting example.  
Point table No.  
Dwell [ms] (Note 1)  
Auxiliary function  
Variable speed operation  
1
0
0
0
0
0
0
0
1
Consecutive point table data  
2
1
3
0 (Note 2)  
4
1
5
1
1
Consecutive point table data  
6
7
0 (Note 2)  
Note 1. Always set "0".  
2. Always set "0" or "2" to the auxiliary function of the last point table among the consecutive point tables.  
4 - 15  
4. OPERATION  
(a) Absolute value command system  
1) Positioning in single direction  
The position data (addresses) of the midway point tables are not used for positioning and speed  
is changed continuously to move to the set address in the last point table.  
The operation example given below assumes that the set values are as indicated in the following  
table.  
Point table  
No.  
Position data  
Servo motor  
speed [r/min]  
Acceleration time constant  
[ms]  
Deceleration time constant  
[ms]  
Dwell [ms]  
(Note 1)  
Auxiliary  
function  
[
10STM m]  
1
2
3
5.00  
3000  
2000  
1000  
100  
150  
0
0
0
1
1
10.00  
Invalid  
Invalid  
Invalid  
Invalid  
15.00  
0 (Note 2)  
Note 1. Always set "0".  
2. Always set "0" to the auxiliary function of the last point table among the consecutive point tables.  
Acceleration time constant  
Deceleration time constant  
of point table No. 1 (100)  
of point table No. 1 (150)  
Forward  
rotation  
Speed  
(3000)  
Servo motor speed  
Speed  
(2000)  
Speed (1000)  
0
Position address  
0
5.00  
10.00  
15.00  
Selected point table No.  
1
ON  
Forward rotation start  
(ST1)  
OFF  
Point No. out put  
(PT0 to PT4)  
1
4 - 16  
4. OPERATION  
2) Positioning that reverses the direction midway  
The position data (addresses) of the midway point tables are used for positioning and the  
direction is reversed to reach the positioning address set in the last point table.  
The operation example given below assumes that the set values are as indicated in the following  
table.  
Point table  
No.  
Position data  
Servo motor  
speed [r/min]  
Acceleration time constant  
[ms]  
Deceleration time constant  
[ms]  
Dwell [ms]  
(Note 1)  
Auxiliary  
function  
[
10STM m]  
1
2
10.00  
3000  
2000  
100  
150  
0
0
1
5.00  
Invalid  
Invalid  
0 (Note 2)  
Note 1. Always set "0".  
2. Always set "0" to the auxiliary function of the last point table among the consecutive point tables.  
Deceleration time constant  
of point table No. 1 (150)  
Acceleration time constant  
of point table No. 1 (100)  
Speed  
(3000)  
Forward  
rotation  
0
Servo motor speed  
Speed  
(2000)  
Reverse  
rotation  
Position address  
0
5.00  
10.00  
1
Selected point table No.  
ON  
Forward rotation start  
(ST1)  
OFF  
Point No. out put  
(PT0 to PT4)  
1
4 - 17  
4. OPERATION  
(b) Incremental value command system  
The position data of the incremental value command system is the sum of the position data of the  
consecutive point tables.  
The operation example given below assumes that the set values are as indicated in the following  
table.  
Point table  
No.  
Position data  
Servo motor  
speed [r/min]  
Acceleration time constant  
[ms]  
Deceleration time constant  
[ms]  
Dwell [ms]  
(Note 1)  
Auxiliary  
function  
[
10STM m]  
1
2
3
5.00  
3000  
2000  
1000  
100  
150  
0
0
0
1
1
6.00  
Invalid  
Invalid  
Invalid  
Invalid  
3.00  
0 (Note 2)  
Note 1. Always set "0".  
2. Always set "0" to the auxiliary function of the last point table among the consecutive point tables.  
Acceleration time constant  
Deceleration time constant  
of point table No. 1 (150)  
of point table No. 1 (100)  
Forward  
Speed  
(3000)  
Servo motor speed  
Speed  
(2000)  
rotation  
Speed  
(1000)  
0
5.00  
6.00  
3.00  
Position address  
0
5.00  
11.00  
14.00  
Selected point table No.  
1
(Note)  
ON  
Forward rotation start (ST1)  
OFF  
Point No. out put  
(PT0 to PT4)  
1
Note. Turning on Reverse rotation start (ST2) starts positioning in the reverse rotation direction.  
4 - 18  
4. OPERATION  
(c) Absolute value command/incremental value command specifying system  
This system is an auxiliary function for point tables to perform automatic operation by specifying  
the absolute value command or incremental value command.  
1) Positioning in single direction  
The operation example given below assumes that the set values are as indicated in the following  
table. Here, the point table No. 1 uses the absolute value command system, the point table No. 2  
the incremental value command system, the point table No. 3 the absolute value system, and the  
point table No. 4 the incremental value command system.  
Point table  
No.  
Position data  
Servo motor  
speed [r/min]  
Acceleration time constant  
[ms]  
Deceleration time constant  
[ms]  
Dwell [ms]  
(Note 1)  
Auxiliary  
function  
[
10STM m]  
1
2
3
4
5.00  
3000  
2000  
1000  
500  
100  
150  
0
0
0
0
1
3.00  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
3
1
10.00  
6.00  
0 (Note 2)  
Note 1. Always set "0".  
2. Always set "0" or "2" to the auxiliary function of the last point table among the consecutive point tables.  
0: When point table is used in absolute value command system  
1: When point table is used in incremental value command system  
Acceleration time constant  
Deceleration time constant  
of point table No. 1 (100)  
of point table No. 1 (150)  
Speed  
(1000)  
Forward  
rotation  
Speed  
(3000)  
Servo motor speed  
Speed  
(2000)  
Speed (500)  
0
3.00  
6.00  
Position address  
0
5.00  
8.00  
1
10.00  
16.00  
Selected point table No.  
ON  
Forward rotation start  
(ST1)  
OFF  
Point No. out put  
(PT0 to PT4)  
1
4 - 19  
4. OPERATION  
2) Positioning that reverses the direction midway  
The operation example given below assumes that the set values are as indicated in the following  
table. Here, the point table No. 1 uses the absolute value command system, the point table No. 2  
the incremental value command system, and the point table No. 3 the absolute value system.  
Point table  
No.  
Position data  
Servo motor  
speed [r/min]  
Acceleration time constant  
[ms]  
Deceleration time constant  
[ms]  
Dwell [ms]  
(Note 1)  
Auxiliary  
function  
[
10STM m]  
1
2
3
5.00  
3000  
2000  
1000  
100  
150  
0
0
0
1
1
7.00  
Invalid  
Invalid  
Invalid  
Invalid  
8.00  
0 (Note 2)  
Note 1. Always set "0".  
2. Always set "0" or "2" to the auxiliary function of the last point table among the consecutive point tables.  
0: When point table is used in absolute value command system  
1: When point table is used in incremental value command system  
Acceleration time constant  
Deceleration time constant  
of point table No. 1 (100)  
of point table No. 1 (150)  
Speed  
Speed  
(3000)  
Forward  
rotation  
(2000)  
Servo motor speed  
0
Speed (1000)  
Reverse  
rotation  
Acceleration time constant  
of point table No. 1 (100)  
7.00  
8.00  
Position address  
0
5.00  
12.00  
Selected point table No.  
1
ON  
Forward rotation start  
(ST1)  
OFF  
Point No. out put  
(PT0 to PT4)  
1
4 - 20  
4. OPERATION  
(4) Temporary stop/restart  
When STP-SG are connected during automatic operation, the motor is decelerated to a temporary stop  
at the deceleration time constant in the point table being executed. When STP-SG are connected  
again, the remaining distance is executed.  
If the forward/reverse rotation start signal is ignored if it is switched on during a temporary stop.  
The remaining moving distance is cleared when the operation mode is changed from the automatic  
mode to the manual mode during a temporary stop.  
The temporary stop/restart input is ignored during zeroing and jog operation.  
(a) When the servo motor is rotating  
Acceleration time constant  
of point table No. n  
Deceleration time constant  
of point table No. n  
Remaining  
distance  
Servo motor speed  
0
No. n  
Point table  
Forward rotation start (ST1)  
or reverse rotation start (ST2)  
ON  
OFF  
ON  
OFF  
Temporary stop/Restart (STP)  
ON  
OFF  
Temporary stop (PUS)  
Rough match (CPO)  
ON  
OFF  
ON  
OFF  
In position (INP)  
ON  
OFF  
Movement finish (MEND)  
Point No. out put  
(PT0 to PT4)  
No. n  
(b) During dwell  
Point table No. n  
Point table No. n  
1
Dwell ta tb  
tb  
ta  
Servo motor speed  
0
Point table  
No. n  
Forward rotation start (ST1)  
or reverse rotation start (ST2) OFF  
ON  
ON  
Temporary stop/Restart (STP)  
OFF  
ON  
Temporary stop (PUS)  
OFF  
ON  
Rough match (CPO)  
OFF  
ON  
OFF  
In position (INP)  
ON  
Movement finish (MEND)  
OFF  
Point No. out put  
(PT0 to PT4)  
No. n  
4 - 21  
4. OPERATION  
4.3 Manual operation mode  
For machine adjustment, home position matching, etc., jog operation or a manual pulse generator may be  
used to make a motion to any position.  
4.3.1 Jog operation  
(1) Setting  
Set the input signal and parameters as follows according to the purpose of use. In this case, the point  
table No. selection 1 to 5 (DI0 to DI4) are invalid.  
Item  
Manual operation mode selection  
Servo motor rotation direction  
Jog speed  
Setting method  
Automatic/manual selection (MD0)  
Parameter No.1  
Description  
Open MD0-SG (OFF).  
Refer to (2) of this section.  
Parameter No.13  
Set the speed of the servo motor.  
Use the acceleration/deceleration  
time constants in point table No.1.  
Acceleration/deceleration time constant  
Point table No.1  
(2) Servo motor rotation direction  
Servo motor rotation direction  
Parameter No. 1 setting  
Forward rotation start (ST1) ON  
CCW rotation  
Reverse rotation start (ST2) ON  
0
1
CW rotation  
CW rotation  
CCW rotation  
ST1:ON  
CCW  
ST2:ON  
CCW  
CW  
ST1:ON  
Parameter No. 1  
CW  
ST2:ON  
Parameter No. 1  
0
1
(3) Operation  
By shorting ST1-SG, operation is performed under the conditions of the jog speed set in the parameter  
and the acceleration and deceleration time constants in set point table No.1. For the rotation direction,  
refer to (2) of this section. By shorting ST2-SG, the servo motor rotates in the reverse direction to  
forward rotation start (ST1).  
4 - 22  
4. OPERATION  
(4) Timing chart  
ON  
Servo-on (SON)  
OFF  
ON  
80ms  
Ready (RD)  
OFF  
ON  
Trouble (ALM)  
OFF  
Automatic/manual  
selection (MD0)  
ON  
OFF  
ON  
Movement finish  
(MEND)  
OFF  
ON  
Rough match (CPO)  
OFF  
Forward  
rotation  
0r/min  
Servo motor speed  
Reverse  
rotation  
ON  
Forward rotation start  
(ST1)  
Forward rotation jog  
OFF  
ON  
Reverse rotation start  
(ST2)  
Reverse rotation jog  
OFF  
4 - 23  
4. OPERATION  
4.3.2 Manual pulse generator operation  
(1) Setting  
Set the input signal and parameters as follows according to the purpose of use. In this case, the point  
table No. selection 1 to 5 (DI0 to DI4) are invalid.  
Item  
Setting method  
Description  
Manual operation mode selection  
Automatic/manual selection (MD0)  
Open MD0-SG (OFF).  
Set the multiplication ratio of servo  
motor rotation to the pulses generated by  
the manual pulse generator.  
For more information, refer to (3) of this  
section.  
Manual pulse generator  
multiplication  
Parameter No.1  
Parameter No.1  
Servo motor rotation direction  
Refer to (2) of this section.  
(2) Servo motor rotation direction  
Servo motor rotation direction  
Parameter No. 1 setting  
Manual pulse generator: forward rotation  
CCW rotation  
Manual pulse generator: reverse rotation  
0
1
CW rotation  
CW rotation  
CCW rotation  
CCW  
CW  
Forward rotation  
(3) Manual pulse generator multiplication  
(a) Using the parameter for setting  
Use parameter No.1 to set the multiplication ratio of the servo motor rotation to the manual pulse  
generator rotation.  
Multiplication ratio of servo motor rotation to manual  
Parameter No. 1 setting  
Moving distance  
pulse generator rotation  
1 time  
0
1
2
1[ m]  
10[ m]  
100[ m]  
10 times  
100 times  
4 - 24  
4. OPERATION  
(b) Using the input signals for setting  
Set the pulse generator multiplication 1 (TP0) and pulse generator multiplication 2 (TP1) to the  
input signals in "Device setting" on the MR Configurator (servo configuration software) (refer to  
chapter 6).  
(Note) Pulse generator  
multiplication 2  
(Note) Pulse generator  
multiplication 1  
Multiplication ratio of servo motor  
rotation to manual pulse generator  
rotation  
Moving distance  
(across TP1)  
(across TP0)  
0
0
1
1
0
1
0
1
Parameter No.1 setting valid  
1 time  
10 times  
100 times  
1[ m]  
10[ m]  
100[ m]  
Note. 0: Open across TP1/TP0-SG  
1: Shorted across TP1/TP0-SG  
(4) Operation  
Turn the manual pulse generator to rotate the servo motor. For the rotation direction of servo motor,  
refer to (2) of this section.  
4 - 25  
4. OPERATION  
4.4 Manual home position return mode  
4.4.1 Outline of home position return  
Home position return is performed to match the command coordinates with the machine coordinates. In  
the incremental system, home position return is required every time input power is switched on. In the  
absolute position detection system, once home position return is done at the time of installation, the  
current position is retained if power is switched off. Hence, home position return is not required when  
power is switched on again.  
This servo amplifier has the home position return methods given in this section. Choose the most  
appropriate method for your machine structure and application.  
This servo amplifier has the home position return automatic return function which executes home  
position return by making an automatic return to a proper position if the machine has stopped beyond or  
at the proximity dog. Manual motion by jog operation or the like is not required.  
(1) Manual home position return types  
Choose the optimum home position return according to the machine type, etc.  
Type  
Home position return method  
Features  
General home position return method using a  
proximity dog.  
Repeatability of home position return is  
excellent.  
The machine is less burdened.  
Used when the width of the proximity dog can  
be set greater than the deceleration distance  
of the servo motor.  
With deceleration started at the front end of a  
proximity dog, the position where the first  
Z-phase signal is given past the rear end of the dog or  
a motion has been made over the home position shift  
distance starting from the Z-phase signal is defined as  
a home position.(Note)  
Dog type home position  
return  
With deceleration started at the front end of a  
proximity dog, the position where the first Z-phase  
signal is given after advancement over the preset  
moving distance after the proximity dog or a motion  
has been made over the home position shift distance  
starting from the Z-phase signal is defined as a home  
position.  
Home position return method using a  
proximity dog.  
Used when it is desired to minimize the length  
of the proximity dog.  
Count type home position  
return  
Data setting type home  
position return  
The position reached after any automatic motion is  
defined as a home position.  
No proximity dog required.  
Since the machine part collides with the  
machine be fully lowered.  
The machine and stopper strength must be  
increased.  
The position where the machine stops when its part is  
pressed against a machine stopper is defined as a  
home position.  
Stopper type home  
position return  
Home position ignorance  
(Servo-on position as  
home position)  
The position where servo is switched on is defined as  
a home position.  
The position where the axis, which had started  
decelerating at the front end of a proximity dog, has  
moved the after-proximity dog moving distance and  
home position shift distance after it passed the rear  
end is defined as a home position.  
The Z-phase signal is not needed.  
The Z-phase signal is not needed.  
Dog type rear end  
reference  
The position where the axis, which had started  
decelerating at the front end of a proximity dog, has  
moved the after-proximity dog moving distance and  
home position shift distance is defined as a home  
position.  
Count type front end  
reference  
The position where the first Z-phase signal is issued  
after detection of the proximity dog front end is  
defined as a home position.  
Dog cradle type  
Note. The Z-phase signal is a signal recognized in the servo amplifier once per servo motor revolution and cannot be used as an output  
signal.  
4 - 26  
4. OPERATION  
(2) Home position return parameter  
When performing home position return, set parameter No.8 as follows.  
Parameter No. 8  
0
Home position return method························································1)  
0: Dog type  
1: Count type  
2: Data setting type  
3: Stopper type  
4: Home position ignorance (Servo-on position as home position)  
5: Dog type rear end reference  
6: Count type front end reference  
7: Dog cradle type  
Home position return direction ······················································2)  
0: Address increment direction  
1: Address decrement direction  
Proximity dog input polarity ·····································3)  
0: Dog is detected when DOG-SG are opened.  
1: Dog is detected when DOG-SG are shorted.  
1) Choose the home position return method.  
2) Choose the starting direction of home position return. Set "0" to start home position return in the  
direction in which the address is incremented from the current position, or "1" to start home  
position return in the direction in which the address is decremented.  
3) Choose the polarity at which the proximity dog is detected. Set "0" to detect the dog when the  
proximity dog device (across DOG-SG) is opened, or "1" to detect the dog when the device is shorted.  
(3) Instructions  
1) Before starting home position return, always make sure that the limit switch operates.  
2) Confirm the home position return direction. Incorrect setting will cause the machine to run  
reversely.  
3) Confirm the proximity dog input polarity. Otherwise, misoperation can occur.  
4 - 27  
4. OPERATION  
4.4.2 Dog type home position return  
A home position return method using a proximity dog. With deceleration started at the front end of the  
proximity dog, the position where the first Z-phase signal is given past the rear end of the dog or a motion  
has been made over the home position shift distance starting from the Z-phase signal is defined as a home  
position.  
(1) Signals, parameters  
Set the input signals and parameters as follows.  
Item  
Device/Parameter used  
Automatic/manual selection (MD0)  
Point table No. selection 1 (DI0)  
Point table No. selection 2 (DI1)  
Description  
Short MD0-SG (ON).  
Manual home position return  
mode selection  
Open DI0-SG (OFF).  
Open DI1-SG (OFF).  
0 :Dog type home position return is  
Dog type home position return  
Home position return direction  
Dog input polarity  
Parameter No.8  
Parameter No.8  
Parameter No.8  
selected.  
Refer to section 4.4.1 (2) and choose home  
position return direction.  
Refer to section 4.4.1 (2) and choose dog  
input polarity.  
Home position return speed  
Creep speed  
Parameter No.9  
Parameter No.10  
Set speed until detection of dog.  
Set speed after detection of dog.  
Set when shifting the home position  
starting at the first Z-phase signal after  
passage of proximity dog rear end.  
Home position shift distance  
Parameter No.11  
Home position return  
acceleration/deceleration time  
constants  
Use the acceleration/deceleration time  
constants of point table No.1.  
Point table No.1  
Parameter No.42  
Home position return position  
data  
Use to set the current position on  
completion of home position return.  
(2) Length of proximity dog  
To ensure that the Z-phase signal of the servo motor is generated during detection of the proximity  
dog (DOG), the proximity dog should have the length which satisfies formulas (4.2) and (4.3).  
V
60  
td  
2
.............................................................................. (4.2)  
L1  
L
1
: Proximity dog length [mm]  
V
: Home position return speed [mm/min]  
td : Deceleration time [s]  
L
L
2
S ................................................................................... (4.3)  
2
: Proximity dog length [mm]  
2
S : Moving distance per servo motor revolution [mm]  
4 - 28  
4. OPERATION  
(3) Timing chart  
ON  
OFF  
Movement finish (MEND)  
ON  
OFF  
Rough match (CPO)  
Home position return  
completion (ZP)  
ON  
OFF  
Home position shift  
Point table No. 1  
Home position return  
Point table No. 1  
distance Parameter No. 11  
Deceleration time constant  
Creep speed  
speed Parameter No. 9  
Acceleration time  
constant  
Home position  
Parameter No. 10  
Servo motor speed  
td  
3ms or less  
Proximity dog  
Home position address  
Parameter No. 42  
ON  
OFF  
Z-phase  
Proximity dog (DOG)  
ON  
OFF  
5ms or more  
ON  
OFF  
Forward rotation start (ST1)  
Reverse rotation start (ST2)  
ON  
OFF  
The parameter No.42 (home position return position data) setting value is the positioning address  
after the home position return is completed.  
(4) Adjustment  
In dog type home position return, adjust to ensure that the Z-phase signal is generated during dog  
detection. Locate the rear end of the proximity dog (DOG) at approximately the center of two  
consecutive Z-phase signals.  
The position where the Z-phase signal is generated can be monitored in "Within one-revolution  
position" of "Status display".  
0
65536  
0
Servo motor  
Z-phase  
Proximity  
dog  
Proximity dog  
ON  
(DOG) OF  
4 - 29  
4. OPERATION  
4.4.3 Count type home position return  
In count type home position return, a motion is made over the distance set in parameter No.43 (moving  
distance after proximity dog) after detection of the proximity dog front end. The position where the first Z-  
phase signal is given after that is defined as a home position. Hence, if the proximity dog (DOG) is 10ms  
or longer, there is no restriction on the dog length. This home position return method is used when the  
required proximity dog length cannot be reserved to use dog type home position return or when the  
proximity dog (DOG) is entered electrically from a controller or the like.  
(1) Signals, parameters  
Set the input signals and parameters as follows.  
Item  
Device/Parameter used  
Automatic/manual selection (MD0)  
Point table No. selection 1 (DI0)  
Point table No. selection 2 (DI1)  
Description  
Short MD0-SG (ON).  
Open DI0-SG (OFF).  
Open DI1-SG (OFF).  
Manual home position return  
mode selection  
1 : Count type home position return  
is selected.  
Refer to section 4.4.1 (2) and choose home  
position return direction.  
Refer to section 4.4.1 (2) and choose dog  
input polarity.  
Count type home position return  
Home position return direction  
Dog input polarity  
Parameter No.8  
Parameter No.8  
Parameter No.8  
Home position return speed  
Creep speed  
Parameter No.9  
Parameter No.10  
Set speed until detection of dog.  
Set speed after detection of dog.  
Set when shifting the home position,  
starting at the first Z-phase signal given  
after passage of the proximity dog front end  
and movement over the moving distance.  
Set the moving distance after passage of  
proximity dog front end.  
Home position shift distance  
Parameter No.11  
Moving distance after proximity  
dog  
Home position return  
acceleration/deceleration time  
constants  
Parameter No.43  
Point table No.1  
Parameter No.42  
Use the acceleration/deceleration time  
constants of point table No.1.  
Home position return position  
data  
Use to set the current position on  
completion of home position return.  
(2) Timing chart  
ON  
Movement finish (MEND)  
OFF  
Rough match  
(CPO)  
ON  
OFF  
Home position return  
completion (ZP)  
ON  
OFF  
Home position  
shift distance  
Parameter No. 11  
Point table No. 1  
Deceleration time  
constant  
Home position return  
Point table No. 1  
Acceleration time constant speed Parameter No. 9  
Creep speed  
Parameter No. 10  
Home position  
Servo motor speed  
3ms or less  
Proximity dog  
Moving distance after  
proximity dog  
Parameter No. 43  
Home position address  
Parameter No. 42  
ON  
OFF  
ON  
Z-phase  
Proximity dog (DOG)  
OFF  
5ms or more  
ON  
OFF  
Forward rotation  
start (ST1)  
ON  
Reverse rotation  
start (ST2) OFF  
The parameter No.42 (home position return position data) setting value is the positioning address  
after the home position return is completed.  
4 - 30  
4. OPERATION  
4.4.4 Data setting type home position return  
Data setting type home position return is used when it is desired to determine any position as a home  
position. JOG operation, manual pulse generator operation or like can be used for movement.  
(1) Signals, parameters  
Set the input signals and parameters as follows.  
Item  
Device/Parameter used  
Description  
Automatic/manual selection (MD0) Short MD0-SG (ON).  
Manual home position return mode  
selection  
Point table No. selection 1 (DI0)  
Point table No. selection 2 (DI1)  
Open DI0-SG (OFF).  
Open DI1-SG (OFF).  
2 : Data setting type home position  
Data setting type home position return  
Home position return position data  
Parameter No.8  
Parameter No.42  
return is selected.  
Use to set the current position on completion  
of home position return.  
(2) Timing chart  
ON  
OFF  
Automatic/manual selection  
(MD0)  
ON  
OFF  
Movement finish (MEND)  
Rough match ON  
(CPO)  
OFF  
Home position  
return completion  
(ZP)  
ON  
OFF  
Home position address  
Parameter No. 42  
Servo motor speed  
3ms or less  
Forward rotation  
start (ST1)  
5ms or more  
ON  
OFF  
Reverse rotation  
start (ST2)  
ON  
OFF  
Movement to the home position  
Operation for home position return  
The parameter No.42 (home position return position data) setting value is the positioning address  
after the home position return is completed.  
4 - 31  
4. OPERATION  
4.4.5 Stopper type home position return  
In stopper type home position return, a machine part is pressed against a stopper or the like by jog  
operation, manual pulse generator operation or the like to make a home position return and that position  
is defined as a home position.  
(1) Signals, parameters  
Set the input signals and parameters as follows.  
Item  
Device/Parameter used  
Automatic/manual selection (MD0)  
Point table No. selection 1 (DI0)  
Point table No. selection 2 (DI1)  
Description  
Short MD0-SG (ON).  
Manual home position return  
mode selection  
Open DI0-SG (OFF).  
Open DI1-SG (OFF).  
Stopper type home position  
return  
3 : Stopper type home position return is  
Parameter No.8  
selected.  
Home position return  
direction  
Refer to section 4.4.1 (2) and choose the home  
position return direction.  
Parameter No.8  
Parameter No.9  
Home position return speed  
Set the speed till contact with the stopper.  
Time from when the part makes contact with  
the stopper to when home position return data is  
obtained to output home position return  
completion (ZP)  
Stopper time  
Parameter No.44  
Stopper type home position  
return torque limit  
Set the servo motor torque limit value for  
execution of stopper type home position return.  
Use the acceleration time constant of point table  
No.1.  
Parameter No.45  
Point table No.1  
Parameter No.42  
Home position return  
acceleration time constant  
Home position return  
position data  
Use to set the current position on completion of  
home position return.  
4 - 32  
4. OPERATION  
(2) Timing chart  
ON  
Automatic/manual  
selection (MD0)  
OFF  
ON  
Movement finish  
(MEND)  
OFF  
ON  
Rough match  
(CPO)  
OFF  
ON  
Home position  
return completion  
(ZP)  
OFF  
Point table No.1  
Acceleration time constant  
Home position address  
Parameter No. 42  
Home position return  
speed Parameter No.9  
Servo motor speed  
3ms or less  
Stopper  
ON  
Forward rotation start  
(ST1)  
5ms or more  
OFF  
ON  
Forward rotation start  
(ST2)  
OFF  
Stopper time  
Parameter No. 44  
ON  
Limiting torque (TLC)  
Torque limit value  
OFF  
Parameter No.28  
(Note)Parameter No.45  
Parameter No.28  
Note. The torque limit that is enabled at this point is as follows.  
(Note)  
Torque limit to be  
enabled  
Limit value status  
I/O devices  
TL1  
TL  
0
0
0
Parameter No.45  
Parameter No.45  
TLA  
TLA  
TLA  
Parameter No.45  
1
0
1
Parameter No.45  
Parameter No.45  
Parameter No.45  
Parameter No.45  
Parameter No.45  
Parameter No.29  
Parameter No.29  
TLA  
Parameter No.45  
Parameter No.45  
Parameter No.45  
TLA  
1
1
TLA  
Note. 0: OFF  
1: ON  
The parameter No.42 (home position return position data) setting value is the positioning address  
after the home position return is completed.  
4 - 33  
4. OPERATION  
4.4.6 Home position ignorance (servo-on position defined as home position)  
The position where servo is switched on is defined as a home position.  
(1) Signals, parameter  
Set the input signals and parameter as follows.  
Item  
Device/Parameter used  
Description  
Home position ignorance  
Home position return position  
data  
Parameter No.8  
4 : Home position ignorance is selected.  
Use to set the current position on completion of  
home position return.  
Parameter No.42  
(2) Timing chart  
ON  
OFF  
Servo-on (SON)  
ON  
Ready (RD)  
OFF  
Automatic/manual  
selection (MD0)  
ON  
OFF  
ON  
OFF  
Movement finish (MEND)  
Rough match  
(CPO)  
ON  
OFF  
Home position  
return completion  
(ZP)  
ON  
OFF  
Home position address  
Parameter No. 42  
Servo motor speed  
The parameter No.42 (home position return position data) setting value is the positioning address after  
the home position return is completed.  
4 - 34  
4. OPERATION  
4.4.7 Dog type rear end reference home position return  
POINT  
This home position return method depends on the timing of reading  
Proximity dog (DOG) that has detected the rear end of a proximity dog.  
Hence, if a home position return is made at the creep speed of 100r/min, an  
error of 200 pulses will occur in the home position. The error of the home  
position is larger as the creep speed is higher.  
The position where the axis, which had started decelerating at the front end of a proximity dog, has  
moved the after-proximity dog moving distance and home position shift distance after it passed the rear  
end is defined as a home position. A home position return that does not depend on the Z-phase signal can  
be made.  
(1) Signals, parameters  
Set the input signals and parameters as indicated below.  
Item  
Device/Parameter used  
Description  
Automatic/manual selection (MD0) Short (turn on) MD0-SG.  
Manual home position return mode  
selection  
Point table No. selection 1 (DI0)  
Point table No. selection 2 (DI1)  
Open (turn off) DI0-SG.  
Open (turn off) DI1-SG.  
Dog type rear end reference home  
position return  
Parameter No.8  
5: Select the dog type rear end reference.  
Home position return direction  
Dog input polarity  
Home position return speed  
Creep speed  
Parameter No.8  
Parameter No.8  
Parameter No.9  
Parameter No.10  
Refer to section 4.4.1 (2) and select the home position return direction.  
Refer to section 4.4.1 (2) and select the dog input polarity.  
Set the speed till the dog is detected.  
Set the speed after the dog is detected.  
Set when the home position is moved from where the axis has passed  
the proximity dog rear end.  
Home position shift distance  
Parameter No.11  
Set the moving distance after the axis has passed the proximity dog  
rear end.  
Moving distance after proximity dog Parameter No.43  
Home position return acceleration/  
Point table No.1  
Use the acceleration/deceleration time constant of point table No. 1.  
Use to set the current position on completion of home position return.  
deceleration time constants  
Home position return position data  
Parameter No.42  
(2) Timing chart  
ON  
Automatic/manual  
selection (MD0)  
OFF  
ON  
Movement finish (MEND)  
Rough match (CPO)  
OFF  
ON  
OFF  
ON  
Home position return  
completion (ZP)  
OFF  
Moving distance after proximity dog  
Home position return speed  
Home position shift distance  
Creep speed  
Servo motor speed  
3ms or less  
Proximity dog  
Home position address  
Parameter No. 42  
ON  
Proximity dog (DOG)  
OFF  
ON  
Forward rotation start (ST1)  
OFF  
5ms or more  
ON  
Reverse rotation start (ST2)  
OFF  
The parameter No.42 (home position return position data) setting value is the positioning address  
after the home position return is completed.  
4 - 35  
4. OPERATION  
4.4.8 Count type front end reference home position return  
POINT  
This home position return method depends on the timing of reading  
Proximity dog (DOG) that has detected the front end of a proximity dog.  
Hence, if a home position return is made at the home position return speed  
of 100r/min, an error of 200 pulses will occur in the home position. The  
error of the home position is larger as the home position return speed is  
higher.  
The position where the axis, which had started decelerating at the front end of a proximity dog, has  
moved the after-proximity dog moving distance and home position shift distance is defined as a home  
position. A home position return that does not depend on the Z-phase signal can be made. The home  
position may change if the home position return speed varies.  
(1) Signals, parameters  
Set the input signals and parameters as indicated below.  
Item  
Device/Parameter used  
Description  
Automatic/manual selection (MD0) Short (turn on) MD0-SG.  
Manual home position return mode  
selection  
Point table No. selection 1 (DI0)  
Point table No. selection 2 (DI1)  
Open (turn off) DI0-SG.  
Open (turn off) DI1-SG.  
Count type dog front end reference  
home position return  
Parameter No.8  
Parameter No.8  
6: Select the count type dog front end reference.  
Refer to section 4.4.1 (2) and select the home position return  
direction.  
Home position return direction  
Dog input polarity  
Home position return speed  
Creep speed  
Parameter No.8  
Parameter No.9  
Parameter No.10  
Refer to section 4.4.1 (2) and select the dog input polarity.  
Set the speed till the dog is detected.  
Set the speed after the dog is detected.  
Set when the home position is moved from where the axis has passed  
the proximity dog rear end.  
Home position shift distance  
Parameter No.11  
Parameter No.43  
Set the moving distance after the axis has passed the proximity dog  
rear end.  
Moving distance after proximity dog  
Home position return acceleration/  
deceleration time constants  
Home position return position data  
Point table No.1  
Parameter No.42  
Use the acceleration/deceleration time constant of point table No. 1.  
Use to set the current position on completion of home position return.  
(2) Timing chart  
ON  
Automatic/manual  
selection (MD0)  
OFF  
ON  
Movement finish (MEND)  
Rough match (CPO)  
OFF  
ON  
OFF  
ON  
Home position return  
completion (ZP)  
OFF  
Moving distance after proximity dog  
Home position return speed  
Home position shift distance  
Creep speed  
Servo motor speed  
Proximity dog (DOG)  
3ms or less  
Home position address  
Parameter No. 42  
Proximity dog (DOG)  
ON  
OFF  
ON  
Forward rotation  
start (ST1)  
OFF  
5ms or more  
ON  
Reverse rotation  
start (ST2)  
OFF  
The parameter No.42 (home position return position data) setting value is the positioning address  
after the home position return is completed.  
4 - 36  
4. OPERATION  
4.4.9 Dog cradle type home position return  
The position where the first Z-phase signal is issued after detection of the proximity dog front end can be  
defined as a home position.  
(1) Signals, parameters  
Set the input signals and parameters as indicated below.  
Item  
Device/Parameter used  
Description  
Automatic/manual selection (MD0) Short (turn on) MD0-SG.  
Manual home position return mode  
selection  
Point table No. selection 1 (DI0)  
Point table No. selection 2 (DI1)  
Open (turn off) DI0-SG.  
Open (turn off) DI1-SG.  
Dog cradle type home position return Parameter No.8  
7: Select the dog cradle type.  
Refer to section 4.4.1 (2) and select the home  
position return direction.  
Home position return direction  
Dog input polarity  
Parameter No.8  
Parameter No.8  
Refer to section 4.4.1 (2) and select the dog input  
polarity.  
Home position return speed  
Creep speed  
Parameter No.9  
Parameter No.10  
Set the speed till the dog is detected.  
Set the speed after the dog is detected.  
Set when the home position is moved from the Z-  
phase signal position.  
Home position shift distance  
Parameter No.11  
Point table No.1  
Parameter No.42  
Home position return  
acceleration/deceleration time  
constants  
Use the acceleration/deceleration time constant of  
point table No. 1.  
Use to set the current position on completion of  
home position return.  
Home position return position data  
(2) Timing chart  
ON  
Automatic/manual  
selection (MD0)  
OFF  
ON  
Movement finish (MEND)  
Rough match (CPO)  
OFF  
ON  
OFF  
Home position return ON  
completion (ZP)  
OFF  
Home position return speed  
Creep speed  
Home position shift distance  
Servo motor speed  
3ms or less  
Home position address  
Parameter No. 42  
Proximity dog  
ON  
Z-phase  
OFF  
ON  
Proximity dog (DOG)  
OFF  
ON  
Forward rotation  
start (ST1)  
OFF  
5ms or more  
Reverse rotation  
start (ST2)  
ON  
OFF  
The parameter No.42 (home position return position data) setting value is the positioning address  
after the home position return is completed.  
4 - 37  
4. OPERATION  
4.4.10 Home position return automatic return function  
If the current position is at or beyond the proximity dog in the home position return using the proximity  
dog, this function starts home position return after making a return to the position where the home  
position return can be made.  
(1) When the current position is at the proximity dog  
When the current position is at the proximity dog, an automatic return is made before home position  
return.  
Home position return direction  
Proximity dog  
Home position return  
start position  
Makes an automatic return  
to a position before the  
proximity dog, then executes  
home position return at this position.  
(2) When the current position is beyond the proximity dog  
At a start, a motion is made in the home position return direction and an automatic return is made on  
detection of the stroke end (LSP or LSN). The motion stops past the front end of the proximity dog,  
and home position return is resumed at that position. If the proximity dog cannot be detected, the  
motion stops on detection of the opposite LSP or LSN and home position return incomplete warning  
(AL. 90) occurs.  
Stroke end  
(LSP or LSN)  
Home position return direction  
Proximity dog  
Home position return  
start position  
Makes an automatic return  
to a position before the  
proximity dog, then executes  
home position return at this position.  
Software limit cannot be used with these functions.  
4 - 38  
4. OPERATION  
4.4.11 Automatic positioning function to the home position  
POINT  
You cannot perform automatic positioning from outside the position data  
setting range to the home position. In this case, make a home position  
return again using a manual home position return.  
If this function is used when returning to the home position again after performing a manual home  
position return after a power-on and deciding the home position, automatic positioning can be carried out  
to the home position at high speed. In an absolute position system, manual home position return is not  
required after power-on.  
Please perform a manual home position return beforehand after a power-on.  
Set the input signals and parameter as follows.  
Item  
Device/Parameter used  
Description  
Automatic/manual selection (MD0) Short MD0-SG (ON).  
Manual home position return mode  
selection  
Point table No. selection 1 (DI0)  
Point table No. selection 2 (DI1)  
Parameter No.9  
Open DI0-SG (OFF).  
Open DI1-SG (OFF).  
Speed is set up.  
Home position return speed  
Home position return acceleration  
time constant  
Use the acceleration time constant of point table  
No.1.  
Point table No.1  
Set up the home position return speed of the automatic positioning function to the home position by  
parameter No.9. Use the data of point table No.1 to set the acceleration time constant and deceleration  
time constant. When reverse rotation start (ST2) is ON, it will position automatically at the home  
position.  
Home position return speed Deceleration time constant  
Acceleration time constant  
Parameter No. 9  
of point table No. 1  
of point table No. 1  
Servo motor speed  
Home position  
ON  
OFF  
Forward rotation start (ST1)  
Reverse rotation start (ST2)  
ON  
OFF  
4 - 39  
4. OPERATION  
4.5 Absolute position detection system  
If an absolute position erase alarm (AL.25) or an absolute position counter warning  
(AL.E3) has occurred, always perform home position setting again. Not doing so  
can cause runaway.  
CAUTION  
POINT  
When the following parameters are changed, the home position is lost  
when turning on the power after the change. Execute the home position  
return again when turning on the power.  
First digit of parameter No.1 (ST1 coordinate system selection)  
Parameter No. 4 (Electronic gear numerator)  
Parameter No. 5 (Electronic gear denominator)  
Parameter No. 42 (Home position return position data)  
This servo amplifier contains a single-axis controller. Also, all servo motor encoders are compatible with  
an absolute position system. Hence, an absolute position detection system can be configured up by merely  
loading an absolute position data back-up battery and setting parameter values.  
(1) Restrictions  
An absolute position detection system cannot be built under the following conditions.  
1) Stroke-less coordinate system, e.g. rotary shaft, infinite positioning.  
2) Operation performed in incremental value command type positioning system.  
(2) Specifications  
Item  
Description  
Electronic battery backup system  
System  
Battery  
1 piece of lithium battery ( primary battery, nominal 3.6V)  
Type: MR-BAT or A6BAT  
Maximum revolution range  
(Note 1) Maximum speed at power failure  
(Note 2) Battery backup time  
(Note 3) Data holding time during battery  
replacement  
Home position 32767 rev.  
500r/min  
Approx. 10,000 hours (battery life with power off)  
2 hours at delivery, 1 hour in 5 years after delivery  
Battery storage period  
5 years from date of manufacture  
Note 1. Maximum speed available when the shaft is rotated by external force at the time of power failure or the like.  
2. Time to hold data by a battery with power off. It is recommended to replace the battery in three years independently of  
whether power is kept on or off.  
3. Period during which data can be held by the super capacitor in the encoder after power-off, with the battery voltage low or  
the battery removed, or during which data can be held with the encoder cable disconnected.  
Battery replacement should be finished within this period.  
4 - 40  
4. OPERATION  
(3) Structure  
Component  
Description  
Servo amplifier  
Servo motor  
Battery  
Use standard models.  
MR-BAT or A6BAT  
Use a standard model.  
Encoder cable  
When fabricating, refer to (2), section 14.1.4.  
(4) Outline of absolute position detection data communication  
For normal operation, as shown below, the encoder consists of a detector designed to detect a position  
within one revolution and a cumulative revolution counter designed to detect the number of  
revolutions.  
The absolute position detection system always detects the absolute position of the machine and keeps  
it battery-backed, independently of whether the general-purpose programming controller power is on  
or off. Therefore, once the home position is defined at the time of machine installation, home position  
return is not needed when power is switched on thereafter.  
If a power failure or a fault occurs, restoration is easy.  
Also, the absolute position data, which is battery-backed by the super capacitor in the encoder, can be  
retained within the specified period (cumulative revolution counter value retaining time) if the cable is  
unplugged or broken.  
Servo amplifier  
Home position return  
data  
Point table No. selection  
(DI0 to DI3), etc.  
EEP-ROM memory  
I/O circuit  
Current position  
LSO  
1XO  
Backup at  
power off  
Position data, speed data  
(current position read)  
1X  
LS  
Detection of position  
within one revolution  
Speed detection  
Battery MR-BAT  
Servo motor  
1 pulse/rev. Cumulative  
High-speed serial  
communication  
revolution counter  
Super capacitor  
Within one-revolution counter  
(5) Battery installation procedure  
Before installing a battery, turn off the main circuit power while keeping the control  
circuit power on. Wait for 15 minutes or more until the charge lamp turns off. Then,  
confirm that the voltage between P and N is safe with a voltage tester and others.  
Otherwise, an electric shock may occur. In addition, always confirm from the front  
of the servo amplifier whether the charge lamp is off or not.  
WARNING  
POINT  
The internal circuits of the servo amplifier may be damaged by static  
electricity.  
Always take the following precautions.  
Ground human body and work bench.  
Do not touch the conductive areas, such as connector pins and electrical  
parts, directly by hand.  
4 - 41  
4. OPERATION  
1) Open the operation window. (When the model used is the MR-J2S-200CP MR-J2S-350CP or more,  
also remove the front cover.)  
2) Install the battery in the battery holder.  
3) Install the battery connector into CON1 until it clicks.  
Battery connector  
Battery connector  
Operation window  
CON1  
CON1  
Battery  
Battery holder  
Battery  
Battery holder  
For MR-J2S-100CP or less  
For MR-J2S-200CP MR-J2S-350CP  
Battery connector  
CON1  
Battery holder  
Battery  
For MR-J2S-500CP MR-J2S-700CP  
(6) Parameter setting  
Set parameter No.2 (Function selection 1) as indicated below to make the absolute position detection  
system valid.  
Parameter No.2  
1
Selection of absolute position detection system  
0: Incremental system  
1: Absolute position detection system  
4 - 42  
4. OPERATION  
4.6 Serial communication operation  
The RS-422 or RS-232C communication function may be used to operate the servo amplifier from a  
command device (controller) such as a personal computer. Positioning operation can be performed with  
the positioning operation/position specified by selection of the point tables. Note that the RS-422 and RS-  
232C communication functions cannot be used at the same time.  
This section provides a data transfer procedure. Refer to chapter 15 for full information on the connection  
and transferred data between the controller and servo amplifier.  
4.6.1 Positioning operation in accordance with point tables  
By selecting the point table No. and switching on the forward rotation start (ST1) or reverse rotation start  
(ST2) using the communication function, positioning operation in accordance with point tables can be  
started.  
(1) Selection of point tables  
Using the device forced output from the controller (command [9][2], data No. [6][0]), choose point  
tables from among No.1 to 31.  
(2) Timing chart  
5ms or more  
5ms or more  
4) 5)  
5ms or more  
4) 5)  
Transmission  
data  
1)  
4)  
5)  
2)  
3)  
Servo motor  
speed  
3ms  
Point table No. 2  
Point table No. 1  
Point table No. 3  
No.  
Transmission data  
Command  
[9] [2]  
Data No.  
[6] [0]  
[6] [0]  
[6] [0]  
[6] [0]  
[6] [0]  
1)  
2)  
3)  
4)  
5)  
Point table No.2 selection  
Point table No.1 selection  
[9] [2]  
Point table No.3 selection  
[9] [2]  
Forward rotation start (ST1) ON  
Forward rotation start (ST1) OFF  
[9] [2]  
[9] [2]  
4 - 43  
4. OPERATION  
4.6.2 Positioning operation  
Positioning operation can be performed by changing the point table settings and making a start. For  
example, positioning operation can be performed by writing the data of point table No.1, then specifying  
point table No.1, and making a start.  
For transmission data details, refer to chapter 15.  
5ms or more  
Transmission data  
1)  
2)  
3)  
4)  
5)  
6)  
7)  
8)  
Servo motor speed  
3ms  
Values set with transmission data 1) to 5) are used for operation.  
No.  
Transmission data  
Command  
[C] [0]  
[C] [6]  
[C] [7]  
[C] [8]  
[C] [B]  
[9] [2]  
Data No.  
[0] [1]  
[0] [1]  
[0] [1]  
[0] [1]  
[0] [1]  
[6] [0]  
[6] [0]  
[6] [0]  
1)  
2)  
3)  
4)  
5)  
6)  
7)  
8)  
Point table No.1 position data write  
Point table No.1 speed  
Point table No.1 acceleration time constant  
Point table No.1 deceleration time constant  
Point table No.1 auxiliary function  
Point table No.1 selection  
Forward rotation start (ST1) ON  
Forward rotation start (ST1) OFF  
[9] [2]  
[9] [2]  
4.6.3 Multidrop system  
The RS-422 communication function can be used to operate several servo amplifiers on the same bus. In  
this case, set the station numbers to the servo amplifiers to determine the destination servo amplifier of  
the currently transmitted data. Use parameter No.15 to set the station numbers.  
Always set one station number to one servo amplifier. Normal communication cannot be made if one  
station number is set to two or more servo amplifiers. When using one command to operate several servo  
amplifiers, use the group designation function described in section 4.6.4.  
MITSUBISHI  
MITSUBISHI  
MITSUBISHI  
MITSUBISHI  
To CN3  
To CN3  
To CN3  
To CN3  
CHARGE  
CHARGE  
CHARGE  
CHARGE  
Axis 1  
(Station 0)  
Axis 2  
(Station 1)  
Axis 3  
(Station 2)  
Axis 32  
(Station 31)  
Controller  
RS-422  
For cable connection diagram,  
refer to section 15.1.1.  
4 - 44  
4. OPERATION  
4.6.4 Group designation  
When using several servo amplifiers, command-driven parameter settings, etc. can be made on a group  
basis.  
You can set up to six groups, a to f. Set the group to each station using the communication command.  
(1) Group setting example  
Group a  
Group b  
MITSUBISHI  
MITSUBISHI  
MITSUBISHI  
MITSUBISHI  
MITSUBISHI  
To CN3  
To CN3  
To CN3  
To CN3  
To CN3  
CHARGE  
CHARGE  
CHARGE  
CHARGE  
CHARGE  
Axis 1  
(Station 0)  
Axis 2  
(Station 1)  
Axis 3  
(Station 2)  
Axis 4  
(Station 3)  
Axis 5  
(Station 4)  
Controller  
RS-422  
For cable connection diagram,  
refer to section 15.1.1.  
MITSUBISHI  
MITSUBISHI  
MITSUBISHI  
MITSUBISHI  
MITSUBISHI  
CHARGE  
CHARGE  
CHARGE  
CHARGE  
CHARGE  
To CN3  
To  
To CN3  
To  
To CN3  
CN3  
CN3  
(Station 6)  
Axis 10  
(Station 9)  
Axis 9  
(Station 8)  
Axis 8  
(Station 7)  
Axis 7  
Axis 6  
(Station 5)  
Group d  
Group c  
Servo amplifier station No.  
Station 0  
Group setting  
Station 1  
a
Station 2  
Station 3  
Station 4  
b
c
Station 5  
Station 6  
Station 7  
Station 8  
d
Station 9  
4 - 45  
4. OPERATION  
(2) Timing chart  
In the following timing chart, operation is performed group-by-group in accordance with the values set  
in point table No.1.  
