Monitor Models:
1493
1793
1993
2093
2793
3693
Safety Isolating
Transformer Models:
ISO XFR-75W
ISO XFR-100W
ABOUT THIS MANUAL
This manual is specifically written to aid the service technician, repairing
CERONIX Models 1493, 1793, 1993, 2093, 2793, and 3693 color monitors.
There are three main sections:
1. General Description.
2. Circuit Description.
3. Repair Setup and Appendix.
Appendix
Convergence
Degaussing
P/O Form
PRAs
Schematics
&
Assembly
Drawings
BLOCK
Diagram
Introduction
Block
Diagram
Description
Trouble
shooting
Handbook
Circuit
Description
Installation
Instructions
To understand how the Monitor works, it is best to know what each circuit
does and how each circuit relates to the other circuits. The Block Diagram is
presented in a simplified view and a comprehensive view to accomplish the goal of
understanding the whole unit. Once the general picture is clear, the complexity of
each circuit will be easier to understand.
The Circuit Description is also written in two views, a simplified view and a
detailed view to help give the reader a clear understanding of what each
component does. This understanding is most helpful for the more complex
problems or multiple problems that sometimes occur.
The power supply trouble shooting section describes methods used to power up
various monitor circuits, when there is a fault in the monitor, which disables the
power supply.
The appendix includes; filament voltage test, convergence procedure,
replacement parts purchase order form, degaussing coil attachment specification,
high pot test, wire routing drawing, production assembly drawings (PADs), C, I, J ,
& K film resistor arrays and a parts list addendum. The parts list addendum is
used to add new information describing part changes. Tables, suitable for pasting
on these pages, will be published as new variations of the XX93 monitors are
produced.
i
TABLE OF CONTENTS
i
About This Manual.............................................................................................................
Table of Contents................................................................................................................
CERONIX Monitor Simplified Block Diagram.................................................................
Installation Instructions; English, French, and German................................................
CERONIX Monitor Electrical Specification......................................................................
ii-iii
1
2-4
5-8
1493, 1793, 1993, 2093, 2793, and 3693 General Operation Description.
Video Interface, Amps & Beam Current Sense........
Auto Bias, Bias Sync Delay, & Auto Bright.............
CRT, Blanking, Sync, & Vertical deflection.............
Horizontal Deflection & Remote...............................
Horizontal Size & Power Supply...............................
P/S, Safety Shutdown Circuits, Degaussing.............
Blocks A-D............................... 9
Blocks E-G............................... 10
Blocks H-L............................... 11
Blocks M-P.............................. 12
Blocks Q-T............................... 13
Blocks U-Z............................... 14
Monitor BLOCK DIAGRAM..............................................................................................
15
Monitor Schematics and Assembly Drawings
1493-CGA Main Board Schematic..(4233/4235)...............................................................
1493-CGA Main Board Technician Assembly Drawing...................................................
1493-VGA/SVGA Main Board Schematic..(4200/4252)....................................................
1493-VGA/SVGA Main Board Technician Assembly Drawing........................................
1793-VGA Main Board Schematic..(4243/4244)..............................................................
1793-VGA Main Board Technician Assembly Drawing...................................................
1793-SVGA Main Board Schematic ..(4247/4250)............................................................
1793-SVGA Main Board Technician Assembly Drawing.................................................
1993-VGA Main Board Schematic..(4221/4255)...............................................................
1993-VGA Main Board Technician Assembly Drawing...................................................
1993-SVGA Main Board Schematic..(4249/4256).............................................................
1993-SVGA Main Board Technician Assembly Drawing.................................................
2093-CGA Main Board Schematic..(4112/4166)...............................................................
2093-CGA Main Board Technician Assembly Drawing...................................................
2093-VGA Main Board Schematic..(4224/4227/4108)......................................................
2093-VGA Main Board Technician Assembly Drawing...................................................
2793-CGA Main Board Schematic..(4104)........................................................................
2793-CGA Main Board Technician Assembly Drawing...................................................
2793-VGA Main Board Schematic..(4231)........................................................................
2793-VGA Main Board Technician Assembly Drawing...................................................
2793-VGA Main Board Schematic..(4254)........................................................................
2793-VGA Main Board Technician Assembly Drawing...................................................
3693-CGA Main Board Schematic..(4172)........................................................................
3693-CGA Main Board Technician Assembly Drawing...................................................
Video Board Schematic......................................................................................................
Video Board Technician Assembly Drawing..(Component Side).....................................
Video Board Technician Assembly Drawing..(Conductor Side).......................................
Safety Critical Components for XX93 Monitors..(English)..............................................
Safety Critical Components for XX93 Monitors..(German)..............................................
Replacement Part List.......................................................................................................
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45-63
Detailed Circuit Description
Video Interface Circuit, Function, Description (+ & - Analog)........................................
5.6V to 1.1V, -Analog, DC, Video Interface Circuit Description......................................
0V to .7V, +Analog, DC Video Interface Circuit Description...........................................
1Vp-p, +Analog, AC Video Interface Circuit Description.................................................
64
65
66
67
ii
TABLE OF CONTENTS
68
68-69
70
71
72
73
74
75
76
77
78
79-81
82-83
84
85
86
87
88-89
90-91
Video Amplifier Circuit, Function, Description.................................................................
Video Amplifier Circuit Description and Schematic.........................................................
Video Board Power Supply and Arc Protect Schematic....................................................
CRT Auto Bias and Auto Bright Circuit, Function, Description......................................
CRT Auto Bias, Auto Bright, and Vertical Sync Delay Circuit Description....................
CRT Auto Bias and Auto Bright Schematic......................................................................
Monitor, Block Diagram Review........................................................................................
Blanking, Master Gain, and Fault Circuit, Function, Description..................................
Blanking, Master Gain, and Fault Circuit Description....................................................
Blanking, Master Gain, Beam Limiter, and Fault Schematic.........................................
Vertical and Horizontal Sync Circuit Description.............................................................
Vertical Deflection Circuit Description and Schematic....................................................
Horizontal Deflection Circuit Description and Schematic................................................
Horizontal Raster Width Control Circuit Description......................................................
Horizontal Raster Width and Position Control Schematic...............................................
Dynamic Focus Circuit Function and Description............................................................
Vertical Booster Amplifier Circuit and Description..........................................................
Simplified Power Supply Circuit, Function, Description..................................................
Switch Mode Power Supply Circuit Description and Schematic......................................
Trouble Shooting and Repair
92
Equipment Setup for repairing the Model XX93 Monitor..(English)...............................
Equipment Setup for repairing the Model XX93 Monitor..(German)..............................
Power Supply Trouble Shooting Tips.................................................................................
Trouble Shooting Handbook...............................................................................................
Filament Voltage Test..(English).......................................................................................
Filament Voltage Test..(German)......................................................................................
Setup and Convergence Procedure..(English)...................................................................
Setup and Convergence Procedure..(German)...................................................................
Replacement Parts, Purchase Order Form........................................................................
1493 Degaussing Coil Attachment Specification...............................................................
1793, 1993, 2093 Degaussing Coil Attachment Specification...........................................
2793, 3693 Degaussing Coil Attachment Specification.....................................................
HighPot, for Shock Hazards, Circuit Description..(English)............................................
HighPot, for Shock Hazards, Circuit Description..(German)...........................................
Wire Routing Instructions..................................................................................................
Precision Resistor Arrays..(C, I, J ).....................................................................................
Precision Resistor Array..(K)..............................................................................................
Precision Resistor Array..(Blue).........................................................................................
Vertical Deflection Amplifier-Booster Technician Assembly Drawing............................
Monitor Input Drive Signal Worksheet.............................................................................
Declaration of Conformity..................................................................................................
93
94
95-97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119-121
122-123
124
125
126
ISO XFR-75W and ISO XFR-100W Safety Isolating Transformer..................................
Circuit Description..(English).............................................................................................
Auto Voltage Select Schematic and Assembly Drawing...................................................
Circuit Description..(German)............................................................................................
Installation Instructions.....................................................................................................
Specifications.......................................................................................................................
Isolation Transformer Trouble shooting..(English)...........................................................
Isolation Transformer Troubleshooting..(German)...........................................................
Manual Voltage Select Schematic and Assembly Drawing..............................................
Part List Addendum...........................................................................................................
127-130
iii
Monitor Simplified Block Diagram.
VIDEO
Output
VIDEO
Interface
VIDEO
Amps.
CRT
Drive
Electronics
AUTO BIAS
Vertical Deflection
Horizontal Deflection
Blanking
SYNC
Output
FBT
IB
Fault &
High Temp.
Detection
Remote
Controls
Horizontal Size
Control
Isolated
Power
POWER SUPPLY
This block diagram gives a broad view of the circuit organization of the 1493,
1793, 1993, 2093, 2793, and 3693 monitors. The blocks with the bold outline
represent circuits which provide these monitors with a wide range of
operating conditions without the need for adjustment.
The video interface circuit can be programmed to accept; +Analog AC or
DC coupled, -Analog, and 4 line TTL. The M. GAIN or contrast control is
located on the remote control board.
The auto bias circuit eliminates the need for the color setup procedure.
This circuit is designed to actively compensate for picture tube drift which
normally causes unbalanced color. The auto bias circuit also adjusts the
CRT gain to compensate for gain loss with age.
The horizontal size control circuit permits the horizontal size to be adjusted
from a remote control board. This circuit is also used to compensate for
pincushion distortion and blooming. Anti-blooming is accomplished by
correcting horizontal size variations which are caused by the additional load
on the flyback transformer under high beam current conditions.
Careful reading of all the information presented in this manual is a good
way to learn how to repair the CERONIX monitor.
1
Installation Instructions For The XX93 Monitors.
1.
A 3 amp slow blow fuse (for the degaussing current) and a 75 VA isolation
transformer are the minimum requirements for using our monitor in a product.
2.
3.
Unpack the monitor.
Refer to the installation instructions supplied
by the system manufacturer for details of
mounting the monitor in the enclosure.
Install the monitor in the enclosure.
4.
Connect the green/yellow ground wire to the earth ground connection on the enclosure.
This wire is connected to the ground screw, located on the monitor chassis behind the
serial number label.
Failure to connect this ground wire before applying power is not
allowed, since this condition can produce a shock hazard. The
chassis to mains connector resistance shall not exceed 100mΩ.
WARNING!
!
Check that the following wires are properly connected;
5.
A. Green wire from the CRT aquadag braid to the video board.
12 conductor flat cable from the video board to the main board.
B.
C. Red high voltage wire from the flyback transformer
to the picture tube anode cap.
Yoke cable from the yoke to the main board.
D.
E. Remote cable from the remote control board to the main board.
Note;
Be sure these wires are secured such that they do not touch any metal parts.
Pin
Signal
Color
6.
7.
Plug in the
seven conductor
video connector.
Signal ground. Gray
3
4
5
6
0
1
2
White
Yellow
Purple
Red video.
Green video.
Blue video.
Red
Green
Blue
+12V from monitor.
Horizontal sync.
Vertical sync.
ISOLATION TRANSFORMER
Plug in the power connector
from the isolation transformer.
Mains
Power
3A-T
75VA
FUSE
Attached to the
monitor chassis.
GREEN / YELLOW WIRE
8. Apply power to the monitor and the drive electronics.
Check the focus and, if necessary, adjust the top control on the flyback transformer.
9.
10. Adjust the controls on the remote control board for proper;
Horizontal Raster Size.
Vertical Raster Size.
Vertical Raster Position.
Horizontal Picture Position.
Video Gain.
11.
For convergence instructions, see page 100 & 101.
2
Instructions d´installation des écrans XX93.
1. Un fusible á fusion lente de 3 amp (pour le courant du champ magnétique d´adjustement) et un
transformateur d´isolation de 75 VA sont le minimum requis pour utiliser nos écrans dans un produit.
2. Déballer l´écran.
Se référer aux instructions d´installation foumies par le fabriquant
3. Installer l´écran dans son carter.
du systéme pour les détails de montage de l´écran dans le carter.
4. Relier le fil de terre vert/jaune á la prise de terre sur le carter. Ce cable est relié á la vis
de terre située sur le chassis de l´écran derriére l´étiquette portant le numéro de série.
ATTENTION! Il n´est pas permis de ne pas relier ce fil de terre avant de mettre le courant, car
cette situation pourrait provoquer un choc électrique dangereux.
La résistance du chassis aux pricipales connections ne doit pas depasser 100mΩ.
!
5. Vérifier que les fils suivants sont correctement reliés:
A. Le fil vert de la tresse du tube cathodique aquadag á la carte video.
B. Le cable plat á 12 conducteurs de la carte vidéo á la carte principale.
C. Le cable rouge haut voltage du retout du transformateur au capuchon de
l´anode du tube cathodique.
D. Le fit de bobinage du bobinage á la carte principale.
E. Le fil de télécommande de la carte de la télécommande á la carte principale.
Note: Soyez sur que ces fils sont connectés en toute sécurité de sorte qu´ils ne
touchent aucune partie métallique.
6. Brancher les
sept fils de la
Broche
Signal
Couleur
Blanc
3
4
5
6
Signal de terre Gris
0
1
2
+ 12V de l´écran
Synchro Horizontale J aune
Synchro Verticale Violet
Rouge vidéo
Vert vidéo
Bleu vidéo
Rouge
Vert
Bleu
connection vidéo:
TRANSFORMATEUR D'ISOLATION
7. Brancher les fils de courant
Courant
Principaux
depuis le transformateur d'isolation:
3A-T
75VA
FUSE
Attasché au chassis
du moniteur.
FIL VERT / JAUNE
8. Amener le courant á l´écran et au disque électronique.
9. Vérifier le foyer, et si nécessaire, régler le contróle sur le retour du transformateur.
10. Effectuer les réglages sur la carte de la commande á distance pour:
La taille du balayage horizontal.
La taille du balayage vertical.
La position du balayage fertical.
La position horizontale de l´image.
L´acquisition vidéo.
11. Pour les instructions de convergence, voir page 100 & 101.
3
Installationsanweisungen für die XX93 Monitore.
1. Ein 3 Ampère-T sicherung (für die degaussing-Strömung) und ein 75 VA Isoliertransformator
ist die Minimum-Forderung für benutzen unseren Monitoren in einem Produkt.
2. Packen Sie den Monitor aus.
3. Schließen Sie den Monitor
im Gehause an.
Für Details, Folgen Sie den Installation-Anweisungen,
Vom Lieferanten der Antriebelektronik.
4.
Verbinden Sie den Grüne/Gelben Schutzleiter zum Erdung anschluß auf dem Gehause.
Dieser Draht ist verbunden zur der Erdung-Schraube auf dem Monitor-Chassis, und wird
hinter der Serien-Nummer-Aufschrift gefunden.
Unterlassen dieser Verbindung dieses Erdung-Drahts ist
gesetze widrig. Der Widerßtand von diesem anschluß biz
WARNUNG!
!
zum netzstecker darf 100mΩ nicht überschreiten.
5. Prüfe daß die folgenden Drähte ordentlich verbunden sind;
A.
B.
C.
D.
E.
Grüne Draht vom CRT aquadag zum Video Schaltpult.
12 Leiter-Flachkabel vom Videoschaltpult zum Hauptschaltpult.
Rote hochspannungs Draht vom Flybacktransformator zur der Bildröhrenanode.
J ochkabel vom J och zum Hauptschaltpult.
Fernsteuerung Kabel vom Fernsteuerungschaltpult zum Hauptschaltpult.
Notiz; Seien Sie sicher diese Drähte sind so befestigt daß sie kein Metallteil berühren.
Leiter
Signal
Farbe
Stecken Sie den
7 Leiter-Video-
Verbindungsstecker ein.
6.
7.
3
4
5
6
Signal-Erdung. Grau
Rot
Rotes Video.
Grünes Video.
Blaues Video.
0
1
2
+12V Von Monitor.
Horizontal sync.
Vertical sync.
Weiß
Gelb
Purpur
Grün
Blau
ISOLIERTRANSFORMATOR
Stecken Sie den Stecker vom
Isoliertransformator ein.
Netzstrom
3A-T
75VA
SICHERUNG
Verbindung ist auf dam
Monitore chassis.
Grüne/Gelben Schutzleiter
8. Schalten Sie den Monitor und die Steuerung an.
Prüfe Sie den Fokus und, wenn notwend, stell en Sie die obere Kontrolle ein auf dem
Flybacktransformator.
9.
10.
Stellen Sie die Kontrollen des Fernsteuerungsschaltung ein für richtige
- Horizontal Raster Größe.
- Vertical Raster Größe.
- Vertical Raster Position.
- Horizontal Bild Position.
- Video Kontrast.
Für Konvergenz-Anweisungen, auf seite 100 & 101.
11.
4
XX93 Monitor Electrical Specification.
CERONIX
INPUTS
1. Standard Video Configurations, available, are:
Min.
Typ.
Max
A. Positive Analog, DC Coupled.
.75V
Black level
0.00V 0.02V 0.04V
0.75V 0.77V 0.79V
Video
.6mA
To Amp.
Video
Video Saturated color
Source
D-A
Black level
1.0V
Video Saturated color 1.00V 1.02V 1.04V
0.00V 0.02V 0.04V
75Ω
75Ω
Gnd
Monitor
Blk-.02V
Blk+.02V
Blank
Black level
Video Saturated color
Black level
Video Saturated color
.75V
B. Positive Analog, AC Coupled.
Blk+.73V Blk+.75V Blk+.77V
Blk-.02V Blk+0.00V Blk+.02V
Video
Zo=75Ω
75Ω
10uA
To Amp.
Video
Gnd
Source
1.0V
Amp.
D-A
Blk+.98V
Blk+1.00VBlk+1.02V
Clamp
Monitor
AC voltages are referenced to the R, G, & B
video input voltage during horizontal sync (Hs).
Blank is the black level voltage during Hs.
C. Negative Analog.
Video
To Amp.
Red & Green Black level 5.4V
5.6V
5.8V
Source
Video
VBlk.+.7 V
Blue Black level 4.85V 5.05V 5.25V
D-A
Gnd R IN
Monitor
Saturated color
.7V
.9V
1.1V
D. 4 Line TTL also available.
Black level
Color on
0V
.2V
.5V
R,G,B
Video
+12V
To Amp.
Video
Source
V
2.7V
0V
3.5V
.2V
B
6.0V
.4V
Intensity
Gnd
*
Low intensity
Full intensity
BIAS
Monitor
4.5V
4.6V
4.8V
*
No pullup resistor on intensity line.
Note: RS170 and other voltage combinations optional for analog video.
5
XX93 Monitor Electrical Specification.
CERONIX
2. The Sync signals may be of either polarity and separate or composite.
Hs
1.8K
Model
High input voltage
Low input voltage
Horizontal sync pulse
Vertical sync pulse
Min.
Typ.
Max
20V
.80V
Sync
Source
.15V
2.2V 3.5V
-2.7V .30V
Vs
1.8K
Ω,
2 PL
Monitor
220
Gnd
4.0uS 12uS
.5mS 1.5mS
1.5uS
65uS
For composite sync, vertical and horizontal
sync lines are connected together.
15.9KHz
Horizontal frequencies: 15.5KHz 15.7KHz
29.3KHz 29.6KHz 29.9KHz
31.2KHz 31.5KHz 31.8KHz
34.9KHz 35.2KHz 35.6KHz
37.5KHz 37.9KHz 38.3KHz
Custom horizontal frequencies from 15KHz
to 39KHz are available upon request.
Vertical frequencies:
45Hz 50Hz 55Hz
51Hz 56Hz 61Hz
55Hz 60Hz 65Hz
65Hz 70Hz 75Hz
3.
The Power to the monitor is to be supplied by a secondary winding of an
isolation transformer.
Model 1793
Min. Max.
Model 1993
Min. Max.
Model 1493
Min.
90VAC
180VAC
35W
Max.
145VAC 90VAC 145VAC 90VAC 145VAC
290VAC 180VAC 290VAC 180VAC 290VAC
120VAC 50Hz or 60Hz
230VAC 50HZ or 60Hz
Power
60W
40W
70W
45W
75W
Model 2093
Model 2793
Min. Max.
Model 3693
Min. Max.
Min.
90VAC
180VAC
45W
Max.
145VAC 90VAC 145VAC 90VAC 145VAC
290VAC 180VAC 290VAC 180VAC 290VAC
120VAC 50Hz or 60Hz
230VAC 50HZ or 60Hz
Power
100W
75W
50W
50W
100W
6
XX93 Monitor Electrical Specification.
CERONIX
Five Controls are located on
a separate PCB for easy access.
4.
Model 1793 Model 1993
Model 1493
Min. Max. Min. Max. Min. Max.
10.1" 11.1" 11.9" 12.9" 13.4" 14.4"
H SIZE--------------Horizontal raster size
V SIZE---------------Vertical raster size
V RAS. POS.-----Vertical raster position
H POS-------Horizontal picture position
M GAIN---------------------Master gain
7.3" 8.3"
.50"
8.6" 9.6"
.50"
9.8" 10.8"
.50"
0"
0"
0"
1" Right 1" Left
1" Right 1" Left
1" Right 1" Left
.75mA
0mA .75mA
0mA .75mA
0mA
Model 2093 Model 2793 Model 3693
Min. Max. Min. Max. Min. Max.
14.9" 15.9" 20.4" 21.4" 27.4" 28.4"
10.9" 11.9" 15.1" 16.1" 20.3" 21.3"
.60"
1.0"
0"
0"
0"
1.0"
1" Right 1" Left
1" Right 1" Left
1" Right 1" Left
1.5mA
0mA .75mA
0mA
0mA 1.5mA
The board Controls are located on the main PCB:
Focus and G2 on the FBT.
Optional board Controls are: pincushion, video black level, and horizontal hold control.
5.
Image
1493
17/19/2093
9300°K
2793
3693
Color Temperature
9300°K
9300°K
9300°K
Min. Max. Min. Max. Min. Max. Min. Max.
Horizontal linearity
Vertical linearity
Pincushion
-2% +2%
-2% +2%
-2% +2%
-5% +5%
-8% +8%
-10% +10%
-5%
-3%
-10%
-8%
+5%
+3%
+8%
+5%
+10%
+8%
-8%
-5%
Environmental
70° C
Operating temperature
Storage temperature
Operating humidity
Storage humidity
0° C
-20° C
20%
6.
85° C
80%
95%
10%
7
XX93 Monitor Electrical Specification.
CERONIX
Picture tube
7.
1493-CGA/VGA/SVGA
1793-VGA/SVGA
1793-SVGA
1993-VGA/SVGA
Inch
13.2
11.1
8.3
mm
335
281
211
Inch
16
mm
407
328
246
Inch
mm
409
328
245
Inch
18
mm
457
366
274
Useful diagonal
16.1
12.9
9.6
12.9
9.7
14.4
10.8
165 in2 1,003 cm2
Useful horizontal
Useful vertical
Useful area
92.1 in2 593 cm2 125 in2 807 cm
124 in2 804 cm
2
2
.0110" .28mm
.0106" .27mm .0098" .25mm .0102" .26mm
Spacing of dot/line trios
Phosphor Trio Type
Dot
90°
Dot
90°
Dot
90°
Dot
100°
Deflection angle
Approximately
Approximately
Approximately
AR / Flat
P22
Approximately
Light transmission
57%
53%
50%
45%
Polished/Curved Polished/Curved
AR / Curved
P22
CRT surface
Phosphor
P22
P22
2793-VGA
2093-CGA
2093-VGA
2793-CGA
Inch
mm
480
404
303
Inch
mm
480
404
303
Inch
mm
679
544
408
Inch
26.8
21.4
16.1
mm
679
544
408
Useful diagonal
Useful horizontal
Useful vertical
Useful area
18.9
15.9
11.9
18.9
15.9
11.9
26.8
21.4
16.1
189 in2 1,224 cm2 189 in2 1,224 cm2 345 in2 2,220 cm 345 in2 2,220 cm
2
Spacing of dot/line trios .0331" .84mm
.0307" .78mm .0326" .83mm .0326" .83mm
Phosphor Trio Type
Deflection angle
Line
90°
Line
90°
Line
110°
Line
110°
Approximately
Approximately
Approximately
Approximately
Light transmission
40%
40%
38%
38%
Polished/Curved Polished/Curved
Polished/Curved Polished/Curved
P22 P22
CRT surface
Phosphor
P22
P22
2793-VGA
3693-CGA
Inch
mm
676
541
406
Inch
mm
Useful diagonal
26.6
21.3
16.0
35.5
28.4
21.3
902
721
541
Useful horizontal
Useful vertical
Useful area
341 in2 2,196 cm2 605 in2 3,901 cm2
Spacing of dot/line trios
Phosphor Trio Type
.0299" .76mm
Line / Variable
110°
.0394"
1mm
Line
Deflection angle
111°
Approximately
Approximately
Light transmission
81%
32%
Polished/Flat
P22
Polished/Curved
P22
CRT surface
Phosphor
8
Refer to the block diagram on page 15 (foldout) when reading this description.
A
The Video Interface is designed around a custom IC and will accept DC or AC
coupled positive analog video signals. It can also be used with negative analog
and 4 line TTL. This IC has a built in multiplier circuit for the master gain
control and blanking functions. Resistors are used to protect the IC and to set
the gain. The programmed gain is dependent on the input signal amplitude
except with the TTL mode. Solder jumpers and component substations are used
to program the Video Interface for the type of input signal to be received. The
output of the IC drives the video amplifiers. This drive is a current where 0 mA
is black and 10 mA is a saturated color.
B
The Video Amplifiers are of the push pull type. They are built partly on thick
films and partly on the video PCB. Spreading out the amplifier reduces the
component heat and improves the life of the unit. The bandwidth is 25 MHz with
40Vp-p output. The rise and fall times are 20nS.
C
The Beam Current Feedback circuit directs most of the beam current of each
amplifier to the beam current buffer. The only time this current is measured, by
the auto bias circuit, is during the time of the three faint lines at the top of the
screen and three lines thereafter. The CRT auto bias circuit is designed to adjust
the video amplifier bias voltage such that the beam current of each of the three
guns is set to a specific programmed value.
D
The Beam Current Buffer converts the, high impedance low current, beam
current signal into a low impedance voltage. This voltage is applied to the auto
bias IC through a 200 ohm resistor. After the three lines of beam current are
measured, the program pulse from the auto bias IC, produces a voltage drop
across this 200 ohm resistor that equals the amplitude of the beam current
voltage.
9
E
The CRT Auto Bias IC is a combination of digital and analog circuitry. The
digital part is a counter and control logic which steps the analog circuits through a
sequence of sample and hold conditions. The analog part uses a transconductance
amplifier to control the voltage on a 10uF capacitor (one per gun). This voltage is
buffered and sent to the video amplifiers as the bias voltage. In monitors without
CRT auto bias, this voltage is adjusted manually using a setup procedure to set
the color balance. With CRT auto bias, the color balance is set during the end of
each vertical blanking time.
The control sequence is:
1. The cycle starts with a sync pulse from the vertical oscillator (15KHz)
or from the vertical sync delay. 15H later the grid pulse starts.
2.
The grid pulse on G1 causes cathode current which can be seen as the
three faint white lines at the top of the screen. This cathode current is
transmitted by the beam current feedback to the beam current buffer
where it is converted to a voltage and applied to the CRT auto bias
input pin. At this time the CRT auto bias IC outputs a reference
voltage at its input pin which sets the voltage across the coupling
capacitor. This coupling capacitor voltage is directly dependent on
beam current.
After the grid pulse is over, the program pulse matches the voltage
from the beam current buffer. If the voltage from the beam current
buffer, during the grid pulse, is the same as the voltage from the
program pulse, the bias is correct and no bias adjustment is made for
that vertical cycle.
3.
F
The timing of the auto bias IC is synchronized to the vertical oscillator and the
flyback pulses. For horizontal frequencies higher than 15.7KHz a Vertical Sync
Delay may be needed to position the grid pulse, generated 3 gray lines, at the top
of the screen. The need for the delay circuit is dependent on the particular CRT
vertical retrace time.
G
The aging of the picture tube (CRT) not only affects the balance of the cathode
cutoff voltage, which is corrected by the auto bias circuit, but it also affects the
gain of the CRT. The Auto Bright circuit actively corrects for CRT gain changes
by sensing any common bias voltage change, from the auto bias circuit, and
adjusts the screen voltage to hold the average bias voltage constant. The lower
adjustment on the flyback transformer which is the screen voltage, is used to set
the auto bright voltage to the center of its range. Therefore, the auto bright
circuits sets up a second control feedback loop to reduce picture variation due to
CRT aging. The auto bright circuit is also used to turn off the beam current when
the monitor power is turned off.
10
H
The CRT for the 1493, 1793 and 2093 monitors have a 90° deflection angle. The
1993 incorporates 100° while the 2793 CRT has 110° and the 3693 has 111°
deflection angles. These picture tubes have integral implosion protection and a
EHT of 25KV.
H1
The Vertical Dynamic Focus amplifies the parabolic waveform across the
vertical coupling capacitor from about 3Vp-p to about 200Vp-p, depending on CRT
requirements. This waveform sharpens the top and bottom portion of the raster
on dual focus CRT's.
H2
The Horizontal Dynamic Focus amplifies the parabolic waveform across the
horizontal coupling capacitor, using a transformer to produce 300Vp-p output from
an input that is about 33Vp-p. This waveform is added to the vertical dynamic
waveform and sharpens the right and left sides of the raster.
I
Blanking is accomplished by setting the gain of the interface IC to zero during
blank time. The Horizontal Blanking pulse is generated by amplifying the flyback
pulse. The Vertical Blanking pulse is started by the vertical oscillator one shot
and ended by the counter in the auto bias IC via the "bias out" pulse. The Master
Gain control, located on the remote PCB, sets the gain of the video signal when
blanking is not active. The Beam Current Limiter circuit, which is designed to
keep the FBT from overloading, will reduce the video gain if the maximum
average beam current is exceeded. Also, the beam current is reduced if the FBT
approaches maximum operating temperature.
J
The Sync Interface can accept separate or composite sync. Two comparators are
used to receive sync, one for vertical sync and the other for horizontal sync.
Resistor dividers are used to protect the comparator IC from over voltage damage.
For customers who do not require interlace, an additional vertical sync
stabilization circuit is included. This circuit synchronizes the vertical sync to the
horizontal cycle.
K
The Vertical Oscillator generates the vertical free running frequency when no
vertical sync is present. When sync is applied, the vertical oscillator synchronizes
to the leading edge of the sync pulse.
L
The Vertical Control & Output circuit consists of:
1. One shot.
2. Ramp generator.
3. Vertical drive.
4. Vertical output.
11
The sync pulse from the LA7851 triggers a one shot in the LA7838 which clamps
the vertical ramp generation capacitor to 5V during the first half of vertical
retrace. The ramp generation capacitor then charges via a constant current set by
an external resistor. This resistor is connected to the V SIZE pot, located on the
remote control board, for the vertical size adjustment. The vertical drive is a
differential amplifier which compares the ramp voltage to the yoke return
feedback current. The yoke feedback current and voltage circuits are used to set
the vertical linearity. The vertical Output is a power driver, with thermal
protection, which drives the vertical deflection yoke. It also has a special pump up
circuit which doubles the output voltage during vertical retrace. This voltage
doubler also increases the efficiency of the circuit since the high retrace voltage is
not present across the power driver during the trace time.
M
The Horizontal Control incorporates a variable sync delay and a phase locked
loop to generate the horizontal timing. The H POS. adjustment, on the remote
control board, sets the sync delay time which controls the picture position. The
phase locked loop uses the flyback pulse to generate a sawtooth wave which is
gated with the delayed sync pulse to control the horizontal oscillator.
N
The Horizontal Driver supplies the high base current necessary to drive the
horizontal output transistor which has a beta as low as three. A transformer is
used to step up the current from the driver circuit and also protects the horizontal
output transistor from a continuous turned on state. A special clamp circuit is
connected to the transformer which reduces the turnoff time of the horizontal
output transistor for reduced power dissipation.
O
The Horizontal Output transistor is mounted to the rear frame which acts as a
heat sink. The collector conducts the 900 volt primary flyback pulses which should
not be measured unless the equipment is specifically designed to withstand this
type of stress. A linear ramp current is produced in the horizontal yoke by the
conduction of the horizontal output transistor (trace time). A fast current reversal
(retrace time) is achieved by the high voltage pulse that follows the turn off of the
horizontal output transistor. This pulse is due to the inductive action of the yoke
and flyback transformer.
P
The main function of the Flyback Transformer (FBT) is to generate a 25,000 volt
(EHT) potential for the anode of the picture tube. This voltage times the beam
current is the power that lights up the phosphor on the face of the picture tube.
At 1.5mA beam current, for the 2793 monitor, the FBT is producing almost 38
watts of high voltage power. The FBT also sources the focus voltage, screen grid
voltage, filament power, and has two more secondaries which are used for control
functions. The FBT has a built in high voltage load resistor which stabilizes the
EHT, for the low beam current condition. This resistor also discharges the EHT,
when the monitor is turned off, which improves the safety of handling the
monitor.
12
Q
The Remote Control PCB houses the:
CONTROL DESCRIPTION
CIRCUIT
1. H SIZE ----------- Horizontal raster size --------- Diode modulator
2. V SIZE ----------- Vertical raster size ------------- Vertical control
3. V RAS. POS. --- Vertical raster position ------- DC current to V. yoke
4. H POS ------------ Horizontal picture position -- H. sync delay
5. M GAIN ---------- Master gain ---------------------- Video interface
R
The Horizontal Size Control circuit has four inputs:
#
SIGNAL
FUNCTION
1. Horizontal size ------------------------------ Horizontal size control
2. Beam current -------------------------------- Blooming control
3. Vertical linear ramp -----------------------
(#4)-(#3)=Vertical parabolic
}
4. Vertical parabolic + V. linear ramp ---
(Pincushion)
The horizontal size control circuit sums the four signals at one node plus the
feedback from the diode modulator to drive a switching mode power driver. The
output of the power driver is then connected to the diode modulator through an
inductor to complete the control loop.
S
The Diode Modulator is a series element of the horizontal tuned circuit. It forms
a node between GND and the normal yoke return circuit. If this node is shorted to
GND, the result is maximum horizontal size. Forward current in the diode
modulator, at the start of retrace, keeps the node voltage clamped to ground until
enough current flows from the horizontal tuned circuit to exceed this forward
current. The horizontal size, therefore, is controlled by controlling the current to
this diode via the horizontal size control circuit.
T
A Voltage Doubler is used in the power supply for two reasons:
1. To improve the efficiency of the power supply.
2. To permit 120 volt and 230 volt operation. For the 230 volt
operation the voltage doubler is replaced with a bridge rectifier.
13
XX93 Monitor Block Diagram.
U
G2≈290V
2 For Dual Focus
The Switching Regulator is synchronized to the horizontal pulse and drives a power
MOSFET. Unlike most regulators that have a common GND, this power supply has a common
V+ and current is supplied from V- to GND. The MOSFET is connected to V– and signal
ground (GND) through a transformer which is used as an inductor for series switch mode
regulation. An operational amplifier, voltage reference, comparator, and oscillator in the power
supply controller IC are used to accomplished regulation by means of pulse width modulation.
On Video Board.
G1≈–20V
GAME
VIDEO
AMPS.
Bias
Beam
Current
Feedback
VIDEO
Interface
3
3
3
3
VIDEO
RGB
CRT
A
B
C
H
3
3
VDY
DY
SYNC
V. & H.
BLANKING
Auto
The transformer has two taps on the main winding which are used to generate the +16 volt
and +24 volt supplies. It also has a secondary which is referenced to V- and supplies the power
supply. Since the power supply is generating its own power, a special start up circuit is built
into the power supply controller IC that delays start up until the capacitor which supplies the
IC is charged up enough to furnish the current to start the power supply. This capacitor is
charged with current through a high value resistor from the raw dc supply. This self sustaining
action is why the power supply chirps when an overload or underload occurs. Additional
secondaries to drive the horizontal raster shift circuit and the video amplifiers are also included
in the power transformer.
EHT≈25KV
F.B.P.
V retrace
Beam limit
M. gain
Bright
H
G
3
3
D
Beam current
buffer
High temp. limit
CRT AUTO
BIAS IC
H. sync (FBP)
V. sync
I
Program pulse
Grid pulse
Dynamic Focus
used only on Dual
Focus CRTs
SYNC
VERTICAL
SYNC
DELAY
F
Interface
CA3224E
E
J
s
Horizontal
Dynamic
Focus
2
VERTICAL
V
VERTICAL
H2
CONTROL &
OUTPUT
LA7838
V
The Load consists primarily of the horizontal flyback circuit. The power supply will not
operate without the load since the voltage that sustains the power supply comes from a
secondary in the power transformer and depends on some primary current to generate
secondary current.
OSCILLATOR
LA7851
K
I. V. Feedback
V+
L
Vertical
Dynamic
Focus
+
W
G2 EHT
H1
LA7851
A +12V regulator is used to supply current, to all the control circuits in the monitor, with the
exception of the power supply. Many of the control circuits are decoupled from the +12 volt line
with a resistor or diode to minimize noise from common current loops.
HORIZONTAL
CONTROL
Sync delay
H.
Driver
H.
Output
FBT
2
s
H
N
O
P
M
H. Pos.
X
PINCUSHION
V. Size &
V. Ras. Pos.
The Over Voltage Protect circuit is built into the power supply and monitors the flyback
transformer peak pulse voltage. This circuit will turn off the power supply and hold it off if the
EHT exceeds its maximum rated value. Since excessive X-ray output occurs with excessive
EHT, this circuit provides X-ray protection.
REMOTE
CONTROLS
(PCB)
DIODE
Modulator
HORIZONTAL
Size Control
Q
R
S
Beam Current
Y
+52V to +129V
The Fault Detector senses beam current and temperature. This circuit will activate the
power supply shutdown circuit if either the maximum temperature is sensed or if the beam
current becomes large enough to threaten the FBT.
ISOLATION
Transformer
VOLTAGE
DOUBLER
(VIDEO & DEFLECTION)
LOAD
V
Raw DC
320V
Z
(IN GAME)
+12V
+16V
T
+12V
SWITCHING
Regulator
The Degaussing circuit is connected across the isolated AC line. A posistor is used to allow a
large current to flow, in the degaussing coil, on power up. This current is then gradually
reduced by the increased temperature of the positive temperature coefficient thermistor in the
posistor. A relay is used to short the degaussing coil after the degaussing operation. This
greatly reduces posistor residual current in the degaussing coil. When repairing a monitor, the
degaussing coil should be unplugged, to avoid possible damage to the degaussing coil shorting
relay.
REGULATOR +24-27V
-200V
V-
W
Sync
Shutdown
U
Vertical Deflection
Supply
OVER
VOLTAGE
PROTECT
DEGAUSSING
CIRCUIT
FAULT
DETECTOR
FBP
+24V
Z
Y
X
14
15
BB
AA
CC
DD
EE
FF
GG
HH
II
J J
KK
LL
MM
NN
OO
PP
0VDC Hs
56V 28,D3
TC11
TC12
VIDEO BOARD
Fil.
Fil. Rtn.
Screen
Beam current
Feedback
22-28V Vs
.8Vpp 25,F7
Red Video Amp.
800
Product safety note: Components marked by the
When replacing any of
symbol on this schematic have special characteristics important to safety.
these components, be sure to use the parts specified in the parts list.
0Ω,
Beam current
Feedback
Video
Board
800
Green Video Amp.
092
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
FOCUS
EHT
Thermal Protection
LA7838
Vertical
Vertical Linearity Circuit
out
CRT
Ramp
V. +12V
HEAT
SINK
0Ω
092A
Ramp
0Ω
196
Reset
One Shot
out
Vert.
Out
Vert.
Drive
Beam current
Feedback
DECREASES
Gen.
Blue Video Amp.
378 Deflection
200K
412
200K
413
TOP AND
BOTTOM
VERT. SIZE.
V. size
Control
Retrace
Booster
Reset
Ramp
Slope
NO DVM Hs
.9KVpp 27,G6
377
PN2907A
ARC PROTECT
Tr.
FLYBACK
1N4007
342
R/C
50/60Hz
0Ω
2.2K.5W
341
12-18VDC Hs
33Vpp 26,E7
Boost
+12V
GND
Horizontal Drive
Transformer
+12V
Drive
TRANSFORMER
10
127V TC8
+25V
EHT
409
Horizontal
Size
GND
I
B+G+R=∑
422
Beam
Current
Buffer
10K
481
CPT1505
1
2
3
4
5
6
7
8
9
10
11
12
13
470Ω
D5
D5
2SC
4159
2SD1651
1/2W
Auto Bias
VSync
RC5
+
19
2
Auto
Bright
5.5-6.4V Vs
3Vpp 21,D5
332
100pF
100uF
338
6
9
8
H
NC
5.5-6.5V Vs
1.4Vpp 23,F4
510Ω
200K
371
200K
372
398
5-6VDC Vs
1.4Vpp 22,E5
433
465
100Ω
I11
ABA
RC8
RC6
004
INCREASES
TOP AND
BOTTOM
337
3
4
1N4007
382
0Ω
395
0Ω
1N4007
FOCUS
20
Vertical
Size
PN2222
PN2222
500Ω
0Ω
93.1K
375
1
470uF
SOCKET BOARD CONNECTOR (TC) 206
TC7 Red
TC5 Green
TC 3 Blue
TC 10 TC 6
2,200pF
343
435
1.2Ω
434
VERT. SIZE.
452
1N4007
090
411
200Ω 2W
482
203
+25V
373
SCREEN
380
68.1KΩ
0Ω
+12
V
750Ω
340
1,000pF
.01uF
374
GND
GND
1.5-2.7V Vs
24Vpp 24,E4
28.0K
402
1uF
401
4.7Ω
396
68.1K
088
Vertical
Raster
1N4148
393
1N4148
7
5
486
100K
84.5K
407
2.7K
169K
404
62K
098
6.8K
099
1
4
369
085
1K
406
405
390
Position
392
.1uF
397
GND
100uF
510Ω
PN2222
483
3
2
RC3
RC
002
12-18VDC Vs
50Vpp 29,F6
PN2222
+
089
1uF
391
2
127K
388
FIL.
006
1.2Ω, 1W
385
100K
403
V-
1
0Ω
3
CPT1558
453
127K
087
524
&
100B
20K
484
Horizontal
Position
0Ω
RC7
379
525
200K
CS=.45"
0Ω
GND
+12V
GND
+12V
GND
466
CS=.74
5
0Ω
YC1
426
383
389
0Ω
100A
GND
Open
419E
100uF
209
419B
390Ω, 2W
421
12-18VDC Vs
3-5Vpp 31,F5
+12V
Open
419F
22K
370
22K
384
2.2M
363
127K
361
365K
362
.01uF
414
1,000uF
Master
Gain
10
1K
485
Vs
GND
10.8-12V
10, E6
35V
VERTICAL
DEFLECTION
YOKE
RC2
0Ω
.1uF
YC2
+
.4VDC Hs
.7Vpp 12,E5
3.92K
418
GND
5.5-6.5V Vs
1.2Vpp 19,D5
Retrace Boost
410
100uF
+
.1-.3VCD Vs
3.8Vpp 17,E5
4.5-5.3V Vs
5Vpp 16,E5
427
419A
4-6VDC Vs
2.8Vpp 18,D5
449
V
15.8K
408
3.92K
417
0Ω
Remote Control
2SC3467
VERT.
OSC.
+12V
Horizontal Raster Adj.
1
V. osc.
ADJ.
5.4-6VDC
11, E5
or
11-12.4V
192
376
490
PCB
0Ω
V RAS. POS.
2.15K
062
20, D5
420
189
185
0 TO 7 VDC
6.8K
251
20
19
18
17
16
15
14 13
GND
12
11
6.8K
250
VERTICAL BLANKING
PN2907A
193
425
S4
RC4
RC1
0Ω
0Ω
VERTICAL
18Ω
367
0Ω
+16V
6
+61V
+43V
VERTICAL
OSC. O/S
X-RAY
PROTECT
+
VERTICAL
± SYNC INPUT
VERTICAL
OSCILLATOR
comp.
V+
V Ref.
2-3VDC Vs
4Vpp 64,C4
1N4148
253
067
295
+
-
191
1/2
LM393
8
211
SR
7
2
3
2.3-
2.7V
424
423
H. S. +12V
S2
S1
DELAYED
SYNC O/S
1/2
LM393
PICTURE
POSITION
O/S
+6V
5
1
HORIZONTAL
OSCILLATOR
415
LA7851
1N4007
333
MULTIPLIER
BIAS
+
Horizontal
SAW TOOTH
TR . GENERATOR
212
+12V
DISCHARGE
9
210
OUT
IN
1.8K
368
SYNC INPUT
H. V+
10
210
1K
208
13
447
195
188
+
4
7812
SL
4-7VDC Hs
4-9Vpp 61,B4
4.5-5.3V Vs
5Vpp 16,E5
100Ω
1/2W
394
10.0K
022
+
0Ω
4
GND
2.7K
1
2
3
4
5
6
7
8
510Ω
14
1.8K
248
296
8
100uF
304
2
220uF
298
17
1/4
LM324
7.3-8.7V Hs
4Vpp 02,D6
7.3-8.7V Vs
-.2VDC Hs
3-4VDC Hs 2.4-3.4VDC
3-7VDC Hs 5.5-6.3V Hs 5-6VDC Hs
.2Vpp 07,E6 3.6Vpp 08,E6 7Vpp 09,E6
202
17
I4
021
1.8K
252
12
033
2.15K
336
OPEN
077
4Vpp 03,D6 1.5Vpp 04,E6 1.4Vpp 05,E6 0Vpp 06,E6
.047uF
207
5
+
HORIZONTAL
BLANKING
11
100uF
026
10.0K
023
GND
12K
I2
7
GND
Hs
IA
+
347
11
1
14
56pF
352
6.8K
H.Fo ADJ .
680Ω 340Ω I14
1uF
1K
170Ω
12.1K
329
1.8K
15
GND
Hs
3
10K
33K
PN2222A (CPQ1322)
13
9
7.3VDC Hs
5.5Vpp 01,D6
.039uF
081
I13
270Ω
I9
2.15K
1nF
I1
18
1uF
9.31K
100uF
15.8K
037
I7
I8
22K
8.8K
I12
25K
I5
330pF
350
+400Hz
High Temperature Or
Excessive Beam
220uF
334
6.8nF
348
I16
I15
25V
035
45K
I6
0VDC Hs
56Vpp 63,D6
.01uF
346
16
I3
351
6.8nF
078
072
093
+
I10
+ 1600Hz
+800Hz
+
1N4937
080
Current, Monitor Shut
Down Circuit.
Vs
6,10
344
345
GND
GND
12.1K
034
+6V
0Ω
3
2
ID
IC
IB
GND
H. +12V
019
I PRA
22K
1/4
LM324
1
VIDEO GAIN LINE
2SA
1371
100K
62K
416
62K
017
I BEAM
033
18Ω
S
T
173
167A
U
604Ω
076
H. S. +12V
FDH400
011
+61V
+43V
063
412Ω
105Ω 604Ω
Video V+
+127V
HORIZONTAL YOKE
084
4-7VDC Vs
200K
109
200K
005
008
260
244
245
909Ω
064
FBP
GND
+16V
FBP
GND
FBP
GND
5-9Vpp 62,B4
FDH400
GND
YC4
445
464Ω
086
+6V
+6V
I BEAM
+6V
258
I BEAM
I BEAM
+
+12V
+12V
GND
11.5-12.5V
446
HORIZONTAL WIDTH CONTROL
YC3
FDH400
1K
10uF
014
V+
V+
107V or 127VDC Hs
120Vpp 250Vpp 32,F6
Max. Min. H Size
V+
1N4937
15.8K
020
012 MPSA64
10.0K
031
10.0K
051
213
PN2222A
H. S. +12V
10.0K
0Ω
228
0Ω
293
220uF
100V
182
7-10VDC
61, C2
101.6K
J18
0Ω
198A
P
+
1
120
D
CPQ1322
JA
JB
1F
118
-1.4V
-2.8V
227
261
170
1N4148
018
0Ω
JE
9
+
1N4937
036
20
G
+16V
2.33K
J13
4.67K
194
029
1/4
LM324
8
071
+43V
+61V
+127V
239
1,000uF
CPR0432
220uF
250V
175
+
FR205
440
J14
91.4K
10
169
+
1,000uF
171
1,000uF
+
+
6V
100uF
267
100kΩ@25˚C
16 13
9
6
11
10
3
12V
VC
0
033
5
12
Beam Current
Limiter Circuit.
75Ω
066
1K
065
111N4937
121 122 167
J1
T
180
GND
-ABL
Ro Go Bo
+AEN
+12V
TTL
MGAIN
.33uF
082
470Ω
10K
2SA1371E
112
BZT03-D160
160Vz
GND
1
450
5
3.3K
050
3.3K
053
430
GND
1/2W
428
FR205
438
BBL
181
100K
113
241
1
GND
Controls
XRC5346A
038
1/4
LM324
7
FBP
4
+12V
H. Linearity
coil
GND
B R
2
8
6
200K
-Linear
Pincushion
Correction
529
6
9
5.6-6.2VDC Vs
2-3.6Vpp 33,B2
.033uF
800V
1
441
+
15.8K 68.1K
7.15K
366
15.8K
360
033
+55V
3
4
1,000pF
432
16.3-19VDC 55, E1
1/4
R IN
2
RR
1
GIN
14
GR
15
BIN
7
040
14
353
354
7.15K
364
0Ω
LM339
1N4937
5
8
Parabolic
Pincushion Correction
114A
431
6
1
5.6-6.2VDC Vs
1-1.7V 34,B2
2.1-2.4VDC Hs
6.5-7.5VDC
41,D1
8
355
16 14.8-18VDC
4.6Vpp 59,D6
168
+15V
INPUT
10.6K
J5
1K
6V
1N4937
0Ω
30Ω
1.5-2VDC 60,D6
15
9
FR205
1,000pF
110
10 / 11
+17V
INPUT
ERROR
AMP.
357
11
A5
B5
A5
132
139
3.92K
009
+
Hs
4VDC 20VDC
JD
141
12
28K
041
533/532
1.5uF
1/4
LM339
10
260Ω
J16
Blooming
correction.
3.3nF
358
142
30Vpp 200Vpp 35,H7
Max. Min. H Size
J
K
L
13
3
+2.9V
15.8K
030
225
243
264
233
400V
5
2
3
6.5-7.5VDC
166
68.1K
2.2nF
I BEAM
444
443
INPUT
COMP.
JC
355
223
242
231
221
88K
J4
Over
+12V
130Ω
J15
097
3.92K
356
.5-.8VDC
1N4148
130
+1.4V
191K
150
3.3K
052
CPT1528
457
218
Voltage 14 5.5-6.8VDC
3.3K
042
.1uF
010
226
232
200K
044
}
.01uF
054
HER205 HER205
477 478
4
Protect
4-19VDC Hs
27Vpp 36,J7
FR205
16
56pF
107
126
38.3K
J9
3.3nF
108
3,300pF
INPUT
.1uF
124
11K
J2
50uH
200K
246
GND
+25V
HS +12V
.05VDC Vs,Hs
7V pp 58,C5
0.1uF
200V
437
1N4937
462
PN2222 2.15K
272
4
148
+25V
0Ω
235
Output
V-
3.4-4.2VDC
458
236
278
266
276
2
PN2222
.10Ω .10Ω
20
125
23.2K
3-5VDC
5Vpp 52,F1
28.0K
1W
1W
476
0Ω
56pF
104
CONTROL &
FAULT SENSE
No DVM
1N4148
268
1.00M
134
18
475
1.00M
J10
1N4148
271
274
1N4148
270
J3
300Vpp 40,G1
096
454
.1-.5VDC
44.2K
058
2.7K
060
12
13
2
3
277
255
44.2K
043
4uS
5
6
5
H SIZE
275
273
COMP.
DELAY
+
17
8
1/2
LM392
1nF
500V
463
1
3-6VDC
IRF520
460
106
1/2
CPQ1304
7
GND
4VDC 20VDC Vs
11Vpp 15Vpp
Max. Min. H Size
PN2222
254
HEAT
SINK
135
100uF
061
+
10K
055
0Ω 510Ω
094 461
GND
100K
257
LM392
049
15.8K
J12
14.7K
J11
0Ω
136A
37,I6
9
12.1K
045
0.1VDC
1Vpp 51,F1
6.8K
321
6
049
+12V
OUTPUT
Rx
33.2K
J7
5.7-6.3VDC
470 Ω
1/2W
464
62K
143A
36K
143B
6.8K
056
4
.047uF
318
200K
256
220uF
250V
144
22K
323
136
13
200pF
1KV
138
510Ω
12
11
M & N reverse Hs.
6.8nF
057
Current
Osc.
.01uF
047
0Ω
10.0K
095
0.8-7VDC Hs
12Vpp 38,J7
3-4VDC
3Vpp 47,D2
SENSE
6.8K
322
J8
6.8uF 100V
456
1-4VDC
12Vpp 50,E2
2-2.5VDC Hs
4.4Vpp 39,B3
M
1.8K
325
33K
247
152
4
3
6.8nF
102
220uF
250V
163
0Ω
0Ω
280
0Ω
283
7
8
1/4
LM339
GND
0Ω
114
2.2nF
0.33Ω
2W
137
47Ω
1/2W, CC
140
2
Cx
18Ω
GND
GND
10
9
281
N
270Ω
DRIVE
HORIZONTAL WIDTH DRIVE
5
6
133
326
155
+24V
+
355
7
Inrush Current Limit
8,14
0Ω
470Ω, 1/2W
FR205
V-
+7.5VREF.
M
CC
470
90K
J6
1N4007
116
328
159
MPSA64
286
284
XRC5184
270Ω
V-
TP49, G1
288
1/4
1
LEGEND
J
PRA
111
N
25Ω@25˚C, 2A
156
13350 New Airport Road
Auburn, California
Relay
200V.5A
LM339
115
330
330pF
123
D
1.8K
331
95602
355
No
.
127
CERONIX
7
100pF
129
BOARD PART No.
PART No. ON PRA.
PRA PIN No.
DC VOLTAGE RANGE,
USING A DMM.
+
0Ω
177
0Ω
176
12
220uF
128
CPR0434
Black Wire.
158
2,200pF
131
LTR.No
.
3A Fuse
.14-.16V
SCALE
:
DATE & REV.
NONE
DRAWN BY:
4/10/96-E1 3/24/99-E5
9/30/96-E4 03/06/02-E8
X
468
X
146
270Ω
& 19
J PRA PINS: 3,10,15,
-265V
V-
V-
F. H.
2/18/92
X-
327
{
GND
GND
GND
X-Y VDC
Y V
Measurements
are taken with
a white screen.
Hs - 5uS/div.
Vs - 2mS/div.
0VDC Hs
27Vpp 57,F1
USE V. or H. SYNC.
X-Y VDC Sync.
Vp-p TP-REF.
CERONIX Model 1493-CGA
Monitor Circuit.
.093" pins
Degaussing
Connector
145
120VAC PC
INPUT
TEST POINT
ASS. REF.
AC VOLTS
Peak to Peak
GND
R
VC
4
G
B
VC
6
.093" pin
162A
Vs
H
s
PC
2
VERTICAL
SYNC
HORIZONTAL
SYNC
CAUTION! POWER SUPPLY VOLTAGES REFERENCED FROM V-.
SCOPE GND MUST NOT BE CONNECTED TO GND AND V- AT THE SAME TIME.
WAVEFORM
VC
VC
3
BLUE
CERONIX
PART NO.
GREEN
VC VC
RED
INPUT
Measured with scope
1
292
CPA4233, CPA4235
5
INPUT
2
1
162
161
INPUT
BB
AA
CC
DD
EE
FF
GG
HH
II
J J
KK
LL
MM
NN
OO
PP
16
16
9
A
B
C
D
E
F
G
H
I
J
NOTES
Remote Connector
VALUE
7.15K 1%,1/4W CPR0142 D2 GG8
106 8.06K 1%,1/4W CPR1068 D2 GG8
PART No. BD SCH
62K, 143A
0Ω, 132
149
30Ω,139
4937, 141
533
529
+
POWER
002
100K, 113
1371
112
106
A
510Ω, 004
532
FR205, 142
200pF, 138
CPS1804
B
B
Wire Tie, 145A
18Ω, 133
0Ω, 114
115A
J PRA, 111
1
2
3
4
5
6
7
1
2
3
4
5
6
7
003
47Ω, CC,140
0Ω, 531
.33Ω, 2W, 137
118 100uF, 25V
120 100uF, 25V
121 1N4937
CPC1102 E2 II5
CPC1102
E2 II5
CPD1253 F2 II6
A
A
A
A
+
220uF, 250V
144
0Ω, 114A
CPS1753
145
200K, 005
510Ω,006
527
024
.1uF
010
Power Supply
J E
J A
J B
016
J C & J D
1371
008
007
1.00M, 134
62K, 011
122
2.2nF
131
1N4937
CPD1253 F2 II6
0Ω
1nF
110
166 S.M.INDUCTOR CPT1552 H2 KK6
019
100uF
035
1K, 012
+
4148, 018
15.8K, 020
510Ω, 021
CPT1562
166 S.M.INDUCTOR
185 4.7Ω 5%,1/4W
188 0Ω JUMPER
H2 KK6
A
A
A
A
A
A
A
+
3.3nF
10uF
CPQ1304
136
108
CPR0003 G3 NN3
CPR0050 F3 OO3
CPR0015 F3 NN3
CPR0050 F3 NN3
CPR0003 E3 NN3
CPR0050 B4 BB7
025
A64
3A-T
FUSE
220uF
128
+
56pF
036
014
107
127
189
22K 5%,1/4W
0Ω, 136A
56pF
104
103
6.8nF
102
146
10.0K, 022
166
126
191K,
LM324
033
191 0Ω JUMPER
195 4.7Ω 5%,1/4W
218 0Ω JUMPER
15.8K, 037
10.0K, 023
+
3.3nF
125
+
115
10K, 038
Jumper
under
heat sink.