Transmission data  
7)  
9)  
11)  
12)  
1)  
2)  
3)  
4)  
5)  
6)  
8)  
10)  
Station 0  
Servo motor  
speed  
Station 1  
Servo motor  
speed  
Station 2  
Servo motor  
speed  
Group a  
Station 3  
Servo motor  
speed  
Station 4  
Servo motor  
speed  
Group b  
Station 5  
Servo motor  
speed  
Station 6  
Servo motor  
speed  
Station 7  
Servo motor  
speed  
Group c  
Group d  
Station 8  
Servo motor  
speed  
Station 9  
Servo motor  
speed  
No.  
Transmission data  
Command  
[9] [2]  
[9] [2]  
[9] [2]  
[9] [2]  
[9] [2]  
[9] [2]  
[9] [2]  
[9] [2]  
[9] [2]  
[9] [2]  
[9] [2]  
[9] [2]  
Data No.  
[6] [0]  
[6] [0]  
[6] [0]  
[6] [0]  
[6] [0]  
[6] [0]  
[6] [0]  
[6] [0]  
[6] [0]  
[6] [0]  
[6] [0]  
[6] [0]  
1)  
2)  
3)  
4)  
5)  
6)  
7)  
8)  
9)  
Selection of point table No.1 of group a  
Forward rotation start (ST1) ON  
Forward rotation start (ST1) OFF  
Selection of point table No.1 of group b  
Forward rotation start (ST1) ON  
Forward rotation start (ST1) OFF  
Selection of point table No.1 of group c  
Forward rotation start (ST1) ON  
Forward rotation start (ST1) OFF  
10) Selection of point table No.1 of group d  
11) Forward rotation start (ST1) ON  
12) Forward rotation start (ST1) OFF  
In addition, parameter values common to the stations of each group can be written and alarm reset  
can be made, for example.  
(3) Group setting instructions  
Only one servo amplifier may send a reply in any group. If two or more servo amplifiers send reply  
data at the same time, they may become faulty.  
4 - 46  
5. PARAMETERS  
5. PARAMETERS  
CAUTION  
Never adjust or change the parameter values extremely as it will make operation  
instable.  
5.1 Parameter list  
5.1.1 Parameter write inhibit  
POINT  
Set "000E" when using the MR Configurator (servo configuration  
software) to make device setting.  
After setting the parameter No.19 value, switch power off, then on to  
make that setting valid.  
In the servo amplifier, its parameters are classified into the basic parameters (No.0 to 19), expansion  
parameters 1 (No.20 to 53), expansion parameters 2 (No.54 to 77) and special parameters (No.78 to 90)  
according to their safety aspects and frequencies of use. In the factory setting condition, the customer can  
change the basic parameter values but cannot change the expansion parameter 1,2 values and special  
parameter values. When fine adjustment, e.g. gain adjustment, is required, change the parameter No.19  
setting to make the expansion parameters write-enabled.  
The following table lists the parameters whose values are made valid for reference/write by setting  
parameter No. 19. Operation can be performed for the parameters marked  
.
Expansion parameters 2  
No.54 to No.77  
Parameter No.19  
setting  
Basic parameters  
No.0 to No.19  
Expansion parameters 1  
No.20 to No.53  
Operation  
special parameters (No.78 to 90)  
0000  
Reference  
Write  
(initial value)  
Reference  
Write  
No.19 only  
No.19 only  
000A  
000B  
000C  
000E  
Reference  
Write  
Reference  
Write  
Reference  
Write  
5 - 1  
5. PARAMETERS  
5.1.2 List  
POINT  
The parameters marked * before their symbols are made valid by  
switching power off once and then switching it on again after parameter  
setting.  
Refer to the corresponding reference items for details of the parameters.  
(1) Item list  
Customer  
setting  
Class No.  
Symbol  
Name and Function  
Initial value  
Unit  
0
1
*STY  
*FTY  
*OP1  
ATU  
Command system/regenerative option selection  
Feeding function selection  
Function selection 1  
0000  
0000  
0002  
0105  
1
2
3
Auto tuning  
4
*CMX Electronic gear numerator  
5
*CDV  
INP  
Electronic gear denominator  
In-position range  
1
6
100  
35  
pulse  
rad/s  
7
PG1  
Position control gain 1  
8
*ZTY  
ZRF  
Home position return type  
Home position return speed  
Creep speed  
0010  
500  
10  
9
r/min  
r/min  
m
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CRF  
ZST  
Home position shift distance  
Rough match output range  
Jog speed  
0
CRP  
JOG  
*STC  
*SNO  
*BPS  
MOD  
0
10STM  
r/min  
ms  
m
100  
0
S-pattern acceleration/deceleration time constant  
Station number setting  
0
station  
Communication baud rate selection, alarm history clear  
Analog monitor output  
0000  
0100  
0000  
0000  
*DMD Status display selection  
*BLK Parameter write inhibit  
5 - 2  
5. PARAMETERS  
Customer  
setting  
Class No.  
Symbol  
Name and Function  
Initial value  
Unit  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
*OP2  
Function selection 2  
0000  
0002  
0000  
0
For manufacturer setting  
Function selection 4  
*OP4  
SIC  
Serial communications time-out selection  
Feed forward gain  
FFC  
VCO  
TLO  
0
%
mV  
Override offset  
0
Torque limit offset  
0
mV  
*ENR Encoder output pulses  
4000  
100  
100  
0
pulse/rev  
%
TL1  
TL2  
Internal torque limit 1  
Internal torque limit 2  
%
*BKC  
MO1  
MO2  
MBR  
GD2  
PG2  
VG1  
VG2  
VIC  
Backlash compensation  
pulse  
mV  
Analog monitor 1 offset  
0
Analog monitor 2 offset  
0
mV  
Electromagnetic brake sequence output  
Ratio of load inertia moment to Servo motor inertia moment  
Position control gain 2  
100  
70  
ms  
0.1 times  
rad/s  
rad/s  
rad/s  
ms  
35  
Speed control gain 1  
177  
817  
48  
Speed control gain 2  
Speed integral compensation  
Speed differential compensation  
VDC  
980  
0
For manufacturer setting  
0
*ZPS  
DCT  
ZTM  
ZTT  
Home position return position data  
0
10STM  
10STM  
m
Moving distance after proximity dog  
1000  
100  
15  
m
Stopper type home position return stopper time  
Stopper type home position return torque limit value  
ms  
%
*LMP Software limit  
*LMN Software limit  
0
0
0
0
10STM  
10STM  
10STM  
10STM  
m
m
m
m
*LPP  
*LNP  
Position range output address  
Position range output address  
5 - 3  
5. PARAMETERS  
Customer  
setting  
Class No.  
Symbol  
Name and Function  
For manufacturer setting  
Initial value  
Unit  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
70  
*OP6  
Function selection 6  
For manufacturer setting  
*OP8  
*OP9  
*OPA  
Function selection 8  
Function selection 9  
Function selection A  
For manufacturer setting  
NH1  
NH2  
LPF  
Machine resonance suppression filter 1  
Machine resonance suppression filter 2  
Low-pass filter, adaptive vibration suppression control  
GD2B Ratio of load inertia moment to Servo motor inertia moment 2  
PG2B Position control gain 2 changing ratio  
VG2B Speed control gain 2 changing ratio  
0.1 times  
100  
%
%
%
100  
VICB  
*CDP  
CDS  
Speed integral compensation changing ratio  
Gain changing selection  
100  
0000  
10  
Gain changing condition  
(Note)  
CDT  
Gain changing time constant  
1
ms  
100  
10000  
10  
For manufacturer setting  
10  
100  
100  
100  
0000  
0009  
080A  
0706  
020B  
0504  
0002  
0000  
0005  
0D04  
0102  
0
For manufacturer setting  
0
Note. Depends on the parameter No. 68 setting.  
5 - 4  
5. PARAMETERS  
(2) Detail list  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and Function  
Unit  
Command system, regenerative option selection  
Used to select the command system and regenerative option.  
0
*STY  
0000  
Refer to  
Name  
and  
0
0
function  
column.  
Selection of command system (Refer to section 4.2)  
0: Absolute value command system  
1: Incremental value command system  
2: Absolute value command/incremental  
value command specifying system  
Selection of regenerative option  
(Refer to section 14.1.1)  
0: Not used (The built-in regenerative resistor is used.  
However, the MR-J2S-10CP does not have a built-in  
regenerative resistor and therefore cannot use it.)  
1: FR-RC, FR-BU2  
2: MR-RB032  
3: MR-RB12  
4: MR-RB32  
5: MR-RB30  
6: MR-RB50 (Cooling fan is required)  
8: MR-RB31  
9: MR-RB51 (Cooling fan is required)  
If the regenerative option selected is not for use with the  
servo amplifier, parameter error occurs  
Feeding function selection  
Used to set the feed length multiplication factor and manual pulse generator  
multiplication factor.  
1
*FTY  
0000  
Refer to  
Name  
and  
function  
column.  
ST1 coordinate system selection  
(Refer to section 4.2.2 to 4.2.4)  
0: Address is incremented in CCW direction  
1: Address is incremented in CW direction  
Feed length multiplication factor (STM)  
(Refer to section 4.2.2 to 4.2.4)  
0: 1 time  
1: 10 times  
2: 100 times  
3: 1000 times  
Manual pulse generator multiplication factor  
(Refer to section 4.3.2)  
0: 1 time  
1: 10 times  
2: 100 times  
Servo-on (SON) -off, forced stop (EMG) -off  
follow-up for absolute value command  
in incremental system or absolute value command/  
incremental value command specifying system  
0: Invalid  
1: Valid  
Normally, when this servo amplifier is used  
in the absolute value command method of the  
incremental system, placing it in a servo off or  
forced stop status will erase the home position.  
When "1" is set in this parameter, the home  
position will not be erased if the servo amplifier  
is placed in a servo off or forced stop status.  
Operation can be resumed when servo-on (SON)  
is turned on again or forced stop (EMG) is canceled.  
5 - 5  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and Function  
Unit  
Function selection 1  
Used to select the input filter and absolute position detection system.  
2
*OP1  
0002  
Refer to  
Name  
and  
0 0  
function  
column.  
Input filter  
If external input signal causes chattering due  
to noise, etc., input filter is used to suppress it.  
0: None  
1: 0.88[ms]  
2: 1.77[ms]  
3: 2.66[ms]  
4: 3.55[ms]  
5: 4.44[ms]  
Selection of absolute position detection system  
(Refer to section 4.5)  
0: Incremental system  
1: Absolute position detection system  
Auto tuning  
3
ATU  
0105  
Refer to  
Name  
Used to selection the response level, etc. for execution of auto tuning.  
(Refer to chapter 7)  
and  
0
0
function  
column.  
Auto tuning response level setting  
Set Response Machine resonance  
value  
1
level  
Low  
frequency guideline  
15Hz  
response  
2
20Hz  
3
25Hz  
4
30Hz  
5
35Hz  
6
45Hz  
7
8
9
55Hz  
70Hz  
85Hz  
Middle  
response  
A
B
C
D
E
F
105Hz  
130Hz  
160Hz  
200Hz  
240Hz  
300Hz  
High  
response  
If the machine hunts or generates large gear sound,  
decrease the set value.  
To improve performance, e.g. shorten the settling time,  
increase the set value.  
Gain adjustment mode selection  
(For more information, refer to section 8.1.1.)  
Set value Gain adjustment mode  
Description  
Fixes position control gain 1  
(parameter No. 6).  
0
Interpolation mode  
Auto tuning mode 1  
Auto tuning mode 2  
Ordinary auto tuning.  
Fixes the load inertia moment  
ratio set in parameter No. 34.  
Response level setting can be  
changed.  
1
2
Manual mode 1  
Manual mode 2  
Simple manual adjustment.  
Manual adjustment of all gains.  
3
4
5 - 6  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and Function  
Unit  
4
*CMX Electronic gear numerator  
1
0 to  
Set the value of electronic gear numerator. Setting "0" automatically sets the  
resolution of the servo motor connected. (Refer to section 5.2.1)  
*CDV Electronic gear denominator  
65535  
5
6
7
1
1 to  
65535  
0 to  
Set the value of electronic gear denominator. (Refer to section 5.2.1)  
INP  
In-position range  
100  
36  
m
Used to set the droop pulse range when the in-position (INP) is output.  
10000  
4 to 1000  
PG1 Position control gain 1  
Used to set the gain of position loop 1. (Refer to chapter 8)  
rad/s  
Increase the gain to improve tracking performance in response to the position  
command.  
8
*ZTY Home position return type  
0010  
Refer to  
Name  
Used to set the home position return system, home position return direction and  
proximity dog input polarity.  
and  
function  
column.  
0
Home position return system  
0: Dog type  
1: Count type  
2: Data setting type  
3: Stopper type  
4: Home position ignorance  
(Servo-on position as home position)  
5: Dog type rear end reference  
6: Count type front end reference  
7: Dog cradle type  
Home position return direction  
0: Address increment direction  
1: Address decrement direction  
Proximity dog input polarity  
0: Dog is detected when DOG-SG are opened  
1: Dog is detected when DOG-SG are shorted  
Home position return speed  
Used to set the servo motor speed for home position return.  
(Refer to section 4.4)  
9
ZRF  
CRF  
500  
10  
r/min  
r/min  
m
0 to  
permissible  
speed  
Creep speed  
10  
0 to  
Used to set the creep speed after proximity dog detection.  
(Refer to section 4.4)  
permissible  
speed  
Home position shift distance  
Used to set the shift distance starting at the Z-phase pulse detection position  
inside the encoder.  
11  
12  
13  
ZST  
CRP  
JOG  
0
0
0 to 65535  
10STM 0 to 65535  
m
Rough match output range  
Used to set the command remaining distance range where the rough match  
(CPO) is output.  
Jog speed  
Used to set the jog speed command.  
100  
r/min  
0 to  
permissible  
speed  
S-pattern acceleration/deceleration time constant  
14  
*STC  
0
0
ms  
0 to 100  
Set when inserting S-pattern time constant into the acceleration/deceleration  
time constant of the point table. (Refer to section 5.2.3)  
This time constant is invalid for home position return.  
RS-422 station number setting  
15 *SNO  
Station  
0 to 31  
Used to specify the station number for RS-422 multidrop communication.  
(Refer to section 4.6.3)  
Always set one station to one axis of servo amplifier. If one station number is set  
to two or more stations, normal communication cannot be made.  
5 - 7  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and Function  
Unit  
16  
*BPS Serial communication function selection, alarm history clear  
Used to select the serial communication baud rate, select various  
communication conditions, and clear the alarm history.  
0000  
Refer to  
Name  
and  
function  
column.  
Serial baud rate selection  
(Refer to section 15.2.2)  
0: 9600 [bps]  
1: 19200[bps]  
2: 38400[bps]  
3: 57600[bps]  
4: 4800[bps] (For MR-DP60)  
Alarm history clear (Refer to section 5.2.6)  
0: Invalid  
1: Valid  
When alarm history clear is made valid,  
the alarm history is cleared at next power-on.  
After the alarm history is cleared, the setting  
is automatically made invalid (reset to 0).  
Serial communication standard selection  
(Refer to section 15.2.2)  
0: RS-232C used  
1: RS-422 used  
Serial communication response delay time  
(Refer to section 15.2.2)  
0: Invalid  
1: Valid, reply sent after delay time of 800 s  
or more  
17  
MOD Analog monitor output  
0100  
Refer to  
Name  
Used to select the signals to be output to the analog monitor 1 (MO2) and analog  
monitor 2 (MO2). (Refer to section 5.2.4)  
and  
function  
column.  
0
0
Setting Analog monitor 2 (MO2) Analog monitor 1 (MO1)  
0
1
2
3
4
5
6
7
8
9
A
B
Servo motor speed ( 8V/max. speed)  
Torque ( 8V/max. torque) (Note)  
Servo motor speed ( 8V/max. speed)  
Torque ( 8V/max. torque) (Note)  
Current command ( 8V/max. current command)  
Command pulse frequency ( 10V/500kpulse/s)  
Droop pulses ( 10V/128 pulses)  
Droop pulses ( 10V/2048 pulses)  
Droop pulses ( 10V/8192 pulses)  
Droop pulses ( 10V/32768 pulses)  
Droop pulses ( 10V/131072 pulses)  
Bus voltage ( 8V/400V)  
Note. 8V is outputted at the maximum torque. However, when parameter  
No. 28 29 are set to limit torque, 8V is outputted at the torque highly  
limited.  
5 - 8  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and Function  
Unit  
18 *DMD Status display selection  
0000  
Refer to  
Name  
Used to select the status display shown at power-on. (Refer to section 7.2)  
and  
function  
column.  
Status display on servo amplifier display  
at power-on  
00: Current position (initial value)  
01: Command position  
02: Command remaining distance  
03: Point table No.  
04: Cumulative feedback pulses  
05: Servo motor speed  
06: Droop pulses  
07: Override voltage  
08: Analog torque limit voltage  
09: Regenerative load ratio  
0A: Effective load ratio  
0B: Peak load ratio  
0C: Instantaneous torque  
0D: Within one-revolution position low  
0E: Within one-revolution position high  
0F: ABS counter  
10: Load inertia moment ratio  
11: Bus voltage  
Status display of MR-DP60 at power-on  
00: Current position (initial value)  
01: Command position  
02: Command remaining distance  
03: Point table No.  
04: Cumulative feedback pulses  
05: Servo motor speed  
06: Droop pulses  
07: Override voltage  
08: Analog torque limit voltage  
09: Regenerative load ratio  
0A: Effective load ratio  
0B: Peak load ratio  
0C: Instantaneous torque  
0D: Within one-revolution position  
0E: ABS counter  
0F: Load inertia moment ratio  
10: Bus voltage  
5 - 9  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and Function  
Unit  
19 *BLK Parameter write inhibit  
Used to select the reference and write ranges of the parameters.  
Operation can be performed for the parameters marked  
0000  
Refer to  
Name  
.
and  
function  
column.  
Expansion parameters 2  
No.54 to 77  
Basic  
parameters parameters 1  
No.0 to 19 No.20 to 53  
Expansion  
Set  
Operation  
value  
special parameters  
(No. 78 to 90)  
0000  
(initial  
value)  
Reference  
Write  
Reference No.19 only  
000A  
000B  
000C  
Write  
Reference  
Write  
No.19 only  
Reference  
Write  
(Note)  
Reference  
Write  
000E  
Note. Set this parameter when making device setting using the MR Configurator  
(servo configuration software).  
20  
*OP2 Function selection 2  
Used to select slight vibration suppression control.  
0000  
Refer to  
Name  
and  
0
0 0  
function  
column.  
Slight vibration suppression control selection  
0: Invalid  
1: Valid  
21  
22  
For manufacturer setting  
0002  
0000  
Do not change this value by any means.  
*OP4 Function selection 4  
Refer to  
Name  
Used to select stop processing at forward rotation stroke end (LSP), reverse  
rotation stroke end (LSN) off.  
and  
function  
column.  
0 0 0  
Stopping method used when forward rotation  
stroke end (LSP), reverse rotation stroke  
end (LSN) device or software limit is valid  
(Refer to section 5.2.5)  
0: Sudden stop  
1: Slow stop  
23  
SIC  
Serial communication time-out selection  
0
0 to 60  
Used to choose the time-out period of communication protocol.  
Setting  
Description  
No time-out check  
0
Time-out check period setting  
Check period setting [s]  
1 to 60  
5 - 10  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and Function  
Unit  
24  
FFC Feed forward gain  
0
%
0 to 100  
Set the feed forward gain. When the setting is 100%, the droop pulses during  
operation at constant speed are nearly zero. However, sudden  
acceleration/deceleration will increase the overshoot. As a guideline, when the  
feed forward gain setting is 100%, set 1s or more as the  
acceleration/deceleration time constant up to the rated speed.  
25  
VCO Override offset  
Used to set the offset voltage to analog override.  
TLO Torque limit offset  
0
0
mV  
mV  
999 to  
999  
26  
999 to  
999  
1
to  
Used to set the offset voltage to analog torque limit (TLA).  
Encoder output pulses  
27 *ENR  
4000 pulse/  
rev  
Used to set the encoder pulses (A-phase, B-phase) output by the servo  
amplifier.  
65535  
Set the value 4 times greater than the A-phase or B-phase pulses.  
You can use parameter No. 58 to choose the output pulse setting or output  
division ratio setting.  
The number of A/B-phase pulses actually output is 1/4 times greater than the  
preset number of pulses.  
The maximum output frequency is 1.3Mpps (after multiplication by 4). Use  
this parameter within this range.  
For output pulse designation  
Set " 0  
" (initial value) in parameter No. 58.  
Set the number of pulses per servo motor revolution.  
Output pulse set value [pulses/rev]  
At the setting of 5600, for example, the actually output A/B-phase pulses are  
as indicated below.  
5600  
A
B-phase output pulses  
1400[pulse]  
4
For output division ratio setting  
Set " 1 " in parameter No. 58.  
The number of pulses per servo motor revolution is divided by the set value.  
Resolution per servo motor revolution  
Output pulse  
[pulses/rev]  
Set value  
At the setting of 8, for example, the actually output A/B-phase pulses are as  
indicated below.  
131072  
8
1
4
A
B-phase output pulses  
4096[pulse]  
28  
29  
TL1  
TL2  
Internal torque limit 1  
100  
100  
%
%
0 to 100  
0 to 100  
Used to limit servo motor-torque on the assumption that the maximum torque  
is 100%. When 0 is set, torque is not produced.  
Internal torque limit 2  
Used to limit servo motor-torque on the assumption that the maximum torque  
is 100%. When 0 is set, torque is not produced.  
Made valid by switching on the internal torque limit selection (TL2).  
30 *BKC Backlash compensation  
Used to set the backlash compensation made when the command direction is  
0
pulse  
(Note)  
0
reversed.  
to  
This function compensates for the number of backlash pulses in the opposite  
direction to the home position return direction. In the absolute position  
detection system, this function compensates for the backlash pulse count in  
the direction opposite to the operating direction at power-on.  
Note. The setting range differs depending on the software version of servo  
amplifiers.  
1600  
Version A4 or later: 0 to 1600  
Version A3 or before: 0 to 1000  
5 - 11  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and Function  
Unit  
31  
32  
33  
MO1 Analog monitor 1 (MO1) offset  
0
mV  
999 to  
999  
Used to set the offset voltage of the analog monitor 1 (MO1) output.  
MO2 Analog monitor 2 (MO2) offset  
0
mV  
ms  
999 to  
999  
Used to set the offset voltage of the analog monitor 2 (MO2) output.  
MBR Electromagnetic brake sequence output  
100  
0 to 1000  
Used to set the delay time (Tb) between when the electromagnetic brake  
interlock (MBR) switches off and when the base circuit is shut off.  
(Refer to section 3.9)  
34  
35  
GD2 Ratio of load inertia moment to servo motor inertia moment  
Used to set the ratio of the load inertia moment to the servo motor shaft  
inertia moment. (Refer to chapter 8)  
70  
35  
0.1 0 to 1000  
times  
When auto tuning is selected, the result of auto tuning is automatically set.  
PG2 Position control gain 2  
rad/s 1 to 1000  
Used to set the gain of the position loop. (Refer to chapter 8)  
Set this parameter to increase the position response level to load disturbance.  
Higher setting increases the response level but is liable to generate vibration  
and/or noise.  
When auto tuning is selected, the result of auto tuning is automatically set.  
VG1 Speed control gain 1  
36  
37  
177  
817  
rad/s  
rad/s  
ms  
20 to  
8000  
Normally this parameter value need not be changed.  
Higher setting increases the response level but is liable to generate vibration  
and/or noise. (Refer to chapter 8)  
When auto tuning is selected, the result of auto tuning is automatically set.  
VG2 Speed control gain 2  
20 to  
Set this parameter when vibration occurs on machines of low rigidity or large  
backlash. Higher setting increases the response level but is liable to generate  
vibration and/or noise. (Refer to chapter 8)  
20000  
When auto tuning is selected, the result of auto tuning is automatically set.  
38  
39  
VIC  
Speed integral compensation  
48  
1 to 1000  
0 to 1000  
Used to set the integral time constant of the speed loop. (Refer to chapter 8)  
When auto tuning is selected, the result of auto tuning is automatically set.  
VDC Speed differential compensation  
980  
Used to set the differential compensation. (Refer to chapter 8)  
Made valid when the proportion control (PC) is switched on.  
For manufacturer setting  
40  
41  
42  
0
0
0
Do not change this value by any means.  
*ZPS Home position return position data  
10STM  
m
32768  
to  
Used to set the current position on completion of home position return.  
(Refer to section 4.4)  
32767  
0 to  
43  
44  
DCT Moving distance after proximity dog  
1000  
100  
10STM  
m
Used to set the moving distance after proximity dog in count type home  
position return. (Refer to section 4.4.3)  
65535  
ZTM Stopper type home position return stopper time  
In stopper type home position return, used to set the time from when the  
machine part is pressed against the stopper and the torque limit set in  
parameter No.45 is reached to when the home position is set.  
(Refer to section 4.4.5)  
ms  
5 to 1000  
45  
ZTT Stopper type home position return torque limit  
Used to set the torque limit value relative to the max. torque in [%] in stopper  
type home position return. (Refer to section 4.4.5)  
15  
%
1 to 100  
5 - 12  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and Function  
Unit  
46 *LMP Software limit  
0
10STM  
m
999999  
to  
47  
Used to set the address increment side software stroke limit. The software limit  
is made invalid if this value is the same as in "software limit ".  
(Refer to section 5.2.8)  
999999  
Set the same sign to parameters No.46 and 47. Setting of different signs will  
result in a parameter error.  
Set address:  
Lower 3  
digits  
Upper 3  
digits  
Parameter No. 47  
Parameter No. 46  
10STM  
m
999999  
to  
Software limit  
48 *LMN  
49  
0
Used to set the address decrement side software stroke limit. The software limit  
is made invalid if this value is the same as in "software limit ".  
(Refer to section 5.2.8)  
999999  
Set the same sign to parameters No.48 and 49. Setting of different signs will  
result in a parameter error.  
Set address:  
Lower 3  
digits  
Upper 3  
digits  
Parameter No. 49  
Parameter No. 48  
10STM  
m
999999  
to  
Position range output address  
50  
51  
*LPP  
0
Used to set the address increment side position range output address. Set the  
same sign to parameters No.50 and 51. Setting of different signs will result in a  
parameter error.  
999999  
In parameters No. 50 to 53, set the range where position range (POT) turns on.  
Set address:  
Upper 3  
digits  
Lower 3  
digits  
Parameter No. 51  
Parameter No. 50  
10STM  
m
999999  
to  
Position range output address  
52  
53  
*LNP  
0
Used to set the address decrement side position range output address. Set the  
same sign to parameters No.52 and 53. Setting of different signs will result in a  
parameter error.  
999999  
Set address:  
Lower 3  
digits  
Upper 3  
digits  
Parameter No. 53  
Parameter No. 52  
5 - 13  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and Function  
Unit  
54  
55  
For manufacturer setting  
Do not change this value by any means.  
*OP6 Function selection 6  
Used to select how to process the base circuit when reset (RES) is valid.  
0000  
0000  
Refer to  
Name  
and  
0
0 0  
function  
column.  
Processing of the base circuit when reset (RES) is valid.  
0: Base circuit shut off  
1: Base circuit not shut off  
56  
57  
For manufacturer setting  
0000  
0000  
Do not change this value by any means.  
*OP8 Function selection 8  
Used to select the protocol of serial communication.  
Refer to  
Name  
and  
0
0
function  
column.  
Protocol checksum selection  
0: Yes (checksum added)  
1: No (checksum not added)  
Protocol checksum selection  
0: With station numbers  
1: No station numbers  
58  
*OP9 Function selection 9  
0000  
Refer to  
Name  
Use to select the encoder output pulse direction and encoder pulse output  
setting.  
and  
function  
column.  
0 0  
Encoder pulse output phase changing  
Changes the phases of A, B-phase encoder pulses output .  
Servo motor rotation direction  
CCW CW  
Set  
value  
A-phase  
B-phase  
A-phase  
B-phase  
0
1
A-phase  
B-phase  
A-phase  
B-phase  
Encoder output pulse setting selection  
(Refer to parameter No. 27)  
0: Output pulse designation  
1: Division ratio setting  
5 - 14  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and Function  
Unit  
59 *OPA Function selection A  
Used to select the alarm code.  
0000  
Refer to  
Name  
and  
0 0  
function  
column.  
Rotation direction in which torque limit is made valid  
Setting  
CCW direction  
CW direction  
0
1
2
Setting of alarm code output  
Connector pins  
CN1A-18  
Set  
value  
CN1B-19  
CN1A-19  
0
1
Signals assigned to corresponding pins are output.  
Alarm code is output at alarm occurrence.  
(Note) Alarm code  
Alarm  
display  
Name  
CN1B  
pin 19  
CN1A  
pin 19  
CN1A  
pin 18  
88888 Watchdog  
AL.12 Memory error 1  
AL.13 Clock error  
AL.15 Memory error 2  
AL.17 Board error 2  
AL.19 Memory error 3  
AL.37 Parameter error  
0
0
0
AL.8A  
Serial communication time-out error  
AL.8E Serial communication error  
AL.30 Regenerative error  
AL.33 Overvoltage  
0
0
0
1
1
0
AL.10 Undervoltage  
AL.45 Main circuit device overheat  
AL.46 Servo motor overheat  
AL.50 Overload 1  
0
1
1
AL.51 Overload 2  
AL.24 Main circuit  
1
1
0
0
0
1
AL.32 Overcurrent  
AL.31 Overspeed  
AL.35 Command pulse frequency error  
AL.52 Error excessive  
AL.61 Home operation alarm  
AL.16 Encoder error 1  
AL.1A Motor combination error  
AL.20 Encoder error 2  
1
1
0
AL.25 Absolute position erase  
Note: 0:Pin-SG off (open)  
1:Pin-SG on (short)  
5 - 15  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and Function  
Unit  
60  
61  
For manufacturer setting  
Do not change this value by any means.  
0000  
NH1 Machine resonance suppression filter 1  
Used to selection the machine resonance suppression filter.  
(Refer to section 9.1.)  
0000  
Refer to  
Name  
and  
function  
column.  
0
Notch frequency selection  
Set "00" when you have set adaptive vibration  
suppression control to be "valid" or "held"  
(parameter No. 63:  
1
or  
2
).  
Setting  
value  
Setting  
value  
Setting  
value  
Setting  
value  
Frequency  
Frequency  
Frequency  
Frequency  
00  
01  
02  
03  
04  
05  
06  
07  
Invalid  
4500  
2250  
1500  
1125  
900  
08  
562.5  
500  
10  
11  
12  
13  
14  
15  
16  
17  
281.3  
264.7  
250  
18  
187.5  
180  
09  
19  
0A  
0B  
0C  
0D  
0E  
0F  
450  
1A  
1B  
1C  
1D  
1E  
1F  
173.1  
166.7  
160.1  
155.2  
150  
409.1  
375  
236.8  
225  
346.2  
321.4  
300  
214.3  
204.5  
195.7  
750  
642.9  
145.2  
Notch depth selection  
Setting  
Depth  
Gain  
value  
0
1
40dB  
Deep  
to  
14dB  
2
3
8dB  
4dB  
Shallow  
62  
NH2 Machine resonance suppression filter 2  
0000  
Refer to  
Name  
Used to set the machine resonance suppression filter.  
and  
0
function  
column.  
Notch frequency  
Same setting as in parameter No. 61  
However, you need not set "00" if you have  
set adaptive vibration suppression control to  
be "valid" or "held".  
Notch depth  
Same setting as in parameter No. 61  
5 - 16  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and Function  
Unit  
63  
LPF Low-pass filter/adaptive vibration suppression control  
Used to selection the low-pass filter and adaptive vibration suppression  
control. (Refer to chapter 9)  
0000  
Refer to  
Name  
and  
function  
column.  
0
Low-pass filter selection  
0: Valid (Automatic adjustment)  
1: Invalid  
When you choose "valid", the filter of the handwidth  
represented by the following expression is set automatically.  
For 1kW or less  
VG2 setting 10  
[Hz]  
2
(1 GD2 setting 0.1)  
For 2kW or more  
VG2 setting  
(1 GD2 setting 0.1)  
5
[Hz]  
2
Adaptive vibration suppression control selection  
Choosing "valid" or "held" in adaptive vibration  
suppression control selection makes the machine  
resonance control filter 1 (parameter No. 61) invalid.  
0: Invalid  
1: Valid  
Machine resonance frequency is always detected  
and the filter is generated in response to resonance  
to suppress machine vibration.  
2: Held  
The characteristics of the filter generated so far are held,  
and detection of machine resonance is stopped.  
Adaptive vibration suppression control sensitivity selection  
Used to set the sensitivity of machine resonance detection.  
0: Normal  
1: Large sensitivity  
64 GD2B Ratio of load inertia moment to servo motor inertia moment 2  
Used to set the ratio of load inertia moment to servo motor inertia moment  
when gain changing is valid.  
70  
0.1 0 to 3000  
times  
65 PG2B Position control gain 2 changing ratio  
Used to set the ratio of changing the position control gain 2 when gain  
changing is valid.  
100  
%
%
%
10 to 200  
Made valid when auto tuning is invalid.  
66 VG2B Speed control gain 2 changing ratio  
Used to set the ratio of changing the speed control gain 2 when gain changing  
is valid.  
100  
100  
10 to 200  
Made valid when auto tuning is invalid.  
67  
VICB Speed integral compensation changing ratio  
50 to  
1000  
Used to set the ratio of changing the speed integral compensation when gain  
changing is valid. Made valid when auto tuning is invalid.  
5 - 17  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and Function  
Unit  
68 *CDP Gain changing selection  
0000  
Refer to  
Name  
Used to select the gain changing condition. (Refer to section 9.5)  
and  
0 0 0  
function  
column.  
Gain changing selection  
Gains are changed in accordance with the settings  
of parameters No. 64 to 67 under any of the following  
conditions:  
0: Invalid  
1: Gain changing (CDP) signal is ON  
2: Command frequency is equal to higher than  
parameter No. 69 setting  
3: Droop pulse value is equal to higher than  
parameter No. 69 setting  
4: Servo motor speed is equal to higher than  
parameter No. 69 setting  
69  
70  
CDS Gain changing condition  
10  
1
kpps  
pulse  
r/min  
10 to  
9999  
Used to set the value of gain changing condition (command frequency, droop  
pulses, servo motor speed) selected in parameter No. 68. The set value unit  
changes with the changing condition item. (Refer to section 9.5)  
CDT Gain changing time constant  
ms  
0 to 100  
Used to set the time constant at which the gains will change in response to the  
conditions set in parameters No. 68 and 69.  
(Refer to section 9.5)  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
For manufacturer setting  
10  
10000  
10  
Do not change this value by any means.  
10  
100  
100  
100  
For manufacturer setting  
0000  
0009  
080A  
0706  
020B  
0504  
0002  
0000  
0005  
0D04  
0102  
0
The settings are automatically changed.  
For manufacturer setting  
Do not change this value by any means.  
0
5 - 18  
5. PARAMETERS  
5.2 Detailed explanation  
5.2.1 Electronic gear  
False setting will result in unexpected fast rotation, causing injury.  
POINT  
CAUTION  
This parameter is made valid when power is switched off, then on after  
setting, or when the controller reset has been performed.  
1
10  
CMX  
CDV  
The range of the electronic gear setting is  
. If you set  
1000  
any value outside this range, a parameter error (A37) occurs.  
After setting the parameter No.4, 5 value, switch power off, then on to  
make that setting valid.  
(1) Concept of electronic gear  
Use the electronic gear (parameters No.4, 5) to make adjustment so that the servo amplifier setting  
matches the moving distance of the machine. Also, by changing the electronic gear value, the machine  
can be moved at any multiplication ratio to the moving distance on the servo amplifier.  
Motor  
Parameter No. 4  
Parameter No. 5  
CMX  
CDV  
+
-
Deviation  
counter  
CMX  
CDV  
Encoder feedback pulses  
Electronic gear  
Parameters No. 4, 5  
Encoder  
The following examples are used to explain how to calculate the electronic gear value.  
POINT  
The following specification symbols are needed for electronic gear  
calculation.  
Pb : Ballscrew lead [mm(in.)]  
n
: Reduction ratio  
Pt : Servo motor resolution [pulse/rev]  
S
: Travel per servo motor revolution [mm/rev]  
(a) Ballscrew setting example  
Machine specifications  
n
n=NL/NM=1/2  
NL  
Ballscrew lead: Pb 10 (0.39) [mm(in.)]  
Reduction ratio: n 1/2  
Servo motor resolution: Pt 131072 [pulse/rev]  
Pb=10(0.39)[mm(in.)]  
NM  
Servo motor 131072[pulse/rev]  
pt  
pb  
pt  
S
32768  
1250  
131072  
1/2 10 1000  
131072  
5000  
CMX  
CDV  
n
1000  
Hence, set 32768 to CMX and 1250 to CDV.  
r=160(6.30)[mm(in.)]  
(b) Conveyor setting example  
Machine specifications  
Pulley diameter: r 160 (6.30) [mm(in.)]  
Reduction ratio: n 1/3  
Servo motor  
131072[pulse/rev]  
n
NL  
NM  
Servo motor resolution: Pt 131072 [pulse/rev]  
n=NL/NM=1/3  
pt  
S
pt  
131072  
1/3 160  
32768  
41888  
131072  
167551.61  
CMX  
CDV  
1000  
n r  
1000  
Reduce CMX and CDV to the setting range or less, and round off the first decimal place.  
Hence, set 32768 to CMX and 41888 to CDV.  
5 - 19  
5. PARAMETERS  
5.2.2 Changing the status display screen  
The status display item of the servo amplifier display and the display item of the external digital display  
(MR-DP60) shown at power-on can be changed by changing the parameter No.18 (status display  
selection) settings. In the initial condition, the servo amplifier display shows the servo motor speed and  
the MR-DP60 shows the current position.  
For display details, refer to section 7.2.  
Parameter No. 18  
Status display on servo amplifier display  
at power-on  
00: Current position (initial value)  
01: Command position  
02: Command remaining distance  
03: Point table No.  
04: Cumulative feedback pulses  
05: Servo motor speed  
06: Droop pulses  
07: Override voltage  
08: Analog torque limit voltage  
09: Regenerative load ratio  
0A: Effective load ratio  
0B: Peak load ratio  
0C: Instantaneous torque  
0D: Within one-revolution position low  
0E: Within one-revolution position high  
0F: ABS counter  
10: Load inertia moment ratio  
11: Bus voltage  
Status display of MR-DP60 at power-on  
00: Current position (initial value)  
01: Command position  
02: Command remaining distance  
03: Point table No.  
04: Cumulative feedback pulses  
05: Servo motor speed  
06: Droop pulses  
07: Override voltage  
08: Analog torque limit voltage  
09: Regenerative load ratio  
0A: Effective load ratio  
0B: Peak load ratio  
0C: Instantaneous torque  
0D: Within one-revolution position  
0E: ABS counter  
0F: Load inertia moment ratio  
10: Bus voltage  
5 - 20  
5. PARAMETERS  
5.2.3 S-pattern acceleration/deceleration  
In servo operation, linear acceleration/deceleration is usually made. By setting the S-pattern  
acceleration/deceleration time constant (parameter No.14), a smooth start/stop can be made. When the S-  
pattern time constant is set, smooth positioning is executed as shown below. When the S-pattern  
acceleration/deceleration time constant is set, the time from when the positioning starts until the  
movement finish (MEND) is output will increase by the time equivalent to the S-pattern time constant  
setting.  
Acceleration time  
constant  
Deceleration time  
constant  
Rated  
speed  
Preset  
speed  
Servo motor  
speed  
0 [r/min]  
Tb Ts  
Tb  
Ta  
Ta Ts  
Ta: Time until preset speed is reached  
Tb: Time until stop  
Ts: S-pattern acceleration/deceleration time constant  
(parameter No. 14)  
Setting range 0 to 100ms  
5.2.4 Analog output  
The servo status can be output to two channels in terms of voltage. The servo status can be monitored  
using an ammeter.  
(1) Setting  
Change the following digits of parameter No.17.  
Parameter No. 17  
0
0
Analog monitor 1 (MO1) output selection  
(Signal output to across MO1-LG)  
Analog monitor 2 (MO2) output selection  
(Signal output to across MO2-LG)  
Parameters No.31 and 32 can be used to set the offset voltages to the analog output voltages. The  
setting range is between 999 and 999mV.  
Parameter  
Parameter No.31  
Parameter No.32  
Description  
Setting range [mV]  
Used to set the offset voltage for the analog monitor 1 (MO1) output.  
Used to set the offset voltage for the analog monitor 2 (MO2) output.  
999 to 999  
5 - 21  
5. PARAMETERS  
(2) Contents of a setting  
The servo amplifier is factory-set to output the servo motor speed to analog monitor 1 and the torque  
to analog monitor 2. The setting can be changed as listed below by changing the parameter No.17  
(analog monitor output) value.  
Refer to (3) for the measurement point.  
Setting  
Output item  
Description  
Setting  
Output item  
Description  
CCW direction  
CCW direction  
0
Servo motor speed  
6
Droop pulses (Note 1)  
( 10V/128pulse)  
10[V]  
8[V]  
128[pulse]  
Max. speed  
0
0
Max. speed  
128[pulse]  
-8[V]  
-10[V]  
CW direction  
8[V]  
CW direction  
10[V]  
CCW direction  
1
2
3
4
5
Torque (Note 2)  
Servo motor speed  
Torque (Note 2)  
Current command  
Speed command  
7
Droop pulses (Note 1)  
Driving in CCW direction  
( 10V/2048pulse)  
2048[pulse]  
Max. torque  
0
0
2048[pulse]  
Max. torque  
-10[V]  
-8[V]  
Driving in CW direction  
CW direction  
10[V]  
CCW direction  
8
Droop pulses (Note 1)  
CW  
direction  
CCW  
direction  
( 10V/8192pulse)  
8[V]  
8192[pulse]  
0
8192[pulse]  
Max. speed  
0
Max. speed  
-10[V]  
CW direction  
10[V]  
CCW direction  
9
Droop pulses (Note 1)  
Driving in  
CCW direction  
Driving in  
CW direction  
( 10V/32768pulse)  
8[V]  
32768[pulse]  
0
32768[pulse]  
Max. torque  
8[V]  
Max. command  
current  
0
Max. torque  
-10[V]  
CW direction  
10[V]  
CCW direction  
CCW direction  
A
Droop pulses (Note 1)  
( 10V/131072pulse)  
131072[pulse]  
0
0
Max. command  
current  
131072[pulse]  
-8[V]  
-10[V]  
CW direction  
8[V]  
CW direction  
8[V]  
CCW direction  
B
Bus voltage  
Max. speed  
0
Max. speed  
0
400[V]  
-8[V]  
CW direction  
Note 1. Encoder pulse unit.  
2. 8V is outputted at the maximum torque. However, when parameter No. 28 29 are set to limit torque, 8V is outputted at the  
torque highly limited.  
5 - 22  
5. PARAMETERS  
Command  
speed  
Current  
command  
Droop pulse  
Bus voltage  
Speed  
command  
differentiation  
Current encoder  
M
Position  
control  
Current  
control  
Speed  
control  
Command  
position  
Servo Motor  
Encoder  
PWM  
Current feedback  
Differ-  
ential  
Position feedback  
Servo Motor  
speed  
Torque  
5 - 23  
5. PARAMETERS  
5.2.5 Changing the stop pattern using a limit switch  
The servo amplifier is factory-set to make a sudden stop when the limit switch or software limit is made  
valid. When a sudden stop is not required, e.g. when there is an allowance from the limit switch  
installation position to the permissible moving range of the machine, a slow stop may be selected by  
changing the parameter No.22 setting.  
Parameter No. 22 setting  
Description  
0(initial value)  
1
Droop pulses are reset to make a stop. (Sudden stop)  
Droop pulses are drawn out to make a slow stop. (Slow stop)  
5.2.6 Alarm history clear  
The alarm history can be confirmed by using the MR Configurator (Set-up Software) or communication  
function. The servo amplifier stores one current alarm and five past alarms from when its power is  
switched on first. To control alarms which will occur during operation, clear the alarm history using  
parameter No.16 (alarm history clear) before starting operation. Clearing the alarm history automatically  
returns to “  
0
”.  
This parameter is made valid by switching power off, then on after setting.  
Parameter No. 16  
Alarm history clear  
0: Invalid (not cleared)  
1: Valid (cleared)  
5.2.7 Rough match output  
Rough match (CPO) is output when the command remaining distance reaches the value set in parameter  
No. 12 (rough match output range). The set remaining distance is 0 to 65535 [ 10STM m].  
Command remaining distance ( 10STM m)  
set in parameter No. 12  
Actual servo motor speed  
Servo motor  
Command pulse  
speed  
Rough match  
(CPO)  
ON  
OFF  
ON  
OFF  
In position (INP)  
5.2.8 Software limit  
A limit stop using a software limit is made as in stroke end operation. When a motion goes beyond the  
setting range, the motor is stopped and servo-locked. This function is made valid at power-on but made  
invalid during home position return. This function is made invalid when the software limit setting is  
the same as the software limit  
setting. A parameter error (AL. 37) will occur if the software limit  
setting is less than the software limit setting.  
Inhibited area  
Unmovable  
Movable area  
Movable  
Current position  
Software limit  
5 - 24  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
POINT  
Some functions of the MR Configurator (servo configuration software)  
may be unavailable for some versions. For details, please contact us.  
The MR Configurator (servo configuration software) (MR2JW3-SETUP151E or more) uses the  
communication function of the servo amplifier to perform parameter setting changes, graph display, test  
operation, etc. on a personal computer.  
6.1 Specifications  
Item  
Communication signal  
Baud rate[bps]  
System  
Description  
Conforms to RS-232C.  
57600, 38400, 19200, 9600  
Station selection  
Batch display, high-speed display, graph display  
Monitor  
Alarm  
Minimum resolution changes with the processing speed of the personal computer.  
Alarm display, alarm history, data display at alarm occurrence  
I/O display, function device display, no-rotation reason display, cumulative power-on time display,  
software number display, motor information display, tuning data display, ABS data display, shaft  
name setting.  
Diagnostic  
Parameters  
Test operation  
Advanced function  
Parameter setting, list display, change list display, detailed display, turning, device setting.  
Jog operation, positioning operation, motor-less operation, DO forced output, single-step feed.  
Machine analyzer, gain search, machine simulation.  
Position-Data  
File operation  
Others  
Point Tables  
Data read, save, print  
Station setting, help display  
6.2 System configuration  
(1) Components  
To use this software, the following components are required in addition to the servo amplifier and  
servo motor.  
Model  
(Note 1) Description  
IBM PC-AT compatible where the English version of Windows® 95, Windows® 98, Windows® Me, Windows  
NT® Workstation 4.0, Windows® 2000 Professional, Windows® XP Professional or Windows® XP Home  
Edition operates  
Processor: Pentium® 133MHz or more (Windows® 95, Windows® 98, Windows NT® Workstation 4.0,  
Windows® 2000 Professional)  
(Note 2)  
Personal  
computer  
Pentium® 150MHz or more (Windows® Me)  
Pentium® 300MHz or more (Windows® XP Professional, Windows® XP Home Edition)  
Memory: 16MB or more (Windows® 95), 24MB or more (Windows® 98)  
32MB or more (Windows® Me, Windows NT® Workstation 4.0, Windows® 2000 Professional)  
128MB or more (Windows® XP Professional, Windows® XP Home Edition)  
Free hard disk space: 60MB or more  
Serial port used  
Windows® 95, Windows® 98, Windows® Me, Windows NT® Workstation 4.0, Windows® 2000 Professional,  
Windows® XP Professional, Windows® XP Home Edition (English version)  
One whose resolution is 800 600 or more and that can provide a high color (16 bit) display.  
Connectable with the above personal computer.  
OS  
Display  
Keyboard  
Mouse  
Connectable with the above personal computer.  
Connectable with the above personal computer. Note that a serial mouse is not used.  
Printer  
Connectable with the above personal computer.  
Communication MR-CPCATCBL3M  
cable  
When this cannot be used, refer to section 14.1.4 (3) and fabricate.  
Note 1. Windows and Windows NT are the registered trademarks of Microsoft Corporation in the United State and other countries.  
Pentium is the registered trademarks of Intel Corporation.  
2. On some personal computers, this software may not run properly.  
6 - 1  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
(2) Configuration diagram  
(a) For use of RS-232C  
Servo amplifier  
Personal computer  
U
V
W
Communication cable  
Servo motor  
CN3  
CN2  
To RS-232C connector  
(b) For use of RS-422  
Up to 32 axes may be multidropped.  