136A
0Ω, 032
100uF
026
200K, 040
218 340Ω 1%,1/4W CPR0129 B4 BB7
B
B
C5184
330pF
123
Retighten nut after
wave soldering.
220uF, 250V
163
221
A
A
A
A
0Ω JUMPER
CPR0050 A4 DD7
027
028
101
10.0K, 031
223 20.0K 1%,1/4W CPR0153 A4 BB7
225 0Ω JUMPER CPR0050 A5 AA7
226 88.7Ω 1%,1/4W CPR0125 A5 AA7
10
5
041
28.0K,
CPM2123, 135
+
+
122
030
15.8K,
4937, 170
62K, 167A
039
44.2K,
10.0K, 051
10.0K, 029
121
052
3.3K,
BB5
CPR0018 A5
20.0K 1%,1/4W CPR0153 A5 DD7
227 62K 5%,1/4W
231
3.3K, 042
3.3K, 050
4937, 169
4937, 168
120
118
A
A
A
A
043
3.3K, 053
+
2222
100B
68.1K, 097
28.0K,096
+
232 75.0Ω 1%,1/4W CPR0124 A5 CC7
1,000uF
044
200K,
.01uF, 054
Black Wire
LM392
049
167
4937,
233 4.7Ω 5%,1/4W
CPR0003 A5 CC7
CPR0050 A5 AA7
+
35V
171
12.1K, 045
10K, 055
157
Degaussing Conn.
10.0K, 095
236 0Ω JUMPER
CPC1112
220uF, 250V
175
.01uF, 047
6.8K, 056
162
161
1
236 340Ω 1%,1/4W CPR0129 A6 AA7
B
B
220uF, 100V
182
0Ω, 094
046
057
6.8nF,
44.2K, 058
239
6.8K 5%,1/4W
CPR0013 B5 AA5
270Ω,093
.093" PINS
POSISTOR
CPR0434
A
A
242 20.0K 1%,1/4W CPR0153 B4 CC7
+
2
0Ω, 048
100uF
+
100uF
089
243 0Ω JUMPER
CPR0050 B5 BB7
CPR0050 B5 BB5
2.7K, 060
.039uF,
081
062
2.15K,
+
120-230V, 14Ω
061
+
.33uF
082
162A
.093"
PIN
261 0Ω JUMPER
B
18Ω, 063
261 15.8K 1%,1/4W CPR0145 B5 BB5
158
472
A
A
A
119
909Ω, 064
1K, 065
4937, 080
2222-Mot.
264
100Ω 1%,1/4W CPR0120 B5 BB7
3
071
078
2.15K,
266 0Ω JUMPER
266 301Ω 1%,1/4W CPR0128 B5 CC7
268 1N4148
268 1N4148 REV.
270
270 1N4148 REV.
271 1N4148 REV.
271 1N4148
CPR0050 B6 CC7
0Ω,196
Blue Wires
387
+
072
75Ω, 066
077
B
B
2222-Mot.
382
4007,
CPD1251 B6 CC7
CPD1251 B6 CC7
CPD1251 B6 BB7
CPD1251 B6 BB7
CPD1251 B6 AA7
CPD1251 B6 AA7
A
A
604Ω, 076
0Ω,067
CPR
0432
+
0Ω, 068
206
1N4148
12 pin video board connector.
CPS1757
1,000uF
35V
1,000uF
35V
CPM
2028
180
075
074
B
B
+
470uF
50V
070
221
380
449
0Ω, 523
+
450
451
A
A
0Ω, 217
500
100uF
209
219
273 412Ω 1%,1/4W CPR0130 C6 DD8
LM393
210
0Ω, 389
273
B
B
378
2.15K 1%,1/4W CPR0138 C6 DD8
H400, 213
218
242
522
521
501
502
275 1K 5%,1/4W
275 30Ω 5%,1/4W
276 75.0Ω 1%,1/4W CPR0124 B6 CC7
276 301Ω 1%,1/4W CPR0128 B6 CC7
CPR0009 C6 DD8
CPR0033 C6 DD8
212
2907
+
0Ω
400
377
LA7838
A
A
127K, 388
100uF
223
224
390
100K,
+
1nF, 369
100pF,398
448
509
376
375
1uF
401
402
B
B
B
508
0Ω,
.01uF,374
277
277
A
A
75.0Ω 1%,1/4W CPR0124 B6 BB7
340Ω 1%,1/4W
93.1K,
2222
225
.1uF
1uF
391
CPR0129 B6 BB7
250V
226
227
28.0K,
373
397
278 75.0Ω 1%,1/4W CPR0124 B6 AA7
278 301Ω 1%,1/4W CPR0128 B6 AA7
284 75.0Ω 1%,1/4W CPR0124 B6 CC9
100K, 403
169K,
C5346A
241
200K, 372
200K, 371
404
H
2907
A
A
A
A
0Ω, 228
231
447
4148, 405
4148, 406
286
288
75.0Ω 1%,1/4W CPR0124 B6 BB9
75.0Ω 1%,1/4W CPR0124 A6 AA9
409
22K, 370
1.8K, 368
18Ω, 367
FBT: 453
232
233
234
3467
420
SR
S2
292 7 PIN HEADER CPS1752 A6 BB9
292 6 PIN HEADER CPS1781 A6 BB9
423 510Ω 5%,1/4W CPR0006 F5 OO3
514
407
84.5K,
FBT: Hitachi BW02651,
CPT1558
B
411
15.8K, 408
.1uF, 410
CPC1058
+
A
A
A
366
7.15K,
100uF
267
445
468
255
426 427
446
424
425
270Ω 5%,1/4W CPR0004 F5 OO3
235
0Ω,
7.15K, 364
2.2M, 363
365K, 362
127K, 361
515
444
RELAY
150Ω 5%,1/4W CPR0367 F5 OO3
Yoke Connector .062" Pins
236
268
430 0Ω JUMPER
CPR0050 F6 OO6
B
B
0Ω, 466
LA7851
415
270
271
430 LIN. INDUCTOR CPT1539 F6 OO6
431 LIN. INDUCTOR CPT1517 F6 OO6
A
259
.01uF
414
6
5
4
3
NORMAL POLARITY SHOWN
431
A
A
LIN. INDUCTOR CPT1539 F6 OO6
1.5uF, 400V
CPC1069
360
15.8K,
443
516
.5W
428
444
.68uF 5%, 250V CPC1042 H6 OO7
283
0Ω,
IB IC ID
Horizontal Control
IA
352
56pF
416
I PRA
3.3nF, 358
1K, 357
444 1.5uF 5%,400V CPC1069 H6 OO7
447 12mH INDUCT. CPT1538 G5 PP3
529 191K 1%,1/4W CPR0169 E1 GG6
529A
B
430
+
346
292
+
A
A
A
A
442
518
473
1uF
6.8nF
347
2
3.92K, 356
1uF
344
517
0Ω JUMPER
CPR0050 F1
CPR0050 G1 KK7
CPR0050 G1 KK7
J
1
0
345
0.033uF, 800V
Label; WHV 333 H
470Ω
.5W
532
0Ω JUMPER
441
LM339
355
+
335
533 0Ω JUMPER
CRT M34AFA13X07 CPP1711
B
B
B
12.1K, 329
4007,333
6.8uF, 100V,
456
220uF
334
FR205, 440
FR205, 438
0.10uF, 200V
437
A
2.15K,336
464
311
IRF520
460
431
+
V+
V+
Hf
51.3-52.7V DC. 52.0V DC.
53.3-54.7V DC. 54.0V DC.
15.75kHz
312
313
A
A
A
220uF
298
2SD1651, 433
.10Ω,1W
C4159
337
B
B
306
H. Drive,
CPT1505
332
HER205
477
50uH
CPT1511
475
CPA4242
150uH,
0Ω, 480
Video Board
2.2K, .5W
341
436
+
303
CPA4234
0.00-1.00V
1.10-5.60V
Video Board
.10Ω,1W
HER205
478
100uF
0Ω, 297
+
476
A
A
Video Positive Analog
Video Negative Analog
Power: 120VAC
339
1.2Ω, 434
200Ω, 2W
304
100uF
338
315
316
7812, 296
340
B
B
CPT1528
457
439
4007, 435
305
349
458
CPA4233
Hf = 15.75kHz Hf = 15.75kHz
Vf = 60Hz Vf = 60Hz
0Ω, 295
CPA4235
Model 1493-CGA
A
B
C
D
E
F
G
H
I
J
17
17
BB
AA
CC
DD
EE
FF
GG
HH
II
J J
KK
LL
MM
NN
OO
PP
0VDC Hs
56V 28,D3
TC11
TC12
VIDEO BOARD
Fil.
Fil. Rtn.
Screen
Beam current
Feedback
22-28V Vs
.8Vpp 25,F7
Red Video Amp.
800
Product safety note: Components marked by the
When replacing any of
symbol on this schematic have special characteristics important to safety.
these components, be sure to use the parts specified in the parts list.
0Ω,
CHUNGHWA
M34AFA13X07
Beam current
Feedback
Video
Board
800
Green Video Amp.
092
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
FOCUS
EHT
Thermal Protection
LA7838
Vertical
Vertical Linearity Circuit
out
CRT
Ramp
V. +12V
HEAT
SINK
0Ω
092A
Ramp
0Ω
196
Reset
One Shot
out
Vert.
Out
Vert.
Drive
Beam current
Feedback
DECREASES
Gen.
Blue Video Amp.
378 Deflection
200K
412
200K
413
TOP AND
BOTTOM
VERT. SIZE.
V. size
Control
Retrace
Booster
Reset
Ramp
Slope
NO DVM Hs
.9KVpp 27,G6
377
PN2907A
ARC PROTECT
Tr.
FLYBACK
1N4007
342
R/C
50/60Hz
0Ω
2.2K.5W
341
12-18VDC Hs
33Vpp 26,E7
Boost
+12V
GND
Horizontal Drive
Transformer
+12V
Drive
TRANSFORMER
10
127V TC8
+25V
EHT
409
Horizontal
Size
GND
I
B+G+R=∑
422
Beam
Current
Buffer
10K
481
CPT1505
1
2
3
4
5
6
7
8
9
10
11
12
13
470Ω
D5
D5
2SC
4159
2SC5690
1/2W
Auto Bias
VSync
RC5
+
19
2
Auto
Bright
5.5-6.4V Vs
3Vpp 21,D5
332
0Ω
100pF
100uF
338
6
9
8
H
5.5-6.5V Vs
1.4Vpp 23,F4
510Ω
200K
371
200K
372
398
5-6VDC Vs
1.4Vpp 22,E5
433
465
100Ω
I11
ABA
RC8
RC6
451
NC
004
INCREASES
TOP AND
BOTTOM
337
3
4
1N4007
382
0Ω
395
1N4007
FOCUS
20
Vertical
Size
PN2222
PN2222
500Ω
0Ω
93.1K
375
1
470uF
SOCKET BOARD CONNECTOR (TC) 206
TC7 Red
TC5 Green
TC 3 Blue
TC 10 TC 6
2,200pF
343
435
1.2Ω
434
VERT. SIZE.
1N4007
090
411
200Ω 2W
482
203
+25V
373
SCREEN
380
68.1KΩ
0Ω
+12
V
750Ω
340
1,000pF
.01uF
374
GND
GND
1.5-2.7V Vs
24Vpp 24,E4
28.0K
402
1uF
401
4.7Ω
68.1K
088
Vertical
Raster
1N4148
393
1N4148
7
5
486
100K
390
127K
407
396
2.15K
392
100K
404
62K
098
6.8K
099
1
4
369
085
1K
406
405
Position
.1uF
397
GND
100uF
510Ω
PN2222
483
3
2
RC3
RC
002
12-18VDC Vs
50Vpp 29,F6
PN2222
+
089
1uF
391
2
127K
388
FIL.
006
1.2Ω, 1W
385
93.1K
403
V-
1
0Ω
3
CPT1516
453
127K
087
524
&
100B
20K
484
Horizontal
Position
0Ω
RC7
379
525
200K
CS=.45"
0Ω
GND
+12V
GND
+12V
GND
466
CS=.74
5
0Ω
YC1
426
383
389
0Ω
100A
GND
Open
419E
100uF
209
419B
390Ω, 2W
421
12-18VDC Vs
3-5Vpp 31,F5
+12V
Open
419F
22K
370
22K
384
2.2M
363
127K
361
365K
362
3.3nF
.
414
1,000uF
Master
Gain
10
1K
485
Vs
GND
10.8-12V
10, E6
35V
VERTICAL
DEFLECTION
YOKE
RC2
0Ω
.1uF
YC2
+
.4VDC Hs
.7Vpp 12,E5
3.92K
418
GND
5.5-6.5V Vs
1.2Vpp 19,D5
Retrace Boost
410
100uF
+
.1-.3VCD Vs
3.8Vpp 17,E5
4.5-5.3V Vs
5Vpp 16,E5
427
419A
4-6VDC Vs
2.8Vpp 18,D5
449
V
15.8K
408
3.92K
417
0Ω
Remote Control
2SC3467
VERT.
OSC.
+12V
Horizontal Raster Adj.
150Ω 1/2W
V. osc.
ADJ.
5.4-6VDC
11, E5
or
22K
11-12.4V
20, D5
192
376
490
PCB
0Ω
V RAS. POS.
1K
062
420
0Ω
189
4.7Ω
185
0 TO 7 VDC
6.8K
251
20
19
18
17
16
15
14 13
GND
12
11
6.8K
250
VERTICAL BLANKING
PN2907A
193
425
S4
RC4
RC1
0Ω
0Ω
VERTICAL
18Ω
367
0Ω
+16V
6
VERTICAL
OSC. O/S
X-RAY
PROTECT
+
VERTICAL
± SYNC INPUT
VERTICAL
OSCILLATOR
270Ω
comp.
V+
V Ref.
2-3VDC Vs
4Vpp 64,C4
1N4148
253
067
295
+
-
191
1/2
LM393
8
211
CPT1538
12mH
SR
7
2
3
2.3-
2.7V
424
510Ω
423
H. S. +12V
S2
S1
DELAYED
SYNC O/S
1/2
LM393
PICTURE
POSITION
O/S
+6V
5
1
HORIZONTAL
OSCILLATOR
415
LA7851
1N4007
333
MULTIPLIER
BIAS
4.7Ω
0Ω
+
Horizontal
SAW TOOTH
TR . GENERATOR
212
+12V
DISCHARGE
9
210
OUT
IN
1.8K
368
SYNC INPUT
H. V+
10
210
1K
208
13
447
195
188
+
4
7812
SL
4-7VDC Hs
4-9Vpp 61,B4
4.5-5.3V Vs
5Vpp 16,E5
100Ω
1/2W
394
10.0K
022
+
0Ω
4
GND
2.7K
1
2
3
4
5
6
7
8
510Ω
14
1.8K
248
296
8
100uF
304
2
220uF
298
17
1/4
LM324
7.3-8.7V Hs
4Vpp 02,D6
7.3-8.7V Vs
-.2VDC Hs
3-4VDC Hs 2.4-3.4VDC
3-7VDC Hs 5.5-6.3V Hs 5-6VDC Hs
.2Vpp 07,E6 3.6Vpp 08,E6 7Vpp 09,E6
202
17
I4
021
1.8K
252
12
28.0K
077
033
4Vpp 03,D6 1.5Vpp 04,E6 1.4Vpp 05,E6 0Vpp 06,E6
.047uF
207
5
+
HORIZONTAL
BLANKING
11
336
100uF
026
10.0K
023
GND
12K
I2
7
GND
Hs
IA
+
347
11
1
14
56pF
352
6.8K
H.Fo ADJ .
680Ω 340Ω I14
1uF
1K
170Ω
12.1K
329
1.8K
15
GND
Hs
3
10K
33K
PN2222A (CPQ1322)
13
9
7.3VDC Hs
5.5Vpp 01,D6
.01uF
081
I13
270Ω
I9
1.8K
330pF
I1
18
1uF
9.31K
100uF
15.8K
037
I7
I8
22K
8.8K
I12
25K
330pF
350
+400Hz
High Temperature Or
Excessive Beam
220uF
334
3.3nF
348
I16
I15
25V
035
45K
I6
0VDC Hs
56Vpp 63,D6
.01uF
346
16
I3
351
I5
3.3nF
078
072
093
+
I10
+ 1600Hz
+800Hz
+
1N4937
080
Current, Monitor Shut
Down Circuit.
Vs
6,10
344
345
GND
GND
12.1K
034
+6V
0Ω
3
2
ID
IC
IB
GND
H. +12V
019
I PRA
22K
1/4
LM324
1
VIDEO GAIN LINE
2SA
1371
100K
62K
416
62K
017
I BEAM
033
18Ω
S
T
173
167A
U
1.62K
076
H. S. +12V
FDH400
011
063
1.62K
260
604Ω 1.21K
Video V+
+127V
HORIZONTAL YOKE
084
4-7VDC Vs
200K
109
200K
005
008
244
245
2.7K
064
FBP
GND
+16V
FBP
GND
FBP
GND
5-9Vpp 62,B4
FDH400
GND
YC4
445
1.21KΩ
086
+6V
+6V
I BEAM
+6V
258
I BEAM
I BEAM
+
+12V
+12V
GND
11.5-12.5V
446
HORIZONTAL WIDTH CONTROL
YC3
FDH400
1K
10uF
014
+108V
+108V
107V or 127VDC Hs
120Vpp 250Vpp 32,F6
Max. Min. H Size
V+
1N4937
15.8K
020
012 MPSA64
10.0K
031
10.0K
051
213
PN2222A
H. S. +12V
10.0K
0Ω
228
0Ω
293
15.8K
220uF
50V
182
7-10VDC
61, C2
101.6K
J18
0Ω
198A
+
D
CPQ1322
JA
JB
100uF
120
100uF
118
-1.4V
-2.8V
261
170
1N4148
018
0Ω
JE
9
+
1N4937
036
20
G
+16V
2.33K
J13
4.67K
194
+101V
+115V
029
1/4
LM324
8
071
+127V
1,000uF
CPR0432
220uF
250V
175
+
FR205
440
J14
91.4K
10
169
+
1,000uF
171
1,000uF
+
+
6V
100uF
267
100kΩ@25˚C
16 13
9
6
11
10
3
12V
VC
0
033
5
12
Beam Current
Limiter Circuit.
75Ω
066
1K
065
1N4937 1N4937 1N4937
121 122 167
J1
T
180
GND
-ABL
Ro Go Bo
+AEN
+12V
TTL
MGAIN
.33uF
082
470Ω
10K
2SA1371E
112
BZT03-D160
160Vz
GND
1
450
5
3.3K
050
3.3K
053
430
GND
1/2W
428
FR205
438
BBL
181
100K
113
241
CPT1536
1
GND
Controls
XRC5346A
038
1/4
LM324
7
FBP
4
+12V
H. Linearity
coil
GND
B R
2
8
6
200K
-Linear
Pincushion
Correction
6
9
5.6-6.2VDC Vs
2-3.6Vpp 33,B2
+
15.8K 68.1K
7.15K
366
15.8K
360
033
+52V
3
4
200pF
432
1
441
16.3-19VDC 55, E1
1/4
R IN
2
RR
1
GIN
14
GR
15
BIN
7
040
14
353
354
7.15K
364
0Ω
LM339
1N4937
5
8
Parabolic
Pincushion Correction
114A
431
6
1
5.6-6.2VDC Vs
1-1.7V 34,B2
2.1-2.4VDC Hs
6.5-7.5VDC
41,D1
8
355
16 14.8-18VDC
4.6Vpp 59,D6
168
+15V
INPUT
10.6K
J5
1K
6V
1N4937
0Ω
30Ω
1.5-2VDC 60,D6
15
9
FR205
1,000pF
110
0Ω
10
+17V
INPUT
ERROR
AMP.
357
11
A5
B5
A5
132
139
3.92K
009
+
Hs
4VDC 20VDC
JD
141
12
533
0Ω
225
0Ω
1/4
LM339
10
260Ω
J16
Blooming
correction.
3.3nF
358
142
30Vpp 200Vpp 35,H7
Max. Min. H Size
J
K
L
13
3
+2.9V
041
15.8K
030
443
243
233
5
2
3
0Ω
6.5-7.5VDC
166
15.8K
223
15.8K
242
15.8K
231
2.2nF
I BEAM
INPUT
COMP.
JC
355
221
88K
J4
0 Ω
218
Over
75Ω
226
84.5Ω
264
130Ω
J15
+12V
097
3.92K
.5-.8VDC
1N4148
130
+1.4V
127K
150
3.3K
052
CPT1528
457
Voltage 14 5.5-6.8VDC
3.3K
042
.1uF
010
232
356
}
.01uF
054
HER205 HER205
477 478
4
Protect
4-19VDC Hs
27Vpp 36,J7
FR205
16
56pF
107
126
38.3K
J9
3.3nF
108
044
3,300pF
INPUT
.1uF
124
11K
J2
50uH
200K
246
GND
25V
HS +12V
.05VDC Vs,Hs
7V pp 58,C5
22nF
630V
437
1N4937
462
PN2222 2.15K
272
4
148
+25V
0Ω
235
0Ω
236
0Ω
Output
V-
3.4-4.2VDC
2.2nF-230V
458
266
2
PN2222
.10Ω .10Ω
20
125
23.2K
3-5VDC
5Vpp 52,F1
28.0K
1W
1W
476
0Ω
56pF
104
CONTROL &
FAULT SENSE
No DVM
152
1N4148
268
1.00M
134
18
475
1.00M
J10
1N4148
271
274
1N4148
270
J3
75.0Ω
278
75.0Ω
277
75.0Ω
276
300Vpp 40,G1
096
454
.1-.5VDC
FR205
230V
44.2K
058
2.7K
060
30Ω
275
412Ω
12
13
2
3
255
4uS
5
6
5
H SIZE
273
COMP.
DELAY
+
17
8
1/2
LM392
1nF
500V
463
1
3-6VDC
IRF520
460
043
12.1K
045
106
105
1/2
CPQ1304
7
GND
4VDC 20VDC Vs
11Vpp 15Vpp
Max. Min. H Size
PN2222
254
151
HEAT
SINK
135
100uF
061
+
10K
055
0Ω 510Ω
094 461
GND
100K
257
LM392
049
15.8K
J12
14.7K
J11
0Ω
136A
37,I6
9
0.1VDC
1Vpp 51,F1
6.8K
321
6
049
+12V
OUTPUT
Rx
33.2K
J7
5.7-6.3VDC
470 Ω
1/2W
464
62K
143A
6.8K
056
4
.047uF
318
200K
256
220uF
250V
144
22K
323
136
200pF
1KV
138
510Ω
12
11
M & N reverse Hs.
3.3nF
057
Current
Osc.
.01uF
047
OPEΩN
10.0K
095
0.8-7VDC Hs
12Vpp 38,J7
36K
143B
3-4VDC
3Vpp 47,D2
SENSE
13
6.8K
322
J8
2.7uF 100V
456
1-4VDC
12Vpp 50,E2
2-2.5VDC Hs
4.4Vpp 39,B3
M
1.8K
33K
247
152
4
3
3.3nF
102
220uF
250V
163
0Ω
0Ω
280
0Ω
283
7
8
1/4
LM339
GND
0Ω
114
325
2.2nF
0.33Ω
2W
137
47Ω
1/2W, CC
140
2
Cx
18Ω
GND
GND
10
9
281
N
270Ω
326
DRIVE
HORIZONTAL WIDTH DRIVE
5
6
133
155
+24V
+
355
7
Inrush Current Limit
8,14
0Ω
75.0Ω
75.0Ω
470Ω, 1/2W
FR205
V-
+7.5VREF.
75.0Ω
M
CC
470
90K
J6
1N4007
116
328
159
MPSA64
286
284
XRC5184
270Ω
330
V-
TP49, G1
288
1/4
1
LEGEND
J
PRA
111
N
25Ω@25˚C, 2A
156
13350 New Airport Road
Auburn, California
Relay
200V.5A
LM339
115
200pF
123
D
2.2nF-230V
1.8K
331
95602
355
No
.
127
CERONIX
7
100pF
129
BOARD PART No.
PART No. ON PRA.
PRA PIN No.
DC VOLTAGE RANGE,
USING A DMM.
+
0Ω
177
0Ω
176
12
220uF
128
CPR0434
Black Wire.
158
2,200pF
131
LTR.No
.
3A Fuse
.14-.16V
153
SCALE
:
DATE & REV.
NONE
DRAWN BY:
4/10/96-E1 3/24/99-E5
9/30/96-E4 03/06/02-E8
X
468
X
146
270Ω
& 19
J PRA PINS: 3,10,15,
FR205
230V
-195V
V-
V-
F. H.
2/18/92
X-
327
{
GND
GND
GND
X-Y VDC
Y V
Measurements
are taken with
0VDC Hs
27Vpp 57,F1
USE V. or H. SYNC.
X-Y VDC Sync.
Vp-p TP-REF.
154
CERONIX Model 1493-VGA, 1493-SVGA
.093" pins
Degaussing
Connector
145
21320VAC PC
INPUT
TEST POINT
ASS. REF.
AC VOLTS
Peak to Peak
a
white screen.
CPS
1752
292
GND
R
VC
4
G
VC
5
B
VC
6
.093" pin
162A
Vs
H
s
PC
2
VERTICAL
SYNC
HORIZONTAL
SYNC
Hs - 5uS/div.
Vs - 2mS/div.
CAUTION! POWER SUPPLY VOLTAGES REFERENCED FROM V-.
SCOPE GND MUST NOT BE CONNECTED TO GND AND V- AT THE SAME TIME.
WAVEFORM
VC
3
BLUE
INPUT
CERONIX
PART NO.
GREEN
INPUT
VC VC
RED
INPUT
Measured with scope
1
CPA4200, CPA4252
2
1
162
161
BB
AA
CC
DD
EE
FF
GG
HH
II
J J
KK
LL
MM
NN
OO
PP
18
18
9
A
B
C
D
E
F
G
H
I
J
NOTES
Remote Connector
VALUE
PART No. BD SCH
62K, 143A
132
30Ω,139
200pF, 138
4937, 141
529
0Ω,
149
+
POWER
002
100K, 113
1371
041 12.1K 1%,1/4W CPR0144 A2 NN7
041 15.8K 1%,1/4W CPR0145 A2 NN7
043 36K 5%,1/4W
043 22.0K 1%,1/4W CPR1063 A3 LL8
044 22K 5%,1/4W CPR0015 A3 MM7
044 44.2K 1%,1/4W CPR0154
D
D
510Ω, 004
FR205, 142
0Ω, 533
CPS1804
C
C
Wire Tie, 145A
18Ω, 133
0Ω, 114
115A
1
2
3
4
5
1
2
3
4
5
6
7
112
003
47Ω, CC,140
0Ω, 531
.33Ω, 2W, 137
CPR0017 A3 LL8
+
220uF, 250V
144
0Ω, 114A
CPS1753
145
200K, 005
510Ω,
.1uF
010
J A
J B
J PRA, 111
J C & J D
016
Power Supply Control
1371
008
C
006
527
024
007
1.00M, 134
62K, 011
D
D
2.2nF
131
A3 MM7
0Ω
1nF
110
097
62K 5%,1/4W
CPR0018
MM7
C3
C3 MM7
105 140K 1%,1/4W CPR0172 D1 GG8
019
100uF
035
1K, 012
+
4148, 018
15.8K, 020
510Ω, 021
097 169K 1%,1/4W CPR0146
C
C
C
+
3.3nF
CPT1536
166
10uF
CPQ1304
136
108
025
A64
3A-T
FUSE
200uF
128
+
56pF
036
106 7.15K 1%,1/4W
8.06K 1%,1/4W
232 75.0Ω 1%,1/4W
88.7K 1%,1/4W
CPR0142 D2 GG8
CPR0168 D2 GG8
CPR0124 A5 CC7
CPR0125 A5 CC7
CPR0003 A5 CC7
CPR0050 A5 CC7
CPR0012 E6 KK4
014
107
127
106
D
D
0Ω, 136A
56pF
104
103
146
10.0K, 022
126
127K,
LM324
033
15.8K, 037
10.0K, 023
+
232
C
3.3nF
125
+
115
10K, 038
3.3nF,
Jumper
136A
under
heat sink.
233 4.7Ω 5%,1/4W
0Ω, 032
D
100uF
026
102
200K, 040
0Ω JUMPER
2.7K 5%,1/4W
233
336
C
C
C5184
200pF
123
Retighten nut after
wave soldering.
220uF, 250V
163
027
028
101
10.0K, 031
KK4
336 1.21K 1%,1/4W CPR0134 E6
2.7K 5%,1/4W
CPR0012 C6 FF7
356 3.92K 1%,1/4W CPR0140 C6 FF7
0Ω JUMPER
27uH Inductor
431 Linearity Inductor CPT1517 F6 OO6
431 Linearity Inductor CPT1539 F6 OO6
441 7.5nF, 1.6KV
441 5.6nF, 1.6KV
D
D
10
5
041
CPM2123, 135
+
+
122
4937,
356
15.8K, 030
4937, 170
62K, 167A
039
10.0K, 051
3.3K, 052
3.3K, 053
10.0K, 029
C
C
121
4937,
100uF
120
100uF
118
430
430
F6 OO6
CPR0050
CPT1546 F6 OO5
D
D
3.3K, 042
3.3K, 050
4937, 169
4937, 168
043
+
2N2222
100B
097
+
1,000uF
044
.01uF, 054
Black Wire
28.0K,096
LM392
049
167
4937,
C
C
+
35V
171
12.1K, 045
10K, 055
157
Degaussing Conn.
10.0K, 095
CPC1061 H6 PP6
CPC1063 H6 PP6
CPC1042 H6 PP7
CPC1050 H6 PP7
CPC1103
220uF, 250V
175
.01uF, 047
6.8K, 056
162
161
1
D
220uF, 35V
0Ω, 094
046
057
3.3nF,
44.2K, 058
443
.68uF, 250V
443 .47uF, 250V
C
270Ω,093
182
.093" PINS
POSISTOR
CPR0434
D
D
D
+
2
0Ω, 048
100uF
+
CRT M34AFA13X07 CPP1711
V+
100uF
089
C
C
C
2.7K, 060
.01uF,
081
1K, 062
+
120-230V, 14Ω
061
+
.33uF
082
4937, 080
162A
.093"
PIN
106-108V DC.
31.5kHz
107V DC.
18Ω, 063
2.7K, 064
158
472
Hf
Hf
Vf
Vf
119
Blue Wires
2222-Mot.
35.2kHz
50/60Hz
56Hz
Video Board
Video Board
D
D
3
071
078
1K, 065
1.8K,
C
C
0Ω,196
387
+
072
75Ω, 066
28.0K, 077
1.62K 076
2222-Mot.
4007, 382
+
CPA4134
CPA4253
0Ω,067
CPR
0432
D
D
D
0Ω, 068
206
Video Positive Analog 0.00-0.70V
Power: 230VAC
C
C
12 pin video board connector.
CPS1757
1,000uF
35V
1,000uF
35V
180
CPM
2028
075
074
0Ω, 217
+
470uF
50V
070
221
380
449
0Ω, 523
+
450
0Ω,
451
500
100uF
209
219
LM393
210
0Ω, 389
378
H400, 213
0Ω, 218
0Ω
522
521
501
502
212
2907
+
0Ω
400
377
LA7838
127K, 388
100uF
15.8K, 223
224
15.8K, 242
390
100K,
+
1nF, 369
100pF,398
448
509
376
375
1uF
508
0Ω,
.01uF,374
93.1K,
2222
401
0Ω, 225
75.0Ω, 226
.1uF
1uF
391
250V
402
403
404
28.0K,
373
397
227
93.1K,
100K,
C5346A
241
12mH
CPT1538
200K, 372
200K, 371
S
H
0Ω, 228
447
4148, 405
4148, 406
127K, 407
231
232
233
234
15.8K,
409
22K, 370
1.8K, 368
18Ω, 367
2907
FBT: 453
3467
420
514
FBT: Meritron T-8090B, CPT1516
411
15.8K, 408
.1uF, 410
CPC1058
+
445
366
100uF
267
7.15K,
468
255
426 427
446
235
0Ω,
364
7.15K,
515
444
RELAY
Yoke Connector .062" Pins
2.2M, 363
365K, 362
236
0Ω,
4148, 268
4148, 270
4148, 271
0Ω, 466
LA7851
415
7 Pin
Video
Input
259
127K, 361
470Ω
.5W
.01uF
414
6
360
15.8K,
443
5
4
3
2
1
0
Conn.
516
283
0Ω,
IB IC ID
Horizontal Control
IA
352
56pF
416
I PRA
430
428
3.3nF, 358
1K, 357
356
+
346
292
+
442
6
7
518
473
1uF
3.3nF
347
1uF
344
517
345
470Ω
.5W
441
LM339
355
+
335
12.1K, 329
4007,333
2.7uF, 100V
220uF
334
FR205, 440
FR205, 438
.022uF, 630V
437
456
336
464
311
IRF520
460
431
+
312
313
220uF
298
2SC5690, 433
.10Ω,1W
C4159
337
306
H. Drive,
CPT1505
332
HER205
477
50uH
CPT1511
475
150uH,
0Ω, 480
2.2K, .5W
341
436
+
303
.10Ω,1W
476
HER205
478
100uF
304
0Ω, 297
+
339
1.2Ω, 434
200Ω, 2W
100uF
338
315
316
7812, 296
340
CPT1528
457
439
4007, 435
305
349
458
CPA4200
0Ω, 295
CPA4252
Model 1493-VGA, CPA4200
Model 1493-SVGA, CPA4252
Hf = 31.5kHz Hfo = 35.2kHz
Vf = 50/60Hz Vf = 56Hz
A
B
C
D
E
F
G
H
I
J
19
19
QQ
ZZ
RR
SS
TT
UU
VV
WW
XX
YY
From Main PCB
971
16V
120V
Socket Board
PCB
CC1
3
18
Pin By Fuse
811
800
Red Video Amplifier
CC2
560Ω
K17
Pin By FBT
75Ω
FDH
400
835
FDH
400
899
FDH
400
845
FDH
400
849
FDH
400
886
FDH
400
959
SOCKET
877
PN2907A
13
CC3
126V
12.1K
K15
2
10
+12V
K13
832
!
UNPLUG
!
0
1
2
3
4
5
6
7
0
1
2
3
4
17
G1
G2
Focus
1.49K
K9
14
18Ω
RED
GREEN
BLUE
DEGAUSSING
COIL BEFORE
WORKING ON
CHASSIS.
301Ω
K2
8
6
40.2K
K19
K14
900
851
883
140Ω
K16
.1uF
250V
2SA
1370
15
MMBT
3904
913
16
833
19
11
12
10
7
9.3V
K34
1
3
10
7
Degaussing
Coil
.015uF
901
10
180Ω
K18
9
5
1K
1/2W
855
7
Dark screen
80-110VDC
2 1
970
150Ω
20
150Ω
SOT
1/2W
880
Green
Wire
EHT
1000pF
838
Ω
606
K7
0Ω
869
1/2W
882
1.2K
K8
NE592
K32
3
10K 1/2W
873
205
834
Ω
12
14
300 Ω
GRID PULSE
-23 to -27Vdc Vs
12Vp-p 95uS
Jumper
8
EHT
2.2K
1/2W
881
961
.5W
2SC
3467
FDH400
K3
Red #1 FOCUS
White #2 FOCUS
SCREEN
5
K33
4
330pF
871
.1uF
816
9
100K
1.8K
810
840
1N4148
PN2907A
33Ω
7
854
853
1.8K
836
876
874
100K
1/2W
856
2SA
1370
.1uF
817
8
15Ω
2.2nF
878
3pF
6
K36
100Ω
K21
-30V
RED
TC7
BEAM OFF ON POWER DOWN.
0VDC Hs
56V
K20
K4
TC 9
TC 11
TC 12
TC 8
TC 1
TC 4
31uS
9
DAG GND
1.8K
831
DAG GND
A
812
681Ω
5.62K
K11
FDH400
870
11
1
FIL.
Fil. GND
+127V
+16V
FIL.
K6
837
3.32K
K12
872
1N4148
K35
2.2K
K5
1.50K
K1
21K
K22
820Ω
BIAS CONTROL LINE
868
1N4007
848
1uF
50V
846
K10
GND
5
9
12
GND
FIL.
+12V
30Ω
857
+126V
+16V
+126fV
+16V
1N4937
847
859
150 Ω
1/2W cc
875
16V
120V
3
18Ω
879
.1uF
801
.1uF
816
+12V
18
+120V Source
+120V
803
Green Video Amplifier
860
560Ω
K17
+12V
GND
PN2907A
75 Ω
13
126V
GND
ABA
12.1K
K15
2
10
+12V
TC 2
TC 6
K13
827
17
1.49K
K9
18 Ω
K14
14
Ω
K2
301
40.2K
K19
140Ω
K16
.1uF
250V
823
2SA
1370
1K
866
Auto Bias Vs
15
TC 10
MMBT
3904
GND
16
2SC3675
1N4007 1N4007 1N4007
828
19
10
CABLE
7
K34
ASS.
863
9.3V
.015uF
824
903
905
906
1
3
10
SOT
900Ω
C17
10
C
180Ω
7
62K
850
858
+4.0V
Dark screen
80-110VDC
K18
For
XX92
20
852
606Ω
K7
1000pF
843
2.74K
C7
1.2K
K8
NE592
Auto Bright
3
.1uF
907
C
PRA-B
917
AUTO BIAS IC
K32
5
6
920
10
9
11
Circuit
62K
912
205 Ω
825
12
14
300
.5W
K3
Ω
4
Jumper
8
927
1
2
3
4
5
6
7
22
Vcc
2SC
3467
GND
1/4
LM324
1/4
7
FDH400
8
1.82K
C4
5
CA3224E
LM324
K33
4
920
.1uF
816
200 Ω
C8
12
9
805
841
15.8K
914
1N4148
PN2907A
33Ω
11
7
.1uF
7
10uF
+
3.3K
1.8K
844
Blue input
Blue 21
2SA
1370
13
8
4K
5K
C9
15Ω
14
3pF
6
5.7-
6.3V
K36
hold
cap.
100Ω
K21
GREEN
TC5
909
921
895
68.1K
C3
K20
C10
K4
sw
9
1.8K
830
A
822
681Ω
5.62K
K11
3
2
2.1-
11
normal
2,200pF
941
1
.047uF
922
Adjust FBT bottom pot
for 4.0V to 4.4 at pin 8.
33K
908
33K
910
33K
911
20 6.3V
K6
842
1/4
LM324
1
1.2-
2.5V
comp.
2.2K
K5
3.32K
K12
1N4148
K35
21K
Ω
K22
1.50K
K1
BIAS CONTROL LINE
820Ω
K10
17
sw in grid pls. pos.
200 Ω
C13
5
9
12
4K
GND
GND
+12V
15
.1uF
5
10uF
Green input Green 19
+
16
C11
5K
5.7-
6.3V
hold
cap.
923
894
2,200pF
818
68.1K
C2
C12
sw
12
13
957
2.1-
.047uF
924
18 6.3V
1/4
LM324
14
16V
120V
5
6
7
comp.
1.2-
2.5V
3
18
937
Blue Video Amplifier
20
200Ω
C16
4K
560 Ω
K17
18
75Ω
PN2907A
950
13
.1uF
4
10uF
126V
17
16
15
14
Red input
sw
Red
hold
cap.
+
19
12.1K
K15
2
+12V
10
5K
C14
K13
5.7-
6.3V
925
892
17
2,200pF
815
68.1K
C1
1.49K
K9
C15
14
18 Ω
K14
301Ω
K2
1
2.1-
6.3V
40.2K
K19
.047uF
140Ω
8
GND
.1uF
250V
887
2SA
1370
K16
15
comp.
1.2-
2.5V
MMBT
3904
7.8 to 8.8Vdc Vs
8.4Vp-p 95uS
926
16
6V REF.
22K
951
19
7
1
K34
9.3V
891
2.7K
884
4.6-5.2VDC
BIAS
10
SOT
1
3
.015uF
885
Vs
8
9
10
CL Start
180Ω
1N4148
888
7
2.2 to 2.7Vdc Vs
4.2Vp-p 360uS
.1-
COUNTER
Dark screen
80-110VDC
K18
.5V
20
FF
Q
Ω
2.2nF
889
606
K7
1000pF
1.2K
K8
NE592
3
5V REF
AUTO
BIAS 13
ACTIVE
GND
K32
Ω
12
14
300
.5W
956
205Ω
953
Jumper
8
EN
2SC
3467
1K
21 H. LINE
COUNTER
CL
FDH400
K3
+12V
CERONIX
Hs
10
11
K33
5
890
4
+9.3V
.1uF
934
5
943
958
13350 New Airport Road
Auburn, California
1N4148
1.8K
933
PN2907A
33Ω
DECODER
sw control
7
1.8K
955
95602
2SA
1370
PN2907A
928
8
15Ω
1.8K
938
3pF
6
K36
MPS A64
100Ω
K21
BLUE
TC3
Scale:
DATE & REV.
12
10/3/96-E4 03/06/02-E7
GRID
PROGRAM
NONE
K20
K4
9 to 10Vdc Vs
9.6Vp-p 95uS
PULSE
9
D
A
PULSE
Drawn By:
945
1.8K
948
681Ω
5.62K
K11
F. H. 4/16/96-E1 2/2/98-E5
11
1
1.8K
931
942
K6
K6
954
3.92K
940
2.2K
K5
3.32K
K12
1N4148
K35
21K
K22
.1uF
930
820Ω
BIAS CONTROL LINE
1.50K
K1
K10
5
9
12
VIDEO BOARD CIRCUIT
GND
+12V
GND
40
40
QQ
RR
SS
TT
UU
VV
WW
XX
YY
ZZ
XX93 Video Board, Technician's Assembly Drawing.
View is from component side.
K
L
M
N
P
GREEN
803
RED
811
"C" PRA 917
BLUE
0Ω, 936
0Ω, 808
0Ω, 802
1
2
3
4
5
924
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20
922
∆
1
1
2
.1uF,
934
937
0Ω,
0Ω, 915
0Ω, 918
1
2
3
4
1
2
3
4
926
935
2
1
2
1.8K
933
.1uF
925
.1uF
923
7
6
5
4
3
2
1
0Ω
3
3
3467
810
3467
805
.1uF
932
.1uF
921
LM324
4
1.8K,931
3
4
5
.1uF
817
920
801
5
6
7
5
11 10 9
8
7
6
5
4
3
2
1
A64
942
.1uF
930
2907
928
10 11 12
13 14
9
6
8
3.3K, 909
7
2907
6
7
2907
822
CA3224E, 927
.1uF
3467
943
.1uF
816
33K, 911
33K, 910
33K, 908
.1uF
8
812
8
9
.1uF
250V
913
250V
907
9
8
12 13 14 15 16 17 18 19 20 21 22
823
2907
945
10
11
10
11
250V
9
0Ω, 904
906
+
+
1N4007
10
11
+
250V
Glue
Glue
10uF
892
10uF
905
10uF
895
250V
1N4007
2907
827
1370
828
2907
832
1370
833
894
Glue
887
13
14
15
16
17
18
19
20
13
14
15
16
17
18
19
20
2907
950
901
13
14
15
16
17
18
19
20
10
9
8
250V
824
11
1370
951
∆
883
12
BLUE
1370
842
7
1370
837
885
150Ω, CC
6
2.2K
.5W
CF
.5W 882
1370
954
∆
18Ω, 879
5
849
881
1
H400
1.0uF
846
CRT
SOCKET
877
848
4007
851
∆
∆
4937
62K, 852
∆
2SC3675
850
847
∆
∆
858
853
.093"
Pin
1K
.5W
CF
∆
857
∆
854
FOCUS
WHITE WIRE
+
0Ω, 861
0Ω, 862
100K, .5W, CF
G2
WIRE
∆860
961
30Ω, 859
PCB, 800
856
855
FOCUS
RED WIRE
∆
863
150Ω, CC
∆
12
868
+
7
6
5
4
3
2
1
963
.5W 875
1K, 866
10K, CF
873
0Ω, 864
100K, 876
CERONIX
Model XX93-E7
.5W
1.8K, 874
0Ω, 865
∆
0Ω, 867
870
Video Bo9a6r4d
K
L
M
N
P
12 11 10 9
8
7
6
5
4
3
2
1
Note:
Common part values marked on drawing.
The values for components marked with
the ∆ (delta) can be found in the master
part list starting on page 45.
41
XX93 Video Board, Technician's Assembly Drawing.
View is from conductor side.
P
N
M
L
K
GREEN
803
RED
811
"C" PRA 917
BLUE
0Ω, 936
0Ω, 808
0Ω, 802
20 19 18 17 16 15 14 13 12 11 10 9
922
8
7
6
924
5
4
3
2
1
∆
1
1
2
.1uF,
934
937
0Ω, 915
0Ω,
0Ω, 918
1
1
926
935
2
1
2
1.8K
933
.1uF
925
.1uF
923
1
2
3
4
5
6
7
0Ω
3
3
3467
810
3467
805
.1uF
932
.1uF
921
LM324
4
9311.8K,
3
4
5
.1uF
817
920
801
5
6
5
1
2
3
4
5
6
7
8
9 10 11
A64
942
.1uF
930
2907
928
12 11 10
14 13
6
9
8
3.3K, 909
7
7
2907
812
2907
822
6
7
.1uF
CA3224E, 927
3467
943
.1uF
816
33K, 911
33K, 910
33K, 908
.1uF
8
8
.1uF
250V
913
250V
907
9
9
8
22 21 20 19 18 17 16 15 14 13 12
823
2907
945
10
11
10
11
250V
9
0Ω, 904
906
+
+
1N4007
10
11
+
250V
2
2
Glue
Glue
10uF
10uF
905
10uF
895
250V
1N4007
2907
2907
892
894
Glue
887
13
14
15
16
17
18
19
20
13
14
15
16
17
18
19
20
827
832
2907
950
1370
828
1370
833
901
13
14
15
16
17
18
19
20
9
8
10
824
250V
11
1370
951
∆
883
12
BLUE
1370
842
1370
837
7
885
150Ω, CC
6
2.2K
.5W
CF
882 .5W
1370
954
∆
18Ω, 879
5
849
881
1
H400
1.0uF
846
CRT
SOCKET
877
3
3
848
4007
∆
851
∆
4937
62K, 852
∆
2SC3675
850
847
.093"
Pin
∆
∆
∆
853
858
1K
.5W
CF
854
FOCUS
0Ω, 861
0Ω, 862
+
∆
857
30Ω, 859
RED WIRE
100K, .5W, CF
860
∆
G2
WIRE
961
PCB, 800
856
855
FOCUS
RED WIRE
∆
863
∆
150Ω, CC
1
2
3
4
5
6
7
12
868
+
963
875 .5W
1K, 866
10K, CF
0Ω, 864
100K, 876
873
.5W
CERONIX
Model XX93-E7
0Ω, 865
∆
4
4
0Ω, 867
1.8K, 874
870
Vide9o64Board
P
N
M
L
K
1
2
3
4
5
6
7
8
9 10 11 12
Note:
Common part values marked on drawing.
The values for components marked with
the ∆ (delta) can be found in the master
part list starting on page 45.
42
Safety Critical Components for XX93 Monitors.
PRODUCT SAFETY NOTE:
Components marked by the symbol ! have special characteristics important to safety.
When replacing any of these components, be sure to use the parts specified in the parts
list.
An example of how the critical components are marked in the Master Part List is shown
below. See the Master Part List for specifying critical components.
∆ Bd.# Part No. Bd. Sch. Ref.
! 102 CPC1027 D2 HH8
Description
6,800pF ±5%, 100V, Film
CAUTION:
CERONIX XX93 Monitors MUST USE AN APPROVED ISOLATION
TRANSFORMER.
The monitor chassis must be connected to earth ground via a common connection
in the system which contains the monitor.
X-RAY NOTE:
X-radiation is produced by electrons colliding with the phosphor and shadow mask at the
front of the picture tube. The X-radiation emanating from the front of the picture tube is
highly reduced due to the shielding affect of the leaded glass face.
It is also produced at the anode bulb contact. The X-radiation emanating from the anode bulb
contact is much higher than from the face due to less shielding.
X-radiation is directly proportional to beam current. It doubles for each 1.3KV increase of
the EHT voltage at the face and also doubles for each 3KV increase of the EHT at the anode
bulb contact.
From this information, it should be noted that when servicing monitor electronics, where the
back of the picture tube is facing the service person, that the beam current should be turned
down to avoid excessive exposure.
Due to the increase in X-Radiation emission with increase of EHT voltage, it is important that
the EHT voltage is checked.
To measure the EHT voltage: Connect the (-) lead of a volt meter to the monitor chassis so
that a reliable connection is made. Connect a high voltage probe to the (+) input of the meter
and at the anode contact of the picture tube.
The EHT should not exceed 26KV at 0 beam current.
43
Sicherheit Kritische Bestandteile für Monitoren XX93.
PRODUKTSICHERHEIT ANMERKUNG:
Bestandteile gekennzeichnet durch das Symbol ! haben Sie die speziellen Eigenschaften,
die zur Sicherheit wichtig sind. Wenn Sie irgendwelche dieser Bestandteile ersetzen, seien
Sie sicher, die Teile zu benutzen, die in der Stückliste spezifiziert werden. Ein Beispiel von,
wie die kritischen Bestandteile in der Vorlagenstückliste gekennzeichnet werden, wird
unten gezeigt. Sehen Sie die Vorlagenstückliste für das Spezifizieren der kritischen
Bestandteile.
∆ Bd. # TeilNr. Bd. Sch. Ref.
! 102 CPC1027 D2 HH8
Beschreibung
6,800pF ±5%, 100V, Film
VORSICHT:
MONITOREN CERONIX XX93 MÜSSEN EINEN ANERKANNTEN
LOKALISIERUNG TRANSFORMATOR BENUTZEN.
Das Monitorchassis muß an die Masse angeschlossen werden, die über einen
allgemeinen Anschluß im System gerieben wird, das den Monitor enthält.
RöNTGENSTRAHLANMERKUNG:
X-Strahlung wird durch die Elektronen produziert, die mit der Phosphor- und
Schattenschablone an der Frontseite des Abbildung Gefäßes zusammenstoßen. Die
X-Strahlung, die von der Frontseite des Abbildung Gefäßes ausströmt, liegt in hohem Grade
an der Abschirmung beeinflussen vom verbleiten Glasgesicht verringertes. Sie wird auch am
Anode Birne Kontakt produziert. Die X-Strahlung, die vom Anode Birne Kontakt ausströmt,
ist viel höher als vom Gesicht, das zu weniger abschirmen passend ist. X-Strahlung ist direkt
zum Lichtstrahlstrom proportional. Sie verdoppelt für jede Zunahme 1.3KV der
EHT-Spannung am Gesicht und verdoppelt auch für jede Zunahme 3KV des EHT am Anode
Birne Kontakt.
Von diesen Informationen sollte es beachtet werden daß, wenn man Monitorelektronik
instandhält, in der die Rückseite des Abbildung Gefäßes die Service-Person gegenüberstellt, daß
der Lichtstrahlstrom unten gedreht werden sollte, um übermäßige Berührung zu vermeiden.
Wegen der Zunahme der X-Radiationemission mit Zunahme der EHT-Spannung, ist es wichtig,
daß die EHT-Spannung überprüft wird.
Die EHT-Spannung messen: Schließen Sie die (-) Leitung eines Voltmeßinstruments an das
Monitorchassis an, damit eine zuverlässige Beziehung hergestellt wird. Schließen Sie eine
Hochspannungsprüfspitze an den (+) Input des Meßinstruments und am Anode Kontakt des
Abbildung Gefäßes an.
Das EHT sollte nicht 26KV bei 0 Lichtstrahlstrom übersteigen.