Servo amplifier  
Personal computer  
RS-232C/RS-422  
(Note 1)  
Communication cable  
converter  
Servo motor  
CN3  
CN2  
(Axis 1)  
To RS-232C  
connector  
Servo amplifier  
Servo motor  
CN3  
CN2  
(Axis 2)  
Servo amplifier  
Servo motor  
CN3  
CN2  
(Axis 32)  
Note. Refer to Section 15.1.1 for cable connections.  
6 - 2  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
6.3 Station setting  
Click “System” on the menu bar and click “Station Selection” on the menu.  
When the above choices are made, the following window appears.  
(1) Station number setting  
Choose the station number in the combo box and click the “Station Settings” button to set the station  
number.  
POINT  
This setting should be the same as the station number which has been set  
in the parameter in the servo amplifier used for communication.  
(2) Closing of the station setting window  
Click the “Close” button to close the window.  
6 - 3  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
6.4 Parameters  
Click “Parameters” on the menu bar and click “Parameter List” on the menu.  
When the above choices are made, the following window appears.  
a)  
b)  
c)  
d)  
e)  
f)  
g)  
i)  
h)  
(1) Parameter value write ( a) )  
Click the parameter whose setting was changed and press the “Write” button to write the new  
parameter setting to the servo amplifier.  
(2) Parameter value verify ( b) )  
Click the “Verify” button to verify all parameter values being displayed and the parameter values of  
the servo amplifier.  
6 - 4  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
(3) Parameter value batch-read ( c) )  
Click the “Read All” button to read and display all parameter values from the servo amplifier.  
(4) Parameter value batch-write ( d) )  
Click the “Write All” button to write all parameter values to the servo amplifier.  
(5) Parameter change list display ( e) )  
Click the “Change List” button to show the numbers, names, initial values and current values of the  
parameters whose initial value and current value are different. In the offline mode, the parameter  
change list is not shown.  
(6) Parameter detail information ( f) )  
Click the “Help” button or double-click the display field to show the detailed explanation of each  
parameter.  
(7) Parameter default value indication ( g) )  
Click the “Set to default” button to show the initial value of each parameter.  
(8) Parameter value change ( h) )  
Choose the parameter to be changed, enter a new value into the “Parameter value” input field, and  
press the enter key or Enter Data button.  
(9) Parameter data file read  
Used to read and display the parameter values stored in the file. Use the file selection window to read.  
(10) Parameter value storage  
Used to store all parameter values being displayed on the window into the specified file. Use the file  
selection window to store.  
(11) Parameter data list print  
Used to print all parameter values being displayed on the window. Use the “File” menu on the menu  
bar to print.  
(12) Parameter list window closing ( i) )  
Click the “Close” button to close the window. If the “Close” button is clicked without (1) parameter  
value write or (4) parameter value batch-write being performed, the parameter value changed is  
made invalid.  
6 - 5  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
6.5 Point table  
Click “Position-Data” on the menu bar and click “Point Tables” on the menu.  
When the above choices are made, the following window appears.  
a)  
b)  
c)  
d)  
h)  
g)  
f)  
e)  
(1) Point table data write ( a) )  
Click the point table data changed and press the “Write” button to write the new point table data to the  
servo amplifier.  
(2) Point table data verify ( b) )  
Click the “Verify” button to verify all data being displayed and the data of the servo amplifier.  
6 - 6  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
(3) Point table data batch-read ( c) )  
Click the “Read All” button to read and display all point table data from the servo amplifier.  
(4) Point table data batch-write ( d) )  
Click the “Write All” button to write all point table data to the servo amplifier.  
(5) Point table data insertion ( e) )  
Click the “Insert Row” button to insert one block of data into the position before the point table No.  
chosen. The blocks after the chosen point table No. are shifted down one by one.  
(6) Point table data deletion ( f) )  
Click the “Delete Row” button to delete all data in the point table No. chosen. The blocks after the  
chosen point table No. are shifted up one by one.  
(7) Point table data change ( g) )  
Click the data to be changed, enter a new value into the “Setting” input field, and press the enter key  
or Enter Data button.  
(8) Point table data file read  
Used to read and display the point table data stored in the file. Use the “File” menu on the menu bar to  
read.  
(9) Point table data storage  
Used to store all point table data being displayed on the window into the specified file. Use the “File”  
menu on the menu bar to store.  
(10) Point table data list print  
Used to print all point table data being displayed on the window. Use the “File” menu on the menu  
bar to print.  
(11) Point table data list window closing ( h) )  
Click the “Close” button to close the window.  
6 - 7  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
6.6 Device assignment method  
POINT  
When using the device setting, preset “000E” in parameter No. 19.  
(1) How to open the setting screen  
Click “Parameters” on the menu bar and click “Device setting” in the menu.  
Making selection displays the following window.  
Click “Yes” button reads and displays the function assigned to each pin from the interface unit and  
extension IO unit.  
Click “No” button displays the initial status of the interface unit and extension IO unit.  
Click “Cancel” button terminates the processing.  
Click “Yes” button or “No” button displays the following two windows.  
6 - 8  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
(2) Screen explanation  
(a) DIDO device setting window screen  
This is the device assignment screen of the servo amplifier displays the pin assignment status of  
the servo amplifier.  
a)  
b)  
d)  
c)  
1) Read of function assignment ( a) )  
Click the “Read” button reads and displays all functions assigned to the pins from the servo  
amplifier.  
2) Write of function assignment ( b) )  
Click the “Write” button writes all pins that are assigned the functions to the servo amplifier.  
3) Verify of function assignment ( c) )  
Click the “Verify” button verifies the function assignment in the servo amplifier with the device  
information on the screen.  
4) Initial setting of function assignment ( d) )  
Click the “Set to Default” button initializes the function assignment.  
6 - 9  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
(b) DIDO function display window screen  
This screen is used to select the device assigned to the pins.  
The functions displayed below * and * are assignable.  
a)  
b)  
Move the pointer to the place of the function to be assigned. Drag and drop it as-is to the pin you  
want to assign in the DIDO device setting window.  
1) Assignment checking, automatic ON setting ( a) )  
Press this button to display the screen that shows the assignment list and enables auto ON  
setting.  
Refer to (4) of this section for more information.  
2) Quitting  
Click “Close” button to exit from the window. ( b) )  
6 - 10  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
(c) Function device assignment checking auto ON setting display  
Click the “ / ” button in the DIDO function display window displays the following window.  
a)  
b)  
c)  
d)  
e)  
The assigned functions are indicated by  
.
The functions assigned by auto ON are grayed. When you want to set auto ON to the function that  
is enabled for auto ON, click the corresponding cell. Clicking it again disables auto ON.  
1) Auto ON read of function assignment ( a) )  
Click “Auto ON read” button reads the functions set for auto ON from the interface unit and  
extension IO unit.  
2) Auto ON write of function assignment ( b) )  
Click “Auto ON write” button writes the functions currently set for auto ON to the interface unit  
and extension IO unit.  
3) Auto ON verify of function assignment ( c) )  
Click “Auto ON verify” button verifies the current auto ON setting in the interface unit and  
extension IO unit with the auto ON setting on the screen.  
4) Auto ON initial setting of function assignment ( d) )  
Click “Auto ON initial setting” button initializes the auto ON setting.  
5) Quitting the function device assignment checking/auto ON setting window ( e) )  
Click “Close” button exits from the window.  
6 - 11  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
6.7 Test operation  
When confirming the machine operation in the test operation mode, use the  
machine after checking that the safety mechanism such as the forced stop (EMG)  
operates.  
CAUTION  
If any operational fault has occurred, stop operation using the forced stop (EMG).  
6.7.1 Jog operation  
POINT  
For the program operation, refer to the manual of MR Configurator.  
The servo motor will not operate if the forced stop (EMG), forward  
rotation stroke end (LSP) and reverse rotation stroke end (LSN) are off.  
Make automatic ON setting to turn on these devices or make device  
setting to assign them as external input signals and turn ON across these  
signals and SG. (Refer to section 6.6.)  
When an alarm occurs, the JOG operation is automatically canceled.  
Hold down the “Forward” or “Reverse” button to rotate the servo motor. Release the “Forward” or  
Reverse” button to stop.  
Click “Test” on the menu bar and choose “Jog” on the menu.  
When the above choices are made, the following window appears.  
a)  
c)  
b)  
d)  
e)  
f)  
6 - 12  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
(1) Servo motor speed setting ( a) )  
Enter a new value into the “Motor speed” input field and press the enter key.  
(2) Acceleration/deceleration time constant setting ( b) )  
Enter a new value into the “Accel/decel time” input field and press the enter key.  
(3) Servo motor start ( c), d) )  
Hold down the “Forward” button to rotate the servo motor in the CCW rotation direction.  
Hold down the “Reverse” button to rotate the servo motor in the CW rotation direction.  
(4) Servo motor stop ( e) )  
Release the “Forward” or “Reverse” button to stop the rotation of the servo motor.  
(5) Jog operation window closing ( f) )  
Click the “Close” button to cancel the jog operation mode and close the window.  
6 - 13  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
6.7.2 Positioning operation  
POINT  
The servo motor will not operate if the forced stop (EMG), forward  
rotation stroke end (LSP) and reverse rotation stroke end (LSN) are off.  
Make automatic ON setting to turn on these devices or make device  
setting to assign them as external input signals and turn ON across these  
signals and SG. (Refer to section 6.6.)  
When an alarm occurs, the positioning operation is automatically  
canceled.  
Click the “Forward” or “Reverse” button to start and rotate the servo motor by the preset moving distance  
and then stop.  
Click “Test” on the menu bar and click “Positioning” on the menu.  
When the above choices are made, the following window appears.  
a)  
d)  
b)  
e)  
c)  
f)  
g)  
6 - 14  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
(1) Servo motor speed setting ( a) )  
Enter a new value into the “Motor speed” input field and press the enter key.  
(2) Acceleration/deceleration time constant setting ( b) )  
Enter a new value into the “Accel/decel time” input field and press the enter key.  
(3) Moving distance setting ( c) )  
Enter a new value into the “Move distance” input field and press the enter key.  
(4) Servo motor start ( d), e) )  
Click the “Forward” button to rotate the servo motor in the forward rotation direction.  
Click the “Reverse” button to rotate the servo motor in the reverse rotation direction.  
(5) Temporary stop of servo motor ( f) )  
Click the “Pause” button to stop the servo motor temporarily.  
(6) Positioning operation window closing ( g) )  
Click the “Close” button to cancel the positioning operation mode and close the window.  
6 - 15  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
6.7.3 Motor-less operation  
POINT  
When this operation is used in an absolute position detection system, the  
home position cannot be restored properly.  
Without a servo motor being connected, the output signals are provided and the servo amplifier display  
shows the status as if a servo motor is actually running in response to the external I/O signals.  
The sequence of the host programmable controller can be checked without connection of a servo motor.  
Click “Test” on the menu bar and click “Operation w/o Motor” on the menu.  
When the above choices are made, the following window appears.  
a)  
b)  
(1) Execution of motor-less operation ( a) )  
Click “Start” to perform motor-less operation.  
(2) Termination of motor-less operation ( b) )  
Click “Close” to close the window.  
(3) Cancel of motor-less operation  
To cancel motor-less operation, switch off the power of the servo amplifier.  
6 - 16  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
6.7.4 Output signal (DO) forced output  
POINT  
When an alarm occurs, the DO forced output is automatically canceled.  
Each servo amplifier output signal is forcibly switched on/off independently of the output condition of the  
output signal.  
Click “Test” on the menu bar and click “Forced Output” on the menu.  
When the above choices are made, the following window appears.  
a)  
b)  
c)  
(1) Signal ON/OFF setting ( a), b) )  
Choose the signal name or pin number and click the “ON” or “OFF” button to write the corresponding  
signal status to the servo amplifier.  
(2) DO forced output window closing ( c) )  
Click the “Close” button to cancel the DO forced output mode and close the window.  
6 - 17  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
6.7.5 Single-step feed  
POINT  
In the jog operation mode, do not rewrite data from the point table list  
screen or the servo amplifier's front panel. Otherwise, the set values are  
made invalid.  
The servo motor will not operate if the forced stop (EMG), forward  
rotation stroke end (LSP) and reverse rotation stroke end (LSN) are off.  
Make automatic ON setting to turn on these devices or make device  
setting to assign them as external input signals and turn ON across these  
signals and SG. (Refer to section 6.6.)  
Operation is performed in accordance with the preset point table No.  
Click “Test” on the menu bar and click “Single-step Feed” on the menu.  
When the above choices are made, the following window appears.  
a)  
b)  
c)  
d)  
(1) Point table No. setting ( a) )  
Enter the point table No. into the “Point table No.” input field and press the enter key.  
(2) Servo motor start ( b) )  
Click the “Start” button to rotate the servo motor.  
(3) Temporary stop of servo motor ( c) )  
Press the “Pause” button to stop the servo motor temporarily.  
Click the “Start” button to resume rotation.  
(4) Servo motor stop ( d) )  
Click the “Pause” button again during a temporary stop of the servo motor to clear the remaining  
moving distance.  
(5) Single-step feed window closing ( e) )  
Click the “Close” button to cancel the single-step feed mode and close the window.  
6 - 18  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
6.8 Alarm history  
Click “Alarms” on the menu bar and click “History” on the menu.  
When the above choices are made, the following window appears.  
(1) Alarm history display  
The most recent six alarms are displayed. The smaller numbers indicate newer alarms.  
(2) Alarm history clear  
Click the “Clear” button to clear the alarm history stored in the servo amplifier.  
(3) Closing of alarm history window  
Click the “Close” button to close the window.  
6 - 19  
6. MR Configurator (SERVO CONFIGURATION SOFTWARE)  
MEMO  
6 - 20  
7. DISPLAY AND OPERATION  
7. DISPLAY AND OPERATION  
7.1 Display flowchart  
Use the display (5-digit, 7-segment LED) on the front panel of the servo amplifier for status display,  
parameter setting, etc. Set the parameters before operation, diagnose an alarm, confirm external  
sequences, and/or confirm the operation status. Press the "MODE" "UP" or "DOWN" button once to move  
to the next screen. Refer to section 7.2 and later for the description of the corresponding display mode.  
To refer to or set the expansion parameters 1, expansion parameters 2 and special parameters, make  
them valid with parameter No.19 (parameter write disable).  
Display mode transition  
Initial screen  
Function  
Servo status display.  
Reference  
appears at power-on.  
Section 7.2  
Alarm display, external signal display, output  
signal (DO) forced output, test operation,  
software version display, VC automatic offset,  
motor series ID display, motor type ID display,  
encoder ID display  
Status display  
Diagnosis  
Alarm  
Section 7.3  
Section 7.4  
Section 7.5  
Current alarm display, alarm history display,  
parameter error No. display, point table error  
No. display.  
Display and setting of point table data.  
Point table  
button  
MODE  
Display and setting of basic parameters.  
Display and setting of expansion parameters 1.  
Display and setting of expansion parameters 2.  
Display and setting of special parameters.  
Basic parameter  
Expansion parameter 1  
Expansion parameter 2  
Special parameter  
Section 7.6  
7 - 1  
7. DISPLAY AND OPERATION  
7.2 Status display  
The servo status during operation is shown on the 5-digit, 7-segment LED display. Press the "UP" or  
"DOWN" button to change display data as desired. When the required data is selected, the corresponding  
symbol appears. Press the "SET" button to display its data. At only power-on, however, data appears after  
the symbol of the status display selected in parameter No. 18 has been shown for 2[s].  
The servo amplifier display shows the lower five digits of 16 data items such as the motor speed.  
7.2.1 Display transition  
After choosing the status display mode with the "MODE" button, pressing the "UP" or "DOWN" button  
changes the display as shown below.  
To Bus voltage  
Current position  
Regenerative load ratio  
Effective load ratio  
Peak load ratio  
Command position  
Command remaining  
distance  
Point table No.  
Instantaneous torque  
Within one-revolution  
position low  
Cumulative feedback  
pulses  
UP  
DOWN  
Within one-revolution  
position high  
Servo motor speed  
Droop pulses  
Override  
ABS counter  
Load inertia moment ratio  
Bus voltage  
Analog torque  
limit voltage  
To Current position  
7 - 2  
7. DISPLAY AND OPERATION  
7.2.2 Display examples  
The following table lists display examples.  
Displayed data  
Item  
Status  
Servo amplifier display  
MR-DP60  
Forward rotation  
at 2500r/min  
Servo motor  
speed  
Reverse rotation  
at 3000r/min  
Reverse rotation is indicated by " ".  
Load inertia  
moment  
15.5 times  
11252pulse  
Multi-  
revolution  
counter  
12566pulse  
Lit  
Negative value is indicated by the lit  
decimal points in the upper four  
digits.  
7 - 3  
7. DISPLAY AND OPERATION  
7.2.3 Status display list  
The following table lists the servo statuses that may be shown.  
Display range  
Status display Symbol  
Unit  
Description  
Servo amplifier  
MR-DP60  
display  
Current  
PoS  
10STM The current position from the machine home position of 0 is  
mm displayed.  
99999 to  
99999  
999999 to  
999999  
position  
Command  
position  
10STM The command position is displayed.  
mm  
99999 to  
99999  
999999 to  
999999  
CPoS  
Command  
remaining  
distance  
The command remaining distance of the currently selected  
point table is displayed.  
10STM  
mm  
99999 to  
99999  
999999 to  
999999  
rn  
Point table No.  
PT  
The point table No. being executed is displayed.  
0 to 31  
0 to 31  
Feedback pulses from the servo motor encoder are counted  
and displayed.  
When the value exceeds 9999999, it returns to zero.  
Press the "SET" button to reset the display value to zero.  
Cumulative  
feedback  
pulses  
99999 to  
99999  
999999 to  
999999  
C
r
pulse  
The servo motor speed is displayed.  
Servo motor  
speed  
5400 to  
5400  
5400 to  
5400  
r/min  
pulse  
"
" is added to the speed of the servo motor rotating in the  
CW rotation.  
The number of droop pulses in the deviation counter is  
displayed.  
99999 to  
99999  
999999 to  
999999  
Droop pulses  
Override  
E
"
" is added to the droop pulses in the CW rotation.  
The displayed number of pulses is not yet multiplied by the  
electronic gear value.  
The override setting is displayed.  
100% is displayed when override is invalid.  
The voltage of the Analog torque limit (TLA) is displayed.  
F
u
L
%
V
0 to 200  
0 to 200  
Analog torque  
limit voltage  
Regenerative  
load ratio  
0.00 to 10.00 0.00 to 10.00  
The ratio of regenerative power to permissible regenerative  
power is displayed in %.  
%
0 to 100  
0 to 300  
0 to 100  
0 to 300  
The continuous effective load torque is displayed.  
The effective value in the past 15 seconds is displayed  
relative to the rated torque of 100%.  
Effective load  
ratio  
J
b
%
%
%
The maximum torque generated during  
acceleration/deceleration, etc.  
The highest value in the past 15 seconds is displayed  
relative to the rated torque of 100%.  
Peak load ratio  
0 to 300  
0 to 400  
0 to 300  
0 to 400  
Torque that occurred instantaneously is displayed.  
The value of the torque that occurred is displayed in real  
time relative to the rate torque of 100%.  
Position within one revolution is displayed in encoder  
pulses.  
The value returns to 0 when it exceeds the maximum  
number of pulses.  
The value is incremented in the CCW direction of rotation.  
The within one-revolution position is displayed in 100 pulse  
increments of the encoder.  
The value returns to 0 when it exceeds the maximum  
number of pulses.  
The value is incremented in the CCW direction of rotation.  
Travel value from the home position in the absolute position  
detection systems is displayed in terms of the absolute  
position detectors counter value.  
Instantaneous  
torque  
T
Within one-  
revolution  
position low  
Cy1  
pulse  
0 to 99999  
0 to 1310  
(Note)  
0 to 131071  
Within one-  
revolution  
position high  
100  
pulse  
Cy2  
LS  
32768 to  
32767  
32768 to  
32767  
ABS counter  
rev  
Load inertia  
moment ratio  
The estimated ratio of the load inertia moment to the servo  
motor shaft inertia moment is displayed.  
The voltage (across P-N) of the main circuit converter is  
displayed.  
dC  
Pn  
times  
V
0.0 to 300.0  
0 to 450  
0.0 to 300.0  
0 to 450  
Bus voltage  
Note. The MR-DP60 can display the status without dividing it into the high and low orders. The unit is [pulse].  
7 - 4  
7. DISPLAY AND OPERATION  
7.3 Diagnosis mode  
7.3.1 Display transition  
After choosing the diagnosis mode with the "MODE" button, pressing the "UP" or "DOWN" button changes  
the display as shown below.  
To Teaching  
Sequence  
Software version Low  
Software version High  
For manufacturer setting  
Motor series ID  
External I/O signal display  
Output signal (DO)  
forced output  
Test operation mode  
Jog feed  
UP  
DOWN  
Test operation mode  
Positioning operation  
Motor type ID  
Encoder ID  
Teaching  
Test operation mode  
Motorless operation  
Test operation mode  
Machine analyzer operation  
To Sequence  
7 - 5  
7. DISPLAY AND OPERATION  
7.3.2 Diagnosis mode list  
Name  
Display  
Description  
Not ready.  
Indicates that the servo amplifier is being initialized or an alarm  
has occurred.  
Sequence  
Ready.  
Indicates that the servo was switched on after completion of  
initialization and the servo amplifier is ready to operate.  
Indicates the ON-OFF states of the external I/O signals.  
The upper segments correspond to the input signals and the  
lower segments to the output signals.  
Lit: ON  
External I/O signal  
display  
Refer to section 7.7.  
Extinguished: OFF  
The I/O signals can be changed using the MR Configurator (servo  
configuration software).  
The digital output signal can be forced on/off. (Refer to section  
7.8)  
Output signal (DO)  
forced output  
Jog operation can be performed when there is no command from  
the external command device. (Refer to section 7.9.2)  
Jog feed  
The MR Configurator (servo configuration software MRZJW3-  
SETUP151E) is required for positioning operation. This operation  
cannot be performed from the operation section of the servo  
amplifier.  
Positioning operation can be performed once when there is no  
command from the external command device.  
Without connection of the servo motor, the servo amplifier  
provides output signals and displays the status as if the servo  
motor is running actually in response to the external input  
signal. (Refer to section 7.9.4)  
Positioning  
operation  
Test  
operation  
mode  
Motorless  
operation  
Merely connecting the servo amplifier allows the resonance point  
of the mechanical system to be measured.  
The MR Configurator (servo configuration software MRZJW3-  
SETUP151E or later) is required for machine analyzer operation.  
Machine  
analyzer  
operation  
Indicates the version of the software.  
Software version Low  
Software version High  
Indicates the system number of the software.  
Manufacturer setting screen. Do not perform operation on this  
screen.  
For manufacturer  
setting  
7 - 6  
7. DISPLAY AND OPERATION  
Name  
Display  
Description  
Press the "SET" button to show the motor series ID of the servo  
motor currently connected.  
Motor series  
For indication details, refer to the optional MELSERVO Servo  
Motor Instruction Manual.  
Press the "SET" button to show the motor type ID of the servo  
motor currently connected.  
Motor type  
Encoder  
For indication details, refer to the optional MELSERVO Servo  
Motor Instruction Manual.  
Press the "SET" button to show the encoder ID of the servo motor  
currently connected.  
For indication details, refer to the optional MELSERVO Servo  
Motor Instruction Manual.  
Pressing the "SET" button selects the teaching mode. Refer to  
Section 7.10 for details.  
Teaching  
7 - 7  
7. DISPLAY AND OPERATION  
7.4 Alarm mode  
The current alarm, past alarm history and parameter error are displayed. The lower 2 digits on the  
display indicate the alarm number that has occurred or the parameter number in error. Display examples  
are shown below.  
7.4.1 Display transition  
After choosing the alarm mode with the "MODE" button, pressing the "UP" or "DOWN" button changes the  
display as shown below.  
To Parameter error No.  
Alarm history  
(Fourth alarm in past)  
Current alarm  
Alarm history  
(Last alarm)  
Alarm history  
(Fifth alarm in past)  
UP  
Alarm history  
Alarm history  
(Second alarm in past)  
DOWN  
(Sixth alarm in past)  
Alarm history  
(Third alarm in past)  
Parameter error No.  
To Current alarm  
7 - 8  
7. DISPLAY AND OPERATION  
7.4.2 Alarm mode list  
Name  
Display  
Description  
Indicates no occurrence of an alarm.  
Current alarm  
Indicates the occurrence of overvoltage (AL.33).  
Flickers at occurrence of the alarm.  
Indicates that the last alarm is overload 1 (AL.50).  
Indicates that the second alarm in the past is overvoltage  
(AL.33).  
Indicates that the third alarm in the past is undervoltage  
(AL.10).  
Alarm history  
Indicates that the fourth alarm in the past is overspeed (AL.31).  
Indicates that there is no fifth alarm in the past.  
Indicates that there is no sixth alarm in the past.  
Indicates no occurrence of parameter error.  
Indicates that the data of parameter No. 1 is faulty.  
Parameter error No.  
Displayed when any of the set point table values exceeds the  
setting range.  
The display given on the left indicates an error in the position  
data of point table No. 1.  
P: Position data, d: Servo motor speed, A: Acceleration time  
constant, b: Deceleration time constant, n: Dwell,  
H: Auxiliary function  
7 - 9  
7. DISPLAY AND OPERATION  
Functions at occurrence of an alarm  
(1) Any mode screen displays the current alarm.  
(2) Even during alarm occurrence, the other screen can be viewed by pressing the button in the operation  
area. At this time, the decimal point in the fourth digit remains flickering.  
(3) For any alarm, remove its cause and clear it in any of the following methods (for clearable alarms,  
refer to section 11.2.1).  
(a) Switch power OFF, then ON.  
(b) Press the "SET" button on the current alarm screen.  
(c) Turn on the reset (RES) signal.  
(4) Use parameter No. 16 to clear the alarm history.  
(5) Pressing "SET" on the alarm history display screen for 2s or longer shows the following detailed  
information display screen. Note that this is provided for maintenance by the manufacturer.  
(6) Press "UP" or "DOWN" to move to the next history.  
7 - 10  
7. DISPLAY AND OPERATION  
7.5 Point table mode  
You can set the target position, servo motor speed, acceleration time, deceleration time, dwell and auxiliary  
function.  
7.5.1 Point table transition  
After choosing the point table mode with the "MODE" button, pressing the "UP" or "DOWN" button  
changes the display as shown below.  
Point table No. 1  
Point table No. 2  
UP  
DOWN  
Point table No. 30  
Point table No. 31  
7 - 11  
7. DISPLAY AND OPERATION  
7.5.2 Point table mode setting screen sequence  
Press "SET" in the point table mode. The following screen appears.  
Press "UP" or "DOWN" to move to the next screen.  
Target position  
Servo motor speed  
Acceleration time constant  
UP  
Deceleration time constant  
DOWN  
Dwell  
Auxiliary function  
7 - 12  
7. DISPLAY AND OPERATION  
7.5.3 Operation method  
(1) Setting of 5 or less-digit value  
The following example provides the after-power-on operation procedure to set "1" in the auxiliary  
function of point table No.1.  
(Note)  
Press MODE three times.  
··········The point table No. appears.  
Press UP or DOWN to choose point table No. 1.  
Press SET once.  
Press UP five times.  
Press SET twice.  
··········The setting of the specified point table No. flickers.  
Press UP once.  
··········The setting can be changed during flickering.  
Use UP or DOWN to change the setting.  
Press SET to enter the value.  
Note. The example assumes that the status display screen that appears at power-on has been  
set to the servo motor speed in parameter No. 18.  
Press "UP" or "DOWN" after completion of the setting to return to the setting item screen. Further,  
press "UP" and "DOWN" together to return to the point table No. display screen.  
7 - 13  
7. DISPLAY AND OPERATION  
(2) Setting of 6 or more-digit value  
The following example gives the after-power-on operation procedure to change the target value of  
point table No.1 to "123456".  
(Note)  
Press MODE three times. Press UP or DOWN to choose point table No. 1.  
Press SET once.  
Press SET once.  
Setting of lower 3 digits  
Setting of upper 3 digits  
Press MODE once.  
Press SET once.  
The screen flickers.  
Press UP or DOWN to  
change the setting.  
Press SET once.  
Enter the setting.  
Press MODE once.  
Note. The example assumes that the status display screen that appears at power-on has been  
set to the servo motor speed in parameter No. 18.  
Press "UP" or "DOWN" after completion of the setting to return to the setting item screen. Further,  
press "UP" and "DOWN" together to return to the point table No. display screen.  
7 - 14  
7. DISPLAY AND OPERATION  
7.6 Parameter mode  
POINT  
To use the expansion parameters, change the parameter No. 19 (parameter  
write inhibit) value. (Refer to section 5.1.1)  
7.6.1 Parameter mode transition  
After choosing the corresponding parameter mode with the "MODE" button, pressing the "UP" or "DOWN"  
button changes the display as shown below.  
To status display mode  
MODE  
Expansion parameters 1  
Expansion parameters 2  
Special parameters  
Basic parameters  
Parameter No. 54  
Parameter No. 55  
Parameter No. 0  
Parameter No. 1  
Parameter No. 20  
Parameter No. 21  
Parameter No. 78  
Parameter No. 79  
UP  
DOWN  
Parameter No. 89  
Parameter No. 90  
Parameter No. 18  
Parameter No. 19  
Parameter No. 52  
Parameter No. 53  
Parameter No. 76  
Parameter No. 77  
The parameter whose abbreviation is marked is made valid by switching power off, then on after  
*
changing its setting. (Refer to section 5.1.2)  
7 - 15  
7. DISPLAY AND OPERATION  
7.6.2 Operation example  
(1) Parameter of 5 or less digits  
The following example shows the operation procedure performed after power-on to change the home  
position setting method (Parameter No.8) into the data setting type. Press "MODE" to switch to the  
basic parameter screen.  
Press MODE four times. Select parameter No.8 with UP or DOWN.  
The parameter number is displayed.  
Press UP orDOWN to change the number.  
Press SET twice.  
The set value of the specified parameter number flickers.  
Press UP twice.  
During flickering, the set value can be changed.  
Use UP orDOWN .  
(
2: Data setting type)  
Press SET to enter.  
To shift to the next parameter, press the "UP" or "DOWN" button.  
When changing the parameter No.8 (home position return type) setting, change its set value, then  
switch power off once and switch it on again to make the new value valid.  
7 - 16  
7. DISPLAY AND OPERATION  
(2) Signed 5-digit parameter  
The following example gives the operation procedure to change the home position return position data  
(parameter No. 42) to "-12345".  
(Note)  
Press MODE three times. Press UP or DOWN to choose parameter No. 42.  
Press SET once.  
Setting of lower 4 digits  
Setting of upper 1 digits  
Press MODE once.  
Press SET once.  
The screen flickers.  
Press UP or DOWN to  
change the setting.  
Press SET once.  
Enter the setting.  
Press MODE once.  
Note. The example assumes that the status display screen that appears at power-on has been  
set to the servo motor speed in parameter No. 18.  
When changing the parameter No. 42 setting, change its set value, then switch power off once and  
switch it on again to make the new value valid.  
7 - 17  
7. DISPLAY AND OPERATION  
7.7 External I/O signal display  
The ON/OFF states of the digital I/O signals connected to the servo amplifier can be confirmed.  
(1) Operation  
Call the display screen shown after power-on.  
Using the "MODE" button, show the diagnostic screen.  
Press UP once.  
External I/O signal display screen  
(2) Display definition  
The segments of the seven-segment LEDs correspond to the pins.  
CN1A  
19  
CN1B CN1B  
CN1B CN1B  
CN1A CN1B  
14  
CN1B CN1B  
17  
CN1B  
16  
15  
9
8
7
8
5
Input signals  
Always lit  
Output signals  
CN1A  
14  
CN1B  
18  
CN1B CN1B  
CN1B CN1A  
CN1A  
19  
4
6
19  
18  
Lit: ON  
Extinguished: OFF  
The 7-segment LED shown above indicates ON/OFF.  
Each segment at top indicates the input signal and each segment at bottom indicates the output  
signal. The signals corresponding to the pins in the respective control modes are indicated below.  
7 - 18  
7. DISPLAY AND OPERATION  
7.8 Output signal (DO) forced output  
POINT  
When the servo system is used in a vertical lift application, turning on the  
electromagnetic brake interlock (MBR) after assigning it to pin CN1B-19  
will release the electromagnetic brake, causing a drop. Take drop  
preventive measures on the machine side.  
The output signal can be forced on/off independently of the servo status. This function is used for output  
signal wiring check, etc. This operation must be performed in the servo off state (SON off).  
Call the display screen shown after power-on.  
Using the "MODE" button, show the diagnostic screen.  
Press UP twice.  
Press SET for more than 2 seconds.  
Switch on/off the signal below the lit segment.  
Always lit  
Indicates the ON/OFF of the output signal. The correspondences  
between segments and signals are as in the output signals of the  
external I/O signal display.  
CN1A  
14  
CN1B CN1B CN1B CN1B CN1A CN1A  
18 19 18 19  
4
6
(Lit: ON, extinguished: OFF)  
Press MODE once.  
The segment above CN1A-pin 18 is lit.  
Press UP once.  
CN1A-pin 18 is switched on.  
(CN1A-pin 18-SG conduct.)  
Press DOWN once.  
CN1A-pin 18 is switched off.  
Press SET for more than 2 seconds.  
7 - 19  
7. DISPLAY AND OPERATION  
7.9 Test operation mode  
The test operation mode is designed to confirm servo operation and not to confirm  
machine operation. In this mode, do not use the servo motor with the machine.  
Always use the servo motor alone.  
CAUTION  
If any operational fault has occurred, stop operation using the forced stop (EMG) .  
POINT  
The test operation mode cannot be used in the absolute position detection  
system. Use it after choosing "Incremental system" in parameter No. 1.  
The MR Configurator (servo configuration software) is required to perform  
positioning operation.  
Test operation cannot be performed if the servo-on (SON) signal is not  
turned OFF.  
7.9.1 Mode change  
Call the display screen shown after power-on. Choose jog operation/motor-less operation in the following  
procedure. Using the "MODE" button, show the diagnostic screen.  
Press UP three times.  
Press UP five times.  
Press SET for more  
than 2s.  
Press SET for more than 2s.  
When this screen  
appears, jog feed can  
be performed.  
When this screen is displayed,  
motor-less operation can be  
performed.  
Flickers in the test operation mode.  
7 - 20  
7. DISPLAY AND OPERATION  
7.9.2 Jog operation  
Jog operation can be performed when there is no command from the external command device.  
(1) Operation  
Connect EMG-SG to start jog operation and connect VDD-COM to use the internal power supply.  
Hold down the "UP" or "DOWN" button to run the servo motor. Release it to stop. When using the MR  
Configurator (servo configuration software), you can change the operation conditions. The initial  
conditions and setting ranges for operation are listed below.  
Item  
Initial setting  
Setting range  
0 to instantaneous permissible speed  
0 to 50000  
Speed [r/min]  
Acceleration/deceleration time constant [ms]  
200  
1000  
How to use the buttons is explained below.  
Button  
Description  
Press to start CCW rotation.  
Release to stop.  
"UP"  
Press to start CW rotation.  
Release to stop.  
"DOWN"  
If the communication cable is disconnected during jog operation performed by using the MR  
Configurator (servo configuration software), the servo motor will be decelerated to a stop.  
(2) Status display  
You can confirm the servo status during jog operation.  
Pressing the "MODE" button in the jog operation-ready status calls the status display screen. With  
this screen being shown, perform jog operation with the "UP" or "DOWN" button. Every time you press  
the "MODE" button, the next status display screen appears, and on completion of a screen cycle,  
pressing that button returns to the jog operation-ready status screen. For full information of the status  
display, refer to section 7.2. In the test operation mode, you cannot use the "UP" and "DOWN" buttons  
to change the status display screen from one to another.  
(3) Termination of jog operation  
To end the jog operation, switch power off once or press the "MODE" button to switch to the next  
screen and then hold down the "SET" button for 2 or more seconds.  
7 - 21  
7. DISPLAY AND OPERATION  
7.9.3 Positioning operation  
POINT  
The MR Configurator (servo configuration software) is required to perform  
positioning operation.  
Positioning operation can be performed once when there is no command from the external command  
device.  
(1) Operation  
Connect EMG-SG to start positioning operation and connect VDD-COM to use the internal power  
supply.  
Pressing the "Forward" or "Reverse" button on the MR Configurator (servo configuration software)  
starts the servo motor, which will then stop after moving the preset travel distance. You can change  
the operation conditions on the MR Configurator (servo configuration software). The initial conditions  
and setting ranges for operation are listed below.  
Item  
Travel distance [pulse]  
Initial setting  
10000  
Setting range  
0 to 9999999  
Speed [r/min]  
200  
0 to instantaneous permissible speed  
0 to 50000  
Acceleration/deceleration time constant [ms]  
1000  
How to use the keys is explained below.  
Key  
Description  
"Forward"  
Click to start positioning operation CCW.  
"Reverse"  
Click to start positioning operation CW.  
Click during operation to make a temporary stop. Clicking the  
"Pause" button again erases the remaining distance.  
To resume operation, press the button that was pressed to  
start the operation.  
"Pause"  
If the communication cable is disconnected during positioning operation, the servo motor will come to  
a sudden stop.  
(2) Status display  
You can monitor the status display even during positioning operation.  
7 - 22  
7. DISPLAY AND OPERATION  
7.9.4 Motor-less operation  
Without connecting the servo motor, you can provide output signals or monitor the status display as if the  
servo motor is running in response to external input signals. This operation can be used to check the  
sequence of a host programmable controller or the like.  
(1) Operation  
After turning off the signal across SON-SG, choose motor-less operation. After that, perform external  
operation as in ordinary operation.  
(2) Status display  
You can confirm the servo status during motor-less operation.  
Pressing the "MODE" button in the motor-less operation-ready status calls the status display screen.  
With this screen being shown, perform motor-less operation. Every time you press the "MODE" button,  
the next status display screen appears, and on completion of a screen cycle, pressing that button  
returns to the motor-less operation-ready status screen. For full information of the status display,  
refer to section 7.2. In the test operation mode, you cannot use the "UP" and "DOWN" buttons to  
change the status display screen from one to another.  
(3) Termination of motor-less operation  
To terminate the motor-less operation, switch power off.  
7 - 23  
7. DISPLAY AND OPERATION  
7.10 Teaching function  
POINT  
This function is available for the absolute value command system. It is not  
available for the incremental value command system.  
This function is enabled after a home position return.  
After making sure that the servo motor has stopped, press the "SET"  
button in the operation section or turn teach (TCH) ON and set the  
position data.  
Position data can be imported by pressing the "SET" button in the operation section or turning teach  
(TCH) ON after moving the axis to the target position by JOG operation or manual pulse generator  
operation.  
7.10.1 Preparations for teaching  
Press the "MODE" button to choose the diagnosis mode.  
This screen displays the servo off status.  
Press  
Press  
or  
to switch to the teaching setting initial screen.  
DOWN  
UP  
for 2s or longer to choose the teaching setting mode.  
SET  
The lower two digits flicker in the teaching setting mode.  
Press UP or  
to call the point table No. where position data will be set.  
DOWN  
For example, point table No. 2 is called here.  
7 - 24  
7. DISPLAY AND OPERATION  
7.10.2 Position data setting method  
When the preparations for teaching are over, set position data in the following procedure.  
(1) When determining position data by JOG operation  
1) Turn automatic/manual selection (MD0) OFF to choose the manual operation mode. (Refer to  
section 4.3)  
2) Turn forward rotation start (ST1) or reverse rotation start (ST2) ON to rotate the servo motor  
until the target position is reached. (Refer to section 4.3.1)  
3) When positioning is completed, press the "SET" button in the operation section or turn teach  
(TCH) ON. This sets the address of positioning as the position data of the point table.  
(2) When determining position data by manual pulse generator operation  
1) Turn automatic/manual selection (MD0) OFF to choose the manual operation mode. (Refer to  
section 4.3)  
2) Turn the manual pulse generator to rotate the servo motor until the target position is reached.  
(Refer to section 4.3.2)  
3) When positioning is completed, press the "SET" button in the operation section or turn teach  
(TCH) ON. This sets the address of positioning as the position data of the point table.  
When the setting is completed correctly, the upper digits in the display section flicker as shown below.  
Press  
to complete this point table position setting.  
SET  
Press the "MODE" button on the flickering screen to return to the teaching initial screen.  
7 - 25  
7. DISPLAY AND OPERATION  
MEMO  
7 - 26  
8. GENERAL GAIN ADJUSTMENT  
8. GENERAL GAIN ADJUSTMENT  
8.1 Different adjustment methods  
8.1.1 Adjustment on a single servo amplifier  
The gain adjustment in this section can be made on a single servo amplifier. For gain adjustment, first  
execute auto tuning mode 1. If you are not satisfied with the results, execute auto tuning mode 2, manual  
mode 1 and manual mode 2 in this order.  
(1) Gain adjustment mode explanation  
Parameter No. 3  
setting  
Estimation of load inertia  
moment ratio  
Automatically set  
parameters  
Gain adjustment mode  
Manually set parameters  
PG1 (parameter No. 7)  
GD2 (parameter No. 34)  
PG2 (parameter No. 35)  
VG1 (parameter No. 36)  
VG2 (parameter No. 37)  
VIC (parameter No. 38)  
PG1 (parameter No. 7)  
PG2 (parameter No. 35)  
VG1 (parameter No. 36)  
VG2 (parameter No. 37)  
VIC (parameter No. 38)  
Auto tuning mode 1  
(initial value)  
Response level setting of  
parameter No. 3  
010  
Always estimated  
GD2 (parameter No. 34)  
Response level setting of  
parameter No. 3  
Auto tuning mode 2  
Manual mode 1  
020  
030  
PG1 (parameter No. 7)  
GD2 (parameter No. 34)  
VG2 (parameter No. 37)  
VIC (parameter No. 38)  
PG1 (parameter No. 7)  
GD2 (parameter No. 34)  
PG2 (parameter No. 35)  
VG1 (parameter No. 36)  
VG2 (parameter No. 37)  
VIC (parameter No. 38)  
PG2 (parameter No. 35)  
VG1 (parameter No. 36)  
Fixed to parameter No.  
34 value  
Manual mode 2  
040  
000  
GD2 (parameter No. 34)  
PG2 (parameter No. 35)  
VG2 (parameter No. 37)  
VIC (parameter No. 38)  
PG1 (parameter No. 7)  
VG1 (parameter No. 36)  
Interpolation mode  
Always estimated  
8 - 1  
8. GENERAL GAIN ADJUSTMENT  
(2) Adjustment sequence and mode usage  
START  
Usage  
Yes  
Used when you want to  
match the position gain  
(PG1) between 2 or more  
axes. Normally not used for  
other purposes.  
Interpolation  
made for 2 or more  
axes?  
Interpolation mode  
Operation  
No  
Allows adjustment by merely  
changing the response level  
setting.  
Auto tuning mode 1  
Operation  
First use this mode to make  
adjustment.  
Yes  
No  
Used when the conditions of  
auto tuning mode 1 are not  
met and the load inertia  
moment ratio could not be  
estimated properly, for  
example.  
OK?  
OK?  
Yes  
No  
Auto tuning mode 2  
Operation  
Yes  
OK?  
No  
This mode permits  
adjustment easily with three  
gains if you were not satisfied  
with auto tuning results.  
Manual mode 1  
Operation  
Yes  
OK?  
You can adjust all gains  
manually when you want to  
do fast settling or the like.  
No  
Manual mode 2  
END  
8.1.2 Adjustment using MR Configurator (servo configuration software)  
This section gives the functions and adjustment that may be performed by using the servo amplifier with  
the MR Configurator (servo configuration software) which operates on a personal computer.  
Function  
Description  
Adjustment  
With the machine and servo motor  
coupled, the characteristic of the  
mechanical system can be measured by  
giving a random vibration command from  
the personal computer to the servo and  
measuring the machine response.  
You can grasp the machine resonance frequency and  
determine the notch frequency of the machine  
resonance suppression filter.  
You can automatically set the optimum gains in  
response to the machine characteristic. This simple  
adjustment is suitable for a machine which has large  
machine resonance and does not require much settling  
time.  
Machine analyzer  
Executing gain search under to-and-fro  
positioning command measures settling  
characteristic while simultaneously  
changing gains, and automatically  
searches for gains which make settling  
time shortest.  
You can automatically set gains which make positioning  
settling time shortest.  
Gain search  
Response at positioning settling of a  
machine can be simulated from machine  
analyzer results on personal computer.  
You can optimize gain adjustment and command  
pattern on personal computer.  
Machine simulation  
8 - 2  
8. GENERAL GAIN ADJUSTMENT  
8.2 Auto tuning  
8.2.1 Auto tuning mode  
The servo amplifier has a real-time auto tuning function which estimates the machine characteristic (load  
inertia moment ratio) in real time and automatically sets the optimum gains according to that value. This  
function permits ease of gain adjustment of the servo amplifier.  
(1) Auto tuning mode 1  
The servo amplifier is factory-set to the auto tuning mode 1.  
In this mode, the load inertia moment ratio of a machine is always estimated to set the optimum gains  
automatically.  
The following parameters are automatically adjusted in the auto tuning mode 1.  
Parameter No.  
Abbreviation  
PG1  
Name  
7
Position control gain 1  
34  
35  
36  
37  
38  
GD2  
Ratio of load inertia moment to servo motor inertia moment  
Position control gain 2  
PG2  
VG1  
Speed control gain 1  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
POINT  
The auto tuning mode 1 may not be performed properly if the following  
conditions are not satisfied.  
Time to reach 2000r/min is the acceleration/deceleration time constant of  
5s or less.  
Speed is 150r/min or higher.  
The ratio of load inertia moment to motor inertia moment is not more than  
100 times.  
The acceleration/deceleration torque is 10% or more of the rated torque.  
Under operating conditions which will impose sudden disturbance torque  
during acceleration/deceleration or on a machine which is extremely loose,  
auto tuning may not function properly, either. In such cases, use the auto  
tuning mode 2 or manual mode 1,2 to make gain adjustment.  
(2) Auto tuning mode 2  
Use the auto tuning mode 2 when proper gain adjustment cannot be made by auto tuning mode 1.  
Since the load inertia moment ratio is not estimated in this mode, set the value of a correct load  
inertia moment ratio (parameter No. 34).  
The following parameters are automatically adjusted in the auto tuning mode 2.  
Parameter No.  
Abbreviation  
PG1  
Name  
7
Position control gain 1  
Position control gain 2  
Speed control gain 1  
35  
36  
37  
38  
PG2  
VG1  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
8 - 3  
8. GENERAL GAIN ADJUSTMENT  
8.2.2 Auto tuning mode operation  
The block diagram of real-time auto tuning is shown below.  
Load inertia  
moment  
Automatic setting  
Encoder  
Control gains  
Command  
Current  
control  
Servo  
motor  
PG1,VG1  
PG2,VG2,VIC  
Current feedback  
Real-time auto  
tuning section  
Position/speed  
feedback  
Set 0 or 1 to turn on.  
Load inertia  
moment ratio  
estimation section  
Gain  
table  
Switch  
Speed feedback  
Parameter No. 34  
Parameter No. 3  
Load inertia moment  
ratio estimation value  
First digit  
Response level setting  
Auto tuning selection  
Third digit  
When a servo motor is accelerated/decelerated, the load inertia moment ratio estimation section always  
estimates the load inertia moment ratio from the current and speed of the servo motor. The results of  
estimation are written to parameter No. 34 (load inertia moment ratio). These results can be confirmed on  
the status display screen of the servo amplifier display section.  
If the value of the load inertia moment ratio is already known or if estimation cannot be made properly,  
chose the "auto tuning mode 2" (parameter No.3 :  
2
) to stop the estimation of the load inertia  
moment ratio (Switch in above diagram turned off), and set the load inertia moment ratio (parameter No.  
34) manually.  
From the preset load inertia moment ratio (parameter No. 34) value and response level (The first digit of  
parameter No. 3), the optimum control gains are automatically set on the basis of the internal gain tale.  
The auto tuning results are saved in the EEP-ROM of the servo amplifier every 60 minutes since power-  
on. At power-on, auto tuning is performed with the value of each control gain saved in the EEP-ROM  
being used as an initial value.  
POINT  
If sudden disturbance torque is imposed during operation, the estimation of  
the inertia moment ratio may malfunction temporarily. In such a case,  
choose the "auto tuning mode 2" (parameter No. 3:  
correct load inertia moment ratio in parameter No. 34.  