44
CERONIX XX93 Monitor Part List
45
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
CPB1614
Main PCB “93” REV. E8
G
G
G
G
G
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
A B C D E F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
3.15
0.01
0.19
0.01
0.01
0.01
0.01
0.23
0.01
0.01
0.01
0.01
0.01
0.05
0.01
0.01
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.04
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.33
0.01
0.01
0.24
0.01
0.04
0.06
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.33
0.01
0.01
0.01
0.01
0.01
0.01
0.01
001 CPR0050 A1
J
0Ω, J umper Wire
A B C D
A B C D
A B C D
F
F
F
E
E
E
002 CPS1804 B1 EE2 8 Cond. Straight Header
004 CPR0006 C1 FF1 510Ω ±5%, 1/4W, CF
005 CPR0029 C1 NN5 200KΩ ±5%, 1/4W, CF
006 CPD1251 C1 CC1 10mA, 75V Diode, 1N4148
006 CPR0006 C1 CC2 510Ω ±5%, 1/4W, CF
008 CPQ1310 B1 NN5 .1A, 300V, PNP, 2SA1371AE
009 CPR0012 B1 LL7 2.7KΩ ±5%, 1/4W, CF
009 CPR0134 B1 LL7 1.21KΩ ±1%, 1/4W, MF
009 CPR0136 B1 LL7 1.62KΩ ±1%, 1/4W, MF
009 CPR0138 B1 LL7 2.15KΩ ±1%, 1/4W, MF
009 CPR0140 B1 LL7 3.92KΩ ±1%, 1/4W, MF
010 CPC1058 A1 LL7 .1uF ±5%, 50V, Film
011 CPR0018 A1 MM4 62KΩ ±5%, 1/4W, CF
012 CPR0009 A1 EE5 1KΩ ±5%, 1/4W, CF
014 CPC1101 A2 FF5 10uF, 50V, Electrolytic
A B C D E F
O P Q
T
G
G
A B C D
A B C D
F
F
H I J K L M N
H I J K L M N O P Q R S T
J K L O P Q
R S
U
U
E
E
I
R S
T
U
M N
G
G
G
G
G
G
G
G
G
G
G
G
G
G
A B C D
F
H
E
A B C D E F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
U
U
U
U
U
U
U
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
F
F
F
F
F
F
F
F
F
F
F
F
E
E
E
E
E
E
E
E
E
E
E
E
015 CPR0050 B2
J
0Ω, J umper Wire
017 CPR0015 B1 NN4 22KΩ ±5%, 1/4W, CF
018 CPD1251 B1 FF5 10mA, 75V Diode, 1N4148
019 CPR0050 C1 NN4 0Ω, J umper Wire
020 CPR0145 C2 FF5 15.8KΩ ±1%, 1/4W, MF
021 CPR0006 C2 MM3 510Ω ±5%, 1/4W, CF
022 CPR0143 C2 MM3 10.0KΩ ±1%, 1/4W, MF
023 CPR0143 C2 MM4 10.0KΩ ±1%, 1/4W, MF
026 CPC1102 C2 NN4 100uF, 25V, Electrolytic
027 CPR0006 C2 CC2 510Ω ±5%, 1/4W, CF
029 CPR0143 C2 MM5 10.0KΩ ±1%, 1/4W, MF
030 CPR0142 C2 NN7 7.15KΩ ±1%, 1/4W, MF
030 CPR0144 C2 NN7 12.1KΩ ±1%, 1/4W, MF
030 CPR0145 C2 NN7 15.8KΩ ±1%, 1/4W, MF
030 CPR0153 C2 NN7 20.0KΩ ±1%, 1/4W, MF
030 CPR0163 C2 NN7 28.0KΩ ±1%, 1/4W, MF
030 CPR0411 C2 NN7 10K ±20%, 1/5W, White Pot
031 CPR0143 C2 NN5 10.0KΩ ±1%, 1/4W, MF
O P Q
T
G
A B C D
A B C D
F
H I J K L M N O P Q R S T
S
U
E
E F
H
M N
Q
G
O P
I
J K L
R
T
U
U
U
U
U
U
U
U
U
U
G
G
G
G
G
G
G
G
G
A B C D
A B C D
A B C D
F
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
S
E
E
E
032 CPR0050 C2
J
0Ω, J umper Wire
033 CPI1405 B2 MM6 Quad OP Amp IC, LM324
034 CPR0144 B2 MM4 12.1KΩ ±1%, 1/4W, MF
035 CPC1102 C1 NN4 100uF, 25V, Electrolytic
036 CPQ1302 A2 FF5 30V, .3A, PNP, D, MPSA64
037 CPR0145 A2 MM4 15.8KΩ ±1%, 1/4W, MF
038 CPR0143 A2 MM6 10.0KΩ ±1%, 1/4W, MF
040 CPR0029 A2 MM6 200KΩ ±5%, 1/4W, CF
041 CPR0141 A2 NN7 4.42KΩ ±1%, 1/4W, MF
041 CPR0144 A2 NN7 12.1KΩ ±1%, 1/4W, MF
041 CPR0145 A2 NN7 15.8KΩ ±1%, 1/4W, MF
041 CPR0153 A2 NN7 20.0KΩ ±1%, 1/4W, MF
041 CPR0154 A2 NN7 44.2KΩ ±1%, 1/4W, MF
041 CPR0163 A2 NN7 28.0KΩ ±1%, 1/4W, MF
041 CPR0411 A2 NN7 10K ±20%, 1/5W, White Pot
042 CPR0013 B2 NN7 6.8KΩ ±5%, 1/4W, CF
042 CPR0024 B2 NN7 3.3KΩ ±5%, 1/4W, CF
042 CPR0138 B2 NN7 2.15KΩ ±1%, 1/4W, MF
042 CPR0140 B2 NN7 3.92KΩ ±1%, 1/4W, MF
042 CPR0148 B2 NN7 24.3KΩ ±1%, 1/4W, MF
042 CPR0163 B2 NN7 28.0KΩ ±1%, 1/4W, MF
043 CPR0015 A3 LL8 22KΩ ±5%, 1/4W, CF
A B C D E F
A B C D
A B C D
A B C D
A B C D
A B C D
F
F
F
F
F
E
E
E
E
E
D
C
E F
H
M N
G
G
O P
Q
A B
I
I
J K L
R
T
T
U
U
A B C D E F
H
O P Q
M N
R S
L
J K
Q
CERONIX XX93 Monitor Part List
46
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
G
K
L M N O P Q R S T U V W X Com. PRICE
043 CPR0016 A3 LL8 33KΩ ±5%, 1/4W, CF
043 CPR0017 A3 LL8 36KΩ ±5%, 1/4W, CF
043 CPR0018 A3 LL8 62KΩ ±5%, 1/4W, CF
043 CPR0145 A3 LL8 15.8KΩ ±1%, 1/4W, MF
043 CPR0153 A3 LL8 20.0KΩ ±1%, 1/4W, MF
043 CPR0154 A3 LL8 44.2KΩ ±1%, 1/4W, MF
043 CPR0163 A3 LL8 28.0KΩ ±1%, 1/4W, MF
044 CPR0015 A3 MM7 22KΩ ±5%, 1/4W, CF
044 CPR0016 A3 MM7 33KΩ ±5%, 1/4W, CF
044 CPR0017 A3 MM7 36KΩ ±5%, 1/4W, CF
044 CPR0018 A3 MM7 62KΩ ±5%, 1/4W, CF
044 CPR0029 A3 MM7 200KΩ ±5%, 1/4W, CF
044 CPR0148 A3 MM7 24.3KΩ ±1%, 1/4W, MF
044 CPR0154 A3 MM7 44.2KΩ ±1%, 1/4W, MF
044 CPR0163 A3 MM7 28.0K ±1%, 1/4W, MF
045 CPR0144 A3 LL8 12.1KΩ ±1%, 1/4W, MF
047 CPC1032 B3 MM8 .01uF ±5%, 50V, Film
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
F
H
R S
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.03
0.01
0.57
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.03
0.01
0.01
0.07
0.08
0.01
0.01
0.04
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.05
0.05
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.07
E
C
T
P
M N O
A B
K
D
I
J
J
L
L
U
U
C
R
S
Q
O
G
F
H I
T
E
A B
M N
D
P
G
G
G
G
G
G
G
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
F
F
F
F
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
E
E
E
E
E
E
048 CPR0050 A3
J
0Ω, J umper Wire
049 CPI1414 B3 MM8 OP Amp / Comp. IC, LM392
050 CPR0024 B3 NN6 3.3KΩ ±5%, 1/4W, CF
051 CPR0143 B2 NN5 10.0KΩ ±1%, 1/4W, MF
052 CPR0024 B2 NN7 3.3KΩ ±5%, 1/4W, CF
052 CPR0138 B2 NN7 2.15KΩ ±1%, 1/4W, MF
052 CPR0140 B2 NN7 3.92KΩ ±1%, 1/4W, MF
052 CPR0148 B2 NN7 24.3KΩ ±1%, 1/4W, MF
052 CPR0153 B2 NN7 20.0KΩ ±1%, 1/4W, MF
053 CPR0024 B3 NN6 3.3KΩ ±5%, 1/4W, CF
054 CPC1032 B3 MM7 .01uF ±5%, 50V, Film
055 CPR0143 B3 MM8 10.0KΩ ±1%, 1/4W, MF
056 CPR0013 B3 NN8 6.8KΩ ±5%, 1/4W, CF
057 CPC1027 B3 NN8 6,800pF ±5%, 100V, Film
057 CPC1035 B3 NN8 3,300pF ±5%, 100V, Film
058 CPR0154 B3 MM8 44.2KΩ ±1%, 1/4W, MF
060 CPR0012 B3 NN8 2.7KΩ ±5%, 1/4W, CF
061 CPC1102 B3 LL8 100uF, 25V, Electrolytic
062 CPR0009 A3 EE3 1KΩ ±5%, 1/4W, CF
062 CPR0138 A3 EE3 2.15KΩ ±1%, 1/4W, MF
063 CPR0002 A3 FF5 18Ω ±5%, 1/4W, CF
064 CPR0012 A3 BB5 2.7KΩ ±5%, 1/4W, CF
064 CPR0024 A3 BB5 3.3KΩ ±5%, 1/4W, CF
064 CPR0126 A3 BB5 909Ω ±1%, 1/4W, MF
065 CPR0009 A3 EE6 1KΩ ±5%, 1/4W, CF
066 CPR0124 A3 EE6 75.0Ω ±1%, 1/4W, MF
067 CPR0050 A4 EE3 0Ω, J umper Wire
A B C D E F
H
M N O P Q
T
S
R
U
I
K
J
L
G
G
G
G
A B C D
A B C D
A B C D
A B C D
A B
F
F
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
E
E
E
E
M N
R
G
G
G
G
C D
F
F
F
F
H I J K L
O P Q
S T
E
E
E
E
A B C D
A B C D
A B C D
C D
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
M N
Q R
G
G
A B
F
F
H I J K L
H I J K L M N O P Q R S T
Q R
O P
S T
E
E
A B C D
C D
U
U
M
N
G
G
G
G
G
G
G
G
A B
F
F
F
F
F
F
F
F
H I J K L
O P
S T
E
E
E
E
E
E
E
E
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
068 CPR0050 A4
J
0Ω, J umper Wire
071 CPQ1322 B3 EE5 30V, .6A, NPN, PN2222A, Motorola.
072 CPQ1322 B3 AA4 30V, .6A, NPN, PN2222A, Motorola.
076 CPR0132 B4 CC5 604Ω ±1%, 1/4W, MF
076 CPR0136 B4 CC5 1.62KΩ ±1%, 1/4W, MF
077 CPR0163 B3 BB4 28.0KΩ ±1%, 1/4W, MF
077 CPR0016 B3 BB4 33KΩ ±5%, 1/4W, CF
078 CPR0011 B3 BB4 1.8KΩ ±5%, 1/4W, CF
078 CPR0012 B3 BB4 2.7KΩ ±5%, 1/4W, CF
078 CPR0136 B3 BB4 1.62KΩ ±1%, 1/4W, MF
078 CPR0138 B3 BB4 2.15KΩ ±1%, 1/4W, MF
080 CPD1253 B3 BB4 1A, 600V, Fast D., 1N4937
081 CPC1027 B3 BB4 6800pf ±5%, 100V, Film
H I J K L
O P
S T
C D
M N
Q R
U
C D
O P
S
C D
R
Q
U
U
G
G
G
A B
F
F
H I J K L M N O P
S T
E
E
A B C D
H I J K L M N O P Q R S T
CERONIX XX93 Monitor Part List
47
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
081 CPC1032 B3 BB4 .01uF ±5%, 50V, Film
081 CPC1036 B3 BB4 .047uF ±5%, 50V, Film
081 CPC1040 B3 BB4 .015uF ±10%, 250V, Film
081 CPC1054 B3 BB4 .039uF ±5%, 100V, Film
082 CPC1041 B3 LL6 .33uF ±5%, 50V, Film
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C D
L
O P Q
S T
0.03
0.04
0.06
0.06
0.08
0.01
0.02
0.01
0.02
0.01
0.01
0.04
0.04
0.01
0.01
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.32
0.01
0.04
0.05
0.07
0.08
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.08
0.01
0.01
0.79
0.23
M N
R
U
F
H I J K
E
A B
G
G
G
G
G
G
G
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
F
F
F
F
F
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
U
E
E
E
E
E
E
E
083 CPR0050 C3
J
0Ω, J umper Wire
084 CPD1250 C3 AA5 100mA, 200V Diode, FDH400
085 CPR0155 C3 DD1 68.1KΩ ±1%, 1/4W, MF
086 CPD1250 C3 AA5 100mA, 200V Diode, FDH400
087 CPR0157 C3 DD2 127KΩ ±1%, 1/4W, MF
088 CPR0050 C3 BB1 0Ω, J umper Wire
088 CPR0100 C3 BB1 2.2KΩ ±5%, 1/4W, CC
089 CPC1102 C3 DD2 100uF, 25V, Electrolytic
090 CPD1252 C3 DD1 1A, 1KV Diode, 1N4007
092 CPR0050 C3 PP0 0Ω J umper Wire
092 CPR0375 C3 PP0 .68Ω ±5%, 1W, MO
092A CPR0050 C3 PP0 0Ω J umper Wire
093 CPR0004 C3 CC4 270Ω ±5%, 1/4W, CF
094 CPR0050 C3 NN8 0Ω, J umper Wire
H I J K L M N
R S
O P Q
T
G
G
G
A B C D
A B C D
A B C D
F
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
E
E
E
H I J K L
Q
M N O P
R S T
G
G
G
G
G
A B C D
A B C D
A B C D
A B C D
A B C D
F
F
F
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
M N
U
U
U
U
U
E
E
E
E
E
095 CPR0143 C3 MM8 10.0KΩ ±1%, 1/4W, MF
096 CPR0163 C3 NN7 28.0KΩ ±1%, 1/4W, MF
097 CPR0016 C3 MM7 33KΩ ±5%, 1/4W, CF
097 CPR0018 C3 MM7 62KΩ ±5%, 1/4W, CF
097 CPR0146 C3 MM7 169KΩ ±1%, 1/4W, MF
097 CPR0155 C3 MM7 68.1KΩ ±1%, 1/4W, MF
097 CPR0158 C3 MM7 84.5KΩ ±1%, 1/4W, MF
097 CPR0163 C3 MM7 28.0KΩ ±1%, 1/4W, MF
098 CPR0018 D2 BB1 62KΩ ±5%, 1/4W, CF
099 CPR0013 D2 BB1 6.8KΩ ±5%, 1/4W, CF
099 CPR0018 D2 BB1 62KΩ ±5%, 1/4W, CF
100 CPI1416 D2 CC2 7 Bit Counter, CD4024B
100A CPR0050 D2 BB2 0Ω J umper, pins 5 to 10.
100B CPQ1303 D3 BB2 30V, .6A, NPN, PN2222A
101 CPC1058 D2 BB2 .1uF ±5%, 50V, Film
! 102 CPC1027 D2 HH8 6,800pF ±5%, 100V, Film
! 102 CPC1035 D2 HH8 3,300pF ±5%, 100V, Film
104 CPC1000 D2 HH7 56pF ±5%, 100V, Ceramic
105 CPR0017 D2 HH8 36KΩ ±5%, 1/4W, CF
105 CPR0018 D2 GG8 62KΩ ±5%, 1/4W, CF
105 CPR0029 D2 HH8 200KΩ ±5%, 1/4W, CF
105 CPR0142 D1 GG8 7.15KΩ ±1%, 1/4W, MF
105 CPR0143 D2 HH8 10.0KΩ ±1%, 1/4W, MF
105 CPR0153 D2 HH8 20.0KΩ ±1%, 1/4W, MF
105 CPR0155 D1 GG8 68.1KΩ ±1%, 1/4W, MF
105 CPR0163 D2 HH8 28.0KΩ ±1%, 1/4W, MF
105 CPR0168 D1 GG8 8.06KΩ ±1%, 1/4W, MF
105 CPR0172 D1 GG8 140KΩ ±1%, 1/4W, MF
106 CPR0138 D2 GG8 2.15KΩ ±1%, 1/4W, MF
106 CPR0140 D2 GG8 3.92KΩ ±1%, 1/4W, MF
106 CPR0142 D2 GG8 7.15KΩ ±1%, 1/4W, MF
106 CPR0168 D2 GG8 8.06KΩ ±1%, 1/4W, MF
107 CPC1000 D2 HH7 56pF ±5%, 100V, Ceramic
108 CPC1035 D2 HH7 3,300pF ±5%, 100V, Film
109 CPR0029 E2 MM5 200KΩ ±5%, 1/4W, CF
110 CPC1005 D1 HH6 1,000pF ±10%, 500V, Ceramic
! 111 CPR0501 E1 J J 9 “J ” PRA Power Supply
112 CPQ1310 D1 HH6 .1A, 300V, PNP, 2SA1371AE
D
C
G
A B
F
H
Q
E
I
J K L
O P
R S T
U
U
U
G
G
A B C D
A B C D
F
F
H I J K L M N O P Q R S T
E
E
H I J K L M N
R S
O P Q
O P Q
T
T
G
G
A B C D
A B C D
F
F
H I J K L M N
H I J K L M N
R S
R S
U
U
E
E
O P Q
O P Q
T
A B
M N
R
U
U
G
G
C D
F
F
H I J K L
S T
E
E
A B C D
H I J K L M N O P Q R S T
S
P
K
R
T
H
U
U
I
I
J
J
M N
M N
C
Q
L
T
G
R
A
C
H
K
O P Q
S
B
D
F
F
F
F
F
F
F
E
E
E
E
E
E
E
G
G
G
G
G
G
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
CERONIX XX93 Monitor Part List
48
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
113 CPR0019 D1 HH6 100KΩ ±5%, 1/4W, CF
114 CPR0050 E1 HH8 0Ω, J umper Wire
114A CPR0050 D1 HH6 0Ω, J umper Wire
! 115 CPI1403 E2 II7 PS Control IC, XRC5184
116 CPD1252 E2 J J 9 1A, 1N4007
G
G
G
G
G
G
G
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
A B C D
A B C D
A B C D
F
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
R
U
U
U
U
U
U
U
U
U
U
U
0.01
0.01
0.01
3.33
0.01
0.01
0.04
0.22
0.04
0.02
0.02
0.01
0.01
0.05
0.08
0.01
0.01
0.01
0.01
0.04
0.01
0.01
0.01
0.06
0.14
0.01
0.01
0.02
0.02
0.01
0.01
0.01
0.01
0.12
0.16
1.19
0.01
0.03
0.01
0.01
0.06
0.02
0.03
0.01
0.01
1.35
0.97
0.13
0.01
0.32
0.03
0.05
0.02
0.03
0.02
0.01
0.02
E
E
E
A B C D E F
A B C D
A B C D
F
F
F
E
E
E
117 CPR0050 E3
J
0Ω, J umper Wire
118 CPC1102 E2 II5 100uF, 25V, Electrolytic
119 CPC1104 E3 MM0 1,000uF, 35V, Electrolytic
120 CPC1102 E2 II5 100uF, 25V, Electrolytic
121 CPD1253 F2 II6 1A, 600V, Fast D., 1N4937
122 CPD1253 F2 II6 1A, 600V, Fast D., 1N4937
123 CPC1002 F2 HH9 330pF ±10%, 500V, Ceramic
123 CPC1006 F2 HH9 200pF ±10%, 1KV, Ceramic
124 CPC1058 E2 J J 7 .1uF ±5%, 50V, Film
A
C D
G
G
G
G
A
C D
C D
C D
F
F
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H
E
E
E
E
A
A
A B
C D
I
J K L M N O P Q R S T
U
U
U
G
G
G
A B C D
A B C D
F
F
F
H I J K L M N O P Q R S T
E
E
E
! 125 CPC1035 F2 KK7 3,300pF ±5%, 100V, Film
! 126 CPR0156 E2 KK7 93.1KΩ ±1%, 1/4W, MF
! 126 CPR0157 E2 KK7 127KΩ ±1%, 1/4W, MF
! 126 CPR0171 E2 KK7 365KΩ ±1%, 1/4W, MF
! 126 CPR0172 E2 KK7 140KΩ ±1%, 1/4W, MF
! 126 CPR0174 E2 KK7 210KΩ ±1%, 1/4W, MF
! 126 CPR0176 E2 KK7 226K ±1%, 1/4W, MF
! 126.5CPR0146 E2 KK7 169KΩ ±1%, 1/4W, MF
! 126.5CPR0169 E2 KK7 191KΩ ±1%, 1/4W, MF
127 CPQ1302 E2 J J 9 30V, .3A, PNP, D, MPSA64
128 CPC1103 E2 HH9 220uF, 50V, Electrolytic
129 CPC1009 G1 KK9 100pF ±10%, 500V, Ceramic
130 CPD1251 F2 KK7 10mA, 75V Diode, 1N4148
130 CPD1253 F2 KK7 1A, 600V, Fast D., 1N4937
131 CPC1003 E1 J J 9 2,200pF ±20%, 1KV, Ceramic
132 CPD1252 F1 J J 6 1A, 1KV Diode, 1N4007
132 CPR0050 F1 J J 6 0Ω, J umper Wire
H I J K L M N O P Q R S T
H
C D
O P Q
T
S
I
J
U
R
A B
K L M N
G
G
G
G
A B C D
A B C D
A B C D
A B C D
F
F
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
E
E
E
E
U
U
U
G
A B C D
F
H I J K L M N O P Q R S T
E
M N
P
R
G
G
G
A B C D
A B C D
A B C D
F
F
F
H I J K L
O
Q
S T
E
E
E
133 CPR0002 E1 J J 8 18Ω ±5%, 1/4W, CF
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
Q R
U
U
U
134 CPR0147 F1 J J 7 1.00MΩ ±1%, 1/4W, MF
135 CPM2037 F2 KK8 Heat Sink For P.S. FET.
135 CPM2123 F2 KK8 Heat Sink For P.S. FET.
! 136 CPQ1304 F2 KK8 4.5A, 450V, Mos Fet, 2SK1446LS
136A CPR0050 F2 KK8 22 Gage Buss Wire under P/S
137 CPR0389 F1 KK8 .33Ω ±5%, 2W, MO
G
G
G
G
G
G
G
G
G
G
G
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
F
F
F
F
F
F
F
F
H I J K L M N O P
S T
E
E
E
E
E
E
E
E
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
R S T
U
U
U
U
U
U
U
U
U
U
U
138 CPC1006 G1 KK8 200pF ±10%, 1KV, Ceramic
139 CPR0033 G1 J J 6 30Ω ±5%, 1/4W, CF
140 CPR0350 F1 KK8 47Ω ±10%, 1/2W, CC
141 CPD1253 G1 J J 6 1A, 600V, Fast D., 1N4937
! 142 CPD1264 H1 KK6 2A, 600V Fast D., FR205-F
143A CPR0018 H1 HH8 62KΩ ±5%, 1/4W, CF
143B CPR0017 H1 HH8 36KΩ ±5%, 1/4W, CF
! 144 CPC1107 I1 GG8 330uF, 250V, Electrolytic
! 144 CPC1111 I1 GG8 220uF, 2=0V, Electrolytic
145 CPS1753 J 1 GG9 2 Cond. Right Angle Header
A B C D E F
A B C D
A B C D
F
F
E
E
G
G
G
G
G
A B C D
A B C D
A B C D
A B C D
A B C D
F
F
F
F
F
H I J K L M N O P Q
E
E
E
E
E
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
145A CPM2003 J 1
Cable Tie, 4”
! 146 CPR0425 J 2 GG9 3 Amp Slow Blo
! 148 CPD1264 J 2 GG7 2A, 600V Fast D., FR205-F
149 CPD1255 F1 J J 7 18V, 1W Zener D., 1N4746A
150 CPC1003 J 2 GG7 2,200pF ±20%, 1KV, Ceramic
! 151 CPD1264 J 2 GG7 2A, 600V Fast D., FR205-F
152 CPC1003 I2 GG7 2,200pF ±20%, 1KV, Ceramic
152 CPR0050 I2 GG8 0Ω J umper, CS=.40”
153 CPC1003 I2 GG7 2,200pF ±20%, 1KV, Ceramic
M N
R
G
G
A B C D
C D
F
F
H I J K L M N O P Q R S T
E
E
I
I
J K L
J K L
Q
Q
S T
S T
C D
A B
H
M N O P
R
U
C D
I
J K L
Q
S T
CERONIX XX93 Monitor Part List
49
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
! 154 CPD1264 J 2 GG7 2A, 600V Fast D., FR205-F
155 CPC1003 J 2 GG8 2,200pF ±20%, 1KV, Ceramic
! 156 CPD1264 J 2 GG9 2A, 600V Fast D., FR205-F
157 CPR0434 J 3 FF9 Posistor 230V, 14Ω
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C D J K L
I
Q
S T
0.03
0.02
0.03
0.51
0.51
0.20
0.02
0.02
0.02
1.35
0.97
0.01
0.01
0.01
3.66
3.99
3.15
2.89
G
G
A B C D
A B C D
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
R
U
U
E
E
158 CPR0434 J 3 FF9 Posistor 230V, 14Ω
G
G
G
G
G
A B C D
A B C D
A B C D
A B C D
F
F
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
R S T
U
U
U
U
E
E
E
E
! 159 CPR0426 J 3 FF9 Inrush Current Limit
161 CPS1758 I3 FF9 .093” Dia. Bead Pin, CC1
162 CPS1758 I3 FF9 .093” Dia. Bead Pin, CC2
162A CPS1758 I3 EE9 .093” Dia. Bead Pin, CC3
! 163 CPC1107 I2 GG8 330uF, 250V, Electrolytic
! 163 CPC1111 I2 GG8 220uF, 250V, Electrolytic
A B C D E F
U
G
G
G
G
A B C D
A B C D
A B C D
A B C D
C D
F
F
F
F
H I J K L M N O P Q
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
M N O P Q R S T
E
E
E
E
164 CPR0050 H2
165 CPR0050 H2
165A CPR0050 H2
J
J
J
0Ω, J umper Wire
0Ω, J umper Wire
0Ω, J umper Wire
U
U
U
U
! 166 CPT1536 H2 KK7 XX93 S. M. Power Inductor
! 166 CPT1552 H2 KK6 XX93 S. M. Power Inductor
! 166 CPT1559 H2 KK6 1793 S. M. Power Inductor
! 166 CPT1562 H2 KK6 14/1993 S. M. Power Inductor
! 166 CPT1563 H2 KK6 XX93 S. M. Power Inductor
! 166 CPT1567 H2 KK6 XX93 S. M. Power Inductor
167 CPD1253 G3 J J 6 1A, 600V, Fast D., 1N4937
167A CPR0018 H2 II4 62KΩ ±5%, 1/4W, CF
B
G
F
E
A
I
J K
L
H
2.89
0.02
0.01
0.01
0.02
0.02
0.02
0.22
0.01
0.01
0.01
1.35
0.97
0.01
0.01
0.01
0.18
0.22
0.14
0.33
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
G
G
A B C D
A B C D
F
F
H I J K L
H I J K L
O P Q
O P Q
S
S
U
U
E
E
167A CPR0050 H2 II4 0Ω, J umper Wire
M N
R
T
168 CPD1253 G3 KK6 1A, 600V, Fast D., 1N4937
169 CPD1253 G2 KK5 1A, 600V, Fast D., 1N4937
170 CPD1253 G2 KK5 1A, 600V, Fast D., 1N4937
171 CPC1104 F3 J J 6 1,000uF, 35V, Electrolytic
G
G
G
G
A B C D
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
R
U
U
U
U
U
U
U
U
E
A B C D E F
A B C D
A B C D
F
F
E
E
171A CPR0050 F3
J
J
0Ω, J umper Wire
0Ω, J umper Wire
172 CPR0050 G3
G
G
A B C D
A B C D
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
R S T
E
E
173 CPR0019 G3 HH4 100KΩ ±5%, 1/4W, CF
! 175 CPC1107 H3 II6 330uF, 250V, Electrolytic
! 175 CPC1111 H3 II6 220uF, 250V, Electrolytic
176 CPR0050 H4 LL9 0Ω, J umper Wire
G
G
G
G
G
G
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
C D
F
F
F
F
F
F
H I J K L M N O P Q
E
E
E
E
E
E
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
177 CPR0050 H4 LL9 0Ω, J umper Wire
178 CPR0050 H4
J
0Ω, J umper Wire
180 CPR0432 G4 GG6 100KΩ @25°C Thermistor
181 CPD1256 G3 HH6 3W, 160V Zener, BZT03-D160
182 CPC1103 G3 J J 5 220uF, 50V, Electrolytic
182 CPC1112 G3 J J 5 220uF, 100V, Electrolytic
O P Q
S
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
A B
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
H I J K L
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
183 CPR0050 G3
184 CPR0050 G3
J
J
0Ω, J umper Wire
0Ω, J umper Wire
A B C D
A B C D
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
U
U
U
U
U
U
U
U
185 CPR0003 G3 NN3 4.7Ω ±5%, 1/4W, CF
A
C D
186 CPR0050 G3
J
0Ω, J umper Wire
A B C D
A B C D
187 CPR0050 F4
J
0Ω, J umper Wire
188 CPR0050 F3 OO3 0Ω, J umper Wire
189 CPR0015 F3 NN3 22KΩ ±5%, 1/4W, CF
A
A
C D
C D
190 CPR0050 F3
J
0Ω, J umper Wire
A B C D
C D
191 CPR0050 F3 NN3 0Ω, J umper Wire
192 CPR0050 F3 MM3 0Ω, J umper Wire
193 CPR0050 E3 MM3 0Ω, J umper Wire
194 CPR0050 E3 MM5 0Ω, J umper Wire
195 CPR0003 E3 NN3 4.7Ω ±5%, 1/4W, CF
A
A B C D
A B C D
A B C D
A
C D
195A CPR0050 E3
J
0Ω, J umper Wire
A B C D
196 CPD1252 E3 II1 1A, 1KV Diode, 1N4007
196 CPR0004 E3 MM0 270Ω ±5%, 1/4W, CS=0.40”
196 CPR0050 E3 LL0 0Ω, J umper Wire, CS=0.78”
196B CPR0050 E3 LL0 0Ω, J umper Wire
H I J K L
S
R
U
A B C D
M N
Q
T
O P
CERONIX XX93 Monitor Part List
50
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
197 CPQ1307 E3 LL0 1.5A, 180V, NPN, 2SC4159E
197 CPR0050 E3 LL0 0Ω J umper, 0.600” Long.
198 CPR0033 D3 MM0 30Ω ±5%, 1/4W, CF
198A CPD1264 D3 J J 5 2A, 600V Fast D., FR205-F
198A CPR0050 D3 J J 5 0Ω, J umper Wire
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
R
U
0.46
0.01
0.01
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.25
0.04
0.01
0.04
0.17
0.01
0.04
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
G
F
H I J K L
S T
S T
E
R
R
U
U
G
G
A B C D
A B C D
F
F
H I J K L M N O P Q
E
E
199 CPD1252 D3 LL0 1A, 1KV Diode, 1N4007
R
U
U
200 CPR0050 D3
J
0Ω, J umper Wire
H I J K L M N O P Q R S T
O P Q
201 CPR0029 D3 BB2 200KΩ ±5%, 1/4W, CF
202 CPR0050 D3 FF3 0Ω, J umper Wire
203 CPR0050 D3 FF1 0Ω, J umper Wire
T
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
204 CPR0050 D3
J
0Ω, J umper Wire
206 CPS1757 C4 CC1 12 Cond. Straight Header
207 CPC1036 D4 CC4 .047uF ±5%, 50V, Film
208 CPR0009 D4 CC3 1KΩ ±5%, 1/4W, CF
209 CPC1102 C4 DD2 100uF, 25V, Electrolytic
210 CPI1410 C4 CC3 Dual Comp. IC, LM393N
211 CPR0050 C4 CC3 0Ω, J umper Wire
212 CPQ1301 C4 AA3 60V, .6A, PNP, PN2907A
213 CPD1250 B4 AA5 100mA, 200V Diode, FDH400
214 CPR0050 C4
215 CPR0050 B4
216 CPR0050 B4
217 CPR0050 B4
J
J
J
J
0Ω, J umper Wire
0Ω, J umper Wire
0Ω, J umper Wire
0Ω, J umper Wire
218 CPR0050 B4 BB7 0Ω, J umper Wire
218 CPR0129 B4 BB7 340Ω ±1%, 1/4W, MF
221 CPR0050 A4 DD7 0Ω, J umper Wire
A
C D
H I J K L
N O P Q R S T
B
M
G
G
A
C D
F
F
H
N O P Q R S T
U
U
U
E
E
222 CPR0050 A4
J
0Ω, J umper Wire
A B C D
H I J K L M N O P Q R S T
223 CPR0140 A4 BB7 3.92KΩ ±1%, 1/4W, MF
223 CPR0144 A4 BB7 12.1KΩ ±1%, 1/4W, MF
223 CPR0145 A4 BB7 15.8KΩ ±1%, 1/4W, MF
223 CPR0153 A4 BB7 20.0KΩ ±1%, 1/4W, MF
225 CPD1252 A5 AA7 1A, 1KV Diode, 1N4007
225 CPR0000 A5 AA7 2.2Ω ±5%, 1/4W, CF
225 CPR0003 A5 AA7 4.7Ω ±5%, 1/4W, CF
225 CPR0050 A5 AA7 0Ω, J umper Wire
225 CPR0129 A5 AA7 340Ω ±1%, 1/4W, MF
226 CPR0124 A5 AA7 75.0Ω ±1%, 1/4W, MF
226 CPR0125 A5 AA7 88.7Ω ±1%, 1/4W, MF
226 CPR0127 A5 AA7 205Ω ±1%, 1/4W, MF
226 CPR0173 A5 AA7 64.9Ω ±1%, 1/4W, MF
227 CPR0018 A5 BB5 62KΩ ±5%, 1/4W, CF
228 CPR0050 A5 CC5 0Ω, J umper Wire, CS=.30”
231 CPR0141 A5 DD7 4.42KΩ ±1%, 1/4W, MF
231 CPR0144 A5 DD7 12.1KΩ ±1%, 1/4W, MF
231 CPR0145 A5 DD7 15.8KΩ ±1%, 1/4W, MF
231 CPR0153 A5 DD7 20.0KΩ ±1%, 1/4W, MF
232 CPR0121 A5 CC7 57.6Ω ±1%, 1/4W, MF
232 CPR0122 A5 CC7 105Ω ±1%, 1/4W, MF
232 CPR0124 A5 CC7 75.0Ω ±1%, 1/4W, MF
232 CPR0125 A5 CC7 88.7Ω ±1%, 1/4W, MF
232 CPR0127 A5 CC7 205Ω ±1%, 1/4W, MF
232 CPR0173 A5 CC7 64.9Ω ±1%, 1/4W, MF
232 CPR0175 A5 CC7 69.8Ω ±1%, 1/4W, MF
232 CPR0182 A5 CC7 54.9Ω ±1%, 1/4W, MF
233 CPD1252 A5 CC7 1A, 1KV Diode, 1N4007
233 CPR0000 A5 CC7 2.2Ω ±5%, 1/4W, CF
233 CPR0003 A5 CC7 4.7Ω ±5%, 1/4W, CF
R
N
C D
O P Q
S T
S T
S T
G
G
G
A
F
F
H
E
E
R
R
U
U
H I J K L
A
A
C D
C D
O P Q
O P Q
N
N
F
H
E
I
J K L
B
G
G
A B C D
F
F
H I J K L M N O P Q R S T
U
U
E
E
R
N
C D
O P Q
S T
T
A
H
H
I
J K L
R
R
A
D
C
U
U
N
G
G
F
F
O P Q
E
E
S
H I J K L
A
D
CERONIX XX93 Monitor Part List
51
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
233 CPR0050 A5 CC7 0Ω, J umper Wire
233 CPR0129 A5 CC7 340Ω ±1%, 1/4W, MF
235 CPR0050 A5 BB7 0Ω, J umper Wire
236 CPR0050 A5 AA7 0Ω, J umper Wire
236 CPR0129 A6 AA7 340Ω ±1%, 1/4W, MF
237 CPQ1301 A6 BB7 60V, .6A, PNP, PN2907A
238 CPQ1301 B5 CC7 60V, .6A, PNP, PN2907A
239 CPR0010 B5 AA5 4.7KΩ ±5%, 1/4W, CF
239 CPR0013 B5 AA5 6.8KΩ ±5%, 1/4W, CF
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C
O P Q
S T
0.01
0.01
0.01
0.01
0.01
0.04
0.04
0.01
0.01
0.01
2.47
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.04
0.04
0.04
0.01
0.01
0.01
0.01
0.01
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.04
0.01
0.01
0.04
0.01
0.01
0.01
N
G
G
A B C D
F
F
H I J K L M N O P Q
H I J K L N O P Q
S T
S T
E
E
A
C D
B
M
R
R
U
U
M
B
240 CPR0050 B5
J
0Ω, J umper Wire
R
U
U
U
241 CPI1409 B5 BB6 Video Input IC, XRC5346A
242 CPR0141 B4 CC6 4.42KΩ ±1%, 1/4W, MF
242 CPR0144 B4 CC7 12.1KΩ ±1%, 1/4W, MF
242 CPR0145 B4 CC7 15.8KΩ ±1%, 1/4W, MF
242 CPR0153 B4 CC7 20.0KΩ ±1%, 1/4W, MF
243 CPD1252 B5 BB7 1A, 1KV Diode, 1N4007
243 CPR0000 B5 BB7 2.2Ω ±5%, 1/4W, MF
243 CPR0003 B5 BB7 4.7Ω ±5%, 1/4W, CF
243 CPR0050 B5 BB7 0Ω, J umper Wire
G
A B C D E F
H I J K L M N O P Q R S T
R
N
C D
O P Q
S T
G
G
A
F
F
H
E
E
R
U
T
H I J K L
A
C D
O P Q
O P
S
243 CPR0129 B5 BB7 340Ω ±1%, 1/4W, MF
244 CPR0122 B5 BB5 105Ω ±1%, 1/4W, MF
244 CPR0132 B5 BB5 604Ω ±1%, 1/4W, MF
245 CPR0132 C5 BB5 604Ω ±1%, 1/4W, MF
245 CPR0134 C5 BB5 1.21KΩ ±1%, 1/4W, MF
246 CPR0009 C5 EE7 1KΩ ±5%, 1/4W, CF
246 CPR0029 C5 FF7 200KΩ ±5%, 1/4W, CF
247 CPR0016 C5 FF8 33KΩ ±5%, 1/4W, CF
248 CPR0011 C5 CC3 1.8KΩ ±5%, 1/4W, CF
250 CPR0013 C5 CC3 6.8KΩ ±5%, 1/4W, CF
251 CPR0013 C5 CC3 6.8KΩ ±5%, 1/4W, CF
252 CPR0011 C5 CC4 1.8KΩ ±5%, 1/4W, CF
253 CPD1251 D5 CC3 10mA, 75V Diode, 1N4148
254 CPC1036 C5 FF8 .047uF ±5%, 50V, Film
254 CPQ1303 C5 FF8 30V, .6A, NPN, PN2222A
255 CPQ1303 C5 FF7 30V, .6A, NPN, PN2222A
256 CPR0029 C5 FF8 200KΩ ±5%, 1/4W, CF
257 CPR0019 C5 FF8 100KΩ ±5%, 1/4W, CF
257 CPR0011 C5 FF7 1.8KΩ ±5%, 1/4W, CF
258 CPR0131 C5 BB5 464Ω ±1%, 1/4W, MF
258 CPR0134 C5 BB5 1.21KΩ ±1%, 1/4W, MF
259 CPC1101 C6 FF7 10uF, 50V, Electrolytic
260 CPR0130 C5 BB5 412Ω ±1%, 1/4W, MF
260 CPR0136 C5 BB5 1.62KΩ ±1%, 1/4W, MF
261 CPR0050 B5 BB5 0Ω, J umper Wire, 0.30” long.
261 CPR0145 B5 BB5 15.8KΩ ±1%, 1/4W, MF
264 CPR0120 B5 BB7 100 Ω ±1%, 1/4W, MF
264 CPR0124 B5 BB7 75.0Ω ±1%, 1/4W, MF
264 CPR0127 B5 BB7 205Ω ±1%, 1/4W, MF
264 CPR0152 B5 BB7 84.5Ω ±1%, 1/4W, MF
264 CPR0175 B5 BB7 69.8Ω ±1%, 1/4W, MF
266 CPQ1301 B5 CC7 60V, .6A, PNP, PN2907A
266 CPR0050 B6 CC7 0Ω, J umper Wire
N
G
G
A B
A B
E F
H I J K L
H I J K L
S T
S T
C D
C D
M N
Q R
U
F
O P
E
M N
M N
Q R
R
U
U
G
G
G
G
G
G
G
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
F
F
F
F
F
F
F
H I J K L
H I J K L
O P Q
O P Q
S T
S T
E
E
E
E
E
E
E
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
M N
R
G
G
G
G
A B C D
A B C D
A B C D
A B C D
F
F
F
F
H I J K L
H I J K L
H I J K L
H I J K L
O P Q
O P Q
O P Q
O P Q
S T
S T
S T
S T
E
E
E
E
M N
R
U
G
G
G
A B
C D
F
F
F
H I J K L
H I J K L
H I J K L
O P
S T
S T
E
E
E
M N
M N
Q R
R
U
U
A B
C D
B
O P
M N
M
Q R
U
U
A
A
C D
N O P Q R S T
R
Q
S
N
G
G
C D E F
H
O P
U
U
I
J K L
T
R
A
C D
F
H I J K L
N O P Q
S T
E
266 CPR0128 B5 CC7 301Ω ±1%, 1/4W, MF
267 CPC1102 B5 DD6 100uF, 25V, Electrolytic
268 CPD1251 B6 CC7 10mA, 75V Diode, 1N4148
268 CPD1251 B6 CC7 1N4148 Diode, Reverse Polarity.
270 CPD1251 B6 BB7 10mA, 75V Diode, 1N4148
B
M
G
G
A B C D
F
F
H I J K L M N O P Q R S T
U
U
E
E
A
C D
H I J K L
H I J K L
N O P Q R S T
N O P Q R S T
B
M
G
A
C D
F
U
E
CERONIX XX93 Monitor Part List
52
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
270 CPD1251 B6 BB7 1N4148 Diode, Reverse Polarity.
271 CPD1251 B6 AA7 1N4148 Diode, Reverse Polarity.
271 CPD1251 B6 AA7 10mA, 75V Diode, 1N4148
272 CPC1026 C6 DD7 1,000pF ±5%, 100V, Film
272 CPR0138 C5 DD7 2.15KΩ ±1%, 1/4W, MF
272 CPR0140 C5 DD7 3.92KΩ ±1%, 1/4W, MF
273 CPR0130 C6 DD8 412Ω ±1%, 1/4W, MF
273 CPR0136 C6 DD8 1.62KΩ ±1%, 1/4W, MF
273 CPR0147 C6 DD8 1.00MΩ ±1%, 1/4W, MF
273 CPR0138 C6 DD8 2.15KΩ ±1%, 1/4W, MF
274 CPQ1303 C6 DD7 30V, .6A, NPN, PN2222A
275 CPR0009 C6 DD8 1KΩ ±5%, 1/4W, CF
275 CPR0033 C6 DD8 30Ω ±5%, 1/4W, CF
275 CPR0122 C6 DD8 105Ω ±1%, 1/4W, MF
275 CPR0143 C6 DD8 10.0KΩ ±1%, 1/4W, MF
276 CPR0004 B6 CC7 270Ω ±5%, 1/4W, CF
276 CPR0124 B6 CC7 75.0Ω ±1%, 1/4W, MF
276 CPR0128 B6 CC7 301Ω ±1%, 1/4W, MF
277 CPR0004 B6 BB7 270Ω ±5%, 1/4W, CF
277 CPR0124 B6 BB7 75.0Ω ±1%, 1/4W, MF
277 CPR0128 B6 BB7 301Ω ±1%, 1/4W, MF
277 CPR0129 B6 BB7 340Ω ±1%, 1/4W, MF
278 CPR0004 B6 AA7 270Ω ±5%, 1/4W, CF
278 CPR0124 B6 AA7 75.0Ω ±1%, 1/4W, MF
278 CPR0128 B6 AA7 301Ω ±1%, 1/4W, MF
280 CPC1041 B6 BB8 .33uF ±5%, 50V, Film
280 CPR0050 B6 BB8 0Ω, J umper Wire
281 CPC1041 B6 AA8 .33uF ±5%, 50V, Film
281 CPR0050 B6 AA8 0Ω, J umper Wire
283 CPC1041 B6 CC8 .33uF ±5%, 50V, Film
283 CPR0050 B6 CC8 0Ω, J umper Wire
284 CPR0124 B6 CC9 75.0Ω ±1%, 1/4W, MF
284 CPR0128 B6 CC9 301Ω ±1%, 1/4W, MF
286 CPR0124 B6 BB9 75.0Ω ±1%, 1/4W, MF
286 CPR0128 B6 BB9 301Ω ±1%, 1/4W, MF
288 CPR0124 A6 AA9 75.0Ω ±1%, 1/4W, MF
288 CPR0128 A6 AA9 301Ω ±1%, 1/4W, MF
292 CPS1752 A6 BB9 7 Cond. Straight Header
292 CPS1781 A6 BB9 6 Cond. Straight Header
293 CPR0050 A6 DD5 0Ω, J umper Wire
295 CPR0050 A7 EE3 0Ω, J umper Wire
296 CPI1407 A7 EE3 12V, 1A, Regulator, 7812
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
B
M
M
0.01
0.01
0.01
0.07
0.01
0.01
0.01
0.01
0.01
0.01
0.04
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.08
0.01
0.08
0.01
0.08
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.18
0.16
0.01
0.01
0.25
0.01
0.14
0.04
0.04
0.01
0.01
0.01
0.04
0.01
0.04
0.04
0.04
0.01
0.01
0.01
B
G
A
C D
F
H I J K L
N O P Q R S T
U
U
E
R
N
G
G
A B C D
F
F
H I J K L M
H I J K L
O P Q
O P Q
S T
S T
E
E
A
C D
N
R
U
U
B
M
G
G
A B C D
B
F
F
H I J K L M N O P Q R S T
M
E
E
A
C D
H I J K L
O P Q
S T
N
R
R
U
U
G
G
A
A
C D
C D
F
F
H I J K L
O P Q
O P Q
S T
S T
E
E
B
M N
R
R
U
U
H I J K L
N
B
B
M
G
A
C D
F
H I J K L
O P Q
S T
E
M N
R
R
R
U
U
U
U
U
U
U
G
G
A B C D
A B C D
A B C D
F
F
H I J K L M N O P Q
H I J K L M N O P Q
H I J K L M N O P Q
S T
S T
S T
E
E
G
G
F
F
E
E
A
A
A
A
C D
C D
C D
C D
H I J K L
H I J K L
H I J K L
H I J K L
O P Q R S T
O P Q R S T
O P Q R S T
O P Q R S T
N
N
G
G
G
F
F
F
E
E
E
N
B
M N
G
G
G
G
G
A B C D
A B C D
A B C D
A B C D
A B C D
F
F
F
F
F
H I J K L M N O P Q R S T
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
E
E
E
E
E
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
297 CPR0050 A7
J
0Ω, J umper Wire
H I J K L M N O P Q R S T
298 CPC1103 A7 FF3 220uF, 50V, Electrolytic
303 CPQ1301 B7 EE7 60V, .6A, PNP, PN2907A
304 CPC1102 B7 EE3 100uF, 25V, Electrolytic
305 CPR0012 B7 EE7 2.7KΩ ±5%, 1/4W, CF
307 CPR0004 B7 CC8 270Ω ±5%, 1/4W, CF
308 CPR0004 B7 BB8 270Ω ±5%, 1/4W, CF
309 CPC1036 C6 EE8 .047uF ±5%, 50V, Film
310 CPR0004 B7 BB8 270Ω ±5%, 1/4W, CF
311 CPQ1303 B6 AA8 30V, .6A, NPN, PN2222A
312 CPQ1303 B6 BB8 30V, .6A, NPN, PN2222A
313 CPQ1303 C6 CC8 30V, .6A, NPN, PN2222A
H I J K L M N O P Q R S T
R
G
A B C D
F
H I J K L M N O P Q R S T
E
R
R
R
R
R
R
R
R
314 CPR0050 C7
J
0Ω, J umper Wire
G
F H I J K L M N O P Q R S T
A B C D
E
315 CPR0004 C7 DD8 270Ω ±5%, 1/4W, CF
316 CPC1009 C7 EE7 100pF ±10%, 500V, Ceramic
R
R
CERONIX XX93 Monitor Part List
53
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
317 CPD1251 C7 EE7 10mA, 75V Diode, 1N4148
318 CPC1036 C6 FF8 .047uF ±5%, 50V, Film
318 CPR0050 C6 FF8 0Ω, J umper Wire
319 CPD1251 C6 EE7 10mA, 75V Diode, 1N4148
320 CPR0012 C7 FF7 2.7KΩ ±5%, 1/4W, CF
321 CPR0013 C7 EE8 6.8KΩ ±5%, 1/4W, CF
322 CPR0013 C7 EE8 6.8KΩ ±5%, 1/4W, CF
323 CPR0015 C7 EE8 22KΩ ±5%, 1/4W, CF
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
R
U
0.01
0.04
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.72
0.01
0.14
0.01
0.01
0.01
0.01
0.01
0.46
0.04
0.14
0.04
0.03
0.04
0.01
0.01
0.01
0.01
0.02
0.04
0.07
0.08
0.03
0.04
0.08
0.07
0.06
0.06
0.07
0.01
0.01
0.01
0.18
0.01
0.01
0.01
0.01
0.08
0.01
0.01
0.01
G
A B C D
F
H I J K L
O P Q
S T
E
M N
R
R
R
U
U
U
G
G
G
G
G
G
G
G
G
G
G
G
G
G
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
C
F
F
F
F
F
F
F
F
F
F
F
F
F
F
H I J K L
O P Q
S T
E
E
E
E
E
E
E
E
E
E
E
E
E
E
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
U
U
U
U
U
U
U
324 CPR0050 C7
J
0Ω, J umper Wire
325 CPR0011 C7 DD8 1.8KΩ ±5%, 1/4W, CF
326 CPR0004 D7 DD8 270Ω ±5%, 1/4W, CF
327 CPR0004 D7 EE9 270Ω ±5%, 1/4W, CF
328 CPR0050 D7 DD9 0Ω, J umper Wire
329 CPR0144 D6 EE4 12.1KΩ ±1%, 1/4W, MF
330 CPR0004 D7 DD9 270Ω ±5%, 1/4W, CF
331 CPR0011 D7 DD9 1.8KΩ ±5%, 1/4W, CF
! 332 CPT1505 E7 NN1 Horizontal Drive Transformer
333 CPD1252 D6 FF3 1A, 1KV Diode, 1N4007
334 CPC1103 E6 FF4 220uF, 50V, Electrolytic
336 CPR0012 E6 KK4 2.7KΩ ±5%, 1/4W, CF
336 CPR0024 E6 KK4 3.3KΩ ±5%, 1/4W, CF
336 CPR0050 E6 KK4 0Ω J umper Wire
336 CPR0134 E6 KK4 1.21KΩ ±1%, 1/4W, MF
336 CPR0138 E6 KK4 2.15KΩ ±1%, 1/4W, MF
337 CPQ1307 E7 MM1 1.5A, 180V, NPN, 2SC4159E
338 CPC1102 E7 LL1 100uF, 25V, Electrolytic
338 CPC1103 E7 LL1 220uF, 50V, Electrolytic
340 CPR0390 F7 LL1 47Ω ±5%, 2W, MO
340 CPR0391 F7 LL1 200Ω ±5%, 2W, MO
340 CPR0398 F7 LL1 100Ω ±5%, 2W, MO
341 CPR0365 F7 LL0 470Ω ±5%, 1/2W, CF
341 CPR0368 F7 LL1 2.2KΩ ±5%, 1/2W, CF
341 CPR0371 F7 LL0 1KΩ ±5%, 1/2W, CF
342 CPD1252 F6 LL1 1A, 1KV Diode, 1N4007
343 CPC1003 F6 MM1 2,200pF ±20%, 1KV, Ceramic
344 CPC1100 E6 II4 1uF , 50V, Electrolytic
! 345 CPC1027 E6 J J 4 6,800pF ±5%, 100V, Film
! 345 CPC1035 E6 J J 4 3,300pF ±5%, 100V, Film
346 CPC1032 E6 J J 4 .01uF ±5%, 50V, Film
347 CPC1100 E6 II4 1uF , 50V, Electrolytic
348 CPC1035 E6 II4 3,300pF ±5%, 100V, Film
348 CPC1027 E6 II4 6,800pF ±5%, 100V, Film
350 CPC1025 D6 HH4 330pF ±5%, 50V, Film
351 CPC1025 D6 GG4 330pF ±5%, 50V, Film
351 CPC1026 D6 GG4 1,000pF ±5%, 100V, Film
352 CPC1000 D6 EE4 56pF ±5%, 100V, Ceramic
353 CPR0145 D6 FF6 15.8KΩ ±1%, 1/4W, MF
354 CPR0155 D6 GG6 68.1KΩ ±1%, 1/4W, MF
355 CPI1406 C6 FF7 Quad Comparator IC, LM339
356 CPR0012 C6 FF7 2.7KΩ ±5%, 1/4W, CF
356 CPR0140 C6 FF7 3.92KΩ ±1%, 1/4W, MF
357 CPR0009 C6 GG6 1KΩ ±5%, 1/4W, CF
357 CPR0050 C6 FF6 0Ω, J umper Wire, CS=.30”
358 CPC1035 C6 GG7 3,300pF ±5%, 100V, Film
358 CPR0050 C6 GG6 0Ω, J umper Wire, CS=.40”
360 CPR0144 C6 GG6 12.1KΩ ±1%, 1/4W, MF
360 CPR0145 C6 GG6 15.8KΩ ±1%, 1/4W, MF
E F
I
J
P Q
S T
O
G
D
H
K L
A B
M N
R
U
U
U
G
G
A B C D
A B C D
F
F
H I J K L M N O P Q R S T
E
E
H
H
M N O P Q R
M N O P Q R
M N O P Q R
I
I
J K L
J K L
S T
S T
S T
G
A B C D
A B C D
F
U
U
E
I
J K L
G
G
G
G
F
F
F
F
H
E
E
E
E
A B C D
A B C D
A B C D
A B
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
M N
R
G
G
G
G
C D
F
F
F
F
H I J K L
O P Q
S T
E
E
E
E
A B C D
A B C D
C D
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
H I J K L
O P Q
S T
A B
M N
H I J K L M N O P Q R S T
H I J K L O P Q S T
R
U
U
G
G
A B C D
C D
F
F
E
E
A B
M N
R
U
U
U
G
G
G
G
G
A B C D
A B C D
A B C D
A B C D
F
F
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
E
E
E
E
H I J K L
H I J K L M N O P Q R S T
H I
O P Q
S T
U
U
U
U
D E F
J
A B C
K L M N O P Q R S T
G
G
A B C D
F
F
H I J K L
O P Q
S T
S T
S T
E
E
M N
M N
R
R
A B C D
H I J K L
O P Q
G
A B C D E F
H I
J
O P Q
CERONIX XX93 Monitor Part List
54
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
360 CPR0153 C6 GG6 20.0KΩ ±1%, 1/4W, MF
361 CPR0157 D6 HH2 127KΩ ±1%, 1/4W, MF
362 CPR0171 D6 HH2 365KΩ ±1%, 1/4W, MF
362 CPR0180 D6 HH2 309KΩ ±1%, 1/4W, MF
363 CPR0034 D5 HH2 2.2MΩ ±5%, 1/4W, CF
364 CPR0050 D5 EE6 0Ω, J umper Wire
364 CPR0142 D5 EE6 7.15KΩ ±1%, 1/4W, MF
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
K L
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.04
0.03
0.01
0.01
0.01
0.01
0.04
G
G
A B C D
A B C D
F
F
H I J K L M N O P Q R S T
U
U
E
E
H
J K L M N O
Q R S T
I
P
G
A B C D
F
H
M N O P Q R S T
M N
U
U
E
R
G
G
G
G
G
G
G
G
G
G
G
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
F
F
F
F
F
F
F
F
F
F
F
H I J K L
H I J K L M N O P Q R S T
H I J K L O P Q S T
O P Q
S T
E
E
E
E
E
E
E
E
E
E
E
365 CPR0050 C5
J
0Ω, J umper Wire
U
366 CPR0142 D5 EE6 7.15KΩ ±1%, 1/4W, MF
367 CPR0002 D5 FF3 18Ω ±5%, 1/4W, CF
368 CPR0011 D5 CC3 1.8KΩ ±5%, 1/4W, CF
369 CPC1005 E4 FF1 1,000pF ±10%, 500V, Ceramic
370 CPR0015 D5 J J 2 22KΩ ±5%, 1/4W, CF
371 CPR0029 D5 J J 1 200KΩ ±5%, 1/4W, CF
372 CPR0029 D5 KK1 200KΩ ±5%, 1/4W, CF
373 CPQ1303 D5 KK1 30V, .6A, NPN, PN2222A
374 CPC1032 D5 GG1 .01uF ±5%, 50V, Film
375 CPR0018 D5 GG1 62KΩ ±5%, 1/4W, CF
375 CPR0019 D5 GG1 100KΩ ±5%, 1/4W, CF