2
) and set the  
When any of the auto tuning mode 1, auto tuning mode 2 and manual mode  
1 settings is changed to the manual mode 2 setting, the current control  
gains and load inertia moment ratio estimation value are saved in the EEP-  
ROM.  
8 - 4  
8. GENERAL GAIN ADJUSTMENT  
8.2.3 Adjustment procedure by auto tuning  
Since auto tuning is made valid before shipment from the factory, simply running the servo motor  
automatically sets the optimum gains that match the machine. Merely changing the response level  
setting value as required completes the adjustment. The adjustment procedure is as follows.  
Auto tuning adjustment  
Acceleration/deceleration repeated  
Yes  
Load inertia moment ratio  
estimation value stable?  
No  
Auto tuning  
conditions not satisfied.  
(Estimation of load inertia  
moment ratio is difficult)  
No  
Yes  
Choose the auto tuning mode 2  
(parameter No.3 :  
2
) and set  
the load inertia moment ratio  
(parameter No.34) manually.  
Adjust response level setting  
so that desired response is  
achieved on vibration-free level.  
Acceleration/deceleration repeated  
Requested  
performance satisfied?  
No  
Yes  
END  
To manual mode  
8 - 5  
8. GENERAL GAIN ADJUSTMENT  
8.2.4 Response level setting in auto tuning mode  
Set the response (The first digit of parameter No.3) of the whole servo system. As the response level  
setting is increased, the track ability and settling time for a command decreases, but a too high response  
level will generate vibration. Hence, make setting until desired response is obtained within the vibration-  
free range.  
If the response level setting cannot be increased up to the desired response because of machine resonance  
beyond 100Hz, adaptive vibration suppression control (parameter No. 63) or machine resonance  
suppression filter (parameter No. 61 62) may be used to suppress machine resonance. Suppressing  
machine resonance may allow the response level setting to increase. Refer to section 9.3 for adaptive  
vibration suppression control and section 9.2 for machine resonance suppression filter.  
Parameter No. 3  
Response level setting  
Auto tuning selection  
Machine characteristic  
Response level setting  
Machine resonance  
frequency guideline  
Machine rigidity  
Guideline of corresponding machine  
1
2
Low  
15Hz  
20Hz  
25Hz  
30Hz  
35Hz  
45Hz  
55Hz  
70Hz  
85Hz  
105Hz  
130Hz  
160Hz  
200Hz  
240Hz  
300Hz  
3
Large conveyor  
4
5
Arm robot  
6
7
General machine  
tool conveyor  
8
Middle  
9
Precision  
working  
machine  
A
B
C
D
E
F
Inserter  
Mounter  
Bonder  
High  
8 - 6  
8. GENERAL GAIN ADJUSTMENT  
8.3 Manual mode 1 (simple manual adjustment)  
If you are not satisfied with the adjustment of auto tuning, you can make simple manual adjustment with  
three parameters.  
8.3.1 Operation of manual mode 1  
In this mode, setting the three gains of position control gain 1 (PG1), speed control gain 2 (VG2) and  
speed integral compensation (VIC) automatically sets the other gains to the optimum values according to  
these gains.  
GD2  
User setting  
PG1  
PG2  
VG2  
VG1  
Automatic setting  
VIC  
Therefore, you can adjust the model adaptive control system in the same image as the general PI control  
system (position gain, speed gain, speed integral time constant). Here, the position gain corresponds to  
PG1, the speed gain to VG2 and the speed integral time constant to VIC. When making gain adjustment  
in this mode, set the load inertia moment ratio (parameter No. 34) correctly.  
8.3.2 Adjustment by manual mode 1  
POINT  
If machine resonance occurs, adaptive vibration suppression control  
(parameter No. 63) or machine resonance suppression filter (parameter No.  
61 62) may be used to suppress machine resonance. (Refer to section 9.2,  
9.3.)  
(1) For speed control  
(a) Parameters  
The following parameters are used for gain adjustment.  
Parameter No.  
Abbreviation  
PG1  
Name  
7
Position control gain 1  
34  
37  
38  
GD2  
Ratio of load inertia moment to servo motor inertia moment  
Speed control gain 2  
VG2  
VIC  
Speed integral compensation  
(b) Adjustment procedure  
Step  
Operation  
Description  
Set an estimated value to the ratio of load inertia moment to servo motor  
inertia moment (parameter No. 34).  
Increase the speed control gain 2 (parameter No. 37) within the vibration- Increase the speed control gain.  
and unusual noise-free range, and return slightly if vibration takes place.  
Decrease the speed integral compensation (parameter No. 38) within the Decrease the time constant of the speed  
vibration-free range, and return slightly if vibration takes place.  
If the gains cannot be increased due to mechanical system resonance or  
the like and the desired response cannot be achieved, response may be  
increased by suppressing resonance with adaptive vibration suppression  
control or machine resonance suppression filter and then executing steps  
2 and 3.  
1
2
3
integral compensation.  
Suppression of machine resonance.  
Refer to section 9.2, 9.3.  
4
5
While checking the settling characteristic and rotational status, fine-  
adjust each gain.  
Fine adjustment  
8 - 7  
8. GENERAL GAIN ADJUSTMENT  
(c) Adjustment description  
1) Speed control gain 2 (parameter No. 37)  
This parameter determines the response level of the speed control loop. Increasing this value  
enhances response but a too high value will make the mechanical system liable to vibrate. The  
actual response frequency of the speed loop is as indicated in the following expression.  
Speed control gain 2 setting  
(1 ratio of load inertia moment to servo motor inertia moment)  
Speed loop response  
frequency(Hz)  
2
2) Speed integral compensation (VIC: parameter No. 38)  
To eliminate stationary deviation against a command, the speed control loop is under  
proportional integral control. For the speed integral compensation, set the time constant of this  
integral control. Increasing the setting lowers the response level. However, if the load inertia  
moment ratio is large or the mechanical system has any vibratory element, the mechanical  
system is liable to vibrate unless the setting is increased to some degree. The guideline is as  
indicated in the following expression.  
2000 to 3000  
Speed integral compensation  
setting(ms)  
Speed control gain 2 setting/  
(1 ratio of load inertia moment to  
servo motor inertia moment setting 0.1)  
(2) For position control  
(a) Parameters  
The following parameters are used for gain adjustment.  
Parameter No.  
Abbreviation  
PG1  
Name  
7
Position control gain 1  
34  
37  
38  
GD2  
Ratio of load inertia moment to servo motor inertia moment  
Speed control gain 2  
VG2  
VIC  
Speed integral compensation  
(b) Adjustment procedure  
Step  
Operation  
Description  
Set an estimated value to the ratio of load inertia moment to servo motor  
inertia moment (parameter No. 34).  
1
2
3
Set a slightly smaller value to the position control gain 1 (parameter No.  
7).  
Increase the speed control gain 2 (parameter No. 37) within the vibration- Increase the speed control gain.  
and unusual noise-free range, and return slightly if vibration takes place.  
Decrease the speed integral compensation (parameter No. 38) within the Decrease the time constant of the speed  
4
5
vibration-free range, and return slightly if vibration takes place.  
Increase the position control gain 1 (parameter No. 7).  
If the gains cannot be increased due to mechanical system resonance or  
the like and the desired response cannot be achieved, response may be  
increased by suppressing resonance with adaptive vibration suppression  
control or machine resonance suppression filter and then executing steps  
3 to 5.  
integral compensation.  
Increase the position control gain.  
Suppression of machine resonance.  
Refer to section 9.2, 9.3.  
6
7
While checking the settling characteristic and rotational status, fine-  
adjust each gain.  
Fine adjustment  
8 - 8  
8. GENERAL GAIN ADJUSTMENT  
(c) Adjustment description  
1) Position control gain 1 (parameter No. 7)  
This parameter determines the response level of the position control loop. Increasing position  
control gain 1 improves track ability to a position command but a too high value will make  
overshooting liable to occur at the time of settling.  
1
3
1
5
Speed control gain 2 setting  
(1 ratio of load inertia moment to servo motor inertia moment)  
Position control  
gain 1 guideline  
to  
)
(
2) Speed control gain 2 (VG2: parameter No. 37)  
This parameter determines the response level of the speed control loop. Increasing this value  
enhances response but a too high value will make the mechanical system liable to vibrate. The  
actual response frequency of the speed loop is as indicated in the following expression.  
Speed control gain 2 setting  
(1 ratio of load inertia moment to servo motor inertia moment)  
Speed loop response  
frequency(Hz)  
2
3) Speed integral compensation (parameter No. 38)  
To eliminate stationary deviation against a command, the speed control loop is under  
proportional integral control. For the speed integral compensation, set the time constant of this  
integral control. Increasing the setting lowers the response level. However, if the load inertia  
moment ratio is large or the mechanical system has any vibratory element, the mechanical  
system is liable to vibrate unless the setting is increased to some degree. The guideline is as  
indicated in the following expression.  
2000 to 3000  
Speed integral  
compensation setting(ms)  
Speed control gain 2 setting/  
(1 ratio of load inertia moment to  
servo motor inertia moment 2 setting 0.1)  
8 - 9  
8. GENERAL GAIN ADJUSTMENT  
8.4 Interpolation mode  
The interpolation mode is used to match the position control gains of the axes when performing the  
interpolation operation of servo motors of two or more axes for an X-Y table or the like. In this mode, the  
position control gain 2 and speed control gain 2 which determine command track ability are set manually  
and the other parameter for gain adjustment are set automatically.  
(1) Parameter  
(a) Automatically adjusted parameters  
The following parameters are automatically adjusted by auto tuning.  
Parameter No.  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Position control gain 2  
34  
35  
37  
38  
PG2  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
(b) Manually adjusted parameters  
The following parameters are adjustable manually.  
Parameter No.  
Abbreviation  
PG1  
Name  
7
Position control gain 1  
Speed control gain 1  
36  
VG1  
(2) Adjustment procedure  
Step  
Operation  
Description  
Set 15Hz (parameter No. 3: 010 ) as the machine resonance frequency of response  
in the auto tuning mode 1.  
1
2
Select the auto tuning mode 1.  
During operation, increase the response level setting (parameter No. 2), and  
return the setting if vibration occurs.  
Adjustment in auto tuning mode 1.  
Check the values of position control gain 1 (parameter No. 7) and speed control  
gain 1 (parameter No. 36).  
3
4
Check the upper setting limits.  
Select the interpolation mode.  
Set the interpolation mode (parameter No. 3: 000 ).  
Set the position control gain 1 of all the axes to be interpolated to the same value.  
5
At that time, adjust to the setting value of the axis, which has the smallest Set position control gain 1.  
position control gain 1.  
Using the speed control gain 1 value checked in step 3 as the guideline of the  
upper limit, look at the rotation status and set in speed control gain 1 the value Set speed control gain 1.  
three or more times greater than the position control gain 1 setting.  
6
7
Looking at the interpolation characteristic and rotation status, fine-adjust the  
Fine adjustment.  
gains and response level setting.  
(3) Adjustment description  
(a) Position control gain 1 (parameter No.7)  
This parameter determines the response level of the position control loop. Increasing position  
control gain 1 improves track ability to a position command but a too high value will make  
overshooting liable to occur at the time of settling. The droop pulse value is determined by the  
following expression.  
Rotation speed (r/min) 131,072(pulse)  
Droop pulse value (pulse)  
Position control gain 1 setting  
(b) Speed control gain 1 (parameter No. 36)  
Set the response level of the speed loop of the model. Make setting using the following expression  
as a guideline.  
Speed control gain 1 setting Position control gain 1 setting 3  
8 - 10  
8. GENERAL GAIN ADJUSTMENT  
8.5 Differences in auto tuning between MELSERVO-J2 and MELSERVO-J2-Super  
8.5.1 Response level setting  
To meet higher response demands, the MELSERVO-J2-Super series has been changed in response level  
setting range from the MELSERVO-J2 series. The following table lists comparison of the response level  
setting.  
Parameter No. 3  
Response level setting  
MELSERVO-J2 series  
MELSERVO-J2-Super series  
Response level setting  
Machine resonance frequency  
Response level setting  
Machine resonance frequency guideline  
1
2
15Hz  
20Hz  
25Hz  
30Hz  
35Hz  
45Hz  
55Hz  
70Hz  
85Hz  
105Hz  
130Hz  
160Hz  
200Hz  
240Hz  
300Hz  
1
20Hz  
3
4
5
2
40Hz  
6
7
3
4
5
60Hz  
80Hz  
8
9
100Hz  
A
B
C
D
E
F
Note that because of a slight difference in gain adjustment pattern, response may not be the same if the  
resonance frequency is set to the same value.  
8.5.2 Auto tuning selection  
The MELSERVO-J2-Super series has an addition of the load inertia moment ratio fixing mode. It also has  
the addition of the manual mode 1 which permits manual adjustment with three parameters.  
Parameter No. 3  
Auto tuning selection  
Auto tuning selection  
Gain adjustment mode  
Remarks  
MELSERVO-J2 series  
MELSERVO-J2-Super series  
Interpolation mode  
Auto tuning mode 1  
0
1
0
1
Position control gain 1 is fixed.  
Ordinary auto tuning  
Estimation of load inertia moment  
ratio stopped.  
Auto tuning  
Auto tuning mode 2  
2
Response level setting valid.  
Simple manual adjustment  
Manual adjustment of all gains  
Auto tuning Manual mode 1  
invalid  
3
4
Manual mode 2  
2
8 - 11  
8. GENERAL GAIN ADJUSTMENT  
MEMO  
8 - 12  
9. SPECIAL ADJUSTMENT FUNCTIONS  
9. SPECIAL ADJUSTMENT FUNCTIONS  
POINT  
The functions given in this chapter need not be used generally. Use them  
if you are not satisfied with the machine status after making adjustment  
in the methods in chapter 8.  
If a mechanical system has a natural resonance point, increasing the servo system response may cause  
the mechanical system to produce resonance (vibration or unusual noise) at that resonance frequency.  
Using the machine resonance suppression filter and adaptive vibration suppression control functions can  
suppress the resonance of the mechanical system.  
9.1 Function block diagram  
Speed  
control  
Parameter  
No.61  
Parameter  
No.63  
Parameter  
No.62  
Parameter Current  
No.63 command  
00  
0
00  
0
Low-pass  
filter  
Servo  
motor  
Encoder  
1
Machine resonance  
suppression filter 1  
Machine resonance  
suppression filter 2  
00  
00  
except  
except  
Adaptive vibration  
suppression control  
or  
1
2
9.2 Machine resonance suppression filter  
(1) Function  
The machine resonance suppression filter is a filter function (notch filter) which decreases the gain of  
the specific frequency to suppress the resonance of the mechanical system. You can set the gain  
decreasing frequency (notch frequency) and gain decreasing depth.  
Machine resonance point  
Mechanical  
system  
response  
Frequency  
Notch  
depth  
Frequency  
Notch frequency  
9 - 1  
9. SPECIAL ADJUSTMENT FUNCTIONS  
You can use the machine resonance suppression filter 1 (parameter No. 61) and machine resonance  
suppression filter 2 (parameter No. 62) to suppress the vibration of two resonance frequencies. Note  
that if adaptive vibration suppression control is made valid, the machine resonance suppression filter  
1 (parameter No. 61) is made invalid.  
Machine resonance point  
Mechanical  
system  
response  
Frequency  
Notch  
depth  
Frequency  
Parameter No. 61 Parameter No. 62  
POINT  
The machine resonance suppression filter is a delay factor for the servo  
system. Hence, vibration may increase if you set a wrong resonance  
frequency or a too deep notch.  
(2) Parameters  
(a) Machine resonance suppression filter 1 (parameter No. 61)  
Set the notch frequency and notch depth of the machine resonance suppression filter 1 (parameter  
No. 61)  
When you have made adaptive vibration suppression control selection (parameter No. 63) "valid" or  
"held", make the machine resonance suppression filter 1 invalid (parameter No. 61: 0000).  
Parameter No. 61  
0
Notch frequency  
Setting  
value  
Setting  
value  
Setting  
value  
Setting  
value  
Frequency  
Frequency  
Frequency  
Frequency  
562.5  
500  
10  
11  
12  
13  
14  
15  
16  
17  
281.3  
264.7  
250  
18  
19  
187.5  
180  
00  
01  
02  
03  
04  
05  
06  
07  
Invalid  
4500  
2250  
1500  
1125  
900  
08  
09  
450  
173.1  
166.7  
160.1  
155.2  
150  
0A  
0B  
0C  
0D  
0E  
0F  
1A  
1B  
1C  
1D  
1E  
1F  
409.1  
375  
236.8  
225  
346.2  
321.4  
300  
214.3  
204.5  
195.7  
750  
642.9  
145.2  
Notch depth  
Setting  
value  
Depth (Gain)  
Deep ( 40dB)  
( 14dB)  
0
1
2
3
( 8dB)  
Shallow( 4dB)  
9 - 2  
9. SPECIAL ADJUSTMENT FUNCTIONS  
POINT  
If the frequency of machine resonance is unknown, decrease the notch  
frequency from higher to lower ones in order. The optimum notch  
frequency is set at the point where vibration is minimal.  
A deeper notch has a higher effect on machine resonance suppression but  
increases a phase delay and may increase vibration.  
The machine characteristic can be grasped beforehand by the machine  
analyzer on the MR Configurator (servo configuration software). This  
allows the required notch frequency and depth to be determined.  
Resonance may occur if parameter No. 61 62 is used to select a close  
notch frequency and set a deep notch.  
(b) Machine resonance suppression filter 2 (parameter No. 62)  
The setting method of machine resonance suppression filter 2 (parameter No. 62) is the same as  
that of machine resonance suppression filter 1 (parameter No. 61). However, the machine  
resonance suppression filter 2 can be set independently of whether adaptive vibration suppression  
control is valid or invalid.  
9.3 Adaptive vibration suppression control  
(1) Function  
Adaptive vibration suppression control is a function in which the servo amplifier detects machine  
resonance and sets the filter characteristics automatically to suppress mechanical system vibration.  
Since the filter characteristics (frequency, depth) are set automatically, you need not be conscious of  
the resonance frequency of a mechanical system. Also, while adaptive vibration suppression control is  
valid, the servo amplifier always detects machine resonance, and if the resonance frequency changes,  
it changes the filter characteristics in response to that frequency.  
Machine resonance point  
Machine resonance point  
Mechanical  
system  
Mechanical  
system  
response  
response  
Frequency  
Frequency  
Notch  
depth  
Notch  
depth  
Frequency  
Frequency  
Notch frequency  
Notch frequency  
When machine resonance is large and frequency is low When machine resonance is small and frequency is high  
POINT  
The machine resonance frequency which adaptive vibration suppression  
control can respond to is about 150 to 500Hz. Adaptive vibration  
suppression control has no effect on the resonance frequency outside this  
range. Use the machine resonance suppression filter for the machine  
resonance of such frequency.  
Adaptive vibration suppression control may provide no effect on a  
mechanical system which has complex resonance characteristics or which  
has too large resonance.  
Under operating conditions in which sudden disturbance torque is imposed  
during operation, the detection of the resonance frequency may malfunction  
temporarily, causing machine vibration. In such a case, set adaptive  
vibration suppression control to be "held" (parameter No. 63:  
2
) to fix  
the characteristics of the adaptive vibration suppression control filter.  
9 - 3  
9. SPECIAL ADJUSTMENT FUNCTIONS  
(2) Parameters  
The operation of adaptive vibration suppression control selection (parameter No.63).  
Parameter No. 63  
Adaptive vibration suppression control selection  
Choosing "valid" or "held" in adaptive vibration suppression  
control selection makes the machine resonance suppression  
filter 1 (parameter No. 61) invalid.  
0: Invalid  
1: Valid  
Machine resonance frequency is always detected to  
generate the filter in response to resonance, suppressing  
machine vibration.  
2: Held  
Filter characteristics generated so far is held, and detection of  
machine resonance is stopped.  
Adaptive vibration suppression control sensitivity selection  
Set the sensitivity of detecting machine resonance.  
0: Normal  
1: Large sensitivity  
POINT  
Adaptive vibration suppression control is factory-set to be invalid  
(parameter No. 63: 0000).  
The filter characteristics generated are saved in the EEP-ROM every 60  
minutes since power-on. At next power-on, vibration suppression control is  
performed with this data saved in the EEP-ROM being used as an initial  
value.  
Setting the adaptive vibration suppression control sensitivity can change  
the sensitivity of detecting machine resonance. Setting of "large sensitivity"  
detects smaller machine resonance and generates a filter to suppress  
machine vibration. However, since a phase delay will also increase, the  
response of the servo system may not increase.  
9.4 Low-pass filter  
(1) Function  
When a ballscrew or the like is used, resonance of high frequency may occur as the response of the  
servo system is increased. To prevent this, the low-pass filter is factory-set to be valid for a torque  
command. The filter frequency of this low-pass filter is automatically adjusted to the value in the  
following expression.  
Speed control gain 2 setting 10  
Filter frequency(Hz)  
(1 Ratio of load inertia moment to servo motor inertia moment setting 0.1)  
2
(2) Parameter  
Set the operation of the low-pass filter (parameter No. 63.)  
Parameter No. 63  
Low-pass filter selection  
0: Valid (automatic adjustment) initial value  
1: Invalid  
POINT  
In a mechanical system where rigidity is extremely high and resonance is  
difficult to occur, setting the low-pass filter to be "invalid" may increase  
the servo system response to shorten the settling time.  
9 - 4  
9. SPECIAL ADJUSTMENT FUNCTIONS  
9.5 Gain changing function  
This function can change the gains. You can change between gains during rotation and gains during stop  
or can use an external signal to change gains during operation.  
9.5.1 Applications  
This function is used when.  
(1) You want to increase the gains during servo lock but decrease the gains to reduce noise during rotation.  
(2) You want to increase the gains during settling to shorten the stop settling time.  
(3) You want to change the gains using an external signal to ensure stability of the servo system since the  
load inertia moment ratio varies greatly during a stop (e.g. a large load is mounted on a carrier).  
9.5.2 Function block diagram  
The valid control gains PG2, VG2, VIC and GD2 of the actual loop are changed according to the conditions  
selected by gain changing selection CDP (parameter No. 68) and gain changing condition CDS (parameter  
No. 69).  
CDP  
Parameter No.68  
External signal  
CDP  
Command pulse  
frequency  
Droop pulses  
Changing  
Model speed  
Comparator  
CDS  
Parameter No.69  
GD2  
Parameter No.34  
Valid  
GD2  
GD2 value  
Parameter No.64  
PG2  
Parameter No.35  
Valid  
PG2 PG2B  
100  
PG2 value  
VG2  
Parameter No.37  
Valid  
VG2 VG2B  
100  
VG2 value  
VIC  
Parameter No.38  
Valid  
VIC VICB  
100  
VIC value  
9 - 5  
9. SPECIAL ADJUSTMENT FUNCTIONS  
9.5.3 Parameters  
When using the gain changing function, always set "  
4
" in parameter No.3 (auto tuning) to choose  
the manual mode of the gain adjustment modes. The gain changing function cannot be used in the auto  
tuning mode.  
Parameter Abbrev-  
Name  
Unit  
Description  
No.  
7
iation  
PG1  
VG1  
Position control gain 1  
Speed control gain 1  
rad/s Position and speed gains of a model used to set the response  
level to a command. Always valid.  
Control parameters before changing  
36  
rad/s  
0.1  
Ratio of load inertia moment to  
servo motor inertia moment  
Position control gain 2  
Speed control gain 2  
34  
GD2  
times  
rad/s  
rad/s  
ms  
35  
37  
38  
PG2  
VG2  
VIC  
Speed integral compensation  
Ratio of load inertia moment to  
servo motor inertia moment 2  
Position control gain 2 changing  
ratio  
0.1  
Used to set the ratio of load inertia moment to servo motor  
64  
65  
66  
GD2B  
PG2B  
VG2B  
VICB  
times inertia moment after changing.  
Used to set the ratio (%) of the after-changing position  
%
control gain 2 to position control gain 2.  
Speed control gain 2 changing  
ratio  
Used to set the ratio (%) of the after-changing speed control  
%
gain 2 to speed control gain 2.  
Speed integral compensation  
changing ratio  
Used to set the ratio (%) of the after-changing speed integral  
67  
68  
%
compensation to speed integral compensation.  
CDP Gain changing selection  
Used to select the changing condition.  
kpps  
pulse  
r/min  
Used to set the changing condition values.  
69  
70  
CDS Gain changing condition  
You can set the filter time constant for a gain change at  
changing.  
CDT Gain changing time constant  
ms  
9 - 6  
9. SPECIAL ADJUSTMENT FUNCTIONS  
(1) Parameters No. 7, 34 to 38  
These parameters are the same as in ordinary manual adjustment. Gain changing allows the values of  
ratio of load inertia moment to servo motor inertia moment, position control gain 2, speed control gain  
2 and speed integral compensation to be changed.  
(2) Ratio of load inertia moment to servo motor inertia moment 2 (GD2B: parameter No. 64)  
Set the ratio of load inertia moment to servo motor inertia moment after changing. If the load inertia  
moment ratio does not change, set it to the same value as ratio of load inertia moment to servo motor  
inertia moment (parameter No. 34).  
(3) Position control gain 2 changing ratio (parameter No. 65), speed control gain 2 changing ratio (parameter  
No. 66), speed integral compensation changing ratio (parameter No. 67)  
Set the values of after-changing position control gain 2, speed control gain 2 and speed integral  
compensation in ratio (%). 100% setting means no gain change.  
For example, at the setting of position control gain 2 100, speed control gain 2 2000, speed integral  
compensation 20 and position control gain 2 changing ratio 180%, speed control gain 2 changing  
ratio 150% and speed integral compensation changing ratio 80%, the after-changing values are as  
follows.  
Position control gain 2 Position control gain 2 Position control gain 2 changing ratio /100 180rad/s  
Speed control gain 2 Speed control gain 2  
Speed control gain 2 changing ratio /100 3000rad/s  
Speed integral compensation Speed integral compensation Speed integral compensation changing  
ratio /100 16ms  
(4) Gain changing selection (parameter No. 68)  
Used to set the gain changing condition. Choose the changing condition in the first digit. If you set "1"  
here, you can use the gain changing (CDP) external input signal for gain changing. The gain changing  
signal (CDP) can be assigned to the pins using the MR Configurator (servo configuration software).  
Parameter No. 68  
Gain changing selection  
Gains are changed in accordance with the settings of  
parameters No. 64 to 67 under any of the following conditions:  
0: Invalid  
1: Gain changing (CDP) input is ON  
2: Command frequency is equal to higher than parameter No. 69 setting  
3: Droop pulse value is equal to higher than parameter No. 69 setting  
4: Servo motor speed is equal to higher than parameter No. 69 setting  
(5) Gain changing condition (parameter No. 69)  
When you selected "command frequency", "droop pulses" or "servo motor speed" in gain changing  
selection (parameter No.68), set the gain changing level.  
The setting unit is as follows.  
Gain changing condition  
Command frequency  
Droop pulses  
Unit  
kpps  
pulse  
r/min  
Servo motor speed  
(6) Gain changing time constant (parameter No. 70)  
You can set the primary delay filter to each gain at gain changing. This parameter is used to suppress  
shock given to the machine if the gain difference is large at gain changing, for example.  
9 - 7  
9. SPECIAL ADJUSTMENT FUNCTIONS  
9.5.4 Gain changing operation  
This operation will be described by way of setting examples.  
(1) When you choose changing by external input  
(a) Setting  
Parameter No.  
Abbreviation  
PG1  
Name  
Setting  
100  
Unit  
rad/s  
rad/s  
7
Position control gain 1  
Speed control gain 1  
36  
VG1  
1000  
Ratio of load inertia moment to  
servo motor inertia moment  
Position control gain 2  
Speed control gain 2  
34  
GD2  
40  
0.1 times  
35  
37  
38  
PG2  
VG2  
VIC  
120  
3000  
20  
rad/s  
rad/s  
ms  
Speed integral compensation  
Ratio of load inertia moment to  
servo motor inertia moment 2  
Position control gain 2  
changing ratio  
64  
65  
66  
67  
GD2B  
PG2B  
VG2B  
VICB  
100  
70  
0.1 times  
%
%
%
Speed control gain 2 changing  
ratio  
133  
250  
Speed integral compensation  
changing ratio  
0001  
(Changed by ON/OFF of  
pin CN1A-8)  
100  
68  
70  
CDP  
CDT  
Gain changing selection  
Gain changing time constant  
ms  
(b) Changing operation  
OFF  
OFF  
ON  
Gain changing  
(CDP)  
After-changing gain  
Before-changing gain  
Change of  
each gain  
CDT 100ms  
Position control gain 1  
100  
Speed control gain 1  
1000  
Ratio of load inertia moment  
to servo motor inertia moment  
Position control gain 2  
4.0  
10.0  
4.0  
120  
3000  
20  
84  
4000  
50  
120  
3000  
20  
Speed control gain 2  
Speed integral compensation  
9 - 8  
9. SPECIAL ADJUSTMENT FUNCTIONS  
(2) When you choose changing by droop pulses  
(a) Setting  
Parameter No.  
Abbreviation  
PG1  
Name  
Setting  
100  
Unit  
rad/s  
rad/s  
7
Position control gain 1  
Speed control gain 1  
36  
VG1  
1000  
Ratio of load inertia moment to  
servo motor inertia moment  
Position control gain 2  
Speed control gain 2  
34  
GD2  
40  
0.1 times  
35  
37  
38  
PG2  
VG2  
VIC  
120  
3000  
20  
rad/s  
rad/s  
ms  
Speed integral compensation  
Ratio of load inertia moment to  
servo motor inertia moment 2  
Position control gain 2  
changing ratio  
64  
65  
66  
67  
68  
GD2B  
PG2B  
VG2B  
VICB  
CDP  
100  
70  
0.1 times  
%
%
%
Speed control gain 2 changing  
ratio  
133  
250  
Speed integral compensation  
changing ratio  
0003  
Gain changing selection  
(Changed by droop pulses)  
69  
70  
CDS  
CDT  
Gain changing condition  
50  
pulse  
ms  
Gain changing time constant  
100  
(b) Changing operation  
Command pulse  
Droop pulses  
CDS  
CDS  
Droop pulses [pulses]  
0
After-changing gain  
Before-changing gain  
Change of each gain  
CDT 100ms  
Position control gain 1  
100  
Speed control gain 1  
1000  
Ratio of load inertia moment  
4.0  
10.0  
4.0  
10.0  
to servo motor inertia moment  
Position control gain 2  
120  
3000  
20  
84  
4000  
50  
120  
3000  
20  
84  
4000  
50  
Speed control gain 2  
Speed integral compensation  
9 - 9  
9. SPECIAL ADJUSTMENT FUNCTIONS  
MEMO  
9 - 10  
10. INSPECTION  
10. INSPECTION  
Before starting maintenance and/or inspection, turn off the power and wait for 15  
minutes or more until the charge lamp turns off. Then, confirm that the voltage  
between P and N is safe with a voltage tester and others. Otherwise, an electric  
shock may occur. In addition, always confirm from the front of the servo amplifier  
whether the charge lamp is off or not.  
WARNING  
Any person who is involved in inspection should be fully competent to do the work.  
Otherwise, you may get an electric shock. For repair and parts replacement,  
contact your safes representative.  
POINT  
Do not test the servo amplifier with a megger (measure insulation  
resistance), or it may become faulty.  
Do not disassemble and/or repair the equipment on customer side.  
(1) Inspection  
It is recommended to make the following checks periodically.  
(a) Check for loose terminal block screws. Retighten any loose screws.  
(b) Check the cables and the like for scratches and cracks. Perform periodic inspection according to  
operating conditions.  
(2) Life  
The following parts must be changed periodically as listed below. If any part is found faulty, it must be  
changed immediately even when it has not yet reached the end of its life, which depends on the  
operating method and environmental conditions. For parts replacement, please contact your sales  
representative.  
Part name  
Life guideline  
Smoothing capacitor  
10 years  
Number of power-on and number of forced  
stop times : 100,000 times  
Relay  
Servo amplifier  
Cooling fan  
10,000 to 30,000hours (2 to 3 years)  
Refer to section 4.5  
Absolute position battery  
(a) Smoothing capacitor  
Affected by ripple currents, etc. and deteriorates in characteristic. The life of the capacitor greatly  
depends on ambient temperature and operating conditions. The capacitor will reach the end of its  
life in 10 years of continuous operation in normal air-conditioned environment.  
(b) Relays  
Their contacts will wear due to switching currents and contact faults occur. Relays reach the end of  
their life when the cumulative number of power-on and forced stop times is 100,000, which depends  
on the power supply capacity.  
(c) Servo amplifier cooling fan  
The cooling fan bearings reach the end of their life in 10,000 to 30,000 hours. Normally, therefore,  
the cooling fan must be changed in a few years of continuous operation as a guideline.  
It must also be changed if unusual noise or vibration is found during inspection.  
10 - 1  
10. INSPECTION  
MEMO  
10 - 2  
11. TROUBLESHOOTING  
11. TROUBLESHOOTING  
11.1 Trouble at start-up  
Excessive adjustment or change of parameter setting must not be made as it will  
CAUTION  
make operation instable.  
POINT  
Using the MR Configurator (servo configuration software), you can refer to  
unrotated servo motor reasons, etc.  
The following faults may occur at start-up. If any of such faults occurs, take the corresponding action.  
No.  
Start-up sequence  
Fault  
Investigation  
Possible cause  
Reference  
1
Power on  
LED is not lit.  
LED flickers.  
Not improved if connectors  
1. Power supply voltage fault  
CN1A, CN1B, CN2 and CN3 2. Servo amplifier is faulty.  
are disconnected.  
Improved when connectors  
CN1A and CN1B are  
disconnected.  
Power supply of CN1 cabling is  
shorted.  
Improved when connector  
CN2 is disconnected.  
1. Power supply of encoder  
cabling is shorted.  
2. Encoder is faulty.  
Power supply of CN3 cabling is  
shorted.  
Improved when connector  
CN3 is disconnected.  
Alarm occurs.  
Alarm occurs.  
Refer to section 11.2 and remove cause.  
Refer to section 11.2 and remove cause.  
Section 11.2  
Section 11.2  
2
Switch on servo-on  
signal.  
Servo motor shaft is 1. Check the display to see if 1. Servo-on signal is not input. Section 7.3.2  
not servo-locked  
(is free).  
the servo amplifier is  
ready to operate.  
(Wiring mistake)  
2. 24VDC power is not  
supplied to COM.  
2. Check the external I/O  
signal indication to see if  
the servo-on (SON) signal  
is ON.  
3
Gain adjustment  
Rotation ripples  
Make gain adjustment in the Gain adjustment fault  
Chapter 7  
(speed fluctuations) following procedure.  
are large at low  
speed.  
1. Increase the auto tuning  
response level.  
2. Repeat acceleration and  
deceleration several times  
to complete auto tuning.  
If the servo motor may be  
Large load inertia  
Gain adjustment fault  
Chapter 7  
moment causes the run with safety, repeat  
servo motor shaft to acceleration and  
oscillate side to side. deceleration several times to  
complete auto tuning.  
4
Cyclic operation  
Position shift occurs Confirm the cumulative  
Pulse counting error, etc.  
command pulses, cumulative due to noise.  
feedback pulses and actual  
servo motor position.  
11 - 1  
11. TROUBLESHOOTING  
11.2 When alarm or warning has occurred  
POINT  
Configure up a circuit which will detect the trouble (ALM) signal and turn  
off the servo-on (SON) signal at occurrence of an alarm.  
11.2.1 Alarms and warning list  
When a fault occurs during operation, the corresponding alarm or warning is displayed. If any alarm or  
warning has occurred, refer to section 11.2.2 or 11.2.3 and take the appropriate action.  
Set "1  
" in parameter No. 59 to output the alarm code in ON/OFF status across the corresponding  
pin and SG. Warnings (AL.90 to AL.E9) have no alarm codes. Any alarm code is output at occurrence of  
the corresponding alarm. In the normal status, the signals available before alarm code setting (CN1B-19,  
CN1A-18, CN1A-19) are output.  
After its cause has been removed, the alarm can be deactivated in any of the methods marked  
alarm deactivation column.  
in the  
(Note 2) Alarm code  
Alarm deactivation  
Press  
"SET" on  
current  
alarm  
screen.  
Alarm  
Display  
Name  
CN1B-19  
CN1A-18  
pin  
CN1A-19  
Power  
OFF ON  
reset  
(RES)  
signal  
pin  
pin  
AL.10  
AL.12  
AL.13  
AL.15  
AL.16  
AL.17  
AL.19  
AL.1A  
AL.20  
AL.24  
AL.25  
AL.30  
AL.31  
AL.32  
AL.33  
AL.35  
AL.37  
AL.45  
AL.46  
AL.50  
AL.51  
AL.52  
AL.61  
AL.8A  
AL.8E  
88888  
AL.90  
AL.92  
AL.96  
AL.98  
AL.9F  
AL.E0  
AL.E1  
AL.E3  
AL.E6  
AL.E9  
0
0
0
0
1
0
0
1
1
1
1
0
1
1
0
1
0
0
0
0
0
1
1
0
0
0
1
0
0
0
1
0
0
1
1
0
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
1
1
1
1
1
1
0
0
0
Undervoltage  
Memory error 1  
Clock error  
Memory error 2  
Encoder error 1  
Board error  
Memory error 3  
Motor combination error  
Encoder error 2  
Main circuit error  
Absolute position erase  
Regenerative error  
Overspeed  
Overcurrent  
Overvoltage  
Command pulse frequency error  
Parameter error  
Main circuit device overheat  
Servo motor overheat  
Overload 1  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
Overload 2  
Error excessive  
Home operation alarm  
Serial communication time-out error  
Serial communication error  
Watchdog  
Home position return incomplete  
Open battery cable warning  
Home position setting warning  
Software limit warning  
Battery warning  
Excessive regenerative warning  
Overload warning  
Absolute position counter warning  
Servo forced stop warning  
Main circuit off warning  
Removing the cause of occurrence  
deactivates the alarm  
automatically.  
Note 1. Deactivate the alarm about 30 minutes of cooling time after removing the cause of occurrence.  
2. 0: Pin-SG off (open)  
1: Pin-SG on (short)  
11 - 2  
11. TROUBLESHOOTING  
11.2.2 Remedies for alarms  
When any alarm has occurred, eliminate its cause, ensure safety, then reset the  
alarm, and restart operation. Otherwise, injury may occur.  
If an absolute position erase alarm (AL.25) occurred, always make home position  
setting again. Otherwise, misoperation may occur.  
CAUTION  
POINT  
When any of the following alarms has occurred, always remove its cause  
and allow about 30 minutes for cooling before resuming operation. If  
operation is resumed by switching control circuit power off, then on to reset  
the alarm, the servo amplifier and servo motor may become faulty.  
Regenerative error (AL.30)  
Overload 1 (AL.50)  
Overload 2 (AL.51)  
The alarm can be deactivated by switching power off, then on press the  
"SET" button on the current alarm screen or by turning on the reset (RES).  
For details, refer to section 11.2.1.  
When an alarm occurs, the trouble (ALM) switches off and the dynamic is operated to stop the servo  
motor. At this time, the display indicates the alarm No.  
The servo motor comes to a stop. Remove the cause of the alarm in accordance with this section. The  
optional MR Configurator (servo configuration software) may be used to refer to the cause.  
Display  
Name  
Definition  
Cause  
Action  
Power supply  
voltage dropped.  
MR-J2S- CP:  
160VAC or less  
MR-J2S- CP1:  
83VAC or less  
1. Power supply voltage is low.  
2. There was an instantaneous  
control power failure of 60ms or  
longer.  
3. Shortage of power supply capacity  
caused the power supply voltage to  
drop at start, etc.  
Review the power supply.  
AL.10 Undervoltage  
4. The bus voltage dropped to the  
folllowing value or less.  
MR-J2S- CP: 200VDC  
MR-J2S- CP1: 158VDC  
5. Faulty parts in the servo amplifier  
Change the servo amplifier.  
Change the servo amplifier.  
Change the servo amplifier.  
Checking method  
Alarm (AL.10) occurs if power is  
switched on after disconnection  
of all cables but the control  
circuit power supply cables.  
Faulty parts in the servo amplifier  
Checking method  
Alarm (any of AL.12 and 13)  
occurs if power is switched on  
after disconnection of all cables  
but the control circuit power  
supply cables.  
AL.12 Memory error 1 RAM, memory fault  
AL.13 Clock error Printed board fault  
1. Faulty parts in the servo amplifier  
Checking method  
AL.15 Memory error 2 EEP-ROM fault  
Alarm (AL.15)  
occurs if power is switched on  
after disconnection of all cables  
but the control circuit power  
supply cables.  
2. The number of write times to EEP-  
ROM exceeded 100,000.  
1. Encode connector (CN2)  
disconnected.  
AL.16 Encoder error 1 Communication  
error occurred  
Connect correctly.  
between encoder  
and servo amplifier.  
2. Encoder fault  
3. Encoder cable faulty  
(wire breakage or short)  
Change the servo motor.  
Repair or change the cable.  
11 - 3  
11. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
AL.17  
Board error  
CPU/parts fault  
1. Faulty parts in the servo amplifier. Change the servo amplifier.  
Checking method  
Alarm (AL.17) occurs if power is  
switched on after disconnection  
of all cable but the control circuit  
power supply cable.  
The output terminals 2. The wiring of U, V, W is  
Correctly connect the output terminals U,  
V, W of the servo amplifier and the input  
terminals U, V, W of the servo motor.  
U, V, W of the servo  
amplifier and the  
disconnected or not connected.  
input terminals U, V,  
W of the servo motor  
are not connected.  
AL.19  
Memory error 3 ROM memory fault Faulty parts in the servo amplifier.  
Checking method  
Change the servo amplifier.  
Alarm (AL.19) occurs if power is  
switched on after disconnection  
of all cable but the control circuit  
power supply cable.  
AL.1A Motor  
combination  
error  
Wrong combination Wrong combination of servo amplifier Use correct combination.  
of servo amplifier  
and servo motor connected.  
and servo motor.  
AL.20 Encoder error 2 Communication  
1. Encoder connector (CN2)  
disconnected.  
2. Encoder fault  
3. Encoder cable faulty  
(wire breakage or shorted)  
Connect correctly.  
error occurred  
between encoder and  
servo amplifier.  
Change the servo motor.  
Repair or change the cable.  
Encoder detected  
acceleration error.  
1. Decrease the speed control gain 2.  
2. Decrease the auto tuning response level.  
4. Excessive acceleration is occurred  
due to oscillation and others.  
AL.24 Main circuit  
error  
Ground fault  
1. Power input wires and servo motor Connect correctly.  
occurred at the servo  
motor outputs (U,V  
and W phases) of the  
servo amplifier.  
output wires are in contact at main  
circuit terminal block (TE1).  
2. Sheathes of servo motor power  
cables deteriorated, resulting in  
ground fault.  
Change the cable.  
3. Main circuit of servo amplifier  
failed.  
Change the servo amplifier.  
Checking method  
AL.24 occurs if the servo is  
switched on after disconnecting  
the U, V, W power cables from  
the servo amplifier.  
AL.25 Absolute  
Absolute position  
1. Reduced voltage of super capacitor After leaving the alarm occurring for a few  
position erase data in error  
in encoder  
minutes, switch power off, then on again.  
Always make home position setting again.  
Change battery.  
2. Battery voltage low  
Always make home position setting again.  
3. Battery cable or battery is faulty.  
Power was switched 4. Super capacitor of the absolute  
After leaving the alarm occurring for a few  
minutes, switch power off, then on again.  
Always make home position setting again.  
on for the first time  
in the absolute  
position detection  
system.  
position encoder is not charged  
11 - 4  
11. TROUBLESHOOTING  
Display  
Name  
Definition  
Permissible  
regenerative power  
of the built-in  
regenerative resistor  
or regenerative  
option is exceeded.  
Cause  
Action  
AL.30 Regenerative  
error  
1. Wrong setting of parameter No. 0 Set correctly.  
2. Built-in regenerative resistor or  
regenerative option is not  
connected.  
3. High-duty operation or continuous 1. Reduce the frequency of positioning.  
regenerative operation caused the 2. Use the regenerative option of larger  
permissible regenerative power of  
the regenerative option to be  
exceeded.  
Connect correctly  
capacity.  
3. Reduce the load.  
Checking method  
Call the status display and check  
the regenerative load ratio.  
4. Power supply voltage is abnormal.  
MR-J2S- CP:260VAC or more  
MR-J2S- CP1:135VAC or more  
5. Built-in regenerative resistor or  
regenerative option faulty.  
Review power supply  
Change servo amplifier or regenerative  
option.  
Regenerative  
transistor fault  
Change the servo amplifier.  
6. Regenerative transistor faulty.  
Checking method  
1) The regenerative option has  
overheated abnormally.  
2) The alarm occurs even after  
removal of the built-in  
regenerative resistor or  
regenerative option.  
AL.31 Overspeed  
Speed has exceeded 1. Input command pulse frequency  
Set command pulses correctly.  
the instantaneous  
permissible speed.  
exceeded the permissible  
instantaneous speed frequency.  
2. Small acceleration/deceleration  
Increase acceleration/deceleration time  
time constant caused overshoot to constant.  
be large.  
3. Servo system is instable to cause  
overshoot.  
1. Re-set servo gain to proper value.  
2. If servo gain cannot be set to proper  
value.  
1) Reduce load inertia moment ratio; or  
2) Reexamine acceleration/  
deceleration time constant.  
Set correctly.  
4. Electronic gear ratio is large  
(parameters No. 4, 5)  
5. Encoder faulty.  
Change the servo motor.  
11 - 5  
11. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
Correct the wiring.  
AL.32 Overcurrent  
Current that flew is 1. Short occurred in servo amplifier  
higher than the  
output phases U, V and W.  
2. Transistor (IPM) of the servo  
amplifier faulty.  
permissible current  
of the servo  
Change the servo amplifier.  
amplifier. (If the  
alarm (AL.32) occurs  
again when turning  
ON the servo after  
resetting the alarm  
by turning OFF/ON  
the power when the  
alarm (AL.32) first  
occurred, the  
Checking method  
Alarm (AL.32) occurs if power is  
switched on after U,V and W  
are disconnected.  
3. Ground fault occurred in servo  
amplifier output phases U, V and  
W.  
Correct the wiring.  
4. External noise caused the  
overcurrent detection circuit to  
misoperate.  
Take noise suppression measures.  
transistor (IPM,  
IGBT) of the servo  
amplifier may be at  
fault. In the case, do  
not repeat to turn  
OFF/ON the power.  
Check the transistor  
with the checking  
method of “Cause  
2”.)  
Converter bus  
voltage exceeded  
400VDC.  
AL.33 Overvoltage  
1. Regenerative option is not used.  
Use the regenerative option.  
2. Though the regenerative option is Make correct setting.  
used, the parameter No. 0 setting  
is "  
0
(not used)".  
3. Lead of built-in regenerative  
resistor or regenerative option is  
open or disconnected.  
1. Change lead.  
2. Connect correctly.  
4. Regenerative transistor faulty.  
5. Wire breakage of built-in  
regenerative resistor or  
Change servo amplifier  
1. For wire breakage of built-in  
regenerative resistor, change servo  
amplifier.  
regenerative option  
2. For wire breakage of regenerative  
option, change regenerative option.  
Add regenerative option or increase  
capacity.  
6. Capacity of built-in regenerative  
resistor or regenerative option is  
insufficient.  
7. Power supply voltage high.  
Review the power supply.  
8. The jumper across BUE-SD of the Fit the jumper across BUE-SD.  
FR-BU2 brake unit is removed.  
Input pulse  
AL.35 Command pulse  
frequency error  
1. Pulse frequency of the manual  
pulse generator is too high.  
Change the pulse frequency to a proper  
frequency of the  
command pulse is  
too high.  
value.  
2. Noise entered the pulses of the  
manual pulse generator.  
Take action against noise.  
3. Manual pulse generator failure  
Change the manual pulse generator.  
11 - 6  
11. TROUBLESHOOTING  
Display  
Name  
Definition  
Parameter setting is 1. Servo amplifier fault caused the  
wrong. parameter setting to be rewritten.  
Cause  
Action  
AL.37 Parameter  
error  
Change the servo amplifier.  
2. Regenerative option not used with Set parameter No.0 correctly.  
servo amplifier was selected in  
parameter No.0.  
3. Value outside setting range has  
been set in some parameter.  
4. Value outside setting range has  
been set in electronic gear.  