375 CPR0157 D5 GG1 127KΩ ±1%, 1/4W, MF
3755 CPR0156 D5 GG1 93.1KΩ ±1%, 1/4W, MF
376 CPC1102 D4 FF3 100uF, 25V, Electrolytic
! 377 CPA4265 E4 GG0 V. Deflection Boost
! 377 CPI1415 E4 GG0 V. Deflection IC, LA7838
378 CPM2028 F4 FF0 LA7838 Heat Sink.
378 CPM2028 F4 FF0 LA7838 Heat Sink.
378 CPM2037 F4 FF0 LA7838 Heat Sink.
378 CPM2121 F4 FF0 LA7838 Heat Sink.
378 CPM2122 F4 FF0 LA7838 Heat Sink.
378 CPM2141 F4 FF0 LA7838 Heat Sink.
379 CPQ1303 E4 BB2 30V, .6A, NPN, PN2222A
380 CPC1109 E4 II1 470uF, 50V, Electrolytic
381A CPC1035 D4 HH1 3,300pF ±5%, 100V, Film
382 CPD1252 E4 II1 1A, 1KV Diode, 1N4007
382 CPR0019 E4 HH1 100KΩ ±5%, 1/4W, CF
382 CPR0158 E4 HH1 84.5KΩ ±1%, 1/4W, MF
383 CPR0029 E4 AA2 200KΩ ±5%, 1/4W, CF (CS=.45)
384 CPR0015 E4 AA2 22KΩ ±5%, 1/4W, CF
385 CPR0375 E4 HH2 .68Ω ±5%, 1W, MO
385 CPR0376 E4 HH2 1.2Ω ±5%, 1W, MO
387 CPC1104 F3 KK6 1,000uF, 35V, Electrolytic
388 CPR0019 F4 HH2 100KΩ ±5%, 1/4W, CF
388 CPR0029 F4 HH2 200KΩ ±1%, 1/4W, CF
388 CPR0157 F4 HH2 127KΩ ±1%, 1/4W, MF
389 CPR0050 E4 BB2 0Ω, J umper Wire, CS=.74”
390 CPR0019 F4 II1 100KΩ ±5%, 1/4W, CF
390 CPR0157 F4 II1 127KΩ ±1%, 1/4W, MF
391 CPC1043 F5 HH2 1uF ±5%, 50V, Film
391 CPC1101 F5 HH2 10uF, 50V, Electrolytic
392 CPR0011 F5 HH1 1.8KΩ ±5%, 1/4W, CF
392 CPR0012 F5 HH1 2.7KΩ ±5%, 1/4W, CF
392 CPR0138 F5 II1 2.15KΩ ±1%, 1/4W, MF
392 CPR0141 F5 HH1 4.42KΩ ±1%, 1/4W, MF
393 CPR0050 E5 HH1 0Ω, J umper Wire
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
U
U
I
J K L
O P
R
U
M N
Q
G
G
A B C D
A B C D
F
F
H
S T
E
E
H I J K L M N O P Q R S T
U
U
S T
G
A B C D E F
A B C D
H I J K L M N O P Q R
1.31
0.28
0.28
0.12
0.28
0.30
0.68
0.04
0.34
0.08
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.22
0.01
0.01
0.01
0.01
0.01
0.01
0.16
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
M N O P Q
R
U
U
R
G
G
F
F
H
H
E
E
I
J K L
S T
G
G
G
A B C D
A B C D
F
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
E
E
E
H I J K L
S
A B C D
M N O P Q R
T
U
G
F
H I J K L
E
S
G
G
A B C D
A B C D
F
F
H I J K L M N O P Q R S T
U
U
E
E
H I J K L M N O P Q R S T
S T
G
A B C D
F
H I J K L M N O P Q R
U
U
U
E
R
R
O P
G
G
G
A B C D
A B C D
A B C D
F
F
F
H I J K L M N
Q
S T
E
E
E
H I J K L M N O P Q R S T
U
U
H I J K L M N O P Q
H I J K L M N O P Q
S T
S T
R
G
G
A B C D
F
F
E
E
R
R
U
U
A B
C D
H I J K L
O P Q
S T
S T
M N
M N
O P
393 CPR0155 E5 HH1 68.1KΩ ±1%, 1/4W, MF
393 CPR0158 E5 HH1 84.5KΩ ±1%, 1/4W, MF
394 CPR0364 E5 NN3 100Ω ±5%, 1/2W, CF
G
G
A B C D
A B C D
F
F
H
Q R
U
U
E
I
J K L
K L M N O P Q R S T
H I
CERONIX XX93 Monitor Part List
55
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
394 CPR0390 E5 NN3 47Ω ±5%, 2W, MO
394 CPR0397 E5 NN3 33Ω ±5%, 2W, MO
395 CPR0050 E5 II1 0Ω, J umper Wire
396 CPR0003 E5 J J 1 4.7Ω ±5%, 1/4W, CF
397 CPC1037 E5 J J 1 .1uF ±5%, 250V, Film
398 CPC1009 E4 II1 100pF ±10%, 500V, Ceramic
399 CPC1058 D4 LL0 .1uF ±5%, 50V, Film
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
0.04
0.03
0.01
0.01
0.07
0.01
0.05
0.01
0.16
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.04
0.05
0.04
0.01
0.01
0.03
0.08
1.59
0.79
0.01
0.01
0.01
0.01
0.01
0.01
0.46
0.18
0.03
0.01
0.01
0.01
0.01
0.03
0.02
0.01
E
J
G
G
G
G
A B C D
A B C D
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
R
U
U
U
U
U
U
U
E
E
A B C D E F
A B C D
F
E
400 CPR0050 E4
J
0Ω, J umper Wire
G
G
A B C D
A B C D
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
T
E
E
401 CPC1043 E5 HH1 1uF ±5%, 50V, Film
402 CPR0017 E5 GG1 36K ±5%, 1/4W, MF
402 CPR0163 E5 GG1 28.0KΩ ±1%, 1/4W, MF
402.5CPR0154 E5 GG1 44.2KΩ ±1%, 1/4W, MF
403 CPR0019 E5 GG2 100KΩ ±5%, 1/4W, CF
403 CPR0155 E5 GG2 68.1KΩ ±1%, 1/4W, MF
403 CPR0156 E5 GG2 93.1KΩ ±1%, 1/4W, MF
403 CPR0157 E5 GG2 127KΩ ±1%, 1/4W, MF
404 CPR0019 E5 KK1 100KΩ ±5%, 1/4W, CF
404 CPR0146 E5 KK1 169KΩ ±1%, 1/4W, MF
404 CPR0158 E5 KK1 36KΩ ±5%, 1/4W, CF
404.5CPR0156 E5 KK1 93.1KΩ ±1%, 1/4W, MF
404.5CPR0157 E5 KK1 127KΩ ±1%, 1/4W, MF
405 CPD1251 E5 KK1 10mA, 75V Diode, 1N4148
406 CPD1251 E5 J J 1 10mA, 75V Diode, 1N4148
407 CPR0019 E5 J J 1 100KΩ ±5%, 1/4W, CF
407 CPR0146 E5 J J 1 169KΩ ±1%, 1/4W, MF
407 CPR0157 E5 J J 1 127KΩ ±1%, 1/4W, MF
407 CPR0158 E5 J J 1 84.5K ±1%, 1/4W, MF
407 CPR0017 E5 J J 1 36KΩ ±5%, 1/4W, CF
407 CPR0155 E5 J J 1 68.1KΩ ±1%, 1/4W, MF
407.5CPR0018 E5 J J 1 62KΩ ±5%, 1/4W, CF
407.5CPR0154 E5 J J 1 44.2KΩ ±1%, 1/4W, MF
408 CPR0145 E5 J J 3 15.8KΩ ±1%, 1/4W, MF
409 CPQ1301 D5 KK0 60V, .6A, PNP, PN2907A
410 CPC1058 E5 GG2 .1uF ±5%, 50V, Film
411 CPQ1303 D5 J J 1 30V, .6A, NPN, PN2222A
412 CPR0029 D5 J J 0 200KΩ ±5%, 1/4W, CF
413 CPR0029 D5 KK0 200KΩ ±5%, 1/4W, CF
414 CPC1032 D6 II2 .01uF ±5%, 50V, Film
414 CPC1035 D6 II2 3,300pF ±5%, 100V, Film
! 415 CPI1400 E6 KK3 H. Control IC, LA7851
! 416 CPR0502 E6 II4 “I” PRA Horizontal Control
417 CPR0140 E5 KK3 3.92KΩ ±1%, 1/4W, MF
418 CPR0140 E5 KK2 3.92KΩ ±1%, 1/4W, MF
419A CPR0050 F5 OO2 0Ω, J umper, Normal Vertical.
419B CPR0050 F6 OO2 0Ω, J umper, Normal Vertical.
419E CPR0050 F5 OO2 0Ω, J umper, Reverse Vertical.
419F CPR0050 F5 NN2 0Ω, J umper, Reverse Vertical.
420 CPQ1307 E5 NN3 1.5A, 180V, NPN, 2SC4159E
420 CPQ1308 E5 NN3 .1A, 200V, NPN, 2SC3467AE
421 CPR0393 F6 MM2 390Ω ±5%, 2W, MO
422 CPR0050 F5 KK1 0Ω, J umper Wire
G
A B C D
A B
F
H I J K L
S
E
M N O P Q R
O P
U
U
L
I
I
J K
T
T
G
C D
F
H
H
R S
E
M N
Q
C D
A B
J
K
L
S
R
U
U
U
G
G
A B C D
A B C D
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
E
E
H
K L
O P
Q
C D
A B
R
T
U
I
J
S
M N
G
G
G
G
G
G
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B
F
F
F
F
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
U
E
E
E
E
E
E
M N O P Q R
T
G
G
G
G
G
C D
F
F
H I J K L
S
E
E
A B C D
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
A B C D E F
A B C D
A B C D
A B C D
A B C D
F
F
F
F
E
E
J
J
M N O P Q R S T
M N O P Q R S T
G
G
H I
H I
K L
K L
E
E
E
J
G
G
G
G
G
G
A B C D
F
H I
K L M N O P Q R S T
U
U
U
U
U
U
A B C D E F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
A B C D
F
F
F
F
E
E
E
E
423 CPR0006 F5 OO3 510Ω ±5%, 1/4W, CF
424 CPR0004 F5 OO3 270Ω ±5%, 1/4W, CF
425 CPR0367 F5 OO3 150Ω ±5%, 1/2W, CF
425 CPR0379 F5 OO3 68Ω ±5%, 1W, MO
A
A
A
C D
C D
C D
H I J K
M N O P Q R S T
L
426 CPS1758 F5 OO2 .093” Dia. Bead Pin, YC1
G
F
H I J K L
S T
E
426 CPS1759 F5 OO2 .062” Dia. Bead Pin, YC1
A B C D
M N O P Q R
U
CERONIX XX93 Monitor Part List
56
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
427 CPS1758 F5 OO2 .093” Dia. Bead Pin, YC2
427 CPS1759 F5 OO2 .062” Dia. Bead Pin, YC2
428 CPR0365 F6 OO6 470Ω ±5%, 1/2W, CF
428 CPR0367 F6 OO6 150Ω ±5%, 1/2W, CF
428 CPR0371 F6 OO6 1KΩ ±5%, 1/2W, CF
G
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
F
H I J K L
S T
0.02
0.01
0.01
0.01
0.01
0.01
0.74
0.61
0.76
0.77
0.77
0.63
E
A B C D
A B C D
M N O P Q R
O P
U
U
U
G
L
F
F
H I J K
Q R S T
E
E
M N
M N
430 CPR0050 F6 OO6 0Ω, J umper Wire
G
B
D
H
K
Q R S
430 CPT1506 F6 OO5 H. Linearity Inductor
430 CPT1539 F6 OO6 H. Linearity Inductor
430 CPT1546 F6 OO5 27uH Inductor
A
C
C
430 CPT1557 F6 OO6 H. Linearity Inductor
430 CPT1557 F6 OO5 H. Linearity Inductor (-3T)
430 CPT1566 F6 OO6 H. Linearity Inductor
430 CPT1569 F6 OO5 H. Linearity Inductor
431 CPT1506 F6 OO6 H. Linearity Inductor
431 CPT1517 F6 OO6 H. Linearity Inductor
431 CPT1539 F6 OO6 H. Linearity Inductor
431 CPT1557 F6 OO6 H. Linearity Inductor
431 CPT1557 F6 OO6 H. Linearity Inductor
431 CPT1565 F6 OO6 H. Linearity Inductor
431 CPT1566 F6 OO6 H. Linearity Inductor
431 CPT1569 F6 OO6 H. Linearity Inductor
432 CPC1002 G6 OO6 330pF ±10%, 500V, Ceramic
432 CPC1006 F6 OO6 200pF ±10%, 1KV, Ceramic
432 CPC1026 G6 OO6 1,000pF ±5%, 100V, Film
! 433 CPQ1305 G7 NN1 5A,1.5KV, NPN, 2SD1651
! 433 CPQ1318 G7 NN1 12A,1.5KV, NPN, 2SC5690
434 CPR0376 G7 NN1 1.2Ω ±5%, 1W, MO
435 CPD1252 G7 NN1 1A, 1KV Diode, 1N4007
436 CPD1272 H7 PP7 6A, 1KV, Fast D., HER605
! 437 CPC1034 H7 PP7 .022uF ±3%, 630V, Film
! 437 CPC1047 H7 PP7 .027uF ±3%, 800V, Film
! 437 CPC1076 H7 PP7 0.1uF ±5%, 200V, Film
438 CPD1264 H6 PP6 2A, 600V Fast D., FR205-F
! 439 CPC1034 H7 PP7 .022uF ±5%, 630V, Film
! 439 CPC1047 H7 PP7 .027uF ±3%, 800V, Film
440 CPD1259 H6 PP6 3A, 1KV Fast Diode, TF307
440 CPD1264 G6 PP6 2A, 600V Fast D., FR205-F
440 CPD1270 H6 PP6 6A, 800V Fast Diode, TF606
440 CPD1270 H6 PP6 6A, 800V Fast Diode, TF606
440 CPD1271 H6 PP6 6A, 1KV Fast Diode, TF607
440 CPD1271 H6 PP6 6A, 1KV Fast Diode, TF607
! 441 CPC1030 H6 PP6 .01uF ±3%, 1.6KV, Film
! 441 CPC1051 H6 PP6 .012uF ±3%, 1.6KV, Film
! 441 CPC1055 H6 PP6 8,200pF ±3%, 1.6KV, Film
441 CPC1057 H6 PP6 1,000pF ±3%, 1.6KV, Film
! 441 CPC1061 H6 PP6 7,500pF ±3%, 1.6KV, Film
! 441 CPC1063 H6 PP6 5,600pF ±3%, 1.6KV, Film
! 441 CPC1065 H6 PP6 6,800pF ±5%, 1.6KV, Film
! 441 CPC1075 H6 PP6 .033uF ±3%, 800V, Film
! 441 CPC1077 H6 PP6 1,500pF ±3%, 1.6KV, Film
! 442 CPC1030 H6 PP6 .01uF ±3%, 1.6KV, Film
! 442 CPC1047 H6 PP6 .027uF ±3%, 800V, Film
! 442 CPC1051 H6 PP6 12,000pF ±3%, 1.6KV, Film
! 442 CPC1055 H6 PP6 8,200pF ±3%, 1.6KV, Film
! 442 CPC1057 H6 PP6 1,000pF ±3%, 1.6KV, Film
! 442 CPC1061 H6 PP6 7,500pF ±3%, 1.6KV, Film
! 443 CPC1042 H6 PP7 .68uF ±5%, 250V, Film
O P
T
I
J
L
M N
0.74
0.77
0.61
0.77
0.77
0.60
0.63
B
D
R
Q
U
A
T
F
F
H
O P
S
E
E
G
G
I
J K
L
S
0.01
0.01
0.07
1.40
3.45
0.02
0.01
C D
C D
H I J K L M N O P Q R
T
U
A B
A B
G
G
G
F
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
E
E
E
A B C D
A B C D
I
J K L
S T
C D
F
F
F
H I J K L M N
P Q R
U
0.08
0.46
0.28
0.03
0.08
0.46
0.12
0.03
0.39
0.39
0.39
0.39
0.24
0.32
0.39
0.24
0.31
0.35
0.33
0.46
0.30
0.24
0.46
0.32
0.39
0.24
0.31
0.55
E
E
E
O
A B
A B C D
M N O P Q R
U
U
G
K L M N
R
T
S
I
I
J
H
A B C D
M N O P Q R
U
U
J K L
T
T
G
G
S
S
K
R
H
O
M N
Q
C
D
P
A B
I
I
J
T
R
U
J
L
K
K
M N
S
G
H
T
C
CERONIX XX93 Monitor Part List
57
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
H
K
L M N O P Q R S T U V W X Com. PRICE
! 443 CPC1050 H6 PP7 .47uF ±5%, 250V, Film
! 443 CPC1056 H6 PP7 .39uF ±5%, 250V, Film
! 443 CPC1059 H6 PP7 .33uF ±5%, 250V, Film
! 443 CPC1062 H6 PP7 .56uF ±5%, 250V, Film
! 443 CPC1069 H6 PP7 1.5uF ±5%, 400V, Film
! 443 CPC1078 H6 PP7 1.6uF ±5%, 250V, Film
! 444 CPC1042 H6 OO7 .68uF ±5%, 250V, Film
! 444 CPC1050 H6 PP7 .47uF ±5%, 250V, Film
! 444 CPC1050 H6 OO7 .47uF ±5%, 250V, Film
! 444 CPC1059 H6 PP7 .33uF ±5%, 250V, Film
! 444 CPC1062 H6 PP7 .56uF ±5%, 250V, Film
! 444 CPC1069 H6 OO7 1.5uF ±5%, 400V, Film
445 CPS1758 G5 PP5 .093” Dia. Bead Pin, YC4
445 CPS1759 G5 PP5 .062” Dia. Bead Pin, YC4
446 CPS1758 G5 OO5 .093” Dia. Bead Pin, YC3
446 CPS1759 G5 OO5 .062” Dia. Bead Pin, YC3
447 CPT1538 G5 PP3 12 mH, H. Raster Shift Inductor
448 CPC1104 F4 MM2 1,000uF, 35V, Electrolytic
449 CPC1104 F4 MM2 1,000uF, 35V, Electrolytic
449 CPC1113 F4 MM2 2,200uF, 25V, Electrolytic
450 CPC1104 G4 KK6 1,000uF, 35V, Electrolytic
451 CPR0050 G4 NN1 0Ω, J umper Wire
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
D
F
L
P
0.31
0.45
0.37
0.50
0.79
0.68
0.55
0.31
0.31
0.37
0.50
0.79
0.02
0.01
0.02
0.01
0.74
0.22
0.22
E
G
M N
O
Q
A B
A
I
J
K L
R
G
E F
H
T
S
U
U
B
G
G
G
G
G
G
F
F
F
F
F
F
H I J K L
H I J K L
S T
S T
E
E
E
E
E
E
A B C D
A B C D
M N O P Q R
M N O P Q R
U
U
A
C D
H I J K L M N O P Q R S T
O P
H I J K L M N O P Q R S
S
A B C D
U
U
U
U
T
A B C D
C D
H I J K L M N O P Q R S T
0.22
0.01
0.01
12.78
14.18
13.13
12.78
13.13
13.13
0.01
0.37
1.16
0.76
0.74
0.75
0.58
0.70
0.41
0.01
0.02
0.01
0.01
0.01
0.06
0.01
0.83
0.06
0.01
O
Q
S
452 CPR0050 G4 NN1 0Ω, J umper Wire
A B
H I J K L M N
P
R
R
T
! 453 CPT1516 H5 OO2 31KHz, .75mA, FBT Meritron T-8090B
! 453 CPT1544 H5 OO2 15KHz, 1.5mA, FBT Meritron CT-8227
! 453 CPT1555 H5 OO2 31KHz, .45mA, FBT Meritron CT-8819
! 453 CPT1558 H5 OO2 15KHz, FBT Hitachi BW02651
! 453 CPT1561 H5 OO2 31KHz, FBT Meritron CT-8943
! 453 CPT1568 H5 OO2 31KHz, FBT Meritron
C D
O P Q
S
M N
G
F
H
E
A B
I
J K L
T
454 CPR0050 I6 OO7 0Ω, J umper Wire
G
G
A B C D
C D
F
F
H I J K L M N O P Q R S T
U
E
E
456 CPC1044 I6 OO8 2.7uF ±10%, 100V, Film
456 CPC1064 I6 OO8 6.8uF ±5%, 100V, Film
457 CPT1504 I7 OO7 750uH Horz. Width Inductor
457 CPT1528 I7 OO7 150uH Horz. Width Inductor
457 CPT1560 I7 OO7 100uH Horz. Width Inductor
457 CPT1564 I7 OO7 70uH Horz. Width Inductor
458 CPT1511 J 7 OO7 50uH Control Inductor
460 CPQ1315 J 6 OO8 8A, 100V, Mos Fet, IRF520
461 CPR0006 J 6 NN8 510Ω ±5%, 1/4W, CF
462 CPD1253 J 6 NN7 1A, 600V, Fast D., 1N4937
463 CPC1005 J 6 OO8 1,000pF ±10%, 500V, Ceramic
464 CPR0365 J 6 OO8 470Ω ±5%, 1/2W, CF
465 CPR0050 I6 PP1 0Ω J umper Wire
H I J K L M N O P Q
S T
A B
R
R
U
U
M N
A B C D
O P Q
F
H
S T
E
G
G
G
G
G
G
G
G
I
J K L
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
F
F
F
F
F
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L
U
U
U
U
U
U
E
E
E
E
E
E
E
465 CPR0352 I6 PP1 470Ω ±10%, 1/2W, CC
466 CPR0050 I6 MM2 0Ω, J umper Wire
468 CPR0433 J 5 EE9 24V coil, 200V @ .5A Relay
A B C D
A B C D
A B C D
M N O P Q R S T
U
U
G
G
G
G
G
G
G
G
G
G
G
G
F
F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
E
E
470 CPR0352 J 6 EE9 470Ω ±10%, 1/2W, CC
A B C D E F
473 CPR0050 G6
J
0Ω, J umper Wire
F
H I J K L
T
E
475 CPR0374 H7 PP7 .10Ω ±5%, 1W, MO
476 CPR0374 H7 PP7 .10Ω ±5%, 1W, MO
477 CPD1266 H7 PP7 2A, 400V, Fast D., HER205
478 CPD1266 H7 PP7 2A, 400V, Fast D., HER205
A B C D E F
A B C D E F
H
H
H
H
M N O P Q R
M N O P Q R
M N O P Q R
M N O P Q R
U
U
U
U
U
A B C D
A B C D
A B C D
F
F
F
F
F
F
0.07
0.07
0.01
0.08
0.01
0.01
0.01
E
E
E
E
E
E
480 CPR0050 G7
J
0Ω, J umper Wire
H I J K L M N O P Q R S T
500 CPC1041 F4 NN4 .33uF ±5%, 50V, Film
501 CPR0009 G4 NN4 1KΩ ±5%, 1/4W, CF
502 CPR0050 G4 NN5 0Ω, J umper Wire
503 CPR0017 G4 OO4 36K ±5%, 1/4W, MF
H I J K L
H I J K L
H I J K L
T
T
T
T
CERONIX XX93 Monitor Part List
58
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
503.5CPR0151 G4 OO4 73.2KΩ ±1%, 1/4W, MF
503.5CPR0158 G4 OO4 84.5KΩ ±1%, 1/4W, MF
504 CPR0147 G4 OO4 1.00MΩ ±1%, 1/4W, MF
505 CPR0017 G4 OO4 36KΩ ±5%, 1/4W, MF
505 CPR0018 G4 OO4 62KΩ ±5%, 1/4W, CF
505 CPR0145 G4 OO4 15.8KΩ ±1%, 1/4W, MF
507 CPC1003 G4 PP3 2,200pF ±20%, 1KV, Ceramic
507 CPC1057 G4 PP3 1,000pF ±3%, 1.6KV, Film
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
x
x
x
x
x
x
x
x
x
x
x
x
v
v
v
v
v
v
v
v
v
v
H
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.24
0.01
0.18
0.01
0.01
0.01
G
G
G
F
F
F
I
J K L
E
E
E
H I J K L
H
T
I
J K L
T
T
T
G
F
H I J K L
E
508 CPR0050 G5
J
0Ω, J umper Wire
G
G
G
G
G
A B C D
F
F
F
F
F
H I J K L M N O P Q R S T
U
E
E
E
E
E
509 CPQ1308 G4 OO4 .1A, 200V, NPN, 2SC3467AE
510 CPR0034 G5 OO4 2.2MΩ ±5%, 1/4W, CF
511 CPR0034 G5 OO4 2.2MΩ ±5%, 1/4W, CF
512 CPD1252 G5 PP4 1A, 1KV Diode, 1N4007
512 CPD12XXG5 PP4 6A, 1,200V, BYD33U Diode
514 CPR0029 G5 OO4 200KΩ ±5%, 1/4W, CF
515 CPC1002 H5 PP4 330pF ±10%, 500V, Ceramic
515 CPC1005 H5 PP4 1,000pF ±10%, 500V, Ceramic
516 CPR0004 H6 OO6 270Ω ±5%, 1/4W, CF
517 CPC1037 H6 OO5 .1uF ±5%, 250V, Film
517 CPC1068 H6 OO5 .01uF ±5%, 400V, Film
518 CPT1556 I6 PP4 Dynamic Focus Transformer
520 CPR0352 J 5 PP1 470Ω ±10%, 1/2W, CC
H I J K L
H I J K L
H I J K L
H I J K L
T
T
T
T
T
T
T
T
G
G
F
F
H I J K L
H I J K L
0.01
0.01
0.01
0.01
0.07
0.07
0.86
0.06
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
E
E
G
G
F
F
H I J K L
H I J K L
E
E
T
T
T
T
T
G
G
G
G
G
G
G
G
F
F
F
F
F
F
F
F
H I J K L
H I J K L
H I J K L
H I J K L
E
E
E
E
E
E
E
E
521 CPR0050 J 4
522 CPR0050 J 4
523 CPR0050 J 4
J
J
J
0Ω, J umper Wire
0Ω, J umper Wire
0Ω, J umper Wire
A B C D
A B C D
A B C D
A B C D
A
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
524 CPR0050 H4 PP2 0Ω, J umper Wire
525 CPR0050 H4 PP2 0Ω, J umper Wire
526 CPR0050 H4
J
0Ω, J umper Wire
529 CPR0169 E1 GG6 191KΩ ±1%, 1/4W, MF
529 CPR0170 E1 GG6 294KΩ ±1%, 1/4W, MF
529 CPR0179 E1 GG6 392K ±1%, 1/4W, MF.
I
J K L
G
F
F
F
H
E
E
E
529A CPR0050 F1
J
J
0Ω, J umper Wire
0Ω, J umper Wire
G
G
A
H I J K L
531 CPR0050 F1
A B C D
A
H I J K L M N O P Q R S T
H I J K
U
U
532 CPR0050 G1 KK7 0Ω, J umper Wire
533 CPR0050 G1 KK7 0Ω, J umper Wire, CS=.450”
G
B C D
F
L M N O P Q R S T
E
600 CPB1615
Vertical Amplifier PCB
X
X
X
X
X
X
X
X
X
X
X
X
601 CPQ1314 W2
602 CPQ1313 W1
603 CPQ1313 W1
604 CPD1264 W1
605 CPR0376 W1
607 CPR0003 V1
608 CPR0003 V1
610 CPR0377 V1
611 CPD1264 V1
612 CPI1415 V2
613 CPS1858 V2
TIP32A Transistor
0.14
0.14
0.14
0.03
0.02
0.01
0.01
0.02
0.03
1.31
TIP31A Transistor
TIP31A Transistor
2A, 600V Fast D., FR205-F
1.2Ω ±5%, 1W, MO
4.7Ω ±5%, 1/4W, CF
4.7Ω ±5%, 1/4W, CF
3.3Ω ±5%, 1W, MO
2A, 600V Fast D., FR205-F
V. Deflection IC, LA7838
Vertical Amp Wiring Cable
800 CPB1613 L4 YY0 Video Board PCB E7
801 CPC1058 P1 YY2 .1uF ±5%, 50V, Film
G
G
G
G
G
G
G
G
G
G
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
U
U
U
U
0.89
0.05
0.01
1.02
0.01
0.18
0.01
0.01
0.01
0.18
802 CPR0050 P1
803 CPR0510 P1 RR2 “K” PRA Video Amplifier
804 CPR0050 P1 0Ω, J umper Wire
805 CPQ1308 P1 SS4 .1A, 200V, NPN, 2SC3467AE
J
0Ω, J umper Wire
J
806 CPR0050 P1
807 CPR0050 N1
808 CPR0050 P1
J
J
J
0Ω, J umper Wire
0Ω, J umper Wire
0Ω, J umper Wire
810 CPQ1308 N1 SS1 .1A, 200V, NPN, 2SC3467AE
CERONIX XX93 Monitor Part List
59
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
811 CPR0510 N1 RR0 “K” PRA Video Amplifier
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
v
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
1.02
0.04
0.01
0.01
0.02
0.05
0.05
0.02
0.01
0.01
0.04
0.07
0.06
0.01
0.01
0.04
0.23
0.01
0.01
0.04
0.23
0.01
0.02
0.01
0.23
0.01
0.02
0.02
0.23
0.01
0.01
0.02
0.16
0.02
0.01
0.02
0.88
0.01
0.01
0.01
0.08
0.08
0.08
0.06
0.46
0.05
0.07
0.07
0.07
0.08
0.08
0.08
0.32
0.07
0.06
0.18
0.21
812 CPQ1301 N2 SS2 60V, .6A, PNP, PN2907A
v
813 CPR0050 N2
814 CPR0050 N2
J
J
0Ω, J umper Wire
0Ω, J umper Wire
v
v
815 CPC1003 N2 VV5 2,200pF ±20%, 1KV, Ceramic
816 CPC1058 N2 YY2 .1uF ±5%, 50V, Film
817 CPC1058 N1 UU2 .1uF ±5%, 50V, Film
818 CPC1003 P2 VV5 2,200pF ±20%, 1KV, Ceramic
v
v
v
v
820 CPR0050 P2
821 CPR0050 P2
J
J
0Ω, J umper Wire
0Ω, J umper Wire
v
v
822 CPQ1301 P2 SS4 60V, .6A, PNP, PN2907A
823 CPC1037 P2 TT3 .1uF ±5%, 250V, Film
824 CPC1040 P2 SS3 .015uF ±10%, 250V, Film
825 CPR0127 P2 SS4 205Ω ±1%, 1/4W, MF
v
v
v
v
826 CPR0050 P2
J
0Ω, J umper Wire
v
827 CPQ1301 P2 SS3 60V, .6A, PNP, PN2907A
828 CPQ1309 P2 SS3 .1A, 200V, PNP, 2SA1370AE
830 CPR0011 P2 TT4 1.8KΩ ±5%, 1/4W, CF
831 CPR0011 N2 TT2 1.8KΩ ±5%, 1/4W, CF
832 CPQ1301 N2 SS0 60V, .6A, PNP, PN2907A
833 CPQ1309 N2 SS0 .1A, 200V, PNP, 2SA1370AE
834 CPR0127 N2 SS1 205Ω ±1%, 1/4W, MF
835 CPD1250 N3 UU0 100mA, 200V Diode, FDH400
836 CPR0011 N3 TT1 1.8KΩ ±5%, 1/4W, CF
837 CPQ1309 N2 TT2 .1A, 200V, PNP, 2SA1370AE
838 CPC1005 N3 TT1 1,000pF ±10%, 500V, Ceramic
840 CPD1250 N3 TT1 100mA, 200V Diode, FDH400
841 CPD1250 P3 TT4 100mA, 200V Diode, FDH400
842 CPQ1309 P2 TT4 .1A, 200V, PNP, 2SA1370AE
843 CPC1005 P3 TT4 1,000pF ±10%, 500V, Ceramic
844 CPR0011 P3 TT4 1.8KΩ ±5%, 1/4W, CF
845 CPD1250 P3 VV0 100mA, 200V Diode, FDH400
846 CPC1043 P3 XX2 1uF ±5%, 50V, Film
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
847 CPD1253 P3 WW2 1A, 600V, Fast D., 1N4937
848 CPD1252 P3 WW2 1A, 1KV Diode, 1N4007
849 CPD1250 P3 VV0 100mA, 200V Diode, FDH400
850 CPQ1306 P3 ZZ3 .1A, 1.5KV, NPN, 2SC3675
851 CPR0365 N3 WW0 470Ω ±5%, 1/2W, CF
v
v
v
v
v.
v.
v
H I J K L
O P Q
S T
851 CPR0371 N3 WW0 1KΩ ±5%, 1/2W, CF
M N
H I J K L M N O P Q R S T
J
R
U
U
852 CPR0018 N3 ZZ3 62KΩ ±5%, 1/4W, CF
853 CPC1034 N3 XX1 .022uF ±3%, 630V, Film
853 CPC1035 N3 XX1 3,300pF ±5%, 100V, Film
853 CPC1038 N3 XX1 .068uF ±5%, 100V, Film
853 CPC1040 N3 XX1 .015uF ±10%, 250V, Film
853 CPC1047 N3 XX1 .027uF ±3%, 800V, Film
853 CPC1058 N3 XX1 .1uF ±5%, 50V, Film
G
G
A B C D E F
v
I
v
H
v.
v
O P Q
L
T
v
A B
v
U
U
853 CPC1068 N3 XX1 .01uF ±5%, 400V, Film
! 854 CPC1026 N3 XX1 1,000pF ±5%, 100V, Film
! 854 CPC1027 N3 XX1 6,800pF ±5%, 100V, Film
! 854 CPC1035 N3 XX1 3,300pF ±5%, 100V, Film
! 854 CPC1038 N3 XX1 .068uF ±5%, 100V, Film
! 854 CPC1041 N3 XX1 0.33uF ±5%, 50V, Film
! 854 CPC1046 N3 XX1 .047uF ±5%, 200V, Film
! 854 CPC1052 N3 XX1 .018uF ±5%, 200V, Film
! 854 CPC1054 N3 XX1 .039uF ±5%, 100V, Film
! 854 CPC1067 N3 XX1 .56uF ±5%, 100V, Film
! 854 CPC1073 N3 XX1 0.033uF ±5%, 200V, Film
v.
v.
v.
v.
v.
v.
v.
v.
v.
v.
v.