5. Opposite sign has been set in  
software limit increasing side  
(parameters No. 46, 47). Similarly,  
opposite sign has been set in  
software limit decreasing side  
(parameters No. 48, 49).  
Set the parameter correctly.  
Set parameters No. 4, 5 correctly.  
Set parameters No. 46 to 49 correctly.  
6. Opposite sign has been set in  
position range output address  
increasing side (parameters No. 50,  
51). Similarly, opposite sign has  
been set in position range output  
address decreasing side  
Set parameters No. 50 to 53 correctly.  
(parameters No. 52, 53).  
7. The number of write times to EEP- Change the servo amplifier.  
ROM exceeded 100,000 due to  
parameter write, program write,  
etc.  
AL.45 Main circuit  
Main circuit device 1. Servo amplifier faulty.  
Change the servo amplifier.  
The drive method is reviewed.  
device overheat overheat  
2. The power supply was turned on  
and off continuously by overloaded  
status.  
3. Air cooling fan of servo amplifier  
stops.  
1. Exchange the cooling fan or the servo  
amplifier.  
2. Reduce ambient temperature.  
Review environment so that ambient  
temperature is 0 to 40 (32 to 104 ).  
1. Reduce load.  
2. Review operation pattern.  
3. Use servo motor that provides larger  
output.  
AL.46 Servo motor  
overheat  
Servo motor  
temperature rise  
actuated the  
1. Ambient temperature of servo  
motor is over 40 (104 ).  
2. Servo motor is overloaded.  
thermal sensor.  
3. Thermal sensor in encoder is faulty. Change servo motor.  
1. Servo amplifier is used in excess of 1. Reduce load.  
AL.50 Overload 1  
Load exceeded  
overload protection  
characteristic of  
servo amplifier.  
its continuous output current.  
2. Review operation pattern.  
3. Use servo motor that provides larger  
output.  
2. Servo system is instable and  
hunting.  
1. Repeat acceleration/  
deceleration to execute auto tuning.  
2. Change auto tuning response setting.  
3. Set auto tuning to OFF and make gain  
adjustment manually.  
3. Machine struck something.  
1. Review operation pattern.  
2. Install limit switches.  
4. Wrong connection of servo motor.  
Servo amplifier's output terminals  
U, V, W do not match servo motor's  
input terminals U, V, W.  
Connect correctly.  
5. Encoder faulty.  
Change the servo motor.  
Checking method  
When the servo motor shaft is  
rotated with the servo off, the  
cumulative feedback pulses do  
not vary in proportion to the  
rotary angle of the shaft but the  
indication skips or returns midway.  
11 - 7  
11. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
AL.51 Overload 2  
Machine collision or 1. Machine struck something.  
the like caused max.  
1. Review operation pattern.  
2. Install limit switches.  
Connect correctly.  
For the time of the  
alarm occurrence,  
refer to the section  
13.1.  
2. Wrong connection of servo motor.  
Servo amplifier's output terminals  
U, V, W do not match servo motor's  
input terminals U, V, W.  
3. Servo system is instable and  
hunting.  
1. Repeat acceleration/deceleration to  
execute auto tuning.  
2. Change auto tuning response setting.  
3. Set auto tuning to OFF and make gain  
adjustment manually.  
4. Encoder faulty.  
Checking method  
Change the servo motor.  
When the servo motor shaft is  
rotated with the servo off, the  
cumulative feedback pulses do  
not vary in proportion to the  
rotary angle of the shaft but the  
indication skips or returns midway.  
AL.52 Error excessive The difference  
between the model  
position and the  
1. Acceleration/deceleration time  
constant is too small.  
2. Internal torque limit 1 (parameter Increase the torque limit value.  
No.28) is too small.  
3. Motor cannot be started due to  
torque shortage caused by power  
supply voltage drop.  
Increase the acceleration/deceleration  
time constant.  
actual servo motor  
position exceeds 2.5  
rotations. (Refer to  
the function block  
diagram in section  
1.1.1)  
1. Review the power supply capacity.  
2. Use servo motor which provides larger  
output.  
4. Position control gain 1 (parameter Increase set value and adjust to ensure  
No.7) value is small.  
5. Servo motor shaft was rotated by  
external force.  
proper operation.  
1. When torque is limited, increase the  
limit value.  
2. Reduce load.  
3. Use servo motor that provides larger  
output.  
6. Machine struck something.  
1. Review operation pattern.  
2. Install limit switches.  
Change the servo motor.  
Connect correctly.  
7. Encoder faulty  
8. Wrong connection of servo motor.  
Servo amplifier's output terminals  
U, V, W do not match servo motor's  
input terminals U, V, W.  
AL.61 Operation  
alarm  
"1" or more has been Setting mistake of auxiliary function Set "0" to auxiliary function of point table  
set to auxiliary  
function of point  
table No. 31.  
of point table No. 31.  
No. 31.  
AL.8A Serial  
RS-232C or RS-422 1. Communication cable breakage.  
Repair or change communication cable  
Set correct value in parameter.  
communication communication  
time-out error stopped for longer  
2. Communication cycle longer than  
parameter No. 23 setting.  
3. Wrong protocol.  
than the time set in  
parameter No.23.  
Serial  
Correct protocol.  
AL.8E Serial  
1. Communication cable fault  
(Open cable or short circuit)  
Repair or change the cable.  
communication communication  
error  
error occurred  
between servo  
amplifier and  
2. Communication device (e.g.  
personal computer) faulty  
Change the communication device (e.g.  
personal computer).  
communication  
device (e.g. personal  
computer).  
88888 Watchdog  
CPU, parts faulty  
Change servo amplifier.  
Fault of parts in servo amplifier  
Checking method  
Alarm (88888) occurs if power is  
switched on after disconnection  
of all cables but the control  
circuit power supply cables.  
11 - 8  
11. TROUBLESHOOTING  
11.2.3 Remedies for warnings  
If an absolute position counter warning (AL.E3) occurred, always make home  
CAUTION  
position setting again. Otherwise, misoperation may occur.  
POINT  
When any of the following alarms has occurred, do not resume operation by  
switching power of the servo amplifier OFF/ON repeatedly. The servo  
amplifier and servo motor may become faulty. If the power of the servo  
amplifier is switched OFF/ON during the alarms, allow more than 30  
minutes for cooling before resuming operation.  
Excessive regenerative warning (AL.E0)  
Overload warning 1 (AL.E1)  
If AL.E6 occurs, the servo off status is established. If any other warning occurs, operation can be  
continued but an alarm may take place or proper operation may not be performed. Use the optional MR  
Configurator (servo configuration software) to refer to the cause of warning.  
Display  
Name  
Definition  
Cause  
Action  
1. Positioning operation was performed  
without home position return.  
AL.90 Home position  
return  
Positioning operation  
was performed  
Perform home position return.  
incomplete  
without home  
position return.  
2. Home position return speed could not be  
decreased to creep speed.  
3. Limit switch was actuated during home  
position return starting at other than  
position beyond dog.  
Home position return  
ended abnormally.  
Review home position return  
speed/creep speed/moving  
distance after proximity dog.  
1. Positioning operation was performed  
without home position setting.  
Positioning operation  
was performed  
Perform home position setting.  
without home  
position setting.  
2. Home position setting speed could not be  
decreased to creep speed.  
3. Limit switch was actuated during home  
position setting starting at other than  
position beyond dog.  
Home position setting  
ended abnormally.  
Review home position setting  
speed/creep speed/moving  
distance after proximity dog.  
4. Voltage drop in encoder  
(Battery disconnected.)  
Operation was  
After leaving the alarm  
occurring for a few minutes,  
switch power off, then on again.  
Always make home position  
setting again.  
performed without  
making home position  
setting while an  
absolute position  
erase (AL.25) is being  
occurred.  
5. Battery voltage low  
6. Battery cable or battery is faulty.  
Change battery. Always make  
home position setting again.  
Repair cable or changed.  
Change battery.  
AL.92 Open battery  
cable warning  
Absolute position  
detection system battery  
voltage is low.  
1. Battery cable is open.  
2. Battery voltage supplied from the servo  
amplifier to the encoder fell to about  
3.2V or less.  
(Detected with the encoder)  
AL.96 Home position  
Home position setting  
1. Droop pulses remaining are greater  
than the in-position range setting.  
Remove the cause of droop pulse  
occurrence  
setting warning could not be made.  
2. Command pulse entered after clearing Do not enter command pulse  
of droop pulses.  
after clearing of droop pulses.  
Reduce creep speed.  
3. Creep speed high.  
11 - 9  
11. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
AL.98 Software limit  
warning  
Software limit set in  
parameter is reached.  
1. Software limit was set within actual  
operation range.  
Set parameter No. 48 to 51  
correctly.  
2. Point table of position data in excess of Set point table correctly.  
software limit was executed.  
3. Software limit was reached during JOG Perform operation within  
operation or manual pulse generator  
operation.  
software limit range.  
AL.9F Battery warning Voltage of battery for  
absolute position  
Battery voltage fell to 3.2V or less.  
(Detected with the servo amplifier)  
Change the battery.  
detection system reduced.  
AL.E0 Excessive  
regenerative  
warning  
There is a possibility that Regenerative power increased to 85% or  
regenerative power may more of permissible regenerative power of  
1. Reduce frequency of  
positioning.  
2. Change regenerative option  
for the one with larger  
capacity.  
exceed permissible  
regenerative power of  
built-in regenerative  
resistor or regenerative  
option.  
built-in regenerative resistor or  
regenerative option.  
Checking method  
Call the status display and check  
regenerative load ratio.  
3. Reduce load.  
AL.E1 Overload  
warning  
There is a possibility that Load increased to 85% or more of overload Refer to AL.50, AL.51.  
overload alarm 1 or 2  
may occur.  
alarm 1 or 2 occurrence level.  
Cause, checking method  
Refer to AL.50,51.  
AL.E3  
Absolute position Absolute position encoder 1. Noise entered the encoder.  
counter warning pulses faulty.  
Take noise suppression  
measures.  
2. Encoder faulty.  
Change servo motor.  
The multi-revolution counter 3. The movement amount from the home Make home position setting  
value of the absolute position  
encoder exceeded the  
maximum revolution range.  
position exceeded a 32767 rotation or again.  
37268 rotation in succession.  
AL.E6 Servo forced stop EMG-SG are open.  
warning  
External forced stop was made valid.  
(EMG-SG opened.)  
Ensure safety and deactivate  
forced stop.  
AL.E9 Main circuit off Servo was switched on  
Switch on main circuit power.  
warning  
with main circuit power  
off.  
11.3 MR-DP60 external digital display error  
When MR-DP60 external digital display detects an error, the following alarms are displayed. The alarms  
are displayed only on the MR-DP60, but not on the servo amplifier display.  
Display  
AL. CPU CPU error  
AL. C0 Communication Communication error  
error occurred between MR-DP60  
Name  
Definition  
Cause  
Action  
Exchange the MR-D60.  
Connect correctly.  
CPU error  
Faulty parts in the MR-D60.  
1. CN3 connector disconnected.  
2. Wire breakage of the cable.  
Repair or exchange the cable.  
and MR-J2S-CP.  
11 - 10  
12. OUTLINE DIMENSION DRAWINGS  
12. OUTLINE DIMENSION DRAWINGS  
12.1 Servo amplifiers  
(1) MR-J2S-10CP to MR-J2S-60CP  
MR-J2S-10CP1 to MR-J2S-40CP1  
[Unit: mm]  
([Unit: in])  
Approx.70 (2.76)  
A
135 (5.32)  
6 ( 0.24) mounting hole  
Terminal layout  
(Terminal cover open)  
MITSUBISHI  
B
MITSUBISHI  
OPEN  
OPEN  
C
N
1
C
N
1
C
N
1
C
N
1
A
B
A
B
Name plate  
C
N
2
E
N
C
C
N
3
C
N
2
E
N
C
C
N
3
TE1  
L1 L2 L3  
(Note)  
U
V
W
TE2  
PE terminal  
6
(0.24)  
4(0.16)  
Variable dimensions  
Mass  
Servo amplifier  
[kg]([lb])  
A
B
MR-J2S-10CP(1)  
MR-J2S-20CP(1)  
MR-J2S-40CP(1)  
MR-J2S-60CP  
50 (1.97)  
70 (2.76)  
6 (0.24)  
0.7 (1.54)  
1.1 (2.43)  
22 (0.87)  
Note. This data applies to the 3-phase 200 to 230VAC and 1-phase 230VAC power supply models.  
Terminal signal layout  
TE1  
Mounting Screw  
Screw Size:M5  
Tightening torque:  
3.24[N m]  
For 3-phase 200 to 230VAC and 1-phase 230VAC  
For 1-phase 100 to 120VAC  
L1  
U
L2  
V
L3  
W
L1  
U
L2  
W
V
(28.676 [lb in])  
Terminal screw: M4  
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
TE2  
PE terminals  
Front  
D
C
P
L21 L11  
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
12 - 1  
12. OUTLINE DIMENSION DRAWINGS  
(2) MR-J2S-70CP MR-J2S-100CP  
[Unit: mm]  
([Unit: in])  
6 ( 0.24)  
70(2.76)  
mounting hole  
Approx.70(2.76)  
190(7.48)  
22  
Terminal layout  
(Terminal cover open)  
MITSUBISHI  
(0.87)  
MITSUBISHI  
OPEN  
OPEN  
C
N
1
C
N
1
C
N
1
C
N
1
A
B
A
B
Name plate  
C
N
2
C
N
3
C
N
2
C
N
3
E
N
C
E
N
C
L1 L2 L3  
U
V
W
PE terminal  
6(0.24)  
TE2  
TE1  
6(0.24)  
42  
22  
(0.87) (1.65)  
6(0.24)  
Mass  
Servo amplifier  
[kg]([lb])  
MR-J2S-70CP  
MR-J2S-100CP  
1.7  
(3.75)  
Terminal signal layout  
TE1  
L1  
Mounting Screw  
Screw Size:M5  
Tightening torque:3.24[N m](28.676 [lb in])  
L2  
V
L3  
W
U
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
TE2  
Front  
D
C
P
L21 L11  
N
PE terminals  
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
12 - 2  
12. OUTLINE DIMENSION DRAWINGS  
(3) MR-J2S-200CP MR-J2S-350CP  
[Unit: mm]  
([Unit: in])  
2- 6 ( 0.24)  
mounting hole  
Approx.70 (2.76)  
195(7.68)  
90(3.54)  
78(3.07)  
6
(0.24)  
Terminal layout  
MITSUBISHI  
MITSUBISHI  
TE2  
TE1  
PE terminal  
Cooling fan wind direction  
Mass  
Servo amplifier  
[kg]([lb])  
MR-J2S-200CP  
MR-J2S-350CP  
2.0  
(4.41)  
Terminal signal layout  
PE terminals  
TE1  
L1  
Mounting Screw  
Screw Size:M5  
Tightening torque:  
3.24[N m]  
L2  
L3  
U
V
W
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
(28.676 [lb in])  
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
TE2  
L11 L21  
D
P
C
N
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
12 - 3  
12. OUTLINE DIMENSION DRAWINGS  
(4) MR-J2S-500CP  
2- 6( 0.24)  
mounting hole  
[Unit: mm]  
([Unit: in])  
(0.24)  
6
130(5.12) (0.24) Approx.70  
200(7.87)  
(0.19) 5  
6
(2.76)  
118(4.65)  
Terminal layout  
MITSUBISHI  
OPEN  
MITSUBISHI  
OPEN  
OPEN  
TE1  
C
N
1
C
N
1
C
N
1
C
N
1
A
B
A
B
C
N
2
C
N
3
C
N
2
C
N
3
TE2  
N.P.  
N.P.  
6(0.24)  
Cooling fan  
Cooling fan wind direction  
Mass  
Servo amplifier  
MR-J2S-500CP  
[kg]([lb])  
4.9(10.8)  
Terminal signal layout  
PE terminals  
Mounting Screw  
Screw Size:M5  
Tightening torque:  
3.24[N m]  
TE1  
Built-in regenerative resistor lead  
terminal fixing screw  
Terminal screw : M4  
L1  
L2  
L3  
C
Tightening torque : 1.2 [N m](10.6 [lb in])  
(28.676 [lb in])  
P
N
U
V
W
Terminal screw : M4  
Tightening torque : 1.2 [N m](10[lb in])  
TE2  
Terminal screw : M3.5  
Tightening torque : 0.8 [N m](7[lb in])  
L11  
L21  
12 - 4  
12. OUTLINE DIMENSION DRAWINGS  
(5) MR-J2S-700CP  
2- 6( 0.24)  
mounting hole  
[Unit: mm]  
([Unit: in])  
Approx.70  
10 (2.76)  
200(7.87)  
138(5.43)  
180(7.09)  
160(6.23)  
(0.39)  
10  
62  
6(0.24)  
(2.44)  
(0.39)  
Terminal layout  
MITSUBISHI  
MITSUBISHI  
OPEN  
OPEN  
C
N
1
C
N
1
C
N
1
C
N
1
A
B
A
B
C
N
3
C
N
3
C
N
2
C
N
2
TE2  
OPEN  
Cooling fan  
TE1  
6 (0.24)  
Cooling fan wind direction  
Mass  
Servo amplifier  
MR-J2S-700CP  
[kg]([lb])  
7.2(15.9)  
Terminal signal layout  
PE terminals  
Mounting Screw  
Screw Size:M5  
Tightening torque:  
3.24[N m]  
TE1  
L1  
Terminal screw : M4  
Tightening torque : 1.2 [N m](10.6 [lb in])  
L2  
L3  
C
P
N
U
V
W
Built-in regenerative  
resistor lead terminal  
fixing screw  
(28.676 [lb in])  
Terminal screw : M4  
Tightening torque : 1.2 [N m](10.6 [lb in])  
TE2  
Terminal screw : M3.5  
Tightening torque : 0.8 [N m](7 [lb in])  
L11  
L21  
12 - 5  
12. OUTLINE DIMENSION DRAWINGS  
12.2 Connectors  
(1) Servo amplifier side  
<3M >  
(a) Soldered type  
Model  
Connector  
Shell kit  
[Unit: mm]  
([Unit: in])  
: 10120-3000VE  
: 10320-52F0-008  
12.0(0.47)  
14.0  
22.0 (0.87)  
(0.55)  
Logo, etc. are indicated here.  
33.3 (1.31)  
12.7(0.50)  
(b) Threaded type  
Model  
Connector  
Shell kit  
[Unit: mm]  
([Unit: in])  
: 10120-3000VE  
: 10320-52A0-008  
12.0  
(0.47)  
Note. This is not available as option  
and should be user-prepared.  
22.0  
14.0  
(0.55)  
)
(1.08)  
27.4  
(0.87  
12.7  
33.3  
(1.31)  
(0.50)  
(c) Insulation displacement type  
Model  
Connector  
Shell kit  
[Unit: mm]  
([Unit: in])  
: 10120-6000EL  
: 10320-3210-000  
6.7  
(
0.26)  
20.9 (0.82)  
2- 0.5 (0.02)  
Logo, etc. are indicated here.  
29.7 (1.17)  
12 - 6  
12. OUTLINE DIMENSION DRAWINGS  
(2) Communication cable connector  
<JAE>  
[Unit: mm]  
([Unit: in])  
B
A
Fitting fixing screw G  
E (max. diameter of  
cable used)  
F
C
D
A
B
C
D
F
Type  
DE-C1-J6-S6  
E
G
1
1
0.25  
1
reference  
34.5 (1.36)  
19 (0.75)  
24.99 (0.98)  
33 (1.30)  
6 (0.24)  
18 (0.71)  
#4-40  
12 - 7  
12. OUTLINE DIMENSION DRAWINGS  
MEMO  
12 - 8  
13. CHARACTERISTICS  
13. CHARACTERISTICS  
13.1 Overload protection characteristics  
An electronic thermal relay is built in the servo amplifier to protect the servo motor and servo amplifier  
from overloads. Overload 1 alarm (AL.50) occurs if overload operation performed is above the electronic  
thermal relay protection curve shown in any of Figs 13.1. Overload 2 alarm (AL.51) occurs if the  
maximum current flew continuously for several seconds due to machine collision, etc. Use the equipment  
on the left-hand side area of the continuous or broken line in the graph.  
In a machine like the one for vertical lift application where unbalanced torque will be produced, it is  
recommended to use the machine so that the unbalanced torque is 70% or less of the rated torque.  
1000  
100  
10  
1000  
During rotation  
During rotation  
100  
During stop  
10  
1
During stop  
1
0.1  
0
0.1  
0
50  
100  
150  
200  
250  
300  
50  
150  
200  
250  
300  
100  
(Note) Load ratio [%]  
(Note) Load ratio [%]  
b. MR-J2S-200CP to MR-J2S-350CP  
a. MR-J2S-10CP to MR-J2S-100CP  
10000  
1000  
During rotation  
During servo lock  
100  
10  
1
0
50  
100  
150  
200  
250  
300  
(Note) Load ratio [%]  
c. MR-J2S-500CP MR-J2S-700CP  
Note. If operation that generates torque more than 100% of the rating is performed with an abnormally high frequency in a servo motor  
stop status (servo lock status) or in a 30r/min or less low-speed operation status, the servo amplifier may fail even when the  
electronic thermal relay protection is not activated.  
Fig 13.1 Electronic thermal relay protection characteristics  
13 - 1  
13. CHARACTERISTICS  
13.2 Power supply equipment capacity and generated loss  
(1) Amount of heat generated by the servo amplifier  
Table 12.1 indicates servo amplifier's power supply capacities and losses generated under rated load.  
For thermal design of an enclosure, use the values in Table 13.1 in consideration for the worst  
operating conditions. The actual amount of generated heat will be intermediate between values at  
rated torque and servo-off according to the duty used during operation. When the servo motor is run at  
less than the maximum speed, the power supply capacity will be smaller than the value in the table,  
but the servo amplifier's generated heat will not change.  
Table 13.1 Power supply capacity and generated heat per servo amplifier at rated output  
(Note 1)  
Power supply  
capacity[kVA]  
(Note 2)  
Area required for heat dissipation  
Servo amplifier  
MR-J2S-10CP(1)  
MR-J2S-20CP(1)  
MR-J2S-40CP(1)  
MR-J2S-60CP  
Servo motor  
Servo amplifier-generated heat[W]  
At rated torque  
With servo off  
[m2]  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.7  
0.7  
0.7  
0.8  
0.8  
0.8  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.8  
1.8  
1.8  
1.8  
1.0  
1.8  
1.8  
1.8  
2.7  
2.7  
1.8  
1.8  
1.8  
3.9  
2.7  
3.9  
3.9  
3.9  
2.4  
3.9  
6.0  
6.0  
[ft2]  
5.4  
5.4  
5.4  
5.4  
5.4  
5.4  
7.5  
7.5  
7.5  
8.6  
8.6  
8.6  
10.8  
10.8  
10.8  
10.8  
10.8  
10.8  
19.4  
19.4  
19.4  
19.4  
10.8  
19.4  
19.4  
19.4  
29.1  
29.1  
19.4  
19.4  
19.4  
42.0  
29.1  
42.0  
42.0  
42.0  
25.8  
42.0  
64.6  
64.6  
HC-KFS053 13  
HC-MFS053 13  
HC-UFS13  
HC-KFS23  
HC-MFS23  
HC-UFS23  
HC-KFS43  
HC-MFS43  
HC-UFS43  
0.3  
0.3  
0.3  
0.5  
0.5  
0.5  
0.9  
0.9  
0.9  
1.0  
1.0  
1.0  
1.3  
1.3  
1.3  
1.5  
1.7  
1.7  
2.1  
3.5  
2.5  
3.5  
1.8  
2.5  
2.5  
2.5  
4.8  
5.5  
3.5  
3.5  
3.5  
7.5  
5.5  
7.5  
5.5  
7.5  
4.5  
7.5  
10.0  
10.6  
25  
25  
25  
25  
25  
25  
35  
35  
35  
40  
40  
40  
50  
50  
50  
50  
50  
50  
90  
90  
90  
90  
50  
90  
90  
90  
120  
130  
90  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
20  
20  
20  
20  
15  
20  
20  
20  
20  
20  
20  
20  
20  
25  
HC-SFS52  
HC-SFS53  
HC-LFS52  
HC-KFS73  
MR-J2S-70CP  
HC-MFS73  
HC-UFS72 73  
HC-SFS81  
MR-J2S-100CP  
HC-SFS102 103  
HC-LFS102  
HC-SFS121  
HC-SFS201  
HC-SFS152 153  
HC-SFS202 203  
HC-RFS103  
HC-RFS153  
HC-UFS152  
HC-LFS152  
HC-SFS301  
HC-SFS352 353  
HC-RFS203  
HC-UFS202  
HC-LFS202  
HC-SFS502  
HC-RFS353  
HC-RFS503  
HC-UFS352  
HC-UFS502  
HC-LFS302  
HA-LFS502  
HC-SFS702  
HA-LFS702  
MR-J2S-200CP  
MR-J2S-350CP  
90  
90  
195  
135  
195  
195  
195  
120  
195  
300  
300  
25  
25  
25  
25  
25  
25  
25  
25  
MR-J2S-500CP  
MR-J2S-700CP  
Note 1. Note that the power supply capacity will vary according to the power supply impedance. This value assumes that the power  
factor improving reactor is not used.  
2. Heat generated during regeneration is not included in the servo amplifier-generated heat. To calculate heat generated by the  
regenerative option, Refer to section 14.1.1.  
13 - 2  
13. CHARACTERISTICS  
(2) Heat dissipation area for enclosed servo amplifier  
The enclosed control box (hereafter called the control box) which will contain the servo amplifier  
should be designed to ensure that its temperature rise is within 10  
( 50 ) at the ambient  
temperature of 40 (104 ). (With a 5 (41 ) safety margin, the system should operate within a  
maximum 55 (131 ) limit.) The necessary enclosure heat dissipation area can be calculated by  
Equation 13.1.  
P
............................................................................................................................................. (13.1)  
A
K
T
where, A  
P
: Heat dissipation area [m2]  
: Loss generated in the control box [W]  
T : Difference between internal and ambient temperatures [  
: Heat dissipation coefficient [5 to 6]  
]
K
When calculating the heat dissipation area with Equation 13.1, assume that P is the sum of all losses  
generated in the enclosure. Refer to Table 13.1 for heat generated by the servo amplifier. "A" indicates  
the effective area for heat dissipation, but if the enclosure is directly installed on an insulated wall,  
that extra amount must be added to the enclosure's surface area.  
The required heat dissipation area will vary wit the conditions in the enclosure. If convection in the  
enclosure is poor and heat builds up, effective heat dissipation will not be possible. Therefore,  
arrangement of the equipment in the enclosure and the use of a cooling fan should be considered.  
Table 13.1 lists the enclosure dissipation area for each servo amplifier when the servo amplifier is  
operated at the ambient temperature of 40 (104 ) under rated load.  
(Outside)  
(Inside)  
Air flow  
Fig. 13.2 Temperature distribution in enclosure  
When air flows along the outer wall of the enclosure, effective heat exchange will be possible, because  
the temperature slope inside and outside the enclosure will be steeper.  
13 - 3  
13. CHARACTERISTICS  
13.3 Dynamic brake characteristics  
13.3.1 Dynamic brake operation  
(1) Calculation of coasting distance  
Fig. 13.3 shows the pattern in which the servo motor comes to a stop when the dynamic brake is  
operated. Use Equation 13.2 to calculate an approximate coasting distance to a stop. The dynamic  
brake time constant varies with the servo motor and machine operation speeds. (Refer to (2) of this  
section.)  
ON  
Forced stop (EMG)  
OFF  
Time constant  
V0  
Machine speed  
Time  
te  
Fig. 13.3 Dynamic brake operation diagram  
JL  
JM  
V0  
60  
Lmax  
te  
....................................................................................................................... (13.2)  
1
Lmax  
: Maximum coasting distance .................................................................................................[mm][in]  
: Machine rapid feed rate........................................................................................ [mm/min][in/min]  
: Servo motor inertial moment.................................................................................[kg cm2][oz in2]  
: Load inertia moment converted into equivalent value on servo motor shaft.....[kg cm2][oz in2]  
: Brake time constant........................................................................................................................ [s]  
0
V
M
J
L
J
te  
: Delay time of control section........................................................................................................... [s]  
(There is internal relay delay time of about 30ms.)  
(2) Dynamic brake time constant  
The following shows necessary dynamic brake time constant for the equations (13.2).  
0.02  
0.018  
0.016  
0.014  
0.012  
0.01  
16  
14  
12  
23  
10  
8
73  
23  
053  
73  
6
0.008  
0.006  
0.004  
0.002  
0
4
2
0
053  
43  
43  
13  
0
500 1000 1500 2000 2500 3000  
Speed [r/min]  
13  
0
500 1000 1500 2000 2500 3000  
Speed [r/min]  
a. HC-KFS series  
b. HC-MFS series  
13 - 4  
13. CHARACTERISTICS  
0.045  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
121  
201  
702  
352  
202  
52  
301  
502  
152  
102  
81  
1000  
0
50  
500  
0
500  
1000 1500 2000  
Speed [r/min]  
Speed [r/min]  
c. HC-SFS1000r/min series  
d. HC-SFS2000r/min series  
0.12  
0.1  
0.018  
0.016  
0.014  
0.012  
0.01  
203  
53  
0.08  
0.06  
0.04  
0.02  
0
103  
503  
0.008  
0.006  
153  
353  
0.004  
0.002  
0
103  
353  
203  
153  
50 500 1000 1500 2000 2500 3000  
Speed [r/min]  
0
500 1000 1500 2000 2500 3000  
Speed [r/min]  
0
e. HC-SFS3000r/min series  
f. HC-RFS series  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
73  
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
72  
502  
352  
43  
23  
13  
202  
152  
0
50 500 10001500200025003000  
Speed [r/min]  
0
500  
1000 1500 2000  
Speed [r/min]  
g. HC-UFS 2000r/min series  
h. HC-UFS3000r/min series  
40.0  
35.0  
30.0  
25.0  
302  
20.0  
15.0  
10.0  
5.0  
0
0
500  
1000 1500 2000  
Speed [r/min]  
i. HC-LFS series  
13 - 5  
13. CHARACTERISTICS  
13.3.2 The dynamic brake at the load inertia moment  
Use the dynamic brake under the load inertia moment ratio indicated in the following table. If the load  
inertia moment is higher than this value, the built-in dynamic brake may burn. If there is a possibility  
that the load inertia moment may exceed the value, contact Mitsubishi.  
Servo amplifier  
Load inertia moment ratio [times]  
MR-J2S-10CP to MR-J2S-200CP  
MR-J2S-10CP1 to MR-J2S-40CP1  
MR-J2S-350CP  
30  
16  
15  
MR-J2S-500CP MR-J2S-700CP  
13.4 Encoder cable flexing life  
The flexing life of the cables is shown below. This graph calculated values. Since they are not guaranteed  
values, provide a little allowance for these values.  
1
5
108  
107  
a
1
5
107  
106  
a : Long flexing-life encoder cable  
MR-JCCBL M-H  
MR-JHSCBL M-H  
MR-ENCBL M-H  
1
5
106  
105  
b : Standard encoder cable  
MR-JCCBL M-L  
MR-JHSCBL M-L  
1
5
105  
104  
1
5
104  
103  
b
1
103  
4
7
10  
20  
40  
70 100  
200  
Flexing radius [mm]  
13 - 6  
13. CHARACTERISTICS  
13.5 Inrush currents at power-on of main circuit and control circuit  
The following table indicates the inrush currents (reference value) that will flow when the maximum  
permissible voltage (253VAC) is applied at the power supply capacity of 2500kVA and the wiring length of  
1m.  
Inrush Currents (A0-p  
)
Servo Amplifier  
Main circuit power supply (L1, L2, L3)  
30A (Attenuated to approx. 5A in 10ms)  
30A (Attenuated to approx. 5A in 10ms)  
54A (Attenuated to approx. 12A in 10ms)  
Control circuit power supply (L11, L21)  
MR-J2S-10CP 20CP  
MR-J2S-40CP 60CP  
MR-J2S-70CP 100CP  
70 to 100A  
(Attenuated to approx. 0A in 0.5 to 1ms)  
100 to 130A  
(Attenuated to approx. 0A in 0.5 to 1ms)  
30A  
MR-J2S-200CP 350CP  
120A (Attenuated to approx. 12A in 20ms)  
MR-J2S-500CP  
MR-J2S-700CP  
44A (Attenuated to approx. 20A in 20ms)  
88A (Attenuated to approx. 20A in 20ms)  
59A (Attenuated to approx. 5A in 4ms)  
72A (Attenuated to approx. 5A in 4ms)  
(Attenuated to approx. 0A in several ms)  
MR-J2S-10CP1 20CP1  
MR-J2S-40CP1  
100 to 130A  
(Attenuated to approx. 0A in 0.5 to 1ms)  
Since large inrush currents flow in the power supplies, always use no-fuse breakers and magnetic  
contactors. (Refer to section 14.2.2.)  
When circuit protectors are used, it is recommended to use the inertia delay type that will not be tripped  
by an inrush current.  
13 - 7  
13. CHARACTERISTICS  
MEMO  
13 - 8  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14. OPTIONS AND AUXILIARY EQUIPMENT  
Before connecting any option or peripheral equipment, turn off the power and wait  
for 15 minutes or more until the charge lamp turns off. Then, confirm that the  
voltage between P and N is safe with a voltage tester and others. Otherwise, an  
electric shock may occur. In addition, always confirm from the front of the servo  
amplifier whether the charge lamp is off or not.  
WARNING  
Use the specified auxiliary equipment and options. Unspecified ones may lead to a  
fault or fire.  
CAUTION  
14.1 Options  
14.1.1 Regenerative options  
The specified combinations of regenerative options and servo amplifiers may only  
be used. Otherwise, a fire may occur.  
CAUTION  
(1) Combination and regenerative power  
The power values in the table are resistor-generated powers and not rated powers.  
Regenerative power[W]  
(Note)  
(Note)  
MR-RB51  
[6.7 ]  
Servo amplifier  
Built-in regenerative MR-RB032 MR-RB12  
MR-RB32  
[40 ]  
MR-RB30  
[13 ]  
MR-RB31  
[6.7 ]  
MR-RB50  
[13 ]  
resistor  
[40 ]  
[40 ]  
MR-J2S-10CP(1)  
MR-J2S-20CP (1)  
MR-J2S-40CP (1)  
MR-J2S-60CP  
30  
30  
30  
30  
30  
30  
10  
10  
10  
20  
20  
100  
100  
130  
170  
100  
100  
100  
100  
100  
MR-J2S-70CP  
300  
300  
MR-J2S-100CP  
MR-J2S-200CP  
MR-J2S-350CP  
MR-J2S-500CP  
MR-J2S-700CP  
300  
300  
300  
500  
500  
500  
300  
500  
Note. Always install a cooling fan.  
(2) Selection of the regenerative option  
(a) Simple selection method  
In horizontal motion applications, select the regenerative option as described below.  
When the servo motor is run without load in the regenerative mode from the running speed to a  
stop, the permissible duty is as indicated in section 5.1 of the separately available Servo Motor  
Instruction Manual.  
For the servo motor with a load, the permissible duty changes according to the inertia moment of  
the load and can be calculated by the following formula.  
Permissible duty for servo motor with no load (value indication section 5.1 in Servo Motor Instruction Manual)  
Permissible  
duty  
(m 1)  
2
ratedspeed  
running speed  
[times/min]  
where m  
load inertia moment/servo motor inertia moment  
From the permissible duty, find whether the regenerative option is required or not.  
Permissible duty number of positioning times [times/min]  
Select the regenerative option out of the combinations in (1) of this section.  
14 - 1  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) To make selection according to regenerative energy  
Use the following method when regeneration occurs continuously in vertical motion applications or  
when it is desired to make an in-depth selection of the regenerative option.  
a. Regenerative energy calculation  
Use the following table to calculate the regenerative energy.  
tf(1 cycle)  
N0  
Up  
Time  
Down  
M
t1  
Tpsa1  
t2  
t3  
t4  
Tpsd1  
Tpsa2  
Tpsd2  
Firiction  
torque  
1)  
( )  
(Driving)  
2)  
TF  
4)  
8)  
5)  
TU  
6)  
3)  
7)  
(Regenerative)  
( )  
Formulas for calculating torque and energy in operation  
Torque applied to servo motor [N m]  
Regenerative power  
Energy [J]  
(JL JM)  
9.55 104  
T2 TU TF  
N0  
1
0.1047  
2
1)  
2)  
T1  
TU  
TF  
E1  
N0 T1 Tpsa1  
Tpsa1  
E2 0.1047 N0 T2 t1  
0.1047  
(JL JM)  
9.55 104  
N0  
1
3)  
T3  
TU  
TF  
E3  
N0 T3 Tpsd1  
2
Tpsd1  
4), 8)  
5)  
T4 TU  
E4 0 (N0 regeneration)  
0.1047  
(JL JM)  
N0  
104  
1
T
5
TU TF  
E5  
N0 T5 Tpsa2  
2
Tpsa2  
9.55  
6)  
T6  
T7  
TU TF  
E6 0.1047 N0 T6 t3  
0.1047  
(JL JM)  
9.55 104  
N0  
1
7)  
TU TF  
E7  
N0 T7 Tpsd2  
2
Tpsd2  
From the calculation results in 1) to 8), find the absolute value (Es) of the sum total of negative  
energies.  
b. Losses of servo motor and servo amplifier in regenerative mode  
The following table lists the efficiencies and other data of the servo motor and servo amplifier in  
the regenerative mode.  
Servo amplifier  
MR-J2S-10CP  
MR-J2S-10CP1  
MR-J2S-20CP  
MR-J2S-20CP1  
MR-J2S-40CP  
MR-J2S-40CP1  
MR-J2S-60CP  
MR-J2S-70CP  
MR-J2S-100CP  
MR-J2S-200CP  
MR-J2S-350CP  
MR-J2S-500CP  
MR-J2S-700CP  
Inverse efficiency[%]  
Capacitor charging[J]  
55  
55  
70  
70  
85  
85  
85  
80  
80  
85  
85  
90  
90  
9
4
9
4
11  
12  
11  
18  
18  
40  
40  
45  
70  
14 - 2  
14. OPTIONS AND AUXILIARY EQUIPMENT  
Inverse efficiency ( )  
:Efficiency including some efficiencies of the servo motor and servo  
amplifier when rated (regenerative) torque is generated at rated speed.  
Since the efficiency varies with the speed and generated torque, allow for  
about 10%.  
Capacitor charging (Ec) :Energy charged into the electrolytic capacitor in the servo amplifier.  
Subtract the capacitor charging from the result of multiplying the sum total of regenerative energies by  
the inverse efficiency to calculate the energy consumed by the regenerative option.  
ER [J]  
Es Ec  
Calculate the power consumption of the regenerative option on the basis of single-cycle operation period tf  
[s] to select the necessary regenerative option.  
PR [W] ER/tf  
(3) Connection of the regenerative option  
Set parameter No.0 according to the option to be used.  
Parameter No.0  
Selection of regenerative  
0: Not used. (The built-in regenerative resistor is used. However, the MR-J2S-10CP  
does not have a built-in regenerative resistor and therefore cannot use it.)  
1: FR-RC, FR-BU2  
2: MR-RB032  
3: MR-RB12  
4: MR-RB32  
5: MR-RB30  
6: MR-RB50(Cooling fan is required)  
8: MR-RB31  
9: MR-RB51(Cooling fan is required)  
14 - 3  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Connection of the regenerative option  
POINT  
When the MR-RB50 MR-RB51 is used, a cooling fan is required to cool it.  
The cooling fan should be prepared by the customer.  
The regenerative option will generate heat of about 100 . Fully examine heat dissipation, installation  
position, used cables, etc. before installing the option. For wiring, use flame-resistant cables and keep  
them clear of the regenerative option body. Always use twisted cables of max. 5m (16.4ft) length for  
connection with the servo amplifier.  
(a) MR-J2S-350CP or less  
Always remove the wiring from across P-D and fit the regenerative option across P-C.  
The G3 and G4 terminals act as a thermal sensor. G3-G4 is opened when the regenerative option  
overheats abnormally.  
Always remove the lead from across P-D.  
Servo amplifier  
Regenerative option  
D
P
P
C
C
G3  
(Note 2)  
G4  
5m (16.4 ft) or less  
Cooling fan(Note 1)  
Note 1. When using the MR-RB50, forcibly cool it with a cooling fan (92 92, minimum air flow : 1.0m3).  
2. Make up a sequence which will switch off the magnetic contactor (MC) when abnormal heating occurs.  
G3-G4 contact specifications  
Maximum voltage: 120V AC/DC  
Maximum current: 0.5A/4.8VDC  
Maximum capacity: 2.4VA  
For the MR-RB50 install the cooling fan as shown.  
[Unit : mm(in)]  
Cooling fan installation screw hole dimensions  
2-M3 screw hole  
Top  
(for cooling fan installation)  
Depth 10 or less  
Cooling fan  
Terminal block  
(Screw hole already  
machined)  
Thermal relay  
Bottom  
82.5  
40 (1.58)  
(3.25)  
Installation surface  
Horizontal installation  
Vertical  
installation  
14 - 4  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-J2S-500CP MR-J2S-700CP  
Always remove the wiring (across P-C) of the servo amplifier built-in regenerative resistor and fit  
the regenerative option across P-C.  
The G3 and G4 terminals act as a thermal sensor. G3-G4 is opened when the regenerative option  
overheats abnormally.  
Always remove wiring (across P-C) of servo  
amplifier built-in regenerative resistor.  
Servo amplifier  
Regenerative option  
P
C
P
C
G3  
(Note 2)  
G4  
5m(16.4ft) or less  
Cooling fan(Note 1)  
Note 1. When using the MR-RB50 MR-RB51, forcibly cool it with a cooling fan (92 92, minimum air flow : 1.0m3).  
2. Make up a sequence which will switch off the magnetic contactor (MC) when abnormal heating occurs.  
G3-G4 contact specifications  
Maximum voltage: 120V AC/DC  
Maximum current: 0.5A/4.8VDC  
Maximum capacity: 2.4VA  
When using the regenerative resistor option, remove the servo amplifier's built-in regenerative  
resistor terminals (across P-C), fit them back to back, and secure them to the frame with the  
accessory screw as shown below.  
Mounting method  
Accessory screw  
For MR-J2S-700CP  
For MR-J2S-500CP  
Accessory screw  
Accessory screw  
14 - 5  
14. OPTIONS AND AUXILIARY EQUIPMENT  
For the MR-RB50 MR-RB51 install the cooling fan as shown.  
[Unit : mm(in)]  
Cooling fan installation screw hole dimensions  
2-M3 screw hole  
Top  
(for cooling fan installation)  
Depth 10 or less  
Cooling fan  
Terminal block  
(Screw hole already  
machined)  
Thermal relay  
Bottom  
82.5  
40 (1.58)  
(3.25)  
Installation surface  
Horizontal installation  
Vertical  
installation  
14 - 6  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(5) Outline drawing  
(a) MR-RB032 MR-RB12  
[Unit: mm (in)]  
LA  
6 (0.24) mounting hole  
LB  
MR-RB  
TE1  
Terminal block  
5 (0.20)  
G3  
G4  
P
G3  
G4  
TE1  
P
C
C
Terminal screw: M3  
Tightening torque:  
0.5 to 0.6 [N m](4 to 5 [lb in])  
Mounting screw  
6 (0.24)  
1.6 (0.06)  
Screw size: M5  
20  
(0.79)  
LD  
LC  
Tightening torque:  
3.24 [N m](28.676 [lb in])  
Regenerative  
option  
Variable dimensions  
Mass  
LA  
LB  
LC  
LD [kg] [lb]  
30  
15  
119  
99  
MR-RB032  
MR-RB12  
0.5 1.1  
(1.18) (0.59) (4.69) (3.9)  
40 15 169 149  
(1.58) (0.59) (6.69) (5.87)  
1.1 2.4  
(b) MR-RB30 MR-RB31 MR-RB32  
[Unit: mm (in)]  
Terminal block  
P
C
Terminal screw: M4  
G3 Tightening torque: 1.2 [N m] (10.6 [Ib in])  
G4  
Mounting screw  
Screw: M6  
318 (12.52)  
7 (0.28)  
Tightening torque: 5.4 [N m] (47.79 [Ib in])  
17  
335 (13.19)  
(0.67)  
90 (3.54)  
10  
(0.39)  
Regenerative  
Mass [kg] (Ib)  
option  
100 (3.94)  
MR-RB30  
MR-RB31  
MR-RB32  
2.9 (6.4)  
14 - 7  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(c) MR-RB50 MR-RB51  
[Unit: mm (in)]  
Fan mounting screw  
(2-M3 screw)  
On opposite side  
Terminal block  
P
C
Terminal screw: M4  
Tightening torque: 1.2 [N m]  
(10.6 [Ib in])  
49  
(1.93)  
82.5  
(3.25)  
G3  
G4  
Mounting screw  
Screw: M6  
Tightening torque: 5.4 [N m]  
(47.79 [Ib in])  
7 14  
slot  
Regenerative  
Mass [kg] (Ib)  
option  
Wind blows in the  
arrow direction  
MR-RB50  
5.6 (12.3)  
MR-RB51  
7 (0.28)  
108 (4.25)  
120 (4.73)  
2.3  
(0.09)  
Approx.30 (1.18)  
8 (0.32)  
200 (7.87)  
217 (8.54)  
17  
(0.67)  
12  
(0.47)  
14 - 8  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.1.2 FR-BU2 brake unit  
POINT  
Use a 200V class brake unit and a resistor unit with a 200V class servo  
amplifier. Combination of different voltage class units and servo amplifier  
cannot be used.  
Install a brake unit and a resistor unit on a flat surface vertically. When  
the unit is installed horizontally or diagonally, the heat dissipation effect  
diminishes.  
Temperature of the resistor unit case rises to higher than 100 . Keep  
cables and flammable materials away from the case.  
Ambient temperature condition of the brake unit is between 10 (14 )  
and 50 (122 ). Note that the condition is different from the ambient  
temperature condition of the servo amplifier (between 0 (32 ) and  
55 (131 )).  
Configure the circuit to shut down the power-supply with the alarm  
output of the brake unit and resistor unit under abnormal condition.  
Use the brake unit with a combination indicated in this section (1).  
For executing a continuous regenerative operation, use FR-RC power  
regeneration converter.  
Brake unit and regenerative options (Regenerative resistor) cannot be  
used simultaneously.  
Connect the brake unit to the bus of the servo amplifier. As compared to the MR-RB regenerative option,  
the brake unit can return larger power. Use the brake unit when the regenerative option cannot provide  
sufficient regenerative capability.  
When using the brake unit, set the parameter No.0 of the servo amplifier to " 01  
".  
When using the brake unit, always refer to the FR-BU2-(H) Brake Unit Instruction Manual.  
(1) Selection  
Use a combination of servo amplifier, brake unit and resistor unit listed below.  
Number of  
connected  
units  
Permissible  
continuous  
power [kW]  
Total  
Applicable servo  
amplifier  
Brake unit  
Resistor unit  
resistance  
[
]
MR-J2S-350CP  
MR-J2S-500CP  
MR-J2S-500CP  
MR-J2S-700CP  
FR-BU2-15K  
FR-BU2-30K  
FR-BR-15K  
FR-BR-30K  
1
1
0.99  
1.99  
8
4
14 - 9  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Brake unit parameter setting  
Normally, when using the FR-BU2, changing parameters is not necessary. Whether a parameter can  
be changed or not is listed below.  
Parameter  
Name  
Change  
possible/  
impossible  
Remarks  
No.  
0
1
Brake mode switchover  
Impossible Do not change the parameter.  
Monitor display data selection  
Possible  
Refer to the FR-BU2-(H) Brake Unit  
Instruction Manual.  
2
3
Input terminal function selection 1  
Input terminal function selection 2  
Parameter write selection  
Impossible Do not change the parameter.  
77  
78  
Cumulative energization time  
carrying-over times  
CLr Parameter clear  
ECL Alarm history clear  
C1  
For manufacturer setting  
14 - 10  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Connection example  
POINT  
Connecting PR terminal of the brake unit to P terminal of the servo  
amplifier results in brake unit malfunction. Always connect the PR  
terminal of the brake unit to the PR terminal of the resistor unit.  
ALM  
RA1  
ON  
MC  
EMG  
OFF  
MC  
SK  
Servo amplifier  
CN1B  
NFB  
MC  
(Note 9)  
EMG  
SG  
L1  
(Note 1)  
Power  
supply  
10  
L2  
FR-BR  
3
VDD  
L3  
(Note 4)  
TH1  
TH2  
13 COM  
18 ALM  
P
L11  
L21  
RA1  
PR  
FR-BU2  
D
P
PR  
P/  
MSG  
(Note 6)  
SD  
A
(Note 3)  
(Note 7)  
N/  
B
C
N
C
BUE  
(Note 8)(Note 5)  
SD  
(Note 2)  
Note 1. For power supply specifications, refer to section 1.2.  
2. For the servo amplifier of 5k and 7kW, always disconnect the lead of built-in regenerative resistor, which is connected to the P  
and C terminals.  
3. Connect the P/ and N/ terminals of the brake unit to a correct destination. Wrong connection results in servo amplifier and  
brake unit malfunction.  
4. Contact rating: 1b contact, 110VAC_5A/220VAC_3A  
Normal condition: TH1-TH2 is conducting. Abnormal condition: TH1-TH2 is not conducting.  
5. Contact rating: 230VAC_0.3A/30VDC_0.3A  
Normal condition: B-C is conducting/A-C is not conducting. Abnormal condition: B-C is not conducting/A-C is conducting.  
6. For the servo amplifier of 3.5kW, always disconnect the wiring between P and D terminals.  
7. Do not connect more than one cable to each P to N terminals of the servo amplifier.  
8. Always connect between BUE and SD terminals (Factory-wired).  
9. In the device setting, assign the forced stop (EMG) to any pin (Refer to section 6.6).  
14 - 11  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(a) Precautions for wiring  
The cables between the servo amplifier and the brake unit, and between the resistor unit and the  
brake unit should be as short as possible. Always twist the cable longer than 5m (twist five times  
or more per one meter). Even when the cable is twisted, the cable should be less than 10m. Using  
cables longer than 5m without twisting or twisted cables longer than 10m, may result in the brake  
unit malfunction.  
Servo amplifier  
Servo amplifier  
Brake unit  
Resistor unit  
Brake unit  
Resistor unit  
Twist  
Twist  
P
N
P
N
P
PR  
P
PR  
P
N
P
N
P
PR  
P
PR  
5m or less  
5m or less  
10m or less  
10m or less  
(b) Cables  
1) Cables for the brake unit  
For the brake unit, HIV cable (600V grade heat-resistant PVC insulated wire) is recommended.  
a) Main circuit terminal  
Main  
circuit  
terminal  
screw  
size  
Crimping  
terminal  
Cable size  
Tightening  
torque  
N/ , P/ , PR,  
Brake unit  
[N m]  
N/ , P/  
PR,  
,
HIV cables,  
etc. [mm2]  
AWG  
([Ib in])  
N/  
P/  
PR  
FR-BU2-15K  
FR-BU2-30K  
M4  
M5  
5.5-4  
5.5-5  
1.5(13.3)  
2.5(22.1)  
3.5  
5.5  
12  
10  
Terminal block  
14 - 12  
14. OPTIONS AND AUXILIARY EQUIPMENT  
b) Control circuit terminal  
POINT  
Undertightening can cause a cable disconnection or malfunction.  
Overtightening can cause a short circuit or malfunction due to damage to  
the screw or the brake unit.  
Sheath  
RES  
MSG MSG  
SD  
SD SD  
Core  
BUE  
PC  
SD  
Jumper  
A
B
C
6mm  
Terminal block  
Wire the stripped cable after twisting to prevent the cable  
from becoming loose. In addition, do not solder it.  
Screw size: M3  
Tightening torque: 0.5N m to 0.6N  
Cable size: 0.3mm2 to 0.75 mm2  
m
Screw driver: Small flat-blade screwdriver  
(Tip thickness: 0.4mm/Tip width 2.5mm)  
(c) Crimping terminals for P and N terminals of servo amplifier  
POINT  
Always use recommended crimping terminals or equivalent since some  
crimping terminals cannot be installed depending on the size.  
Number of  
Servo amplifier  
Brake unit  
connected Crimping terminal Applicable tool  
units  
Manufacturer  
MR-J2S-350CP  
MR-J2S-500CP  
FR-BU2-15K  
FR-BU2-15K  
FR-BU2-30K  
FR-BU2-30K  
1
1
Japan Solderless  
Terminal  
FVD5.5-S4  
YNT-1210S  
1
1
MR-J2S-700CP  
14 - 13  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Outline dimension drawings  
(a) FR-BU2 brake unit  
[Unit: mm]  
FR-BU2-15K  
5 hole  
(Screw size: M4)  
Rating  
plate  
4
5
18.5  
6
56  
68  
6
52  
62  
132.5  
FR-BU2-30K  
2- 5 hole  
(Screw size: M4)  
Rating  
plate  
5
5
96  
6
6
18.5  
52  
59  
108  
129.5  
14 - 14  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) FR-BR resistor unit  
[Unit: mm]  
2
C
(Note)  
Control circuit  
terminal  
(Note)  
Main circuit  
terminal  
C
C
Approx. 35  
Approx. 35  
W1  
1
W
5
Note. Ventilation ports are provided on both sides and the top. The bottom is open.  
Approximate  
Resistor unit  
W
W1  
H
H1  
H2  
H3  
D
D1  
C
mass  
[kg]([Ib])  
FR-BR-15K  
FR-BR-30K  
170 100 450 410 20 432 220 3.2  
340 270 600 560 20 582 220  
6
15(33.1)  
30(66.1)  
4
10  
14.1.3 Power regeneration converter  
When using the power regeneration converter, set "01  
(1) Selection  
" in parameter No.0.  
The converters can continuously return 75% of the nominal regenerative power. They are applied to  
the servo amplifiers of the MR-J2S-500CP and MR-J2S-700CP.  
Power  
Nominal  
500  
regeneration  
converter  
regenerative  
power (kW)  
Servo amplifier  
300  
200  
FR-RC15  
FR-RC30  
15  
30  
MR-J2S-500CP  
MR-J2S-700CP  
100  
50  
30  
20  
0
50  
75 100  
150  
Nominal regenerative power (%)  
14 - 15  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Connection example  
Servo amplifier  
L11  
L21  
Power factor improving reactor  
NFB  
MC  
FR-BAL  
L1  
(Note 3)  
Power  
supply  
L2  
L3  
VDD  
COM  
SG  
EMG  
SON  
RA2  
ALM  
(Note 2)  
N
P
C
5m(16.4ft) or less  
N/  
P/  
RDY  
SE  
A
Ready  
RDY  
output  
B
C
B
C
R/L1  
Alarm  
output  
S/L2  
T/L3  
RX  
R
(Note 1)  
SX  
S
Phase detection  
terminals  
TX  
T
Power regeneration  
converter FR-RC  
FR-RC  
Operation ready  
ON  
EMG  
RA2  
OFF  
B
C
MC  
SK  
MC  
Note 1. When not using the phase detection terminals, fit the jumpers across RX-R, SX-S and TX-T. If the jumpers remain removed, the  
FR-RC will not operate.  
2. When using servo amplifiers of 5kW and 7kW, always remove the lead of built-in regenerative resistor connected to P terminal  
and C terminal.  
3. Refer to section 1.2 for the power supply specification.  
14 - 16  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outside dimensions of the power regeneration converters  
[Unit : mm(in)]  
Mounting foot (removable)  
Mounting foot  
movable  
2- D hole  
Rating plate  
Front cover  
Display  
panel  
window  
Cooling fan  
K
D
F
AA  
A
C
Heat generation area outside mounting dimension  
Power  
Approx.  
regeneration  
converter  
A
AA  
B
BA  
C
D
E
EE  
K
F
Mass [kg(Ib)]  
270  
200  
450  
432  
195  
10  
10  
8
3.2  
87  
19  
FR-RC-15K  
FR-RC-30K  
(10.630) (7.874) (17.717) (17.008) (7.677) (0.394) (0.394) (0.315) (0.126) (3.425)  
340 270 600 582 195 10 10 3.2 90  
(13.386) (10.630) (23.622) (22.913) (7.677) (0.394) (0.394) (0.315) (0.126) (3.543)  
(41.888)  
31  
8
(68.343)  
(4) Mounting hole machining dimensions  
When the power regeneration converter is fitted to a totally enclosed type box, mount the heat  
generating area of the converter outside the box to provide heat generation measures. At this time, the  
mounting hole having the following dimensions is machined in the box.  
[Unit : mm(in)]  
(2- D hole)  
Approx. AA  
Model  
A
B
D
AA  
BA  
260  
412  
10  
200  
432  
FR-RC-15K  
(10.236) (16.220) (0.394) (7.874) (17.009)  
330 562 10 270 582  
(12.992) (22.126) (0.394) (10.630) (22.913)  
FR-RC-30K  
(Mounting hole)  
a
14 - 17  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.1.4 Cables and connectors  
(1) Cable make-up  
The following cables are used for connection with the servo motor and other models. Those indicated  
by broken lines in the figure are not options.  
Servo amplifier  
9)  
Operation  
panel  
CN1A CN1B  
Personal  
computer  
CN2 CN3  
14)  
Controller  
13)  
10)  
10)  
12)  
11)  
11)  
To U, V, W,  
19) 20)  
HC-KFS  
HC-MFS  
HC-UFS 3000 r/min  
1) 2)  
6)  
HC-SFS  
HC-RFS  
HC-UFS 2000r/min  
15) 16) 17) 18)  
3) 4) 5)  
7) 8)  
14 - 18  
14. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
1) Standard encoder MR-JCCBL M-L Connector: 10120-3000PE  
cable Refer to (2) of this Shell kit: 10320-52F0-008  
section. (3M or equivalent)  
Product  
Model  
Description  
Housing: 1-172161-9  
Connector pin: 170359-1  
Application  
Standard  
flexing life  
(Tyco Electronics or equivalent) IP20  
Cable clamp: MTI-0002  
(Toa Electric Industry)  
2) Long flexing life MR-JCCBL M-H  
Long flexing  
encoder cable  
Refer to (2) of this  
section.  
life  
IP20  
3) Standard encoder MR-JHSCBL M-L Connector: 10120-3000PE  
cable Refer to (2) of this Shell kit: 10320-52F0-008  
section. (3M or equivalent)  
4) Long flexing life MR-JHSCBL M-H  
Connector: D/MS3106B20-29S  
Cable clamp: D/MS3057-12A  
(DDK)  
Standard  
flexing life  
IP20  
Long flexing  
life  
encoder cable  
Refer to (2) of this  
section.  
5) IP65-compliant  
encoder cable  
MR-ENCBL M-H Connector: 10120-3000PE  
Refer to (2) of this Shell kit: 10320-52F0-008  
Connector: D/MS3106A20-29S  
(D190)  
Long flexing  
life  
section.  
(3M or equivalent)  
Cable clamp: CE3057-12A-3-D  
Back shell: CE02-20BS-S-D  
(DDK)  
IP65  
IP67  
Not oil-  
resistant.  
6) Encoder  
connector set  
MR-J2CNM  
Connector: 10120-3000PE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Housing: 1-172161-9  
Pin: 170359-1  
IP20  
(Tyco Electronics or equivalent)  
Cable clamp: MTI-0002  
(Toa Electric Industry)  
7) Encoder  
connector set  
MR-J2CNS  
MR-ENCNS  
Connector: 10120-3000PE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Connector: D/MS3106B20-29S  
Cable clamp: D/MS3057-12A  
(DDK)  
IP20  
8) Encoder  
connector set  
Connector: 10120-3000PE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Connector: D/MS3106A20-29S  
(D190)  
IP65  
IP67  
Cable clamp: CE3057-12A-3-D  
Back shell: CE02-20BS-S-D  
(DDK)  
14 - 19  
14. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
Product  
Model  
MR-J2CN1  
Description  
Application  
9) Control signal  
connector set  
Connector: 10120-3000PE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Qty: 2 each  
Connector: 10120-6000EL  
10) Junction  
terminal block  
cable  
MR-J2TBL  
Refer to  
M
Connector: HIF3BA-20D-2.54R  
(Hirose Electric)  
For junction  
terminal  
block  
Shell kit: 10320-3210-000  
(3M or equivalent)  
section14.1.5.  
connection  
11) Junction  
terminal block  
12) Bus cable  
MR-TB20  
Refer to section 14.1.5.  
MR-J2HBUS  
Refer to  
M
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
For  
maintenance  
junction  
card  
section14.1.6.  
connection  
13) Maintenance  
junction card  
MR-J2CN3TM  
Refer to section 14.1.6.  
14) Communication MR-CPCATCBL3M Connector: 10120-6000EL  
Connector: DE-9SF-N  
Case: DE-C1-J6-S6  
(JAE)  
For  
cable  
Refer to (3) of this Shell kit: 10320-3210-000  
connection  
with PC-AT-  
compatible  
personal  
computer  
section.  
(3M or equivalent)  
15) Power supply  
connector set  
MR-PWCNS1  
Refer to the Servo  
Motor Instruction  
Manual.  
Connector: CE05-6A22-23SD-D-BSS  
Cable clamp:CE3057-12A-2-D  
(DDK)  
Must be  
used to  
16) Power supply  
connector set  
MR-PWCNS2  
Refer to the Servo  
Motor Instruction  
Manual.  
Connector: CE05-6A24-10SD-D-BSS  
Cable clamp: CE3057-16A-2-D  
(DDK)  
comply with  
the EN  
Standard.  
IP65 IP67  
17) Power supply  
connector set  
MR-PWCNS3  
Refer to the Servo  
Motor Instruction  
Manual.  
Plug: CE05-6A32-17SD-D-BSS  
Cable clamp: CE3057-20A-1-D  
(DDK)  
18) Brake connector MR-BKCN  
Plug: D/MS3106A10SL-4S (D190) (DDK)  
Cable connector: YS010-5-8 (Daiwa Dengyo)  
EN  
set  
Refer to the Servo  
Standard-  
compliant  
IP65 IP67  
IP20  
Motor Instruction  
Manual.  
19) Power supply  
connector set  
MR-PWCNK1  
Refer to the Servo  
Motor Instruction  
Manual.  
Plug: 5559-04P-210  
Terminal: 5558PBT3L (For AWG16)(6 pcs.)  
(Molex)  
20) Power supply  
connector set  
MR-PWCNK2  
Plug: 5559-06P-210  
For motor  
with brake  
IP20  
Terminal: 5558PBT3L (For AWG16)(8 pcs.)  
(Molex)  
14 - 20  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Encoder cable  
If you have fabricated the encoder cable, connect it correctly.  
CAUTION  
Otherwise, misoperation or explosion may occur.  
POINT  
The encoder cable is not oil resistant.  
Refer to section 13.4 for the flexing life of the encoder cable.  
When the encoder cable is used, the sum of the resistance values of the  
cable used for P5 and the cable used for LG should be within 2.4 .  
When soldering the wire to the connector pin, insulate and protect the  
connection portion using heat-shrinkable tubing.  
Generally use the encoder cable available as our options. If the required length is not found in the  
options, fabricate the cable on the customer side.  
(a) MR-JCCBL M-L MR-JCCBL M-H  
These encoder cables are used with the HC-KFS HC-MFS HC-UFS3000r/min series servo  
motors.  
1) Model explanation  
Model: MR-JCCBL M-  
Symbol  
Specifications  
Standard flexing life  
Long flexing life  
L
H
Symbol (Note) Cable length [m(ft)]  
2
5
2 (6.56)  
5 (16.4)  
10  
20  
30  
40  
50  
10 (32.8)  
20 (65.6)  
30 (98.4)  
40 (131.2)  
50 (164.0)  
Note: MR-JCCBL M-H has  
no 40m(131.2ft) and 50m(164.0ft) sizes.  
2) Connection diagram  
For the pin assignment on the servo amplifier side, refer to section 3.3.1.  
Encoder cable  
Servo amplifier  
supplied to servo motor  
Encoder connector  
Encoder connector  
172161-9 (Tyco Electronics)  
Servo motor  
Encoder  
Encoder cable  
(option or fabricated)  
1
2
3
MR MRR BAT  
CN2  
4
5
6
MD MDR  
50m(164.0ft) max.  
30cm  
(0.98ft)  
7
8
9
P5  
LG SHD  
14 - 21  
14. OPTIONS AND AUXILIARY EQUIPMENT  
MR-JCCBL10M-L  
MR-JCCBL10M-H  
to  
MR-JCCBL2M-L  
MR-JCCBL5M-L  
MR-JCCBL2M-H  
MR-JCCBL5M-H  
to  
MR-JCCBL30M-L  
MR-JCCBL50M-H  
Servo amplifier side  
Encoder side  
7
Servo amplifier side  
Encoder side  
7
Servo amplifier side  
Encoder side  
7
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
18  
2
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
18  
2
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
18  
2
8
1
2
4
5
3
8
1
2
4
5
3
8
1
2
4
5
3
MR  
7
MR  
7
MR  
7
MRR 17  
MD  
MDR 16  
MRR 17  
MD  
MDR 16  
MRR 17  
MD  
MDR 16  
6
6
6
BAT  
LG  
9
1
BAT  
LG  
9
1
BAT  
LG  
9
1
(Note)  
(Note)  
(Note)  
Plate  
Plate  
Plate  
SD  
9
SD  
9
SD  
9
Note. Always make connection for use in an absolute position detection system.  
This wiring is not needed for use in an incremental system.  
When fabricating an encoder cable, use the recommended wires given in section 14.2.1 and the MR-  
J2CNM connector set for encoder cable fabrication, and fabricate an encoder cable as shown in the  
following wiring diagram. Referring to this wiring diagram, you can fabricate an encoder cable of up to  
50m(164.0ft) length including the length of the encoder cable supplied to the servo motor.  
When the encoder cable is to be fabricated by the customer, the wiring of MD and MDR is not required.  
Refer to chapter 3 of the servo motor instruction guide and choose the encode side connector according to  
the servo motor installation environment.  
For use of AWG22  
Servo amplifier side  
(3M)  
Encoder side  
7
19  
11  
20  
12  
18  
2
P5  
LG  
P5  
LG  
P5  
LG  
8
1
2
7
MR  
17  
MRR  
9
1
3
BAT  
LG  
(Note)  
9
Plate  
SD  
Note. Always make connection for use in an absolute position detection system.  
This wiring is not needed for use in an incremental system.  
14 - 22  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-JHSCBL M-L MR-JHSCBL M-H MR-ENCBL M-H  
These encoder cables are used with the HC-SFS HC-RFS HC-UFS2000r/min series servo motors.  
1) Model explanation  
Model: MR-JHSCBL M-  
Symbol  
Specifications  
Standard flexing life  
Long flexing life  
L
H
Symbol  
Cable length [m(ft)]  
2
5
2 (6.56)  
5 (16.4)  
10  
20  
30  
40  
50  
10 (32.8)  
20 (65.6)  
30 (98.4)  
40 (131.2)  
50 (164.0)  
Note: MR-JHSCBL M-L has  
no 40(131.2) and 50m(164.0ft) sizes.  
Model: MR-ENCBL M-H  
Long flexing life  
Symbol  
Cable length [m(ft)]  
2
5
2 (6.56)  
5 (16.4)  
10  
20  
30  
40  
50  
10 (32.8)  
20 (65.6)  
30 (98.4)  
40 (131.2)  
50 (164.0)  
2) Connection diagram  
For the pin assignment on the servo amplifier side, refer to section 3.3.1.  
Servo amplifier  
Encoder connector  
Encoder connector  
Pin Signal  
Pin Signal  
K
L
Servo motor  
Encoder cable  
(Optional or fabricated)  
A
B
C
D
E
F
G
H
J
MD  
MDR  
MR  
A
M
T
B
P
C
L
N
M
K
J
D
E
F
MRR  
N
P
R
S
SHD  
CN2  
Encoder  
S
R
H
G
BAT  
LG  
LG  
P5  
T
50m(164.0ft) max.  
14 - 23  
14. OPTIONS AND AUXILIARY EQUIPMENT  
MR-JHSCBL2M-L  
MR-JHSCBL5M-L  
MR-JHSCBL2M-H  
MR-JHSCBL5M-H  
MR-ENCBL2M-H  
MR-ENCBL5M-H  
MR-JHSCBL10M-L  
MR-JHSCBL10M-H  
to  
to  
MR-JHSCBL30M-L  
MR-JHSCBL50M-H  
MR-ENCBL10M-H  
to  
MR-ENCBL50M-H  
Servo amplifier side  
Encoder side Servo amplifier side  
Encoder side Servo amplifier side  
Encoder side  
19  
11  
20  
12  
18  
2
S
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
7
19  
11  
20  
12  
18  
2
P5  
LG  
P5  
LG  
P5  
LG  
P5  
S
S
LG  
P5  
LG  
R
C
D
MR  
MRR  
P5  
17  
18  
2
R
C
D
LG  
R
C
D
7
MR  
9
7
MR  
BAT  
LG  
F
17  
MRR 17  
MRR  
1
G
(Note1)  
SD  
N
Plate  
9
1
BAT  
LG  
9
1
BAT  
LG  
F
F
(Note2) Use of AWG24  
(Less than 10m(32.8ft))  
G
G
(Note1)  
(Note1)  
SD  
SD  
N
N
Note1: This wiring is required for use in the absolute  
position detection system. This wiring is not  
needed for use in the incremental system.  
Plate  
Plate  
Use of AWG22  
(10m(32.8ft) to 50m(164.0ft))  
Use of AWG24  
(10m(32.8ft) to 50m(164.0ft))  
2: AWG28 can be used for 5m(16.4ft) or less.  
When fabricating an encoder cable, use the recommended wires given in section 14.2.1 and the MR-  
J2CNS connector set for encoder cable fabrication, and fabricate an encoder cable in accordance with  
the optional encoder cable wiring diagram given in this section. You can fabricate an encoder cable of  
up to 50m(164.0ft) length.  
Refer to chapter 3 of the servo motor instruction guide and choose the encode side connector according  
to the servo motor installation environment.  
14 - 24  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Communication cable  
POINT  
This cable may not be used with some personal computers. After fully  
examining the signals of the RS-232C connector, refer to this section and  
fabricate the cable.  
(a) Model definition  
Model : MR-CPCATCBL3M  
Cable length 3[m](10[ft])  
(b) Connection diagram  
MR-CPCATCBL3M  
Personal computer side  
Servo amplifier side  
Plate FG  
RXD  
TXD  
3
2
1
LG  
TXD  
LG  
RXD  
GND  
RTS  
CTS  
DSR  
DTR  
2
5
7
8
6
4
12  
11  
D-SUB9 pins  
Half-pitch 20 pins  
When fabricating the cable, refer to the connection diagram in this section.  
The following must be observed in fabrication.  
1) Always use a shielded, multi-core cable and connect the shield with FG securely.  
2) The optional communication cable is 3m(10ft) long. When the cable is fabricated, its maximum  
length is 15m(49ft) in offices of good environment with minimal noise.  
14 - 25  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.1.5 Junction terminal block (MR-TB20)  
POINT  
When using the junction terminal block, you cannot use SG of CN1A-20  
and CN1B-20. Use SG of CN1A-4 and CN1B-4.  
(1) How to use the junction terminal block  
Always use the junction terminal block (MR-TB20) with the junction terminal block cable (MR-J2TBL  
M) as a set. A connection example is shown below.  
Servo amplifier  
Junction terminal block  
Cable clamp  
MR-TB20  
(AERSBAN- ESET)  
CN1A  
or  
Junction terminal  
block cable  
CN1B  
(MR-J2TBL M)  
Ground the junction terminal block cable on the junction terminal block side with the standard  
accessory cable clamp fitting (AERSBAN- ESET). For the use of the cable clamp fitting, refer to  
section 13.2.6, (2)(c).  
(2) Terminal labels  
The junction terminal block does not include the terminal block labels which indicate the signal  
layouts for MR-J2S-CP. Cut off the terminal block label in Appendix 2 at the dotted line and fold it up  
at the centerline for use.  
1) For CN1A  
2) For CN1B  
LG PP  
COM OPC PG  
DOG SG NG  
LG VDD DIO MD0 ST2 P15R COM SON LSN RD  
MEND  
ST1 SG TLA DI1 LSP ALM SD  
NP P15R  
ZP SD  
VC CPO  
(3) Outline drawing  
[Unit: mm]  
([Unit: in.])  
126(4.96)  
117(4.61)  
B10  
B1  
A1  
A10  
MITSUBISHI  
MR-TB20  
16 17 18 19  
10 11 12 13 14 15  
Terminal  
block No.  
3
6
0
1
2
5
7
8
9
2- 4.5(0.18)  
4
Terminal screw: M3.5  
Applicable cable: Max. 2mm2  
(Crimping terminal width: 7.2mm (0.283 in) max.)  
14 - 26  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Junction terminal block cable (MR-J2TBL M)  
Model : MR-J2TBL  
M
Symbol Cable length[m(ft)]  
05  
1
0.5 (1.64)  
1 (3.28)  
Servo amplifier side (CN1A CN1B) connector (3M)  
10120-6000EL (connector)  
Junction terminal block side connector (Hirose Electric)  
HIF3BA-20D-2.54R (connector)  
10320-3210-000 (shell kit)  
Pin  
No.  
Terminal block label Junction terminal  
Pin  
No.  
block terminal No.  
For CN1A For CN1B  
LG  
VC  
VDD  
CPO  
DI0  
MEND  
MD0  
ST1  
10  
0
11  
1
12  
2
13  
3
14  
4
15  
5
16  
6
17  
7
B1  
A1  
B2  
A2  
B3  
A3  
B4  
A4  
B5  
A5  
B6  
A6  
B7  
A7  
B8  
A8  
B9  
A9  
B10  
A10  
1
2
LG  
NP  
PP  
3
4
5
6
7
8
9
P15R  
DOG  
COM  
SG  
OPC  
NG  
PG  
ST2  
SG  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Plate  
P15R  
TLA  
COM  
DI1  
SON  
LSP  
LSN  
ALM  
RD  
18  
8
19  
9
ZP  
SD  
SD  
14 - 27  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.1.6 Maintenance junction card (MR-J2CN3TM)  
(1) Usage  
The maintenance junction card (MR-J2CN3TM) is designed for use when a personal computer and  
analog monitor are used at the same time.  
Communication cable  
Servo amplifier  
Maintenance junction card (MR-J2CN3TM)  
Bus cable  
MR-J2HBUS  
M
CN3B  
CN3  
CN3A  
CN3C  
B1 B5 B6 A5 A6  
B2  
A1 A2 A3 A4 B4 B3  
LG LG MO1 MO2  
VDD COM EM1 DI MBR EMGO SG PE  
Not used.  
Analog monitor 2  
Analog monitor 1  
(2) Connection diagram  
TE1  
B5  
LG  
B6  
LG  
CN3A  
CN3B  
1
2
3
4
5
6
7
8
CN3C  
1
2
3
4
5
6
7
8
A5  
1
1
LG  
MO1  
2
RXD  
A6  
3
4
5
3
MO2  
LG  
4
MO1  
5
RDP  
6
MO73  
8
SD9P  
9
9
A1  
A2  
A3  
A4  
B4  
B3  
B2  
B1  
10  
VDD  
COM  
EM1  
DI  
TRE  
10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
LG  
11  
TXD  
12  
13  
14  
15  
LG  
13  
MO2  
14  
15  
16  
17  
18  
Not used.  
MBR  
EMGO  
SG  
19  
20  
SDN  
19  
P5  
20  
Shell  
Shell  
Shell  
PE  
14 - 28  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outline drawing  
[Unit: mm]  
([Unit: in])  
CN3A  
CN3B  
CN3C  
2- 5.3(0.21)(mounting hole)  
A1  
B1  
A6  
B6  
TE1  
3(0.12)  
88(3.47)  
41.5(1.63)  
100(3.94)  
Mass: 110g(0.24Ib)  
(4) Bus cable (MR-J2HBUS M)  
Model: MR-J2HBUS  
M
Symbol  
Cable length [m(ft)]  
05  
1
5
0.5 (1.64)  
1 (3.28)  
5 (16.4)  
MR-J2HBUS05M  
MR-J2HBUS1M  
MR-J2HBUS5M  
10120-6000EL (connector)  
10320-3210-000 (shell kit)  
10120-6000EL (connector)  
10320-3210-000 (shell kit)  
1
11  
2
1
11  
2
12  
3
12  
3
13  
4
13  
4
14  
5
14  
5
15  
6
15  
6
16  
7
16  
7
17  
8
17  
8
18  
9
18  
9
19  
10  
20  
19  
10  
20  
Plate  
Plate  
14 - 29  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.1.7 External digital display (MR-DP60)  
The data equivalent to the servo amplifier status display can be displayed on the MR-DP60. When using  
the MR-DP60, set "  
1
4" in parameter No. 16. The items that appear at the time of power-on can be  
selected in parameter No.18.  
(1) Specifications  
Item  
Specifications  
Red seven-segment LED, signed, six digits  
Single-phase, 85 to 253VAC, 50/60Hz  
Within 200mA  
Display  
Power supply  
Permissible voltage fluctuation  
Current consumption  
Interface  
Communication  
Conforms to RS-422  
Baud rate  
4800bps, asynchronous  
Bit length  
Start bit 1, date bit 8, parity bit 1, stop bit  
MELSERVO protocol  
1
Protocol  
Communication commands  
Commands dedicated to MELSERVO  
Operating temperature / humidity range  
0
to 60 (32 to 140 ),  
90%RH or less, non-condensing  
Storage temperature range  
5
to 70 (23 to 158  
)
(2) Connection example  
NFB  
MC  
L1  
(Note)  
Power supply  
L2  
Servo amplifier  
L3  
External digital display  
L11  
L21  
MR-DP60  
L1  
L2  
CN3  
5
15  
9
RDP  
RDN  
SDP  
SDN  
LG  
TXD  
TXD  
RXD  
RXD  
LG  
19  
1
Plate  
SD  
Note. Refer to section 1.2 for the power supply specification.  
(3) Terminal arrangement  
Signal  
Description  
L1  
L2  
100 to 230VAC power input  
TB2  
Ground  
L1  
L2  
RXD  
RXD  
TXD  
TXD  
P5  
Receive signal input  
Inverse receive signal input  
Inverse transmission signal output  
Transmission signal output  
5VDC output (Note)  
TB1  
TXD TXD RXDRXD P5 LG  
LG  
Control common  
Note. The 5VDC output is designed for the internal control circuit and used to make a voltage check, etc. Do not use this terminal to  
supply a voltage to the other equipment.  
14 - 30  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Mounting  
[Unit: mm (in)]  
Inside mounting  
Front mounting  
Square hole  
Square hole  
2- 5 (0.20)  
2- 5 (0.20)  
95(3.74)  
141(5.55)  
150(5.91)  
150(5.91)  
(5) Outline dimension drawing  
[Unit: mm (in)]  
TB2  
TB1  
MITSUBISHI  
MR-DP60  
150(5.91)  
7.5  
7.5  
(0.30)  
2- 4.5 (0.18) mounting hole  
2- 6.5 (0.26), depth 1 (0.04)  
(0.30)  
165(6.50)  
14 - 31  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.1.8 Manual pulse generator (MR-HDP01)  
(1) Specifications  
Item  
Specifications  
Voltage  
4.5 to 13.2VDC  
60mA max.  
Power supply  
Current consumption  
Interface  
Output current max. 20mA for open collector output  
A-phase and B-phase signals with 90°phase difference  
100pulse / rev  
Pulse signal form  
Pulse resolution  
Max. speed  
Instantaneous max. 600r/min, ordinary 200r/min  
Operating temperature range  
Storage temperature range  
10 to 60 (14 to 140  
30 to 80 22 to 176  
)
(
)
(2) Connection example  
Use an external power supply to supply power to the manual pulse generator.  
Servo amplifier  
CN1B  
3
VDD  
CN1A  
11  
SV  
A
OPC  
PP  
3
10  
2
Manual pulse generator  
MR-HDP01  
OV  
B
SG  
NP  
External  
power  
supply  
+5  
SD  
Plate  
GND  
(3) Terminal arrangement  
Signal name  
Description  
Power input  
+5 to  
5 to 12V  
12V 0V  
A
B
0V  
A
Power and signal common  
A-phase pulse output  
B-phase pulse output  
B
14 - 32  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Mounting  
[Unit: mm(in)]  
Panel cutting  
3- 4.8(0.189)  
equally divided  
(5) Outline dimension drawing  
[Unit: mm(in)]  
3.6(0.142)  
Packing t2.0  
3-M4 stud L10  
P.C.D.72 equally divided  
5V to  
12V 0V  
A
B
M3 6 may only be used.  
7.6(0.299)  
27.0  
0.5  
8.89  
(0.35)  
16  
20  
(0.63)(0.787) (1.063  
0.02)  
14.1.9 Battery (MR-BAT, A6BAT)  
POINT  
The revision (Edition 44) of the Dangerous Goods Rule of the  
International Air Transport Association (IATA) went into effect on  
January 1, 2003 and was enforced immediately. In this rule, "provisions of  
the lithium and lithium ion batteries" were revised to tighten the  
restrictions on the air transportation of batteries. However, since this  
battery is non-dangerous goods (non-Class 9), air transportation of 24 or  
less batteries is outside the range of the restrictions. Air transportation of  
more than 24 batteries requires packing compliant with the Packing  
Standard 903. When a self-certificate is necessary for battery safety tests,  
contact our branch or representative. For more information, consult our  
branch or representative. (As of September, 2007).  
Use the battery to build an absolute position detection system.  
14 - 33  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.2 Auxiliary equipment  
Always use the devices indicated in this section or equivalent. To comply with the EN Standard or UL/C-  
UL (CSA) Standard, use the products which conform to the corresponding standard.  
14.2.1 Recommended wires  
(1) Wires for power supply wiring  
The following diagram shows the wires used for wiring. Use the wires given in this section or  
equivalent.  
1) Main circuit power supply lead  
3) Motor power supply lead  
Servo motor  
Servo amplifier  
Power supply  
L1  
U
V
U
V
L2  
L3  
Motor  
W
W
L11  
L21  
5) Electromagnetic  
brake lead  
6) Power regeneration  
converter lead  
2) Control power supply lead  
Electro-  
magnetic  
brake  
B1  
B2  
Power regeneration  
converter  
N
Regenerative option  
C
P
Encoder  
Encoder cable (refer to section 14.1.4)  
4) Regenerative option lead  
The following table lists wire sizes. The wires used assume that they are 600V vinyl wires and the  
wiring distance is 30m(98.4ft) max. If the wiring distance is over 30m(98.4ft), choose the wire size in  
consideration of voltage drop.  
The alphabets (a, b, c) in the table correspond to the crimping terminals (Table 14.2) used to wire the  
servo amplifier. For connection with the terminal block TE2 of the MR-J2S-100CP or less, refer to  
section 3.11.  
The servo motor side connection method depends on the type and capacity of the servo motor. Refer to  
section 3.8.  
To comply with the UL/C-UL (CSA) Standard, use UL-recognized copper wires rated at 60 (140) or  
more for wiring.  
Table 14.1 Recommended wires  
2
(Note 1) Wires [mm ]  
Servo amplifier  
1) L1 L2 L3  
2) L11 L21  
3) U  
V
W
4) P  
C
5) B1 B2  
MR-J2S-10CP(1)  
MR-J2S-20CP(1)  
MR-J2S-40CP(1)  
MR-J2S-60CP  
1.25 (AWG16) : a  
2 (AWG14) : a  
MR-J2S-70CP  
2 (AWG14) : a  
3.5(AW12) : c  
1.25 (AWG16)  
1.25 (AWG16)  
MR-J2S-100CP  
MR-J2S-200CP  
2 (AWG14) : a  
3.5 (AWG12) : b  
(Note 2)  
3.5 (AWG12) : b  
5.5 (AWG10) : b  
8 (AWG8) : c  
MR-J2S-350CP  
5.5 (AWG10) : b  
5.5 (AWG10) : b  
8 (AWG8) : c  
MR-J2S-500CP  
MR-J2S-700CP  
Note 1. For the crimping terminals and applicable tools, refer to table 14.2.  
2. 3.5mm2 for use of the HC-RFS203 servo motor.  
14 - 34  
14. OPTIONS AND AUXILIARY EQUIPMENT  
Use wires 6) of the following sizes with the power regeneration converter (FR-RC).  
Model  
Wires[mm2]  
FR-RC-15K  
14(AWG6)  
Table 14.2 Recommended crimping terminals  
Servo amplifier side crimping terminals  
Symbol  
Crimping terminal  
32959  
Applicable tool  
Manufacturer  
a
b
47387  
YNT-1210S  
Tyco Electronics  
EVD5.5-4  
Body YF-1 E-4  
Head YNE-38  
Die DH-111 DH-121  
Japan Solderless  
Terminal  
c
FVD8-5  
(2) Wires for cables  
When fabricating a cable, use the wire models given in the following table or equivalent.  
Table 14.3 Wires for option cables  
Characteristics of one core  
Conductor Insulation coating  
[Wires/mm] resistance[ /mm] ODd[mm] (Note 1)  
(Note 3)  
Finishing  
OD [mm]  
Length  
[m(ft)]  
Core size Number  
Type  
Model  
Wire model  
Structure  
[mm2]  
of Cores  
2 to 10  
(6.56 to 32.8)  
20 30  
12  
(6 pairs)  
12  
(6 pairs)  
12  
(6 pairs)  
14  
(7 pairs)  
UL20276 AWG#28  
6pair (BLACK)  
UL20276 AWG#22  
6pair (BLACK)  
(Note 2)  
0.08  
0.3  
7/0.127  
12/0.18  
40/0.08  
40/0.08  
7/0.127  
12/0.18  
40/0.08  
40/0.08  
40/0.08  
40/0.08  
7/0.127  
7/0.127  
222  
62  
0.38  
1.2  
5.6  
8.2  
7.2  
8.0  
4.7  
8.2  
6.5  
7.2  
6.5  
7.2  
4.6  
6.1  
MR-JCCBL M-L  
(65.6 98.4)  
2 5  
(6.56 16.4)  
10 to 50  
0.2  
105  
105  
222  
62  
0.88  
0.88  
0.38  
1.2  
A14B2343 6P  
(Note 2)  
MR-JCCBL M-H  
MR-JHSCBL M-L  
MR-JHSCBL M-H  
0.2  
(32.8 to 164)  
A14B0238 7P  
UL20276 AWG#28  
4pair (BLACK)  
UL20276 AWG#22  
6pair (BLACK)  
(Note 2)  
A14B2339 4P  
(Note 2)  
A14B2343 6P  
(Note 2)  
2 5  
(6.56 16.4)  
10 to 30  
8
0.08  
0.3  
(4 pairs)  
12  
(6 pairs)  
Encoder cable  
(32.8 to 98.4)  
2 5  
(6.56 16.4)  
10 to 50  
8
0.2  
105  
105  
105  
105  
222  
222  
0.88  
0.88  
0.88  
0.88  
0.38  
0.38  
(4 pairs)  
12  
(6 pairs)  
0.2  
(32.8 to 164)  
2 5  
(6.56 16.4)  
10 to 50  
8
0.2  
(4 pairs)  
12  
(6 pairs)  
A14B2339 4P  
(Note 2)  
MR-ENCBL M-H  
MR-CPCATCBL3M  
0.2  
(32.8 to 164)  
A14B2343 6P  
UL20276 AWG#28  
3pair (BLACK)  
UL20276 AWG#28  
10pair (CREAM)  
Communication  
cable  
6
3 (9.84)  
0.08  
0.08  
(3 pairs)  
20  
(10 pairs)  
0.5 to 5  
(1.64 to 16.4)  
Bus cable  
MR-J2HBUS  
M
Note 1. d is as shown below.  
d
Conductor Insulation sheath  
2. Purchased from Toa Electric Industry  
3. Standard OD. Max. OD is about 10% greater.  
14 - 35  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.2.2 Circuit breakers, fuses, magnetic contactors  
Always use one circuit breaker and one magnetic contactor with one servo amplifier. When using a fuse  
instead of the circuit breaker, use the one having the specifications given in this section.  
Fuse  
Servo amplifier  
Circuit breaker  
Magnetic contactor  
Class Current [A] Voltage [V]  
MR-J2S-10CP(1)  
MR-J2S-20CP  
30 frame 5A  
30 frame 5A  
30 frame 10A  
30 frame 15A  
30 frame 15A  
30 frame 15A  
30 frame 20A  
30 frame 30A  
50 frame 50A  
100 frame 75A  
K5  
K5  
K5  
K5  
K5  
K5  
K5  
K5  
K5  
K5  
10  
10  
MR-J2S-40CP 20CP1  
MR-J2S-60CP 40CP1  
MR-J2S-70CP  
15  
S-N10  
20  
20  
250AC  
MR-J2S-100CP  
MR-J2S-200CP  
MR-J2S-350CP  
MR-J2S-500CP  
MR-J2S-700CP  
25  
40  
70  
S-N18  
S-N20  
S-N35  
S-N50  
125  
150  
14.2.3 Power factor improving reactors  
The input power factor is improved to be about 90%. For use with a 1-phase power supply, it may be  
slightly lower than 90%.  
Servo amplifier  
FR-BAL  
FR-BAL  
FR-BAL  
[Unit : mm]  
([Unit : in.])  
MR-J2S- CP  
MC  
MC  
MC  
NFB  
R
S
T
X
Y
Z
L1  
3-phase  
200 to 230VAC  
L2  
L3  
Servo amplifier  
MR-J2S- CP  
NFB  
R
S
T
X
Y
Z
D1  
W
L1  
L2  
L3  
(Note)  
1-phase  
230VAC  
Installation screw  
RXSYT Z  
W1  
Servo amplifier  
MR-J2S- CP  
C
NFB  
R
S
T
X
Y
Z
1-phase  
100 to120VAC  
L1  
L2  
Note. Connect a 1-phase 230VAC power supply to L1/L2 and keep L3 open.  
14 - 36  
14. OPTIONS AND AUXILIARY EQUIPMENT  
Dimensions [mm (in) ]  
Mounting Terminal  
screw size screw size  
Mass  
Servo amplifier  
Model  
[kg (lb)]  
W
W1  
H
D
D1  
45  
(1.77  
57  
(2.24  
55  
(2.17  
75  
(2.95  
70  
(2.76  
100  
(3.94  
100  
(3.94  
110  
C
MR-J2S-10CP(1)/20CP FR-BAL-0.4K  
135 (5.31) 120 (4.72) 115 (4.53) 59 (2.32)  
7.5 (0.29)  
M4  
M4  
M4  
M4  
M5  
M5  
M6  
M6  
M3.5  
M3.5  
M3.5  
M3.5  
M4  
2.0 (4.4)  
2.8 (6.17)  
3.7 (8.16)  
5.6 (12.35)  
8.5 (18.74)  
14.5 (32.0)  
19 (41.9)  
)
)
)
)
)
)
)
)
MR-J2S-40CP/20CP1 FR-BAL-0.75K 135 (5.31) 120 (4.72) 115 (4.53) 69 (2.72)  
MR-J2S-60CP/ 70CP/  
7.5 (0.29)  
7.5 (0.29)  
7.5 (0.29)  
10 (0.39)  
10 (0.39)  
12.5 (0.49)  
12.5 (0.49)  
FR-BAL-1.5K  
FR-BAL-2.2K  
FR-BAL-3.7K  
FR-BAL-7.5K  
FR-BAL-11K  
FR-BAL-15K  
160 (6.30) 145 (5.71) 140 (5.51) 71 (2.79)  
160 (6.30) 145 (5.71) 140 (5.51) 91 (3.58)  
220 (8.66) 200 (7.87) 192 (7.56) 90 (3.54)  
220 (8.66) 200 (7.87) 194 (7.64) 120 (4.72)  
280 (11.02) 255 (10.04) 220 (8.66) 135 (5.31)  
295 (11.61) 270 (10.62) 275 (10.83) 133 (5.24)  
40CP1  
MR-J2S-100CP  
MR-J2S-200CP  
MR-J2S-350CP  
MR-J2S-500CP  
MR-J2S-700CP  
M5  
M6  
M6  
27 (59.5)  
(4.33  
14.2.4 Relays  
The following relays should be used with the interfaces.  
Interface  
Selection example  
Relay used for input signals (interface DI-1) signals  
To prevent defective contacts , use a relay for small signal  
(twin contacts).  
(Ex.) Omron : type G2A , MY  
Relay used for digital output signals (interface DO-1)  
Small relay with 12VDC or 24VDC of 40mA or less  
(Ex.) Omron : type MY  
14.2.5 Surge absorbers  
A surge absorber is required for the electromagnetic brake. Use the following surge absorber or equivalent.  
Insulate the wiring as shown in the diagram.  
Maximum rating  
Static  
capacity  
(reference  
value)  
Maximum  
limit voltage  
Varistor voltage  
rating (range) V1mA  
Permissible circuit  
voltage  
Surge  
immunity  
Energy  
immunity  
Rated  
power  
AC[Vma]  
140  
DC[V]  
180  
[A]  
[J]  
5
[W]  
0.4  
[A]  
25  
[V]  
[pF]  
[V]  
220  
(Note)  
360  
300  
500/time  
(198 to 242)  
Note. 1 time  
8
20 s  
(Example) ERZV10D221 (Matsushita Electric Industry)  
TNR-10V221K (Nippon chemi-con)  
Outline drawing [mm] ( [in] ) (ERZ-C10DK221)  
13.5 (0.53)  
4.7 1.0 (0.19 0.04)  
Vinyl tube  
Crimping terminal  
for M4 screw  
0.8 (0.03)  
14 - 37  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.2.6 Noise reduction techniques  
Noises are classified into external noises which enter the servo amplifier to cause it to malfunction and  
those radiated by the servo amplifier to cause peripheral devices to malfunction. Since the servo amplifier  
is an electronic device which handles small signals, the following general noise reduction techniques are  
required.  
Also, the servo amplifier can be a source of noise as its outputs are chopped by high carrier frequencies. If  
peripheral devices malfunction due to noises produced by the servo amplifier, noise suppression measures  
must be taken. The measures will vary slightly with the routes of noise transmission.  
(1) Noise reduction techniques  
(a) General reduction techniques  
Avoid laying power lines (input and output cables) and signal cables side by side or do not bundle  
them together. Separate power lines from signal cables.  
Use shielded, twisted pair cables for connection with the encoder and for control signal  
transmission, and connect the shield to the SD terminal.  
Ground the servo amplifier, servo motor, etc. together at one point (refer to section 3.10).  
(b) Reduction techniques for external noises that cause the servo amplifier to malfunction  
If there are noise sources (such as a magnetic contactor, an electromagnetic brake, and many  
relays which make a large amount of noise) near the servo amplifier and the servo amplifier may  
malfunction, the following countermeasures are required.  
Provide surge absorbers on the noise sources to suppress noises.  
Attach data line filters to the signal cables.  
Ground the shields of the encoder connecting cable and the control signal cables with cable clamp  
fittings.  
Although a surge absorber is built into the servo amplifier, to protect the servo amplifier and  
other equipment against large exogenous noise and lightning surge, attaching a varistor to the  
power input section of the equipment is recommended.  
14 - 38  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(c) Techniques for noises radiated by the servo amplifier that cause peripheral devices to malfunction  
Noises produced by the servo amplifier are classified into those radiated from the cables connected  
to the servo amplifier and its main circuits (input and output circuits), those induced  
electromagnetically or statically by the signal cables of the peripheral devices located near the  
main circuit cables, and those transmitted through the power supply cables.  
Noise radiated directly  
from servo amplifier  
Noises produced  
by servo amplifier  
Noises transmitted  
in the air  
Route 1)  
Route 2)  
Route 3)  
Noise radiated from the  
power supply cable  
Noise radiated from  
servo motor cable  
Magnetic induction  
noise  
Routes 4) and 5)  
Static induction  
noise  
Route 6)  
Noises transmitted  
through electric  
channels  
Noise transmitted through  
power supply cable  
Route 7)  
Route 8)  
Noise sneaking from  
grounding cable due to  
leakage current  
5)  
7)  
7)  
2)  
1)  
7)  
Sensor  
power  
supply  
Servo  
amplifier  
2)  
Instrument  
Receiver  
3)  
8)  
6)  
Sensor  
4)  
3)  
Servo motor  
M
14 - 39  
14. OPTIONS AND AUXILIARY EQUIPMENT  
Noise transmission route  
Suppression techniques  
When measuring instruments, receivers, sensors, etc. which handle weak signals and may  
malfunction due to noise and/or their signal cables are contained in a control box together with the  
servo amplifier or run near the servo amplifier, such devices may malfunction due to noises  
transmitted through the air. The following techniques are required.  
1. Provide maximum clearance between easily affected devices and the servo amplifier.  
2. Provide maximum clearance between easily affected signal cables and the I/O cables of the servo  
amplifier.  
1) 2) 3)  
3. Avoid laying the power lines (Input cables of the servo amplifier) and signal cables side by side or  
bundling them together.  
4. Insert a line noise filter to the I/O cables or a radio noise filter on the input line.  
5. Use shielded wires for signal and power cables or put cables in separate metal conduits.  
When the power lines and the signal cables are laid side by side or bundled together, magnetic  
induction noise and static induction noise will be transmitted through the signal cables and  
malfunction may occur. The following techniques are required.  
1. Provide maximum clearance between easily affected devices and the servo amplifier.  
2. Provide maximum clearance between easily affected signal cables and the I/O cables of the servo  
amplifier.  
4) 5) 6)  
3. Avoid laying the power lines (Input cables of the servo amplifier) and signal cables side by side or  
bundling them together.  
4. Use shielded wires for signal and power cables or put the cables in separate metal conduits.  
When the power supply of peripheral devices is connected to the power supply of the servo  
amplifier system, noises produced by the servo amplifier may be transmitted back through the  
power supply cable and the devices may malfunction. The following techniques are required.  
1. Insert the radio noise filter (FR-BIF) on the power cables (Input cables) of the servo amplifier.  
2. Insert the line noise filter (FR-BSF01 FR-BLF) on the power cables of the servo amplifier.  
When the cables of peripheral devices are connected to the servo amplifier to make a closed loop  
circuit, leakage current may flow to malfunction the peripheral devices. If so, malfunction may be  
prevented by disconnecting the grounding cable of the peripheral device.  
7)  
8)  
(2) Noise reduction products  
(a) Data line filter  
Noise can be prevented by installing a data line filter onto the encoder cable, etc.  
For example, the ZCAT3035-1330 of TDK and the ESD-SR-25 of NEC Tokin make are available as  
data line filters.  
As a reference example, the impedance specifications of the ZCAT3035-1330 (TDK) are indicated  
below.  
This impedances are reference values and not guaranteed values.  
[Unit: mm]([Unit: in.])  
Impedance[ ]  
10 to 100MHz  
80  
100 to 500MHz  
150  
39 1(1.54 0.04)  
Loop for fixing the  
cable band  
34 1  
(1.34 0.04)  
TDK  
Product name Lot number  
Outline drawing (ZCAT3035-1330)  
14 - 40  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Surge suppressor  
The recommended surge suppressor for installation to an AC relay, AC valve, AC electromagnetic  
brake or the like near the servo amplifier is shown below. Use this product or equivalent.  
MC  
Relay  
Surge suppressor  
Surge suppressor  
Surge suppressor  
This distance should be short  
(within 20cm(0.79 in.)).  
(Ex.) 972A.2003 50411  
(Matsuo Electric Co., Ltd. 200VAC rating)  
Rated  
voltage  
AC[V]  
Outline drawing [Unit: mm] ([Unit: in.])  
C [ F] R [  
]
Test voltage AC[V]  
Vinyl sheath  
18 1.5  
(0.71 0.06)  
Blue vinyl cord  
Red vinyl cord  
50  
(1W)  
Across  
6(0.24)  
200  
0.5  
T-C 1000(1 to 5s)  
10(0.39)or less  
15 1(0.59 0.04)  
10(0.39)or less  
4(0.16)  
10 3  
(0.39  
0.12)  
10 3  
31(1.22)  
(0.39  
0.15)  
200(7.87)  
200(7.87)  
48 1.5  
or more (1.89 0.06) or more  
Note that a diode should be installed to a DC relay, DC valve or  
the like.  
RA  
Maximum voltage: Not less than 4 times the drive voltage of  
the relay or the like  
Diode  
Maximum current: Not less than twice the drive current of  
the relay or the like  
(c) Cable clamp fitting (AERSBAN- SET)  
Generally, the earth of the shielded cable may only be connected to the connector's SD terminal.  
However, the effect can be increased by directly connecting the cable to an earth plate as shown  
below.  
Install the earth plate near the servo amplifier for the encoder cable. Peel part of the cable sheath  
to expose the external conductor, and press that part against the earth plate with the cable clamp.  
If the cable is thin, clamp several cables in a bunch.  
The clamp comes as a set with the earth plate.  
Cable  
Cable clamp  
Earth plate  
(A,B)  
Strip the cable sheath of  
the clamped area.  
cutter  
cable  
External conductor  
Clamp section diagram  
14 - 41  
14. OPTIONS AND AUXILIARY EQUIPMENT  
Outline drawing  
[Unit: mm]  
([Unit: in.])  
Earth plate  
Clamp section diagram  
2- 5(0.20) hole  
installation hole  
17.5(0.69)  
L or less  
10(0.39)  
22(0.87)  
6
(Note)M4 screw  
35(1.38)  
(0.24)  
Note:Screw hole for grounding. Connect it to the earth plate of the control box.  
Type  
A
B
C
Accessory fittings  
Clamp fitting  
L
100  
86  
30  
70  
AERSBAN-DSET  
clamp A: 2pcs.  
A
(3.94) (3.39) (1.18)  
70 56  
(2.76) (2.20)  
(2.76)  
45  
AERSBAN-ESET  
clamp B: 1pc.  
B
(1.77)  
14 - 42  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(d) Line noise filter (FR-BLF, FR-BSF01)  
This filter is effective in suppressing noises radiated from the power supply side and output side of  
the servo amplifier and also in suppressing high-frequency leakage current (zero-phase current)  
especially within 0.5MHz to 5MHz band.  
Connection diagram  
Outline drawing [Unit: mm] ([Unit: in.])  
Use the line noise filters for wires of the main power supply  
FR-BSF01(for MR-J2S-200CP or less)  
Approx.110(4.33)  
(L1 L2  
L3) and of the motor power supply (U  
V
W). Pass  
each of the 3-phase wires through the line noise filter an equal  
number of times in the same direction. For the main power supply,  
the effect of the filter rises as the number of passes increases, but  
generally four passes would be appropriate. For the motor power  
supply, passes must be four times or less. Do not pass the  
grounding (earth) wire through the filter, or the effect of the filter  
will drop. Wind the wires by passing through the filter to satisfy the  
required number of passes as shown in Example 1. If the wires  
are too thick to wind, use two or more filters to have the required  
number of passes as shown in Example 2. Place the line noise  
filters as close to the servo amplifier as possible for their best  
performance.  
2- 5(0.20)  
95 0.5(3.74 0.02)  
Approx.65 (2.56)  
33(1.30)  
Example 1  
NFB MC  
Servo amplifier  
Power  
supply  
L1  
L2  
L3  
FR-BLF (MR-J2S-350CP or more)  
7(0.28)  
Line noise  
filter  
(Number of turns: 4)  
130(5.12)  
85(3.35)  
Example 2  
MC  
NFB  
Servo amplifier  
Power  
supply  
L1  
L2  
L3  
160(6.30)  
180(7.09)  
Line noise  
filter  
Two filters are used  
(Total number of turns: 4)  
(e) Radio noise filter (FR-BIF)...for the input side only  
This filter is effective in suppressing noises radiated from the power supply side of the servo  
amplifier especially in 10MHz and lower radio frequency bands. The FR-BIF is designed for the  
input only.  
Connection diagram  
Outline drawing (Unit: mm) ([Unit: in.])  
Leakage current: 4mA  
Make the connection cables as short as possible.  
Grounding is always required.  
Red White Blue  
Green  
When using the FR-BIF with a single-phase wire,  
always insulate the wires that are not used for wiring.  
Servo amplifier  
NFB  
MC  
L1  
Power  
supply  
L2  
29 (1.14)  
5 (0.20)  
hole  
L3  
Radio noise  
filter FR-BIF  
29 (1.14)  
44 (1.73)  
58 (2.28)  
7 (0.28)  
14 - 43  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(f) Varistors for input power supply (Recommended)  
Varistors are effective to prevent exogenous noise and lightning surge from entering the servo  
amplifier. When using a varistor, connect it between each phase of the input power supply of the  
equipment. For varistors, the TND20V-431K and TND20V-471K, manufactured by NIPPON  
CHEMI-CON, are recommended. For detailed specification and usage of the varistors, refer to the  
manufacturer catalog.  
Maximum rating  
Static  
capacity  
(reference  
value)  
Varistor voltage  
rating (range)  
V1mA  
Maximum limit  
voltage  
Rated  
pulse  
power  
[W]  
Permissible circuit Surge current  
Energy  
Varistor  
voltage  
immunity  
immunity  
AC[Vrms]  
DC[V]  
350  
8/20 s[A]  
10000/1 time  
7000/2 time  
2ms[J]  
195  
[A]  
[V]  
710  
775  
[pF]  
1300  
1200  
[V]  
TND20V-431K  
TND20V-471K  
275  
300  
430(387 to 473)  
470(423 to 517)  
1.0  
100  
385  
215  
[Unit: mm]  
D
H
T
E
(Note)L  
min.  
d
W
D
T
Model  
Max.  
Max.  
Max.  
1.0  
0.05  
1.0  
TND20V-431K  
TND20V-471K  
6.4  
6.6  
3.3  
3.5  
21.5  
24.5  
20  
0.8  
10.0  
Note. For special purpose items for lead length (L), contact the manufacturer.  
W
E
d
14 - 44  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.2.7 Leakage current breaker  
(1) Selection method  
High-frequency chopper currents controlled by pulse width modulation flow in the AC servo circuits.  
Leakage currents containing harmonic contents are larger than those of the motor which is run with a  
commercial power supply.  
Select a leakage current breaker according to the following formula, and ground the servo amplifier,  
servo motor, etc. securely.  
Make the input and output cables as short as possible, and also make the grounding cable as long as  
possible (about 30cm (11.8 in)) to minimize leakage currents.  
Rated sensitivity current 10 {Ig1 Ign Iga K (Ig2 Igm)} [mA] ..........(14.1)  
K: Constant considering the harmonic contents  
Cable  
Leakage current breaker  
K
Type  
Mitsubishi products  
Noise  
filter  
NV  
NV-SP  
NV-SW  
NV-CP  
NV-CW  
NV-HW  
BV-C1  
NFB  
Servo  
amplifier  
Cable  
Ig2  
M
Models provided with  
harmonic and surge  
reduction techniques  
1
3
Ig1 Ign  
Iga  
Igm  
General models  
NV-L  
Ig1:  
Ig2:  
Leakage current on the electric channel from the leakage current breaker to the input terminals  
of the servo amplifier (Found from Fig. 14.1.)  
Leakage current on the electric channel from the output terminals of the servo amplifier to the  
servo motor (Found from Fig. 14.1.)  
Ign:  
Iga:  
Igm:  
Leakage current when a filter is connected to the input side (4.4mA per one FR-BIF)  
Leakage current of the servo amplifier (Found from Table 14.5.)  
Leakage current of the servo motor (Found from Table 14.4.)  
Table 14.4 Servo motor's  
leakage current  
Table 14.5 Servo amplifier's  
leakage current  
120  
100  
80  
60  
40  
20  
0
example (Igm)  
example (Iga)  
Servo motor  
output [kW]  
Leakage  
current [mA]  
Servo amplifier  
Leakage  
capacity [kW]  
current [mA]  
0.05 to 0.5  
0.6 to 1.0  
1.2 to 2.2  
3 to 3.5  
5
0.1  
0.1  
0.2  
0.3  
0.5  
0.7  
0.1 to 0.6  
0.1  
0.15  
2
0.7 to 3.5  
5
7
[mA]  
7
Table 14.6 Leakage circuit breaker selection example  
Rated sensitivity  
2
3.5 8 1422 38 80 150  
5.5 30 60 100  
Cable size[mm2]  
Servo amplifier  
current of leakage  
circuit breaker [mA]  
Fig. 14.1 Leakage current example  
(Ig1, Ig2) for CV cable run  
in metal conduit  
MR-J2S-10CP to MR-J2S-350CP  
MR-J2S-10CP1 to MR-J2S-40CP1  
MR-J2S-500CP  
15  
30  
50  
MR-J2S-700CP  
14 - 45  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Selection example  
Indicated below is an example of selecting a leakage current breaker under the following conditions.  
2mm2 5m(196.85inch)  
2mm2 5m(196.85inch)  
NV  
Servo  
amplifier  
M
HC-MFS73  
MR-J2S-60CP  
Ig1  
Iga  
Ig2  
Igm  
Use a leakage current breaker designed for suppressing harmonics/surges.  
Find the terms of Equation (14.1) from the diagram.  
5
1000  
Ig1  
Ig2  
20  
20  
0.1 [mA]  
0.1 [mA]  
5
1000  
Ign 0 (not used)  
Iga 0.1 [mA]  
Igm 0.1 [mA]  
Insert these values in Equation (14.1).  
Ig 10 {0.1 0 0.1 1 (0.1 0.1)}  
4 [mA]  
According to the result of calculation, use a leakage current breaker having the rated sensitivity  
current (Ig) of 4[mA] or more. A leakage current breaker having Ig of 15[mA] is used with the NV-  
SP/CP/ SW/CW/HW series.  
14 - 46  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.2.8 EMC filter  
For compliance with the EMC Directive of the EN Standard, it is recommended to use the following filter.  
Some EMC filters are large in leakage current.  
(1) Combination with the servo amplifier  
Recommended filter  
Servo amplifier  
Mass [kg]([lb])  
Model  
Leakage current [mA]  
MR-J2S-10CP to MR-J2S-100CP  
MR-J2S-10CP1 to MR-J2S-40CP1  
MR-J2S-200CP MR-J2S-350CP  
MR-J2S-500CP  
SF1252  
38  
0.75 (1.65)  
SF1253  
57  
1.5  
1.5  
1.37 (1.65)  
5.5 (12.13)  
6.7 (14.77)  
(Note) HF-3040A-TM  
(Note) HF-3050A-TM  
MR-J2S-700CP  
Note. Soshin Electric. A surge protector is separately required to use any of these EMC filters. (Refer to the EMC Installation  
Guidelines.)  
(2) Connection example  
EMC filter  
EMC filter  
(SOSHIN Electric Co., Ltd)  
(SF1252, SF1253)  
Servo amplifier  
Servo amplifier  
NFB  
NFB  
MC  
MC  
LINE  
LOAD  
L1  
L2  
L3  
L1  
L2  
L3  
L1  
L2  
L3  
L1  
L2  
L3  
1
2
3
4
5
6
E
(Note 1)  
Power  
supply  
(Note 1)  
Power  
supply  
(Note 2)  
L11  
L21  
L11  
L21  
1
2
3
Surge protector 1  
(RAV-781BYZ-2)  
(OKAYA Electric Industries  
Co., Ltd.)  
Surge protector 2  
(RAV-781BXZ-4)  
1 2 3  
(OKAYA Electric Industries Co., Ltd.)  
Note 1. For 1-phase 230VAC power supply, connect the power supply to L1,L2 and leave L3 open.  
There is no L3 for 1-phase 100 to 120VAC power supply. Refer to section 1.2 for the power supply specification.  
2. Connect when the power supply has earth.  
14 - 47  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outline drawing  
(a) EMC filter  
[Unit: mm(in)]  
6.0(0.236)  
SF1252  
SF1253  
6.0(0.236)  
LINE  
149.5(5.886)  
209.5(8.248)  
L1  
L2  
L3  
L1  
L2  
L3  
LINE  
(input side)  
(input side)  
L1'  
L2'  
L3'  
L1'  
L2'  
L3'  
LOAD  
(output side)  
LOAD  
(output side)  
8.5  
(0.335)  
16.0(0.63)  
23.0(0.906)  
8.5  
(0.335)  
42.0  
49.0  
(1.654)  
(1.929)  
HF3040-TM HF-3050A-TM  
6-K  
3-L  
3-L  
M
J
2
C
1
C
1
H
2
B
A
2
5
Dimensions [mm(in)]  
Model  
A
B
C
D
E
F
G
H
J
K
L
M
260  
210  
85  
155  
140  
125  
(4.92)  
160  
44  
140  
70  
HF3040A-TM  
HF3050A-TM  
M5  
M6  
M4  
R3.25,  
length 8  
(10.23) (8.27)  
290 240  
(11.42) (9.45)  
(3.35)  
100  
(6.10)  
190  
(5.51)  
175  
(1.73)  
44  
(5.51)  
170  
(2.76)  
100  
M4  
(3.94)  
(7.48)  
(6.89)  
(6.30)  
(1.73)  
(5.51)  
(3.94)  
14 - 48  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Surge protector  
[Unit: mm]  
RAV-781BYZ-2  
1)  
2)  
3)  
Black Black Black  
4.2 0.2  
UL-1015AWG16  
1
2
3
41 1.0  
[Unit: mm]  
RAV-781BXZ-4  
1)  
2)  
3)  
4)  
4.2 0.2  
UL-1015AWG16  
1
2
3
41 1.0  
14 - 49  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.2.9 Setting potentiometers for analog inputs  
The following variable resistors are available for use with analog inputs.  
(1) Single-revolution type  
WA2WYA2SEBK2K (Japan Resistor make)  
Resistance  
tolerance  
Dielectric strength  
(for 1 minute)  
Insulation  
resistance  
Mechanical  
rotary angle  
Rated power Resistance  
2W 2k  
Rotary torque  
10%  
700V A.C  
100M or more  
300  
5
10 to 100g-cm or less  
Connection diagram  
Outline dimension drawing  
Panel hole machining diagram  
[Unit: mm (in)]  
[Unit: mm (in)]  
20 (0.79)  
2.5 (0.10)  
25 (0.98)  
10 (0.39)  
30 (1.18)  
2.8 (0.11)  
3.6 (0.14) hole  
10 (0.37) hole  
1.6 (0.06)  
1
2
3
M9 0.75 (0.03)  
3
(0.08)  
3- 1.54 (0.56) hole  
1
3
2
(2) Multi-revolution type  
Position meter: RRS10M202 (Japan Resistor make)  
Analog dial: 23M (Japan Resistor make)  
Resistance  
tolerance  
Dielectric strength  
(for 1 minute)  
Insulation  
resistance  
Mechanical  
Rotary torque  
rotary angle  
Rated power Resistance  
10  
0
1W 2k  
10%  
700V A.C  
1000M or more  
3600  
100g-cm or less  
Connection diagram  
Panel hole machining diagram  
1
3
[Unit: mm (in)]  
Panel thickness: 2 to 6 (0.08 to 0.24)  
CW  
2
9 (0.35) hole  
2.1 (0.08) hole  
Outline dimension drawing  
RRS10M202  
23M  
[Unit: mm (in)]  
12.5 (0.49)  
[Unit: mm (in)]  
1)  
15 (0.59)  
2)  
3)  
30  
3)  
1)  
2)  
M9 0.75 (0.03)  
12 (0.47)  
6 (0.24)  
1.2  
(0.05)  
20.5  
(0.81)  
7.5  
(0.3)  
23 (0.91)  
L
14 - 50  
15. COMMUNICATION FUNCTIONS  
15. COMMUNICATION FUNCTIONS  
This servo amplifier has the RS-422 and RS-232C serial communication functions. These functions can be  
used to perform servo operation, parameter changing, monitor function, etc.  
However, the RS-422 and RS-232C communication functions cannot be used together. Select between RS-  
422 and RS-232C with parameter No.16. (Refer to section 15.2.2.)  
15.1 Configuration  
15.1.1 RS-422 configuration  
(1) Outline  
Up to 32 axes of servo amplifiers from stations 0 to 31 can be operated on the same bus.  
Servo amplifier  
Servo amplifier  
Servo amplifier  
MITSUBISHI  
MITSUBISHI  
MITSUBISHI  
Controller such as  
personal computer  
CHARGE  
CHARGE  
CHARGE  
To CN3  
To CN3  
To CN3  
RS-232C/  
RS-422  
converter  
Axis 1 (Station 0)  
Axis 2 (Station 1)  
RS-422  
Axis 32 (Station 31)  
Unavailable as option.  
To be prepared by customer.  
(2) Cable connection diagram  
Wire as shown below.  
(Note 3) 30m (98.4ft) or less  
(Note 1)  
Axis 32 (last axis)  
(Note 1)  
(Note 1)  
servo amplifier  
CN3 connector  
Axis 1 servo amplifier  
CN3 connector  
Axis 2 servo amplifier  
CN3 connector  
Plate  
9
SD  
Plate  
9
Plate SD  
SD  
SDP  
SDN  
RDP  
RDN  
TRE  
LG  
9
19  
5
SDP  
SDN  
RDP  
RDN  
TRE  
LG  
SDP  
SDN  
RDP  
RDN  
TRE  
LG  
19  
5
19  
5
15  
10  
11  
1
15  
10  
11  
1
15  
10  
11  
1
(Note 2)  
LG  
LG  
LG  
RS-422  
output unit  
RDP  
RDN  
SDP  
SDN  
GND  
GND  
Note 1. Connector set MR-J2CN1 (3M)  
Connector: 10120-3000PE  
Shell kit: 10320-52F0-008  
2. In the last axis, connect TRE and RDN.  
3. 30m (98.4ft) or less in environment of little noise.  
15 - 1  
15. COMMUNICATION FUNCTIONS  
15.1.2 RS-232C configuration  
(1) Outline  
A single axis of servo amplifier is operated.  
Servo amplifier  
MITSUBISHI  
CHARGE  
To CN3  
RS-232C  
Controller such as  
personal computer  
(2) Cable connection diagram  
Wire as shown below. The communication cable for connection with the personal computer (MR-  
CPCATCBL3M) is available. (Refer to section 14.1.4.)  
(Note 1)  
Servo amplifier  
CN3 connector  
(Note 2) 15m (49.2ft) or less  
Personal computer  
connector D-SUB9 (socket)  
Plate  
2
FG  
RXD  
GND  
TXD  
GND  
3
TXD  
1
12  
11  
2
5
7
8
6
4
RXD  
GND  
RTS  
CTS  
DSR  
DTR  
Note 1. Connector set MR-J2CN1 (3M)  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
2. 15m (49.2ft) or less in environment of little noise. However, this distance should be 3m (9.84ft) or less for use at 38400bps  
or more baud rate.  
15 - 2  
15. COMMUNICATION FUNCTIONS  
15.2 Communication specifications  
15.2.1 Communication overview  
This servo amplifier is designed to send a reply on receipt of an instruction. The device which gives this  
instruction (e.g. personal computer) is called a master station and the device which sends a reply in  
response to the instruction (servo amplifier) is called a slave station. When fetching data successively, the  
master station repeatedly commands the slave station to send data.  
Item  
Baud rate  
Description  
9600/19200/38400/57600 asynchronous system  
Start bit  
Data bit  
Parity bit  
Stop bit  
: 1 bit  
: 8 bits  
: 1 bit (even)  
: 1 bit  
Transfer code  
Transfer protocol Character system, half-duplex communication system  
(LSB)  
0
(MSB)  
7
Next  
start  
Start  
Parity  
Stop  
1
2
3
4
5
6
Data  
1 frame (11bits)  
15 - 3  
15. COMMUNICATION FUNCTIONS  
15.2.2 Parameter setting  
When the RS-422/RS-232C communication function is used to operate the servo, set the communication  
specifications of the servo amplifier in the corresponding parameters.  
After setting the values of these parameters, they are made valid by switching power off once, then on  
again.  
(1) Serial communication baud rate  
Choose the communication speed. Match this value to the communication speed of the sending end  
(master station).  
Parameter No. 16  
Communication baud rate  
0: 9600[bps]  
1: 19200[bps]  
2: 38400[bps]  
3: 57600[bps]  
(2) Serial communication selection  
Select the RS-422 or RS-232C communication standard. RS-422 and RS-232C cannot be used together.  
Parameter No. 16  
Serial communication standard selection  
0: RS-232C used  
1: RS-422 used  
(3) Serial communication response delay time  
Set the time from when the servo amplifier (slave station) receives communication data to when it  
sends back data. Set "0" to send back data in less than 800 s or "1" to send back data in 800 s or more.  
Parameter No. 16  
Serial communication response delay time  
0: Invalid  
1: Valid, reply sent in 800 s or more  
(4) Station number setting  
Set the station number of the servo amplifier in parameter No. 15. The setting range is stations 0 to  
31.  
(5) Protocol station number selection  
When communication is made without setting station numbers to servo amplifiers, choose "no station  
numbers" in parameter No. 57. The communication protocol will be free of station numbers.  
Parameter No. 57  
Protocol station number selection  
0: With station numbers  
1: No station numbers  
15 - 4  
15. COMMUNICATION FUNCTIONS  
15.3 Protocol  
POINT  
Whether station number setting will be made or not must be selected if  
the RS-232C communication function is used. Note that choosing "no  
station numbers" in parameter No. 57 will make the communication  
protocol free of station numbers.  
Since up to 32 axes may be connected to the bus, add a station number or group to the command, data  
No., etc. to determine the destination servo amplifier of data communication. Set the station number to  
each servo amplifier using the parameter and set the group to each station using the communication  
command. Transmission data is valid for the servo amplifier of the specified station number or group.  
When " " is set as the station number added to the transmission data, the transmission data is made  
*
valid for all servo amplifiers connected. However, when return data is required from the servo amplifier  
in response to the transmission data, set "0" to the station number of the servo amplifier which must  
provide the return data.  
(1) Transmission of data from the controller to the servo  
10 frames (data)  
S
O
H
S
T
X
E
T
X
Controller side  
(Master station)  
Data  
No.  
Check  
sum  
Station number  
Data*  
or  
group  
S
T
X
E
T
X
Servo side  
(Slave station)  
Station number  
Check  
sum  
or  
group  
6 frames  
Positive response: Error code  
A
Negative response: Error code other than A  
(2) Transmission of data request from the controller to the servo  
10 frames  
S
O
H
S
T
X
E
T
X
Data  
No.  
Check  
sum  
Station number  
Controller side  
(Master station)  
or  
group  
S
T
X
E
T
X
Station number  
Check  
sum  
Servo side  
(Slave station)  
Data*  
or  
group  
6 frames (data)  
15 - 5  
15. COMMUNICATION FUNCTIONS  
(3) Recovery of communication status by time-out  
EOT causes the servo to return to  
the receive neutral status.  
E
O
T
Controller side  
(Master station)  
Servo side  
(Slave station)  
(4) Data frames  
The data length depends on the command.  
or  
Data  
Data  
or 12 frames or 16 frames  
4 frames  
8 frames  
15 - 6  
15. COMMUNICATION FUNCTIONS  
15.4 Character codes  
(1) Control codes  
Hexadecimal  
Personal computer terminal key operation  
(General)  
Code name  
Description  
(ASCII code)  
SOH  
STX  
ETX  
EOT  
01H  
02H  
03H  
04H  
start of head  
start of text  
ctrl  
ctrl  
ctrl  
ctrl  
A
B
C
D
end of text  
end of transmission  
(2) Codes for data  
ASCII codes are used.  
b
8
b
7
b
6
b
5
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
b to  
C
8
b
4
b
3
b
2
b
1
0
1
2
3
4
5
6
7
b
R
5
0
0
0
0
0
NUL DLE Space  
0
1
2
3
4
5
6
7
8
9
:
@
A
B
C
D
E
F
G
H
I
P
Q
R
S
`
a
b
c
p
q
r
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
9
SOH DC  
STX DC  
ETX DC  
!
1
2
3
#
$
%
&
s
T
U
V
W
X
Y
Z
d
e
f
t
u
v
w
x
y
z
{
g
h
i
(
)
10  
11  
12  
13  
14  
15  
J
j
;
K
L
M
N
O
[
k
l
,
|
}
]
m
n
o
_
.
/
^
_
?
DEL  
(3) Station numbers  
You may set 32 station numbers from station 0 to station 31 and the ASCII unit codes are used to  
specify the stations.  
Station number  
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
A
11  
B
12  
C
13  
D
14  
E
15  
F
ASCII code  
Station number  
16  
G
17  
H
18  
I
19  
J
20  
K
21  
L
22  
M
23  
N
24  
O
25  
P
26  
Q
27  
R
28  
S
29  
T
30  
U
31  
V
ASCII code  
For example, "30H" is transmitted in hexadecimal for the station number of "0" (axis 1).  
(4) Group  
Group  
ASCII code  
a
a
b
b
c
c
d
d
e
e
f
f
All group  
For example, "61H" is transmitted in hexadecimal for group a.  
15 - 7  
15. COMMUNICATION FUNCTIONS  
15.5 Error codes  
Error codes are used in the following cases and an error code of single-code length is transmitted.  
On receipt of data from the master station, the slave station sends the error code corresponding to that  
data to the master station.  
The error code sent in upper case indicates that the servo is normal and the one in lower case indicates  
that an alarm occurred.  
Error code  
Error name  
Description  
Remarks  
Servo normal  
Servo alarm  
[A]  
[B]  
[C]  
[a]  
[b]  
[c]  
Normal operation  
Parity error  
Data transmitted was processed properly.  
Parity error occurred in the transmitted data.  
Checksum error occurred in the transmitted data.  
Character not existing in the specifications was  
transmitted.  
Positive response  
Checksum error  
[D]  
[E]  
[F]  
[d]  
[e]  
[f]  
Character error  
Command error  
Data No. error  
Negative response  
Command not existing in the specifications was  
transmitted.  
Data No. not existing in the specifications was  
transmitted.  
15.6 Checksum  
The checksum is a ASCII-coded hexadecimal representing the lower two digits of the sum of ASCII-coded  
hexadecimal numbers up to ETX, with the exception of the first control code (STX or SOH).  
Station number  
(Example)  
or  
group  
S
T
X
E
T
X
[0] [A] [1] [2] [5] [F]  
[5] [2]  
02H 30H 41H 31H 32H 35H 46H 03H  
STX or  
SOH  
ETX Check  
30H 41H 31H 32H 35H 46H 03H  
152H  
Checksum range  
Lower 2 digits 52 is sent after conversion into ASCII code [5][2].  
15 - 8  
15. COMMUNICATION FUNCTIONS  
15.7 Time-out operation  
The master station transmits EOT when the slave station does not start reply operation (STX is not  
received) 300[ms] after the master station has ended communication operation. 100[ms] after that, the  
master station retransmits the message. Time-out occurs if the slave station does not answer after the  
master station has performed the above operation three times. (Communication error)  
100ms  
100ms  
100ms  
*Time-out  
300ms  
300ms  
300ms  
300ms  
E
O
T
E
O
T
E
O
T
Controller  
(Master station)  
Servo  
(Slave station)  
15.8 Retry operation  
When a fault occurs in communication between the master and slave stations, the error code in the  
response data from the slave station is a negative response code ([B] to [F], [b] to [f]). In this case, the  
master station retransmits the message which was sent at the occurrence of the fault (Retry operation). A  
communication error occurs if the above operation is repeated and results in the error three or more  
consecutive times.  
*Communication error  
Controller  
(Master station)  
Servo  
(Slave station)  
S
T
X
S
T
X
S
T
X
Station number  
Station number  
Station number  
or  
or  
or  
group  
group  
group  
Similarly, when the master station detects a fault (e.g. checksum, parity) in the response data from the  
slave station, the master station retransmits the message which was sent at the occurrence of the fault. A  
communication error occurs if the retry operation is performed three times.  
15 - 9  
15. COMMUNICATION FUNCTIONS  
15.9 Initialization  
After the slave station is switched on, it cannot reply to communication until the internal initialization  
processing terminates. Hence, at power-on, ordinary communication should be started after.  
(1) 1s or more time has elapsed after the slave station is switched on; and  
(2) Making sure that normal communication can be made by reading the parameter or other data which  
does not pose any safety problems.  
15.10 Communication procedure example  
The following example reads the set value of parameter No.2 "function selection 1" from the servo  
amplifier of station 0.  
Data item  
Station number  
Command  
Value  
0
Description  
Servo amplifier station 0  
Read command  
05  
Data No.  
02  
Parameter No.2  
Axis No. Command  
Data No.  
ETX  
Start  
Data [0] 0 5 STX 0 2 ETX  
Data make-up  
[0][0][5]  
[0][2]  
STX  
Checksum 30H 30H 35H 02H 30H 32H 03H FCH  
Checksum calculation and  
addition  
Transmission data SOH  
0 5 STX 0 2 ETX F C 46H 43H  
Master station slave station  
0
Addition of SOH to make  
up transmission data  
Data transmission  
Data receive  
Master station slave station  
No  
Is there receive data?  
Yes  
No  
300ms elapsed?  
Yes  
No  
3 consecutive times?  
Yes  
Master station slave station  
Yes  
Other than error code  
[A] [a]?  
100ms after EOT transmission  
No  
3 consecutive times?  
No  
Error processing  
Yes  
Receive data analysis  
Error processing  
End  
15 - 10  
15. COMMUNICATION FUNCTIONS  
15.11 Command and data No. list  
POINT  
If the command/data No. is the same, its data may be different from the  
interface and drive units and other servo amplifiers.  
15.11.1 Read commands  
(1) Status display (Command [0][1])  
Command Data No.  
Description  
Display item  
Current position  
Frame length  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[8][0]  
[8][1]  
[8][2]  
[8][3]  
[8][4]  
[8][5]  
[8][6]  
[8][7]  
[8][8]  
[8][9]  
[8][A]  
[8][B]  
[8][C]  
[8][D]  
[8][E]  
[8][F]  
[9][0]  
Status display data value and  
processing information  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
Command position  
Command remaining distance  
Point table No.  
Cumulative feedback pulses  
Servo motor speed  
Droop pulses  
Override  
Torque limit voltage  
Regenerative load ratio  
Effective load ratio  
Peak load ratio  
Instantaneous torque  
Within one-revolution position  
ABS counter  
Load inertia moment ratio  
Bus voltage  
(2) Parameter (Command [0][5])  
Command Data No.  
Description  
Frame length  
Current value of each parameter  
[0][0] to  
[5][A]  
[0][5]  
The decimal equivalent of the data No. value (hexadecimal) corresponds  
to the parameter number.  
8
(3) External I/O signals (Command [1][2])  
Command Data No.  
Description  
Frame length  
[1][2]  
[1][2]  
[1][2]  
[1][2]  
[1][2]  
[0][0]  
[4][0]  
[6][0]  
[8][0]  
[C][0]  
Input device statuses  
8
8
8
8
8
External input pin statuses  
Statuses of input devices switched on through communication  
Output device statuses  
External output pin statuses  
15 - 11  
15. COMMUNICATION FUNCTIONS  
(4) Alarm history (Command [3][3])  
Command Data No.  
Description  
Alarm occurrence sequence  
Most recent alarm  
Frame length  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[1][0]  
[1][1]  
[1][2]  
[1][3]  
[1][4]  
[1][5]  
[2][0]  
[2][1]  
[2][2]  
[2][3]  
[2][4]  
[2][5]  
Alarm number in alarm history  
4
4
4
4
4
4
8
8
8
8
8
8
First alarm in past  
Second alarm in past  
Third alarm in past  
Fourth alarm in past  
Fifth alarm in past  
Most recent alarm  
Alarm occurrence time in alarm  
history  
First alarm in past  
Second alarm in past  
Third alarm in past  
Fourth alarm in past  
Fifth alarm in past  
(5) Current alarm (Command [0][2] [3][5])  
Command Data No.  
Description  
Frame length  
[0][2]  
[0][0]  
Current alarm number  
4
Command Data No.  
Description  
Status display item  
Current position  
Frame length  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[8][0]  
[8][1]  
[8][2]  
[8][3]  
[8][4]  
[8][5]  
[8][6]  
[8][7]  
[8][8]  
[8][9]  
[8][A]  
[8][B]  
[8][C]  
[8][D]  
[8][E]  
[8][F]  
[9][0]  
Status display data value and  
processing information at alarm  
occurrence  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
Command position  
Command remaining distance  
Point table No.  
Cumulative feedback pulses  
Servo motor speed  
Droop pulses  
Override  
Torque limit voltage  
Regenerative load ratio  
Effective load ratio  
Peak load ratio  
Instantaneous torque  
Within one-revolution position  
ABS counter  
Load inertia moment ratio  
Bus voltage  
15 - 12  
15. COMMUNICATION FUNCTIONS  
(6) Point table/position data (Command [4][0])  
Command Data No.  
Description  
Frame length  
Position data read  
[0][1] to  
[4][0]  
The decimal equivalent of the data No. value (hexadecimal) corresponds  
to the Point table No.  
8
[1][F]  
(7) Point table/speed data (Command [5][0])  
Command Data No.  
Description  
Frame length  
Speed data read  
[0][1] to  
[5][0]  
The decimal equivalent of the data No. value (hexadecimal) corresponds  
to the Point table No.  
8
[1][F]  
(8) Point table/acceleration time constant (Command [5][4])  
Command Data No.  
Description  
Frame length  
Acceleration time constant read  
[0][1] to  
[5][4]  
The decimal equivalent of the data No. value (hexadecimal) corresponds  
to the Point table No.  
8
[1][F]  
(9) Point table/deceleration time constant (Command [5][8])  
Command Data No.  
Description  
Frame length  
Deceleration time constant read  
[0][1] to  
[5][8]  
The decimal equivalent of the data No. value (hexadecimal) corresponds  
to the Point table No.  
8
[1][F]  
(10) Point table/dwell (Command [6][0])  
Command Data No.  
Description  
Frame length  
Dwell read  
[0][1] to  
[6][0]  
The decimal equivalent of the data No. value (hexadecimal) corresponds  
to the Point table No.  
8
[1][F]  
(11) Point table/auxiliary function (Command [6][4])  
Command Data No.  
Description  
Frame length  
Auxiliary function read  
[0][1] to  
[6][4]  
The decimal equivalent of the data No. value (hexadecimal) corresponds  
to the Point table No.  
8
[1][F]  
(12) Group setting (Command [1][F])  
Command Data No.  
Description  
Description  
Frame length  
[1][F]  
[0][0]  
Reading of group setting value  
4
(13) Software version (Command [0][2])  
Command Data No.  
Frame length  
[0][2]  
[7][0]  
Software version  
16  
15 - 13  
15. COMMUNICATION FUNCTIONS  
15.11.2 Write commands  
(1) Status display (Command [8][1])  
Command Data No.  
Description  
Description  
Setting range Frame length  
1EA5  
[8][1]  
[0][0]  
Status display data clear  
4
(2) Parameter (Command [8][4])  
Command Data No.  
Setting range Frame length  
Each parameter write  
Depends on  
[0][0] to  
[5][A]  
[8][4]  
The decimal equivalent of the data No. value  
the parameter.  
8
(hexadecimal) corresponds to the parameter number.  
(3) External I/O signal (Command [9][2])  
Command Data No.  
Description  
Setting range Frame length  
Communication input device signal  
Refer to  
8
[9][2]  
[6][0]  
section 15.12.5  
(4) Alarm history (Command [8][2])  
Command Data No.  
Description  
Description  
Description  
Setting range Frame length  
[8][2]  
[2][0]  
Alarm history clear  
1EA5  
4
(5) Current alarm (Command [8][2])  
Command Data No.  
Setting range Frame length  
1EA5  
[8][2]  
[0][0]  
Alarm reset  
4
(6) Point table/position data (Command [C][0])  
Command Data No.  
Setting range Frame length  
Position data write  
[0][1] to  
999999 to  
[C][0]  
The decimal equivalent of the data No. value  
(hexadecimal) corresponds to the Point table No.  
999999  
8
[1][F]  
(7) Point table/speed data (Command [C][6])  
Command Data No.  
Description  
Setting range Frame length  
Speed data write  
[0][1] to  
0 to Permissible  
[C][6]  
The decimal equivalent of the data No. value  
(hexadecimal) corresponds to the Point table No.  
instantaneous  
speed  
8
[1][F]  
(8) Point table/acceleration time constant (Command [C][7])  
Command Data No.  
Description  
Setting range Frame length  
Acceleration time constant write  
0 to 20000  
8
[0][1] to  
[C][7]  
The decimal equivalent of the data No. value  
(hexadecimal) corresponds to the Point table No.  
[1][F]  
15 - 14  
15. COMMUNICATION FUNCTIONS  
(9) Point table/deceleration time constant (Command [C][8])  
Command Data No.  
Description  
Setting range Frame length  
Deceleration time constant write  
0 to 20000  
8
[0][1] to  
[C][8]  
The decimal equivalent of the data No. value  
(hexadecimal) corresponds to the Point table No.  
[1][F]  
(10) Point table/dwell (Command [C][A])  
Command Data No.  
Description  
Setting range Frame length  
Dwell write  
[0][1] to  
0 to 20000  
8
[C][A]  
The decimal equivalent of the data No. value  
(hexadecimal) corresponds to the Point table No.  
[1][F]  
(11) Point table/auxiliary function (Command [C][B])  
Command Data No.  
Description  
Setting range Frame length  
Auxiliary function write  
0, 1  
[0][1] to  
[C][B]  
The decimal equivalent of the data No. value  
(hexadecimal) corresponds to the Point table No.  
8
[1][F]  
(12) External input signal disable (Command [9][0])  
Command Data No. Description  
Setting range Frame length  
Turns off the input devices, external analog input signals  
and pulse train inputs with the exception of EMG, LSP and  
LSN, independently of the external ON/OFF statuses.  
Disables all output devices (DO).  
1EA5  
[9][0]  
[9][0]  
[9][0]  
[9][0]  
[0][0]  
[0][3]  
[1][0]  
[1][3]  
4
1EA5  
1EA5  
4
4
4
Enables the disabled input devices (DI), external analog  
input signals and pulse train inputs with the exception of  
EMG, LSP and LSN.  
Enables the disabled output devices (DO).  
1EA5  
(13) Operation mode selection (Command [8][B])  
Command Data No. Description  
Setting range Frame length  
Operation mode changing  
0000 to 0004  
0000: Exit from test operation mode  
0001: Jog operation  
[8][B]  
[0][0]  
4
0002: Positioning operation  
0003: Motor-less operation  
0004: Output signal (DO) forced output  
15 - 15  
15. COMMUNICATION FUNCTIONS  
(14) Data for test operation mode (Command [9][2] [A][0])  
Command Data No.  
Description  
Input signal for test operation  
Setting range Frame length  
[9][2]  
[0][0]  
Refer to  
section 15.12.7  
Refer to  
8
[9][2]  
[A][0]  
Forced output from signal pin  
8
section 15.12.9  
Command Data No.  
Description  
Setting range Frame length  
Writes the speed of the test operation mode (jog operation,  
positioning operation).  
0000 to 7FFF  
4
[A][0]  
[A][0]  
[A][0]  
[A][0]  
[A][0]  
[1][0]  
[1][1]  
[1][2]  
[1][3]  
[1][5]  
Writes the acceleration/deceleration time constant of the  
test operation mode (jog operation, positioning operation).  
Clears the acceleration/deceleration time constant of the  
test operation mode (jog operation, positioning operation).  
Writes the moving distance (in pulses) of the test operation  
mode (jog operation, positioning operation).  
00000000 to  
8
7FFFFFFF  
1EA5  
4
80000000 to  
8
7FFFFFFF  
Temporary stop command of the test operation mode (jog  
operation, positioning operation)  
1EA5  
4
(15) Group setting (Command [9][F])  
Command Data No.  
Description  
Setting range Frame length  
[9][F]  
[0][0]  
Setting of group  
a to f  
4
15 - 16  
15. COMMUNICATION FUNCTIONS  
15.12 Detailed explanations of commands  
15.12.1 Data processing  
When the master station transmits a command data No. or a command data No. data to a slave  
station, the servo amplifier returns a reply or data according to the purpose.  
When numerical values are represented in these send data and receive data, they are represented in  
decimal, hexadecimal, etc.  
Therefore, data must be processed according to the application.  
Since whether data must be processed or not and how to process data depend on the monitoring,  
parameters, etc., follow the detailed explanation of the corresponding command.  
The following methods are how to process send and receive data when reading and writing data.  
(1) Processing the read data  
When the display type is 0, the eight-character data is converted from hexadecimal to decimal and a  
decimal point is placed according to the decimal point position information.  
When the display type is 1, the eight-character data is used unchanged.  
The following example indicates how to process the receive data "003000000929" given to show.  
The receive data is as follows.  
0 0 3 0 0 0 0 0 0 9 2 9  
Data 32-bits length (hexadecimal representation)  
(Data conversion is required as indicated in the display type)  
Display type  
0: Data must be converted into decimal.  
1: Data is used unchanged in hexadecimal.  
Decimal point position  
0: No decimal point  
1: First least significant digit (normally not used)  
2: Second least significant digit  
3: Third least significant digit  
4: Forth least significant digit  
5: Fifth least significant digit  
6: Sixth least significant digit  
Since the display type is "0" in this case, the hexadecimal data is converted into decimal.  
00000929H 2345  
As the decimal point position is "3", a decimal point is placed in the third least significant digit.  
Hence, "23.45" is displayed.  
15 - 17  
15. COMMUNICATION FUNCTIONS  
(2) Writing the processed data  
When the data to be written is handled as decimal, the decimal point position must be specified. If it is  
not specified, the data cannot be written. When the data is handled as hexadecimal, specify "0" as the  
decimal point position.  
The data to be sent is the following value.  
0
Data is transferred in hexadecimal.  
Decimal point position  
0: No decimal point  
1: First least significant digit  
2: Second least significant digit  
3: Third least significant digit  
4: Forth least significant digit  
5: Fifth least significant digit  
By way of example, here is described how to process the set data when a value of "15.5" is sent. Since  
the decimal point position is the second digit, the decimal point position data is "2". As the data to be  
sent is hexadecimal, the decimal data is converted into hexadecimal.  
155 9B  
Hence, "0200009B" is transmitted.  
15 - 18  
15. COMMUNICATION FUNCTIONS  
15.12.2 Status display  
(1) Status display data read  
When the master station transmits the data No. to the slave station, the slave station sends back the  
data value and data processing information.  
(a) Transmission  
Transmit command [0][1] and the data No. corresponding to the status display item to be read.  
Refer to section 15.11.1.  
(b) Reply  
The slave station sends back the status display data requested.  
0 0  
Data 32 bits long (represented in hexadecimal)  
(Data conversion into display type is required)  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Decimal point position  
0: No decimal point  
1: Lower first digit (usually not used)  
2: Lower second digit  
3: Lower third digit  
4: Lower fourth digit  
5: Lower fifth digit  
6: Lower sixth digit  
(2) Status display data clear  
The cumulative feedback pulse data of the status display is cleared. Send this command immediately  
after reading the status display item. The data of the status display item transmitted is cleared to  
zero.  
Command Data No.  
[8][1] [0][0]  
Data  
1EA5  
For example, after sending command [0][1] and data No. [8][0] and receiving the status display data,  
send command [8][1], data No. [0][0] and data [1EA5] to clear the cumulative feedback pulse value to  
zero.  
15 - 19  
15. COMMUNICATION FUNCTIONS  
15.12.3 Parameter  
(1) Parameter read  
Read the parameter setting.  
(a) Transmission  
Transmit command [0][5] and the data No. corresponding to the parameter No.  
Command Data No.  
Data No. definition  
[0][0] to  
[0][5]  
Corresponds to the parameter No.  
[5][A]  
(b) Reply  
The slave station sends back the data and processing information of the requested parameter No.  
Data is transferred in hexadecimal.  
Decimal point position  
0: No decimal point  
1: Lower first digit  
2: Lower second digit  
3: Lower third digit  
4: Lower fourth digit  
0
5: Lower fifth digit  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Parameter write type  
0: Valid after write  
1: Valid when power is switched on again after write  
Read enable/disable  
0: Read enable  
1: Read disable  
Enable/disable information changes according to the setting of parameter No.19 "parameter write  
inhibit". When the enable/disable setting is read disable, ignore the parameter data part and  
process it as unreadable.  
15 - 20  
15. COMMUNICATION FUNCTIONS  
(2) Parameter write  
POINT  
If setting values need to be changed with a high frequency (i.e. one time or  
more per one hour), write the setting values to the RAM, not the EEP-  
ROM. The EEP-ROM has a limitation in the number of write times and  
exceeding this limitation causes the servo amplifier to malfunction. Note  
that the number of write times to the EEP-ROM is limited to  
approximately 100, 000.  
Write the parameter setting.  
Write the value within the setting range. Refer to section 5.1 for the setting range.  
Transmit command [8][4], the data No., and the set data.  
The data number is represented in hexadecimal. The decimal value converted from the data number  
value corresponds to the parameter number. Refer to (1) (a) of this section.  
When the data to be written is handled as decimal, the decimal point position must be specified. If it is  
not specified, data cannot be written. When the data is handled as hexadecimal, specify 0 as the  
decimal point position.  
Write the data after making sure that it is within the upper/lower limit value range given in section  
5.1.2. Read the parameter data to be written, confirm the decimal point position, and create  
transmission data to prevent error occurrence. On completion of write, read the same parameter data  
to verify that data has been written correctly.  
Command Data No.  
Set data  
[0][0] to  
[8][4]  
See below.  
[5][A]  
Data is transferred in hexadecimal.  
Decimal point position  
0: No decimal point  
1: Lower first digit  
2: Lower second digit  
3: Lower third digit  
4: Lower forth digit  
5: Lower fifth digit  
Write mode  
0: Write to EEP-ROM  
3: Write to RAM  
When the parameter data is changed frequently through communication,  
set "3" to the write mode to change only the RAM data in the servo amplifier.  
When changing data frequently (once or more within one hour),  
do not write it to the EEP-ROM.  
15 - 21  
15. COMMUNICATION FUNCTIONS  
15.12.4 External I/O signal statuses  
(1) Reading of input device statuses  
Read the statuses of the input devices.  
(a) Transmission  
Transmit command [1][2] and data No. [0][0].  
Command  
Data No.  
[1][2]  
[0][0]  
(b) Reply  
The slave station sends back the statuses of the input pins.  
b31  
b1 b0  
1:ON  
0:OFF  
Command of each bit is transmitted to the master  
station as hexadecimal data.  
bit  
0
1
Signal name  
bit  
Signal name  
bit  
Signal name  
Servo-on (SON)  
12 Reverse rotation start (ST2)  
13  
24 Temporary stop/restart (STP)  
Forward rotation stroke limit (LSP)  
Reverse rotation stroke limit (LSN)  
External torque limit selection (TL)  
Internal torque limit selection (TL2)  
Proportion control selection (PC)  
Reset (RES)  
Manual pulse generator  
multiplication 1 (TP0)  
25  
2
14  
3
15  
Manual pulse generator  
26  
multiplication 2 (TP1)  
4
16 Forced stop (EMG)  
17 Automatic/manual selection (MD0)  
18 Proximity dog (DOG)  
19 Point table No. selection 1 (DI0)  
20 Point table No. selection 2 (DI1)  
21 Point table No. selection 3 (DI2)  
22 Point table No. selection 4 (DI3)  
23 Override selection (OVR)  
5
27 Gain switch (CDP)  
6
28  
7
8
29 Point table No. selection 5 (DI4)  
30 Teach (TCH)  
31  
9
10  
11 Forward rotation start (ST1)  
(2) External input pin status read  
Read the ON/OFF statuses of the external output pins.  
(a) Transmission  
Transmit command [1][2] and data No. [4][0].  
Command  
Data No.  
[1][2]  
[4][0]  
(b) Reply  
The ON/OFF statuses of the input pins are sent back.  
b31  
b1 b0  
1:ON  
0:OFF  
Command of each bit is transmitted to the master  
station as hexadecimal data.  
bit  
0
External input pin  
CN1B-16  
bit  
5
External input pin  
CN1A-8  
1
CN1B-17  
6
CN1B-7  
2
CN1B-15  
7
CN1B-8  
3
CN1B-5  
8
CN1B-9  
4
CN1B-14  
9
CN1A-19  
15 - 22  
15. COMMUNICATION FUNCTIONS  
(3) Read of the statuses of input devices switched on through communication  
Read the ON/OFF statuses of the input devices switched on through communication.  
(a) Transmission  
Transmit command [1][2] and data No. [6][0].  
Command  
Data No.  
[1][2]  
[6][0]  
(b) Reply  
The slave station sends back the statuses of the input pins.  
b31  
b1 b0  
1:ON  
0:OFF  
Command of each bit is transmitted to the master  
station as hexadecimal data.  
bit  
0
1
Signal name  
bit  
Signal name  
bit  
Signal name  
Servo-on (SON)  
12 Reverse rotation start (ST2)  
13  
24 Temporary stop/restart (STP)  
Forward rotation stroke limit (LSP)  
Reverse rotation stroke limit (LSN)  
External torque limit selection (TL)  
Internal torque limit selection (TL2)  
Proportion control selection (PC)  
Reset (RES)  
Manual pulse generator  
multiplication 1 (TP0)  
25  
2
14  
3
15  
Manual pulse generator  
26  
multiplication 2 (TP1)  
4
16 Forced stop (EMG)  
17 Automatic/manual selection (MD0)  
18 Proximity dog (DOG)  
19 Point table No. selection 1 (DI0)  
20 Point table No. selection 2 (DI1)  
21 Point table No. selection 3 (DI2)  
22 Point table No. selection 4 (DI3)  
23 Override selection (OVR)  
5
6
27 Gain switch (CDP)  
28  
7
29 Point table No. selection 5 (DI4)  
8
9
30 Teach (TCH)  
31  
10  
11 Forward rotation start (ST1)  
(4) External output pin status read  
Read the ON/OFF statuses of the external output pins.  
(a) Transmission  
Transmit command [1][2] and data No. [C][0].  
Command  
Data No.  
[1][2]  
[C][0]  
(b) Reply  
The slave station sends back the ON/OFF statuses of the output pins.  
b31  
b1 b0  
1:ON  
0:OFF  
Command of each bit is transmitted to the master  
station as hexadecimal data.  
bit  
External output pin  
CN1A-19  
bit  
5
6
External output pin  
CN1B-18  
0
1
2
3
4
CN1A-18  
CN1B-19  
CN1B-6  
CN1B-4  
CN1A-14  
15 - 23  
15. COMMUNICATION FUNCTIONS  
(5) Read of the statuses of output devices  
Read the ON/OFF statuses of the output devices.  
(a) Transmission  
Transmit command [1][2] and data No. [8][0].  
Command  
Data No.  
[1][2]  
[8][0]  
(b) Reply  
The slave station sends back the statuses of the output devices.  
b31  
b1 b0  
1:ON  
0:OFF  
Command of each bit is transmitted to the master  
station as hexadecimal data.  
bit  
0
1
2
3
4
5
6
7
8
9
Signal name  
bit  
Signal name  
bit  
Signal name  
Ready (RD)  
10 Electromagnetic brake (MBR)  
11 Dynamic brake interlock (DBR)  
12  
13  
19 Temporary stop (PUS)  
20 Point No. output 1 (PT0)  
21 Point No. output 2 (PT1)  
22 Point No. output 3 (PT 2)  
23 Point No. output 4 (PT 3)  
24 Point No. output 5 (PT 4)  
Limiting torque (TLC)  
In position (INP)  
14  
15 Battery warning (BWNG)  
16 Rough match (CPO)  
Warning (WNG)  
Trouble (ALM)  
Home position return completion  
17  
(ZP)  
18 Position range (POT)  
15.12.5 Input devices ON/OFF  
POINT  
The ON/OFF states of all devices in the servo amplifier are the states of  
the data received last. Hence, when there is a device which must be kept  
ON, send data which turns that device ON every time.  
Each input device can be switched on/off. However, when the device to be switched off exists in the  
external input signal, also switch off that input signal.  
Send command [9][2], data No. [6][0] and data.  
Command  
Data No.  
Set data  
See below.  
[9][2]  
[6][0]  
b31  
b1 b0  
1:ON  
0:OFF  
Command of each bit is transmitted to the slave  
station as hexadecimal data.  
bit  
0
Signal name  
Servo-on (SON)  
bit  
Signal name  
bit  
Signal name  
12 Reverse rotation start (ST2)  
24 Temporary stop/restart (STP)  
1
Forward rotation stroke limit (LSP)  
Reverse rotation stroke limit (LSN)  
External torque limit selection (TL)  
Internal torque limit selection (TL2)  
Proportion control selection (PC)  
Reset (RES)  
13  
Manual pulse generator  
multiplication 1 (TP0)  
25  
2
14  
3
15  
Manual pulse generator  
26  
multiplication 2 (TP1)  
4
16 Forced stop (EMG)  
5
17 Automatic/manual selection (MD0)  
18 Proximity dog (DOG)  
27 Gain switch (CDP)  
6
28  
7
19 Point table No. selection 1 (DI0)  
20 Point table No. selection 2 (DI1)  
21 Point table No. selection 3 (DI2)  
22 Point table No. selection 4 (DI3)  
23 Override selection (OVR)  
29 Point table No. selection 5 (DI4)  
8
30 Teach (TCH)  
31  
9
10  
11 Forward rotation start (ST1)  
15 - 24  
15. COMMUNICATION FUNCTIONS  
15.12.6 Disable/enable of I/O devices (DIO)  
Inputs can be disabled independently of the I/O devices ON/OFF. When inputs are disabled, the input  
signals (devices) are recognized as follows. Among the input devices, EMG, LSP and LSN cannot be  
disabled.  
Signal  
Status  
OFF  
0V  
Input devices (DI)  
External analog input signals  
Pulse train inputs  
None  
(1) Disabling/enabling the input devices (DI), external analog input signals and pulse train inputs with  
the exception of EMG, LSP and LSN.  
Transmit the following communication commands.  
(a) Disable  
Command  
Data No.  
Data  
[9][0]  
[0][0]  
1EA5  
(b) Enable  
Command  
Data No.  
Data  
[9][0]  
[1][0]  
1EA5  
(2) Disabling/enabling the output devices (DO)  
Transmit the following communication commands.  
(a) Disable  
Command  
Data No.  
Data  
[9][0]  
[0][3]  
1EA5  
(b) Enable  
Command  
Data No.  
Data  
[9][0]  
[1][3]  
1EA5  
15 - 25  
15. COMMUNICATION FUNCTIONS  
15.12.7 Input devices ON/OFF (test operation)  
Each input devices can be turned on/off for test operation. when the device to be switched off exists in the  
external input signal, also switch off that input signal.  
Send command [9] [2], data No. [0] [0] and data.  
Command  
Data No.  
Set data  
[9][2]  
[0][0]  
See below  
b31  
b1 b0  
1: ON  
0: OFF  
Command of each bit is transmitted to the slave  
station as hexadecimal data.  
bit  
0
Signal name  
bit  
Signal name  
bit  
Signal name  
Servo-on (SON)  
12 Reverse rotation start (ST2)  
24 Temporary stop/restart (STP)  
1
Forward rotation stroke limit (LSP)  
Reverse rotation stroke limit (LSN)  
External torque limit selection (TL)  
Internal torque limit selection (TL2)  
Proportion control selection (PC)  
Reset (RES)  
13  
Manual pulse generator  
multiplication 1 (TP0)  
25  
2
14  
3
15  
Manual pulse generator  
26  
multiplication 2 (TP1)  
4
5
16 Forced stop (EMG)  
17 Automatic/manual selection (MD0)  
18 Proximity dog (DOG)  
27 Gain switch (CDP)  
6
28  
7
19 Point table No. selection 1 (DI0)  
20 Point table No. selection 2 (DI1)  
21 Point table No. selection 3 (DI2)  
22 Point table No. selection 4 (DI3)  
23 Override selection (OVR)  
29 Point table No. selection 5 (DI4)  
8
30 Teach (TCH)  
31  
9
10  
11 Forward rotation start (ST1)  
15 - 26  
15. COMMUNICATION FUNCTIONS  
15.12.8 Test operation mode  
(1) Instructions for test operation mode  
The test operation mode must be executed in the following procedure. If communication is interrupted  
for longer than 0.5s during test operation, the servo amplifier causes the motor to be decelerated to a  
stop and servo-locked. To prevent this, continue communication without a break, e.g. monitor the  
status display.  
(a) Execution of test operation  
1) Turn off all input devices.  
2) Disable the input devices.  
Command Data No.  
[9][0] [0][0]  
Data  
1EA5  
3) Choose the test operation mode.  
Command Data No.  
Transmission data  
Selection of test operation mode  
Test operation mode cancel  
Jog operation  
[8][B]  
[8][B]  
[8][B]  
[8][B]  
[8][B]  
[0][0]  
[0][0]  
[0][0]  
[0][0]  
[0][0]  
0000  
0001  
0002  
0003  
0004  
Positioning operation  
Motor-less operation  
DO forced output  
4) Set the data needed for test operation.  
5) Start.  
6) Continue communication using the status display or other command.  
(b) Termination of test operation  
To terminate the test operation mode, complete the corresponding operation and.  
1) Clear the test operation acceleration/deceleration time constant.  
Command Data No.  
[A][0] [1][2]  
Data  
1EA5  
2) Cancel the test operation mode.  
Command Data No.  
Data  
[8][B]  
[0][0]  
0000  
3) Enable the disabled input devices.  
Command Data No.  
Data  
[9][0]  
[1][0]  
1EA5  
15 - 27  
15. COMMUNICATION FUNCTIONS  
(2) Jog operation  
Transmit the following communication commands.  
(a) Setting of jog operation data  
Item  
Command Data No.  
Data  
Speed  
[A][0]  
[1][0] Write the speed [r/min] in hexadecimal.  
Acceleration/deceleration  
time constant  
Write the acceleration/deceleration time constant  
[ms] in hexadecimal.  
[A][0]  
[1][1]  
(b) Start  
Turn on the input devices SON  
[0][0].  
and ST1/ST2 by using command [9][2] data No.  
LSP LSN  
Item  
Command Data No.  
Data  
00000807: Turns on SON  
00001007: Turns on SON  
00000007: Turns on SON  
and ST1.  
and ST2.  
.
LSN  
Forward rotation start  
Reverse rotation start  
Stop  
[9][2]  
[9][2]  
[9][2]  
[0][0]  
[0][0]  
[0][0]  
LSP LSN  
LSP LSN  
and  
LSP  
(3) Positioning operation  
Transmit the following communication commands.  
(a) Setting of positioning operation data  
Item  
Command Data No.  
Data  
Speed  
[A][0]  
[A][0]  
[A][0]  
[1][0] Write the speed [r/min] in hexadecimal.  
Acceleration/deceleration  
time constant  
Moving distance  
Write the acceleration/deceleration time constant  
[ms] in hexadecimal.  
[1][1]  
[1][3] Write the moving distance [pulse] in hexadecimal.  
(b)  
Input of servo-on stroke end  
Turn on the input devices SON  
by using command [9][2] data No. [0][0].  
LSN  
LSP  
and  
Item  
Command Data No.  
Data  
Servo-on  
Servo OFF  
Stroke end ON  
[9][2]  
[9][2]  
[0][0] 00000001: Turns on SON.  
00000006: Turns off SON and turns on LSP  
[0][0]  
LSN.  
Servo-on  
Stroke end OFF  
[9][2]  
[0][0] Turns on SON LSP LSN.  
15 - 28  
15. COMMUNICATION FUNCTIONS  
(c) Start of positioning operation  
Transmit the speed and acceleration/deceleration time constant, turn on the servo-on (SON) and  
forward/reverse rotation stroke end (LSP LSN , and then send the moving distance to start  
)
positioning operation. After that, positioning operation will start every time the moving distance is  
transmitted. To start opposite rotation, send the moving distance of a negative value.  
When the servo-on (SON) and forward/reverse rotation stroke end (LSP LSN) are off, the  
transmission of the moving distance is invalid. Therefore, positioning operation will not start if the  
servo-on (SON) and forward/reverse rotation stroke end (LSP LSN) are turned on after the setting  
of the moving distance.  
(d) Temporary stop  
A temporary stop can be made during positioning operation.  
Command Data No.  
[A][0] [1][5]  
Data  
1EA5  
Retransmit the same communication commands as at the start time to resume operation.  
To stop positioning operation after a temporary stop, retransmit the temporary stop  
communication command. The remaining moving distance is then cleared.  
15 - 29  
15. COMMUNICATION FUNCTIONS  
15.12.9 Output signal pin ON/OFF output signal (DO) forced output  
In the test operation mode, the output signal pins can be turned on/off independently of the servo status.  
Using command [9][0], disable the output signals in advance.  
(1) Choosing DO forced output in test operation mode  
Transmit command [8][B] data No. [0][0] data "0004" to choose DO forced output.  
0 0 0 4  
Selection of test operation mode  
4: DO forced output (output signal forced output)  
(2) External output signal ON/OFF  
Transmit the following communication commands.  
Command Data No.  
[9][2] [A][0]  
Setting data  
See below.  
b31  
b1 b0  
1: ON  
0: OFF  
Command of each bit is sent to the slave station in hexadecimal.  
bit External output pin  
bit External output pin  
bit External output pin  
bit External output pin  
0
1
2
3
4
5
6
7
CN1A-19  
CN1A-18  
CN1B-19  
CN1B-6  
8
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
9
10  
11  
12  
13  
14  
15  
CN1B-4  
CN1B-18  
CN1A-14  
15 - 30  
15. COMMUNICATION FUNCTIONS  
15.12.10 Alarm history  
(1) Alarm No. read  
Read the alarm No. which occurred in the past. The alarm numbers and occurrence times of No.0 (last  
alarm) to No.5 (sixth alarm in the past) are read.  
(a) Transmission  
Send command [3][3] and data No. [1][0] to [1][5]. Refer to section 15.11.1.  
(b) Reply  
The alarm No. corresponding to the data No. is provided.  
0 0  
Alarm No. is transferred in decimal.  
For example, "0032" means AL.32 and "00FF" AL._ (no alarm).  
(2) Alarm occurrence time read  
Read the occurrence time of alarm which occurred in the past.  
The alarm occurrence time corresponding to the data No. is provided in terms of the total time  
beginning with operation start, with the minute unit omitted.  
(a) Transmission  
Send command [3][3] and data No. [2][0] to [2][5].  
Refer to section 15.11.1.  
(b) Reply  
The alarm occurrence time is transferred in decimal.  
Hexadecimal must be converted into decimal.  
For example, data [0][1][F][5] indicates that the alarm occurred 501 hours after start of operation.  
(3) Alarm history clear  
Erase the alarm history.  
Send command [8][2] and data No. [2][0].  
Command Data No.  
[8][2] [2][0]  
Data  
1EA5  
15 - 31  
15. COMMUNICATION FUNCTIONS  
15.12.11 Current alarm  
(1) Current alarm read  
Read the alarm No. which is occurring currently.  
(a) Transmission  
Send command [0][2] and data No. [0][0].  
Command Data No.  
[0][2]  
[0][0]  
(b) Reply  
The slave station sends back the alarm currently occurring.  
0 0  
Alarm No. is transferred in decimal.  
For example, "0032" means AL.32 and "00FF" AL._ (no alarm).  
(2) Read of the status display at alarm occurrence  
Read the status display data at alarm occurrence. When the data No. corresponding to the status  
display item is transmitted, the data value and data processing information are sent back.  
(a) Transmission  
Send command [3][5] and any of data No. [8][0] to [8][E] corresponding to the status display item to  
be read. Refer to section 15.11.1.  
(b) Reply  
The slave station sends back the requested status display data at alarm occurrence.  
0 0  
Data 32 bits long (represented in hexadecimal)  
(Data conversion into display type is required)  
Display type  
0: Conversion into decimal required  
1: Used unchanged in hexadecimal  
Decimal point position  
0: No decimal point  
1: Lower first digit (usually not used)  
2: Lower second digit  
3: Lower third digit  
4: Lower fourth digit  
5: Lower fifth digit  
6: Lower sixth digit  
(3) Current alarm clear  
As by the entry of the Reset (RES), reset the servo amplifier alarm to make the servo amplifier ready  
to operate. After removing the cause of the alarm, reset the alarm with no command entered.  
(a) Transmission  
Command Data No.  
[8][2] [0][0]  
Data  
1EA5  
15 - 32  
15. COMMUNICATION FUNCTIONS  
15.12.12 Point table  
(1) Data read  
(a) Position data  
Read the position data of the point table.  
1) Transmission  
Transmit command [4][0] and any of data No. [0][1] to [1][F] corresponding to the point table to  
be read. Refer to section 15.11.1.  
2) Reply  
The slave station sends back the position data of the requested point table.  
Hexadecimal data  
Decimal point position  
0: No decimal point  
1: Lower first digit (usually not used)  
2: Lower second digit  
3: Lower third digit  
0 0  
4: Lower fourth digit  
5: Lower fifth digit  
6: Lower sixth digit  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Position data write type  
0: Valid after write  
1: Valid when power is switched on again after write  
(b) Speed data  
Read the speed data of the point table.  
1) Transmission  
Transmit command [5][0] and any of data No. [0][1] to [0][F] corresponding to the point table to  
be read. Refer to section 15.11.1.  
2) Reply  
The slave station sends back the speed data of the requested point table.  
0
Hexadecimal data  
0 0  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Speed data write type  
0: Valid after write  
1: Valid when power is switched on again after write  
15 - 33  
15. COMMUNICATION FUNCTIONS  
(c) Acceleration time constant  
Read the acceleration time constant of the point table.  
1) Transmission  
Transmit command [5][4] and any of data No. [0][1] to [1][F] corresponding to the point table to  
be read. Refer to section 15.11.1.  
2) Reply  
The slave station sends back the acceleration time constant of the requested point table.  
0
Hexadecimal data  
0 0  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Accelevation time constant write type  
0: Valid after write  
1: Valid when power is switched on again after write  
(d) Deceleration time constant  
Read the deceleration time constant of the point table.  
1) Transmission  
Transmit command [5][8] and any of data No. [0][1] to [1][F] corresponding to the point table to  
be read. Refer to section 15.11.1.  
2) Reply  
The slave station sends back the deceleration time constant of the requested point table.  
0
Hexadecimal data  
0 0  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Deceleration time constant write type  
0: Valid after write  
1: Valid when power is switched on again after write  
15 - 34  
15. COMMUNICATION FUNCTIONS  
(e) Dwell  
Read the dwell of the point table.  
1) Transmission  
Transmit command [6][0] and any of data No. [0][1] to [1][F] corresponding to the point table to  
be read. Refer to section 15.11.1.  
2) Reply  
The slave station sends back the dwell of the requested point table.  
0
Hexadecimal data  
0 0  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Dwell write type  
0: Valid after write  
1: Valid when power is switched on again after write  
(f) Auxiliary function  
Read the auxiliary function of the point table.  
1) Transmission  
Transmit command [6][4] and any of data No. [0][1] to [1][F] corresponding to the point table to  
be read. Refer to section 15.11.1.  
2) Reply  
The slave station sends back the auxiliary function of the requested point table.  
0
Hexadecimal data  
0 0  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Auxiliary function write type  
0: Valid after write  
1: Valid when power is switched on again after write  
15 - 35  
15. COMMUNICATION FUNCTIONS  
(2) Data write  
POINT  
If setting values need to be changed with a high frequency (i.e. one time or  
more per one hour), write the setting values to the RAM, not the EEP-  
ROM. The EEP-ROM has a limitation in the number of write times and  
exceeding this limitation causes the servo amplifier to malfunction. Note  
that the number of write times to the EEP-ROM is limited to  
approximately 100, 000.  
(a) Position data  
Write the position data of the point table.  
Transmit command [C][0], any of data No. [0][1] to [1][F] corresponding to the point table to be  
written to, and the data. Refer to section 15.11.2.  
Command  
Data No.  
[0][1] to  
[0][F]  
Data  
[C][0]  
See below.  
Hexadecimal data  
Decimal point position  
0: No decimal point  
1: Lower first digit  
2: Lower second digit  
3: Lower third digit  
4: Lower fourth digit  
5: Lower fifth digit  
6: Lower sixth digit  
The decimal point position should be the same as  
the feed length multiplication (STM) set in parameter  
No. 1. The slave station will not accept the decimal  
point position which is different from the STM setting.  
Write mode  
0: EEP-ROM, RAM write  
1: RAM write  
When the position data is changed frequently through communication,  
set "1" to the write mode to change only the RAM data in the servo amplifier.  
When changing data frequently (once or more within one hour),  
do not write it to the EEP-ROM.  
(b) Speed data  
Write the speed data of the point table.  
Transmit command [C][6], any of data No. [0][1] to [1][F] corresponding to the point table to be  
written to, and the data. Refer to section 15.11.2.  
Command  
Data No.  
Data  
[0][1] to  
[0][F]  
[C][6]  
See below.  
0
Hexadecimal data  
Write mode  
0: EEP-ROM, RAM write  
1: RAM write  
When the speed data is changed frequently through communication,  
set "1" to the write mode to change only the RAM data in the servo amplifier.  
When changing data frequently (once or more within one hour),  
do not write it to the EEP-ROM.  
15 - 36  
15. COMMUNICATION FUNCTIONS  
(c) Acceleration time constant  
Write the acceleration time constant of the point table.  
Transmit command [C][7], any of data No. [0][1] to [1][F] corresponding to the point table to be  
written to, and the data. Refer to section 15.11.2.  
Command Data No.  
Data  
[0][1] to  
[C][7]  
See below.  
[0][F]  
0
Hexadecimal data  
Write mode  
0: EEP-ROM, RAM write  
1: RAM write  
When the acceleration time constant is changed frequently through communication,  
set "1" to the write mode to change only the RAM data in the servo amplifier.  
When changing data frequently (once or more within one hour),  
do not write it to the EEP-ROM.  
(d) Deceleration time constant  
Write the deceleration time constant of the point table.  
Transmit command [C][8], any of data No. [0][1] to [1][F] corresponding to the point table to be  
written to, and the data. Refer to section 15.11.2.  
Command Data No.  
Data  
[0][1] to  
[C][8]  
See below.  
[0][F]  
0
Hexadecimal data  
Write mode  
0: EEP-ROM, RAM write  
1: RAM write  
When the deceleration time is changed frequently through communication,  
set "1" to the write mode to change only the RAM data in the servo amplifier.  
When changing data frequently (once or more within one hour),  
do not write it to the EEP-ROM.  
15 - 37  
15. COMMUNICATION FUNCTIONS  
(e) Dwell  
Write the dwell of the point table.  
Transmit command [C][A], any of data No. [0][1] to [1][F] corresponding to the point table to be  
written to, and the data. Refer to section 15.11.2.  
Command Data No.  
Data  
[0][1] to  
[C][A]  
See below.  
[0][F]  
0
Hexadecimal data  
Write mode  
0: EEP-ROM, RAM write  
1: RAM write  
When the dwell constant is changed frequently through communication,  
set "1" to the write mode to change only the RAM data in the servo amplifier.  
When changing data frequently (once or more within one hour),  
do not write it to the EEP-ROM.  
(f) Auxiliary function  
Write the auxiliary function of the point table.  
Transmit command [C][B], any of data No. [0][1] to [1][F] corresponding to the point table to be  
written to, and the data. Refer to section 15.11.2.  
Command Data No.  
Data  
[0][1] to  
[C][B]  
See below.  
[0][F]  
0
Hexadecimal data  
Write mode  
0: EEP-ROM, RAM write  
1: RAM write  
When the auxiliary function constant is changed frequently through communication,  
set "1" to the write mode to change only the RAM data in the servo amplifier.  
When changing data frequently (once or more within one hour),  
do not write it to the EEP-ROM.  
15 - 38  
15. COMMUNICATION FUNCTIONS  
15.12.13 Servo amplifier group designation  
With group setting made to the slave stations, data can be transmitted simultaneously to two or more  
slave stations set as a group through RS-422 communication.  
(1) Group setting write  
Write the group designation value to the slave station.  
(a) Transmission  
Transmit command [9][F], data No. [0][0] and data.  
Command  
Data No.  
Data  
[9][F]  
[0][0]  
See below.  
0
0
Group designation  
0: No group designation  
1: Group a  
2: Group b  
3: Group c  
4: Group d  
5: Group e  
6: Group f  
Response command enable  
Set whether data can be sent back or not in  
response to the read command of the master station.  
0: Response disable  
Data cannot be set back.  
1: Response enable  
Data can be set back.  
(2) Group setting read  
Read the set group designation value from the slave station.  
(a) Transmission  
Transmit command [1][F] and data No. [0][0].  
Command  
Data No.  
[1][F]  
[0][0]  
(b) Reply  
The slave station sends back the group setting of the point table requested.  
0
0
Group designation  
0: No group designation  
1: Group a  
2: Group b  
3: Group c  
4: Group d  
5: Group e  
6: Group f  
Response command enable  
0: Response disable  
1: Response enable  
15 - 39  
15. COMMUNICATION FUNCTIONS  
15.12.14 Software version  
Reads the software version of the servo amplifier.  
(a) Transmission  
Send command [0] [2] and data No. [7] [0].  
Command  
Data No.  
[0][2]  
[7][0]  
(b) Reply  
The slave station returns the software version requested.  
Space  
Software version (15 digits)  
15 - 40  
APPENDIX  
App 1. Status indication block diagram  
App - 1  
APPENDIX  
App 2. Junction terminal block (MR-TB20) terminal block labels  
For CN1A  
For CN1B  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
9
8
7
6
5
4
3
2
1
0
1 9  
1 8  
1 7  
1 6  
1 5  
1 4  
1 3  
1 2  
1 1  
1 0  
1 9  
1 8  
1 7  
1 6  
1 5  
1 4  
1 3  
1 2  
1 1  
1 0  
1 9  
1 9  
1 8  
1 7  
1 6  
1 5  
1 4  
1 3  
1 2  
1 1  
1 0  
8
7
6
5
4
3
2
1
0
1 8  
1 7  
1 6  
1 5  
1 4  
1 3  
1 2  
1 1  
1 0  
App - 2  
APPENDIX  
App 3. Combination of servo amplifier and servo motor  
The servo amplifier software versions compatible with the servo motors are indicated in the parentheses.  
The servo amplifiers whose software versions are not indicated can be used regardless of the versions.  
Servo amplifier  
Servo amplifier  
Servo motor  
HC-KFS053  
HC-KFS13  
HC-KFS23  
Servo motor  
(Software version)  
(Software version)  
MR-J2S-10CP  
HC-RFS103  
HC-RFS153  
HC-RFS203  
HC-RFS353  
HC-RFS503  
HC-UFS72  
HC-UFS152  
HC-UFS202  
HC-UFS352  
HC-UFS502  
MR-J2S-200CP  
MR-J2S-10CP1  
MR-J2S-200CP  
MR-J2S-350CP  
MR-J2S-500CP  
MR-J2S-500CP  
MR-J2S-70CP  
MR-J2S-200CP  
MR-J2S-350CP  
MR-J2S-500CP  
MR-J2S-500CP  
MR-J2S-10CP  
MR-J2S-10CP1  
MR-J2S-10CP  
MR-J2S-10CP1  
MR-J2S-20CP  
MR-J2S-20CP1  
MR-J2S-40CP  
MR-J2S-40CP1  
HC-KFS43  
HC-KFS73  
HC-MFS053  
MR-J2S-70CP  
MR-J2S-10CP  
MR-J2S-10CP1  
HC-UFS13  
HC-UFS23  
HC-UFS43  
MR-J2S-10CP  
MR-J2S-10CP1  
HC-MFS13  
HC-MFS23  
HC-MFS43  
MR-J2S-20CP  
MR-J2S-20CP1  
MR-J2S-20CP  
MR-J2S-20CP1  
MR-J2S-40CP  
MR-J2S-40CP1  
MR-J2S-40CP  
MR-J2S-40CP1  
HC-UFS73  
HC-LFS52  
HC-LFS102  
HC-LFS152  
HC-LFS202  
HC-LFS302  
HA-LFS502  
HA-LFS702  
MR-J2S-70CP  
HC-MFS73  
HC-SFS81  
HC-SFS121  
HC-SFS201  
HC-SFS301  
HC-SFS52  
HC-SFS102  
HC-SFS152  
HC-SFS202  
HC-SFS352  
HC-SFS502  
HC-SFS702  
HC-SFS53  
HC-SFS103  
HC-SFS153  
HC-SFS203  
HC-SFS353  
MR-J2S-70CP  
MR-J2S-100CP  
MR-J2S-200CP  
MR-J2S-200CP  
MR-J2S-350CP  
MR-J2S-60CP  
MR-J2S-100CP  
MR-J2S-200CP  
MR-J2S-200CP  
MR-J2S-350CP  
MR-J2S-500CP  
MR-J2S-700CP  
MR-J2S-60CP  
MR-J2S-100CP  
MR-J2S-200CP  
MR-J2S-200CP  
MR-J2S-350CP  
MR-J2S-60CP (Version A2 or later)  
MR-J2S-100CP (Version A2 or later)  
MR-J2S-200CP (Version A2 or later)  
MR-J2S-350CP (Version A2 or later)  
MR-J2S-500CP (Version A2 or later)  
MR-J2S-500CP  
MR-J2S-700CP  
App - 3  
APPENDIX  
App 4. Change of connector sets to the RoHS compatible products  
Connector sets (options) in the following table are changed to the RoHS compatible products after September,  
2006 shipment.  
Please accept that the current products might be mixed with RoHS compatible products based on availability.  
Model  
Current Product  
RoHS Compatible Product  
MR-J2CNM  
MR-J2CN1  
MR-J2CNS  
Amplifier connector (3M or equivalent)  
10120-3000VE (connector)  
Amplifier connector (3M or equivalent)  
10120-3000PE (connector)  
Amplifier connector (3M or equivalent)  
10120-3000VE (connector)  
Amplifier connector (3M or equivalent)  
10120-3000PE (connector)  
Encoder connector (DDK)  
Encoder connector (DDK)  
MS3057-12A (Cable clump)  
D/MS3057-12A (Cable clump)  
D/MS3106B20-29S (Straight plug)  
Amplifier connector (3M or equivalent)  
10120-3000PE (connector)  
MS3106B20-29S (Straight plug)  
Amplifier connector (3M or equivalent)  
10120-3000VE (connector)  
MR-ENCNS  
MS3106A20-29S (D190) (Plug, DDK)  
CE3057-12A-3 (D265) (Cable clump, DDK)  
CE02-20BS-S (Back shell, DDK)  
Power supply connector (DDK)  
CE05-6A22-23SD-B-BSS (Connector and back  
shell)  
D/MS3106A20-29S (D190) (Plug, DDK)  
CE3057-12A-3-D (Cable clump, DDK)  
CE02-20BS-S-D (Back shell, DDK)  
Power supply connector (DDK)  
CE05-6A22-23SD-D-BSS (Connector and back  
shell)  
MR-PWCNS1  
MR-PWCNS2  
MR-PWCNS3  
MR-BKCN  
CE3057-12A-2 (D265) (Cable clump)  
Power supply connector (DDK)  
CE05-6A24-24SD-B-BSS (Connector and back  
shell)  
CE3057-12A-2-D (Cable clump)  
Power supply connector (DDK)  
CE05-6A24-10SD-B-BSS (Connector and back  
shell)  
CE3057-16A-2 (D265) (Cable clump)  
Power supply connector (DDK)  
CE05-6A32-17SD-B-BSS (Connector and back  
shell)  
CE3057-16A-2-D (Cable clump)  
Power supply connector (DDK)  
CE05-6A32-17SD-D-BSS (Connector and back  
shell)  
CE3057-20A-1 (D265) (Cable clump)  
Electromagnetic brake connector  
MS3106A10SL-4S (D190) (Plug, DDK)  
CE3057-20A-1-D (Cable clump)  
Electromagnetic brake connector  
D/MS3106A10SL-4S (D190) (Plug, DDK)  
App - 4  
REVISIONS  
*The manual number is given on the bottom left of the back cover.  
Print Data  
*Manual Number  
Revision  
Jan., 2002 SH(NA)030017-A First edition  
Oct., 2002 SH(NA)030017-B Addition of Note to the environment conditions in Safety Instructions 4 (1)  
Addition of "About processing of waste"  
Addition of "EEP-ROM life"  
COMPLIANCE WITH EC DIRECTIVES 1. (1): Sentence change  
(1): HA-LFS , HC-LFS addition  
(6) (a): Deletion  
(7) (c): Sentence change  
CONFORMANCE WITH UL/C-UL STANDARD (1): HA-LFS , HC-LFS  
addition  
(7): Addition  
Section 1.5: HA-LFS , HC-LFS addition  
Section 2.4 (2): Sentence change  
Section 3.3.2 (1) (c): Sentence change to "Position range (POT)"  
Section 3.5: Addition of Note into Figure  
Section 3.8.1: POINT addition  
Section 3.8.3 (1) Lead wire color deletion  
Section 4.1.1 (1) (b): Sentence change  
Section 4.2.6 (2) (a) 1): Figure change  
2): Figure change  
(b): Figure change  
(c) 1): Figure change  
2): Figure change  
(3): Figure change  
Section 5.2.1 (2): Addition of sentence to parameters No. 50, 51  
Change of No. 55 setting  
Section 6.2 (1): Change to display contents  
Section 7.1: Change to initial screen of point table  
Section 7.2.2: POINT addition  
Section 7.5.1: Figure change  
Section 7.5.3 (1): Figure change, Note addition  
(2): Figure change, Note addition  
Section 7.6.2 (2): Signed 5-digit parameter addition  
Section 8.2.2: POINT addition  
Section 11.2.1: Addition of Note to AL.30  
Addition of AL.61 home operation alarm  
Section 11.2.2: Deletion of Cause 4 from AL.16  
Addition of Causes 3 - 6 to AL.37  
Addition of AL.61 home operation alarm  
Section 13.1: Note addition  
Section 13.2: Change of "zero torque" representation to "servo off"  
Section 14.1.1 (1): Note described for MR-RB50, MR-RB51  
(4): Note addition, cooling fan mounting diagram addition  
Section 14.1.4 (2) (a): POINT addition  
Fabricating connection diagram change  
Section 14.2.6 (2) (b): Figure change  
Section 14.2.8: Sentence addition  
Section 14.2.9: Figure change  
Print data  
*Manual number  
Revision  
Oct., 2002  
SH(NA)030017-B Section 15.10: Figure change  
Section 15.12.3 (2): POINT addition  
Mar., 2004 SH(NA)030017-C Safety Instructions: Overall reexamination  
Section 1.1.1: Partial figure reexamination  
Section 1.5: Note addition  
Section 1.7 (3): Note addition  
Section 1.7 (4): Note addition  
Section 3.1: Partial figure reexamination/Addition of Note 13  
Section 3.6.1: Partial figure reexamination  
Section 3.8.2: Figure reexamination  
Section 3.8.3: Overall reexamination  
Section 3.9: Figure reexamination of CAUTION  
Section 4.1.2: Partial addition of CAUTION sentence  
Section 4.1.2 (f): Partial table change  
Section 4.2.2 (3): Partial table addition  
Section 4.2.3 (3): Partial table addition  
Section 4.2.4: Overall reexamination  
Section 4.3.2: Partial table deletion  
Section 4.4.2 (3): Partial changing of text/Partial figure addition  
Section 4.4.3: Partial changing of figure, table and text  
Section 4.4.4: Partial changing of figure, table and text  
Section 4.4.5: Partial changing of figure, table and text  
Section 4.4.6: Partial changing of figure, table and text  
Section 4.4.7 (2): Partial changing of table and text/Partial figure addition  
Section 4.4.8 (2): Partial changing of table and text/Partial figure addition  
Section 4.4.9 (2): Partial changing of table and text/Partial figure addition  
Section 4.4.11: Partial figure addition  
Section 5.1.2 (2): Partial addition of parameter No.0/change Setting range of  
parameter No.35 to No.37, Partial text addition of parameter  
No.63  
Section 5.2.3: Partial text change  
Chapter 6: Title reexamination  
Section 6.2 (1): Table change  
Section 6.7.2: Partial addition of POINT sentence  
Section 6.7.5: POINT addition  
Section 6.4 (2): Change  
Section 11.2: Partial text change  
Section 11.2.2: Changing of alarm 12 to 15/addition of alarm 37 cause 7/Partial  
text change of alarm 51 52  
Section 12.1: Overall reexamination  
Section 13.2: Table reexamination  
Section 13.3: Partial addition of text  
Section 13.5: Addition  
Section 14.1.1 (3): Partial figure change  
Section 14.1.1 (4): Partial text change  
Section 14.1.1 (5): Partial reexamination  
Section 14.1.2: Partial addition of text  
Section 14.1.2 (2): Changing of Note 2  
Section 14.1.3: Partial addition of text  
Section 14.1.3 (2): Partial figure reexamination/Addition of Note 2  
Section 14.1.7: Partial addition of text  
Print data  
*Manual number  
Revision  
Mar., 2004 SH(NA)030017-C Section 14.1.9: POINT addition  
Section 14.2.8 (3): Partial figure reexamination  
Section 14.2.6 (2) (d): Partial figure change  
Section 14.2.6 (2) (e): Partial figure change  
Section 14.2.8: Partial figure change  
Appendix: Addition  
Mar., 2005 SH(NA)030017-D COMPLIANCE WITH EC DIRECTIVES: “1. WHAT ARE EC DIRECTIVES?“  
Sentence reexamination  
Section 1. 1. 1 (1): Reexamination of words in figure  
Section 1. 1. 1 (2): Addition, reexamination of the function block diagram for  
MR-J2S-500CP, 700CP  
Section 1. 4 (2): Note reexamination  
Section 3. 1: Figure reexamination  
Section 3. 3. 1 (2): Signal arrangement Deletion of PG, NG  
Section 3. 3. 2 (1) (c): Sentence addition of rough match device  
Section 3. 3. 2 (2): Input signal Deletion of PG, NG  
Section 3. 5: Addition of CAUTION sentence (3) Sentence reexamination  
Section 3. 6. 2 (3) 2): Figure reexamination of output pulse  
Section 3. 6. 2 (6): Figure correction  
Section 3. 7. 2: Addition of explanation on the power supply terminals  
Section 3. 7. 3 (1) 1): Sentence addition  
Section 3.9: Sentence reexamination (3) (d), (e) Figure change  
Section 3. 11: POINT addition (1) Sentence reexamination  
Section 4. 2. 1 (2) (b): Note reexamination  
Section 4. 3. 2 (3) (b): Reexamination of sentence in table, note  
Section 4. 5: POINT addition, reexamination (1) Sentence reexamination  
Section 5. 1. 2 (1): No.60, No.87 Correction of initial value  
Reexamination of words in table  
Section 5. 1. 2 (2): No.46 Figure reexamination No.87 Changing of initial  
value  
No.55 Reexamination of words in table  
Reexamination of words in table  
Section 6. 2 (1): Note sentence addition  
Section 7. 5. 3 (2): Partial changing of figure  
Section 7. 6: Reexamination of words in POINT  
Section 7. 6. 2 (2): Partial changing of figure  
Section 9. 4 (1): Calculation reexamination  
Section 11. 2. 1: Addition of words in table  
Section 11. 2. 2: AL. 10 Sentence reexamination  
AL. 17, AL. 19 Sentence reexamination, addition  
AL. 33 Sentence addition  
AL. 46 Sentence reexamination  
Section 11. 2. 3: Addition of CAUTION sentence  
AL. E3 Sentence addition  
Section 13.1: Note change  
Section 13.3: Addition of HC-LFS series graph Sentence reexamination  
Section 14. 1. 1 (2): (b) Figure addition  
Section 14. 1. 1 (4): POINT addition  
Section 14. 1. 1 (4) (a): Sentence reexamination  
Section 14. 1. 1 (4) (b): Sentence reexamination  
Section 14. 1. 1 (5) (b): Reexamination of words in figure  
Print data  
*Manual number  
Revision  
Mar., 2005 SH(NA)030017-D Section 14. 1. 1 (5) (c): Partial changing of figure  
Section 14. 1. 2 (2): Note reexamination  
Section 14. 1. 3 (2): Note reexamination  
Section 14. 1. 4 (1): Sentence reexamination (2) Sentence reexamination  
Section 14. 1. 9: Correction of words in POINT  
Section 14. 2. 3: Addition of MR-J2S- CP  
Crossing change  
Section 14. 2. 6 (2): (d) Sentence reexamination (e) Connection diagram change  
Section 15. 8: Sentence reexamination  
App 3: Partial change  
Jan., 2006 SH(NA)030017-E Safety Instructions: 4. (2) (4) Sentence addition  
Section 1.1.1: Correction of error in writing  
Section 1.4 (2): Note reexamination  
Section 1.6.1: Correction of instructions  
Section 1.7: Note reexamination  
Chapter 2: CAUTION addition  
Section 3.6.2 (3) (b): 2) Addition of descriptions  
Section 3.8.3: Change of signal expression  
Section 3.9: CAUTION addition  
Section 4.1.2 (2) (b): Sentence change  
Section 4.2.3 (2) (c): Sentence change/Partial figure reexamination  
Section 4.2.4 (2) (c): Sentence change/Partial figure reexamination  
Section 4.2.5 (2) (c): Sentence change/Partial figure reexamination  
Section 4.4.10: Home position return automatic return function: Correction of  
error in writing  
Section 5.1.2 (2): Note addition of parameter No. 17, No. 30  
Section 5.2.4: Sentence change  
Section 5.2.4 (2): Note addition  
Section 11.2.3: Sentence addition  
Section 12.1: Correction of error in writing  
Section 14.2.6 (2) (d): Change of outline drawing  
Section 15.2.3 (2): Change of POINT sentence  
Section 15.12.12: POINT addition  
Section 15.12.12 (3): Correction of error in writing  
Section 15.12.12 (4): Correction of error in writing  
Section 15.12.12 (5): Correction of error in writing  
Section 15.12.12 (6): Correction of error in writing  
SH(NA)030017-F Safety Instructions: 4. Additional instructions (2) Figure change  
Section 1.1 (2): Figure correction  
Jul., 2006  
Section 1.1.2: Correction of description for auxiliary functions  
Section 1.6.2: Correction of words in CAUTION  
Chapter 2: Addition of CAUTION sentence  
Chapter 3: Addition of CAUTION sentence  
Section 3.7.2: Addition of sentence in Table  
Section 3.7.3 (3): CAUTION addition  
Section 3.8.2: CAUTION addition  
Section 4.2.2 (2): Sentence reexamination  
Section 4.4.8: Correction of POINT sentence  
Section 4.5 (1): Sentence reexamination  
Section 5.2.1: Correction of POINT sentence  
Section 6.2 (1): Table change  
Print data  
*Manual number  
Revision  
Jul., 2006  
SH(NA)030017-F Section 7.2.3: Correction of description for command position  
Section 8.3.1 (1) (a): Addition of parameter in Table  
Section 8.4 (2): Correction of description for Step 5  
Section 11.2.2: Correction of name for Al. 17  
Section 11.2.3: Correction of description for Al. 90  
Section 12.2 (1) (b): Correction of error in dimensions  
Section 14.1.1 (2): Correction of formula in Table  
Section 14.1.1 (4): Sentence reexamination  
Section 14.1.5 (3): Addition of pin No. in figure  
Section 14.1.7 (2): Correction of signal name for CN3-1 pin  
Section 14.1.9: POINT reexamination  
Section 15.12.3 (2): Correction of POINT sentence  
Section 15.12.5: Sentence addition  
Section 15.12.12: Description reexamination  
Sep., 2007 SH(NA)-030017-G Safety Instructions  
1. To prevent electric shock: Partial change of sentence  
2. To prevent fire: Partial change of sentence  
4. Additional Instructions  
(2) Wiring: Addition of sentence  
Section 1.1.1: Addition of Note  
Section 1.6.2: WARNING Change of sentence  
Section 1.7: Addition of Note  
Chapter 3: WARNING Change of sentence  
Section 3.6.2 (2): Addition of sentence Addition of Note  
Section 3.6.2 (6): Addition of Note  
Section 3.7: CAUTION Change of sentence  
Section 3.9 (3): Change of timing chart  
Section 4.4.5 (3): Addition of Note  
Section 4.4.8: POINT Change of sentence  
Section 4.5: POINT addition  
Section 4.5 (5): CAUTION Change of sentence  
Section 5.1.2 (2): Partial change of parameter No.0  
Chapter 10: WARNING Change of sentence  
Section 11.2: Addition of AL. 20 Definition  
Change of sentence in AL. 32. Definition  
Change of sentence in AL. 33. Definition  
Addition of Cause 6 for AL. 50  
Change of sentence in AL. 51. Definition  
Section 11.3: New addition  
Chapter 14: WARNING Change of sentence  
Section 14.1.1 (3): Change of parameter No.0 definition  
Section 14.1.1 (5) (b), (c): Change of outline dimension drawing  
Section 14.1.2: Overall change to FR-BU2  
Section 14.1.4: Change of some connectors to RoHS compatible products  
Section 14.2.1 (1): Partial change of table 14.2  
Section 14.2.6 (2) (d): Change of sentence  
Section 14.2.8: Addition of connection diagram and surge protector  
Appendix 6: Addition  
MODEL  
MODEL  
CODE  
HEAD OFFICE : TOKYO BLDG MARUNOUCHI TOKYO 100-8310  
This Instruction Manual uses recycled paper.  
Specifications subject to change without notice.  
SH (NA) 030017-G (0709) MEE  
Printed in Japan  

Rinnai QPD 09 0003 User Manual
Pioneer Elite BDP 31FD User Manual
Philips VOIP080 User Manual
Pentax PLP 601R User Manual
Panasonic SDR SW20PC User Manual
Panasonic NV M7EA User Manual
Mamiya Boiler C28 User Manual
Magic Chef EWWC16MCG User Manual
Lochinvar EBN SUB 05 User Manual
Kenwood Car Stereo System TM 631A User Manual