D
K
K
O
Q
P
S T
E F
D
H I
J
L
M N
R
G
C
CERONIX XX93 Monitor Part List
60
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
! 854 CPC1076 N3 XX1 0.1uF ±5%, 200V, Film
v.
v
A B
0.28
0.01
0.01
0.08
0.07
0.06
0.32
0.07
0.14
0.01
0.01
0.01
0.01
0.24
0.01
0.01
1.24
1.40
0.01
0.01
0.01
0.01
0.03
0.14
0.01
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.06
0.01
1.31
0.95
0.02
0.01
0.06
0.01
0.06
0.01
0.01
0.01
0.06
0.02
0.07
0.01
0.02
0.01
0.01
0.03
0.01
0.03
0.03
855 CPR0371 N4 XX1 1KΩ ±5%, 1/2W, CF
G
G
A B C D E F
A B C D E F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
856 CPR0366 N4 YY1 100KΩ ±5%, 1/2W, CF
! 857 CPC1034 N3 WW2 .022uF ±3%, 630V, Film
! 857 CPC1037 N3 WW2 .1uF ±5%, 250V, Film
! 857 CPC1040 N3 WW2 .015uF ±10%, 250V, Film
! 857 CPC1046 N3 WW2 .047uF ±5%, 200V, Film
! 857 CPC1052 N3 WW2 .018uF ±5%, 200V, Film
! 857 CPC1074 N3 WW2 .068uF ±5%, 200V, Film
858 CPR0019 P3 YY3 100KΩ ±5%, 1/4W, CF
858 CPR0146 P3 YY3 169KΩ ±1%, 1/4W, MF
858 CPR0170 P3 YY3 294KΩ ±1%, 1/4W, MF
859 CPR0032 P4 YY2 30Ω ±5%, 1/4W, CF, Hairpin.
860 CPC1106 P3 XX2 10uF, 200V, Electrolytic
v
v.
v.
v.
v.
v.
v.
v.
v.
v.
v
I
J K L
R
S T
A B
G
C D E F
H
O P Q
M N
U
U
A B C D
E F
M N O P Q R S T
G
G
H I J K L
H I J K L M N O P Q R S T
M N
A B C D E F
U
U
U
U
v.
v
R
861 CPR0050 P3
862 CPR0050 P4
J
J
0Ω, J umper Wire
0Ω, J umper Wire
G
G
G
A B C D E F
A B C D E F
A B C D E F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
v
863 CPS1772 P4 ZZ3 12 Cond. Video Cable, 12”
v.
v.
v
H
M N O P Q R S T
863 CPS1849 P4 ZZ3 12 Cond. Video Cable, 17”
I
J K L
U
U
U
U
U
864 CPR0050 P4
865 CPR0050 P4
J
J
0Ω, J umper Wire
0Ω, J umper Wire
G
G
G
G
G
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
v
866 CPR0009 N4 YY3 1KΩ ±5%, 1/4W, CF
867 CPR0050 N4 0Ω, J umper Wire
v
J
v
868 CPC1101 N4 VV2 10uF, 50V, Electrolytic
868 CPC1110 N4 VV2 100uF, 50V, Electrolytic
869 CPR0050 M3 XX1 0Ω, J umper Wire
v.
v.
v
H I J K L
Q
M N O P
R S T
U
U
U
U
U
G
G
G
A B C D E F
A B C D E F
A B C D E F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
870 CPD1250 N4 VV2 100mA, 200V Diode, FDH400
871 CPC1002 N4 WW1 330pF ±10%, 500V, Ceramic
872 CPR0004 M4 VV2 270Ω ±5%, 1/4W, CF
872 CPR0011 M4 VV2 1.8KΩ ±5%, 1/4W, CF
872 CPR0024 M4 VV2 3.3KΩ ±5%, 1/4W, CF
872 CPR0141 M4 VV2 4.42KΩ ±1%, 1/4W, MF
872 CPR0143 M4 VV2 10.0KΩ ±1%, 1/4W, MF
873 CPR0370 M4 WW1 10KΩ ±5%, 1/2W, CF
874 CPR0011 M4 VV1 1.8KΩ ±5%, 1/4W, CF
875 CPR0351 L4 YY2 150Ω ±10%, 1/2W, CC
876 CPR0019 L4 VV1 100KΩ ±5%, 1/4W, CF
! 877 CPS1850 L3 XX0 Dual Focus CRT Socket
! 877 CPS1852 L3 XX0 Single Focus CRT Socket
878 CPC1003 L3 XX1 2,200pF ±20%, 1KV, Ceramic
879 CPR0002 L3 XX2 18Ω ±5%, 1/4W, CF
880 CPR0351 L3 YY1 150Ω ±10%, 1/2W, CC
881 CPR0368 M3 YY1 2.2KΩ ±5%, 1/2W, CF
882 CPR0351 L3 XX1 150Ω ±10%, 1/2W, CC
883 CPR0365 L2 WW1 470Ω ±5%, 1/2W, CF
883 CPR0371 L2 WW1 1KΩ ±5%, 1/2W, CF
884 CPR0012 K2 VV6 2.7KΩ ±5%, 1/4W, CF
885 CPC1040 K3 SS6 .015uF ±10%, 250V, Film
886 CPD1250 K3 VV0 100mA, 200V Diode, FDH400
887 CPC1037 K2 TT6 .1uF ±5%, 250V, Film
888 CPD1251 K2 VV6 10mA, 75V Diode, 1N4148
889 CPC1003 L2 WW6 2,200pF ±20%, 1KV, Ceramic
890 CPR0009 K2 WW7 1KΩ ±5%, 1/4W, CF
891 CPR0015 K2 VV6 22KΩ ±5%, 1/4W, CF
892 CPC1101 L2 YY5 10uF, 50V, Electrolytic
v
v
v.
v.
v.
v.
v.
v
M N
R
G
E F
H I J K L
A B
O P
S T
C D
Q
G
G
G
G
G
A B C D E F
A B C D E F
A B C D E F
A B C D E F
E F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L
U
U
U
U
v
v
v
v.
v.
v
A B C D
M N O P Q R S T
U
U
U
U
U
U
G
G
G
G
G
G
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
v
v
v
v
v.
v.
v
H I J K L
O P Q
S T
M N
R
U
U
U
U
U
U
U
U
U
U
U
U
U
G
G
G
G
G
G
G
G
G
G
G
G
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
v
v
v
v
v
v
v
v
893 CPR0050 L2
J
0Ω, J umper Wire
v
894 CPC1101 L2 YY5 10uF, 50V, Electrolytic
v
895 CPC1101 L2 YY4 10uF, 50V, Electrolytic
v
CERONIX XX93 Monitor Part List
61
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
899 CPD1250 N3 UU0 100mA, 200V Diode, FDH400
900 CPR0365 N3 WW0 470Ω ±5%, 1/2W, CF
900 CPR0371 N3 WW0 1KΩ ±5%, 1/2W, CF
901 CPC1040 N2 SS1 .015uF ±10%, 250V, Film
G
G
v
v.
v.
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v.
v.
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v.
v.
A B C D E F
A B C D E F
H I J K L M N O P Q R S T
U
0.02
0.01
0.01
0.06
0.01
0.01
0.01
0.01
0.01
0.05
0.01
0.01
0.01
0.01
0.01
0.07
0.01
0.01
0.79
0.01
0.24
0.05
0.04
0.05
0.04
0.05
0.04
3.47
0.04
0.05
0.01
0.01
0.01
0.05
0.01
0.01
1.02
1.02
0.01
0.01
0.02
0.06
0.18
0.01
0.04
0.01
0.01
0.01
0.04
0.23
0.01
0.01
0.23
0.01
0.01
0.16
0.05
H I J K L
O P Q
S T
M N
R
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
B C D
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
902 CPR0050 N2
903 CPD1252 N2 VV3 1A, 1KV Diode, 1N4007
904 CPR0050 M2 0Ω, J umper Wire
J
0Ω, J umper Wire
J
905 CPD1252 M2 WW3 1A, 1KV Diode, 1N4007
906 CPD1252 M2 WW3 1A, 1KV Diode, 1N4007
907 CPC1058 M2 WW4 .1uF ±5%, 50V, Film
908 CPR0016 M2 YY4 33KΩ ±5%, 1/4W, CF
909 CPR0024 M1 ZZ4 3.3KΩ ±5%, 1/4W, CF
910 CPR0016 M2 YY5 33KΩ ±5%, 1/4W, CF
911 CPR0016 M2 YY5 33KΩ ±5%, 1/4W, CF
912 CPR0018 M2 ZZ4 62KΩ ±5%, 1/4W, CF
913 CPC1037 N2 TT0 .1uF ±5%, 250V, Film
914 CPR0145 N1 ZZ4 15.8KΩ ±1%, 1/4W, MF
915 CPR0050 N1
917 CPR0506 M1 WW4 “C” PRA, CRT Auto Bias
918 CPR0050 M1 0Ω, J umper Wire
J
0Ω, J umper Wire
J
920 CPI1405 M1 WW4 Quad OP Amp IC, LM324
921 CPC1058 M1 WW4 .1uF ±5%, 50V, Film
922 CPC1036 M1 WW4 .047uF ±5%, 50V, Film
923 CPC1058 L1 WW5 .1uF ±5%, 50V, Film
924 CPC1036 L1 WW5 .047uF ±5%, 50V, Film
925 CPC1058 L1 WW5 .1uF ±5%, 50V, Film
926 CPC1036 L1 WW6 .047uF ±5%, 50V, Film
927 CPI1402 L2 XX4 CRT Bias IC, CA3224E
928 CPQ1301 K1 WW7 60V, .6A, PNP, PN2907A
930 CPC1058 K1 VV7 .1uF ±5%, 50V, Film
931 CPR0011 K1 WW7 1.8KΩ ±5%, 1/4W, CF
932 CPR0050 L1
J
0Ω, J umper Wire
933 CPR0011 K1 WW7 1.8KΩ ±5%, 1/4W, CF
934 CPC1058 K1 RR7 .1uF ±5%, 50V, Film
935 CPR0050 L1
936 CPR0050 K1
J
J
0Ω, J umper Wire
0Ω, J umper Wire
937 CPR0510 K1 RR5 “K” PRA Video Amplifier
937 CPR0511 K1 RR5 “Blue” PRA Video Amplifier
938 CPR0011 K1 VV7 1.8KΩ ±5%, 1/4W, CF
940 CPR0140 K1 VV7 3.92KΩ ±1%, 1/4W, MF
941 CPC1003 K1 VV4 2,200pF ±20%, 1KV, Ceramic
942 CPQ1302 K1 VV7 30V, .3A, PNP, D, MPSA64
943 CPQ1308 K2 SS7 .1A, 200V, NPN, 2SC3467AE
M N
R
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
A
E F
H I J K L
O P Q
S T
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
944 CPR0050 K2
J
0Ω, J umper Wire
945 CPQ1301 K2 SS7 60V, .6A, PNP, PN2907A
946 CPR0050 K2
947 CPR0050 K2
J
J
0Ω, J umper Wire
0Ω, J umper Wire
948 CPR0011 K2 TT7 1.8KΩ ±5%, 1/4W, CF
950 CPQ1301 K2 SS5 60V, .6A, PNP, PN2907A
951 CPQ1309 K2 SS6 .1A, 200V, PNP, 2SA1370AE
952 CPR0050 K2
J
0Ω, J umper Wire
953 CPR0127 K2 SS6 205Ω ±1%, 1/4W, MF
954 CPQ1309 K3 TT7 .1A, 200V, PNP, 2SA1370AE
955 CPR0011 K3 TT7 1.8KΩ ±5%, 1/4W, CF
956 CPC1005 K3 TT6 1,000pF ±10%, 500V, Ceramic
957 CPC1043 K3 TT5 1uF ±5%, 50V, Film
957 CPC1058 K3 TT5 .1uF ±5%, 50V, Film
M N
R
G
A B C D E F
H I J K L
O P Q
S T
CERONIX XX93 Monitor Part List
62
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
958 CPD1250 K3 TT7 100mA, 200V Diode, FDH400
959 CPD1250 K4 WW0 100mA, 200V Diode, FDH400
961 CPS1758 K4 YY1 .093” Bead Pin, Dag. GND
G
G
G
v
v
v
v.
v.
v.
c
c
c
c
c
c
c
c
c
s
s
s
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
s
s
s
s
s
s
s
s
s
s
s
s
s
c
c
c
c
c
c
c
c
s
s
s
A B C D E F
A B C D E F
A B C D E F
A B C D
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
U
U
0.02
0.02
0.02
0.01
0.61
0.18
1.70
3.15
14.82
2.42
15.14
9.80
0.33
0.33
0.77
963 CPM2003 K4
964 CPM2043
965 CPM2051
! 971 CPS1766
! 971 CPS1771
! 971 CPS1786
! 971 CPS1828
! 971 CPS1856
! 971 CPS1860
998 CPS1775
Cable Tie, 4”
I
I
J
L M N O P Q R S
Video Board Cover
G
A B C D
F
J K L M N O P Q R S T
Video Board Insulating Sheet
ZZ0 1493, Degaussing Coil
ZZ0 2093, Degaussing Coil
ZZ0 2793, Degaussing Coil
ZZ0 1793, Degaussing Coil
ZZ0 3693, Degaussing Coil
ZZ0 1993, Degaussing Coil
14” Grounding Strap
E
H
H
A B C D
M N O P Q
R S T
G
E
U
I
I
J K L
A B C
998 CPS1791
20” Grounding Strap
J K L M N O P Q
R S T
998 CPS1792
27” Grounding Strap
Solder Conn.
A
A6 AA9 Red Video, Input Line Filter.
B6 BB9 Green Video, Input Line Filter.
B6 BB9 Blue Video, Input Line Filter.
Solder Conn.
Solder Conn.
B
C
Chunghwa M41AJ R53X46
Orion M41KXU100XX01
RCA A48AAB37X01 CRT.
RCA A68AEG25X07 CRT.
RCA A68AEG25X05 CRT.
! CRT
! CRT
17”
17”
20”
27”
27”
14”
20”
36”
20”
19”
17”
17”
27”
c
c
! CRT CPP1703
! CRT CPP1707
! CRT CPP1708
! CRT CPP1711
! CRT CPP1717
! CRT CPP1721
! CRT CPP1724
! CRT CPP1725
! CRT CPP1726
! CRT CPP1727
! CRT CPP1728
CRT CPS1831
M N
122.50
300.30
288.75
87.50
S
R
Chunghwa M34AFA13X07 CRT.cv
RCA A48AAB37X03 CRT.
A B C D
Q
105.00
918.75
101.50
245.00
140.00
218.75
RCA A90AEJ 15X02 CRT.
c
U
Chunghwa A48AGY13X87 CRT. v
Samsung M46QCY261X112 CRT.
Chunghwa M41AGE13X47R CRT.
Samsung M41QCJ 761X172 CRT.
Samsung M68QCP891X002 CRT.
17” Grounding Strap
O P
I
J K L
E F
E F
H
H
G
G
T
0.33
0.79
CRT CPS1846
36” Grounding Strap
U
U
Solder Conn.
CS
A6 DD9 CSync Pin 1&2 of Conn.292
B5 BB5 Video, -Analog, Selection.
D5 KK1 Vertical linearity Adjustment.
D5 J J 1 Vertical linearity Adjustment.
D6 GG4 Reverse Horizontal Sync.
E6 KK4 Horizontal Frequency Adj.
E6 KK4 Horizontal Frequency Adj.
A5 AA7 Video, +Analog, Red Gain.
D1 GG5 Power Supply V+ Adj.
D1 HH7 Power Supply V+ Adj.
E1 HH5 Power Supply V+ Adj.
B5 BB7 Video, +Analog, Green Gain.
A5 CC7 Video, +Analog, Blue Gain.
Front Support Bracket
R
Solder Conn.
G
Solder Conn.
H
A B C D
H
M N
M
Q
S
Solder Conn.
I
I
J K L
O P
O P Q
R
R
T
U
U
Solder Conn.
IA
A B C D E
H I J K
S T
S T
Solder Conn.
IC
G
G
G
Solder Conn.
ID
A B C D E F
H I J K L M N O P Q
Solder Conn.
J
P
P
Solder conn
J C
R
U
U
Solder Conn.
J D
A
E
Solder Conn.
J E
B
Solder Conn.
K
Solder Conn.
L
M
M
M
M
M
M
M
M
M
N
CPM2024
CPM2025
CPM2026
CPM2029
CPM2060
A B C D E F
A B C D
H I J K L M N O P Q R S T
U
U
U
U
1.87
0.18
0.42
0.42
0.26
Rear Support Bracket
M
R
T
Right Support Bracket
G
G
G
G
G
G
A B C D E F
A B C D E F
E F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
Left Support Bracket
Rear Support Bracket
H I J K L
N O P Q
S
CPM2113 G6
CPM2550 G6
H. Transistor Support
A B C D E F
A B C D E F
A B C D E F
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
H I J K L M N O P Q R S T
U
U
U
H. Transistor Support Screw
H. Transistor Support Screw
CPM2551 G6
Solder Conn.
0.03
C6 DD9 Reverse Hs, AC Video Clamp.
C7 DD8 Reverse Hs, AC Video Clamp.
A5 AA5 Video, -Analog, Blue Offset.
Solder Conn.
Solder Conn.
P
B
M
CERONIX XX93 Monitor Part List
63
A
B
C
D
E
F
CPA4233, 1493-CGA
CPA4235, 1493-CGA
CPA4200, 1493-VGA
CPA4252, 1493-SVGA
CPA4243, 1793-VGA
CPA4244, 1793-VGA
G
H
I
J
K
L
CPA4247, 1793-SVGA
CPA4250, 1793-SVGA
CPA4221, 1993-VGA
CPA4255, 1993-VGA
CPA4249, 1993-SVGA
CPA4256, 1993-SVGA
M
N
O
P
Q
R
CPA4112, 2093-CGA
CPA4166, 2093-CGA
CPA4224, 2093-VGA
CPA4227, 2093-VGA
CPA4108, 2093-VGA
CPA4104, 2793-CGA
S
T
U
V
W
CPA4231, 2793-VGA
CPA4254, 2793-VGA
CPA4172, 3693-CGA
ISO XFR-75W
ISO XFR-100W
X
Vertical Deflection Booster
∆ Bd.# Part No. Bd. Sch. Ref.
Description
Verrable Parabolic Pincushion Range.
A
B C D E F G H I J
K
L M N O P Q R S T U V W X Com. PRICE
Solder Conn.
Solder Conn.
Solder Conn.
Solder Conn.
Solder Conn.
Solder Conn.
Solder Conn.
Solder Conn.
Solder Conn.
Solder Conn.
Solder Conn.
Solder Conn.
Solder Conn.
Q
A2 NN7
s
s
Verrable -Linear Pincushion Range.
R
C2 NN7
S1
S2
S4
SL
SR
ST
T
F5 PP3 Raster Shift, One Unit.
F5 PP3 Raster Shift, Two Units.
F5 PP3 Raster Shift, Four Units.
G5 OO3 Raster Shift Left.
s
s
s
s
s
s
s
s
s
s
s
c
c
c
c
c
c
c
c
c
c
c
c
c
t
K
Q
Q
A
A
D E F
D E F
H I
J
J
L
L
P
P
R S T
R S T
U
U
G
G
I
I
J K L
G5 OO3 Raster Shift Right.
H
C5 BB4 M. Gain Limit Adjustment.
C5 BB4 M. Gain Limit Adjustment.
Cut pin1 of 166, solder pad 1&2.
G2 J J 6
C D
TR
U
U
U
C5 BB4 M. Gain Limit Adjustment.
D6 HH2 Vertical Frequency Adj.
G
B
N
Q
Q
V
O
O
W
C3
Touch Screen -V Set.
106V to 108V
V+ 107
V+ 111
V+ 114
V+ 124
V+ 127
V+ 52.0
V+ 54.0
V+ 54.5
V+ 55.5
V+ 64.5
V+ 70.0
V+ 72.5
V+ 77.5
C D
110V to 112V
P
113V to 115V
S
123V to 125V
126V to 128V
M N
R
T
51.3V to 52.7V
B
53.3V to 54.7V
A
54V to 55V
K
J
55V to 56V
I
64V to 65V
L
69.5V to 70.5V
E F
72V to 73V
G
77V to 78V
H
T500
T501
T502
T503
T504
T505
T506
T507
T508
T509
T510
T511
T512
T513
T514
T515
T516
T517
T518
T518
T519
T519
T520
TX
CPB1606
CPR0050
CPD1252
CPD1267
CPR0016
CPR0171
CPR0425
CPR0431
CPC1037
CPR0157
CPD1252
CPD1252
CPC1069
CPC1110
CPQ1315
CPD1257
CPD1269
CPC1011
CPR0436
CPR0437
CPR0050
CPR0360
CPC1011
CPM2047
ISO XFR PCB. .062", CEM-1.
0Ω, J umper Wire
V W
V W
V W
V W
V W
V W
V W
V W
V W
V W
V W
V W
V W
V W
V W
V W
V W
V W
V W
V W
V W
V W
V W
V
0.40
0.01
0.01
0.12
0.01
0.01
0.32
0.55
0.07
0.01
0.01
0.01
0.79
0.14
0.41
0.04
0.23
0.09
1.30
2.68
0.01
0.61
0.09
3.47
t
1A, 1KV Diode, 1N4007
TZL200B 200V ±5% .5W, Z.D.
33KΩ ±5%, 1/4W, CF
365K ±1%, 1/4W, MF
3 Amp Slow Blow Fuse.
250VAC, 6Ω, 0.145A R. Fuse.
.1uF ±10%, 250V, Film
127K ±1%, 1/4W, MF
1A, 1KV Diode, 1N4007
1A, 1KV Diode, 1N4007
1.5uF ±5%, 400V, Film
100uF ±20%, 50V Electrolytic
IRF520 100V, 8A Mos Fet.
t
t
t
t
!
t
t
t
t
t
t
t
t
t
1N4742A 12V ±5%, 1W,
t
P6KE27A 27V 600W, TVS
2,200pF ±20%, 250VAC
Relay; 8A, 250VAC, Coil; 24VDC
10A, DPDT Voltage Select
0Ω, J umper Wire
2.7Ω ±10%, 1W, CC Resistor.
2,200pF ±20%, 250VAC
ISO XFR 75W Housing
ISO XFR 100W Housing
75W Isolation Transformer.
100W Isolation Transformer
Input Power Cable
t
!
!
!
t
t
t
t
t
!
t
t
TX CPM2146
TX
t
W
!
CPT1507
t
V
14.88
28.44
0.60
! TX CPT1553
! TX CPS1830
! TX CPS1762
TX CPM2517
t
W
t
V W
V W
V W
Output Power Cable
t
0.51
Vinyl Grommet
t
0.08
VIDEO INTERFACE CIRCUIT, FUNCTION, DESCRIPTION (+ & - Analog).
The video interface circuit is a general
purpose RGB type input circuit. This circuit
connects the external video signal to the video
amplifiers. It can accept, DC or AC coupled
positive going analog, negative going analog,
and 4 line TTL.
The particular mode of operation is selected by
inserting jumpers, different value components,
and solder bridges. The Production Assembly
Drawings (PADs) are given in the appendix
which describe the component differences.
SIMPLIFIED VIDEO INTERFACE CIRCUIT:
Black Level (5.6V)
1. NEGATIVE GOING ANALOG MODE.
+12V
RED channel shown
Saturated Color (1V)
16
6
VIDEO
AMPS
7.5V BIAS LINE
3.5V
271
Blue channel only
RED
3.6K
200Ω
MASTER
GAIN&
BLANKING
MG 12
VIDEO
INPUT
6.3V
C5346
241
-Analog Black Level (-A BL)
301Ω
340Ω
2
3
278
236
4.7K
239
+12V
G
In the negative analog mode, the video signal
has a black level (5.6V) which is the -A BL
voltage. The saturated color is the lowest input
voltage (.9V-1.1V). The current amplitude to
For the blue channel only, 15% of the output
current is subtracted by resistor .
239
Signal sources with 8 bit drivers, that use 2
bits for the blue channel use this 15% offset.
To prevent input line ringing from exceeding
the saturated color voltage limit, a clamp diode
278
the video amplifiers is defined by resistors
&
and the master gain voltage.
236
271
has been added.
Saturated Color (.70V)
2. POSITIVE GOING ANALOG MODE.
+12V
RED channel shown
Black Level (0V)
15.8K
16
VIDEO
AMPS
7.5V BIAS LINE
11
+ANALOG ENABLE
261
RED
MASTER
3.6K
200Ω
270Ω 15KHz
MG 12
VIDEO
INPUT
.44V
75Ω 31KHz
GAIN &
278
2
BLANKING
C5346
0-11V or 12V
241
15.8K
223
1
75Ω
288
J
75.0Ω
226
The black level voltage is set by resistor
0Ω
divider 223 & 226 to compensate for the
bias current voltage drop. An optional,
variable black level, is accomplished with the
black level adjustment pot.
In the positive analog mode, a bias current of
.6mA flows to the input pin 2. This current is
set by resistor
input pin 11. The .6mA produces a voltage,
across the parallel resistance of the game and
plus resistor , at pin 2. If the
external source resistance is 75 ohms, the black
level voltage at pin 2 is .18V for 15KHz and
.07V for the 31KHz.
288
The input termination resistor
261
at the +Analog Enable
reduces video line ringing and produces a
dark screen when the video input connector
is disconnected.
The normal saturated color is set at .70
volts. Higher saturated color levels can be
accommodated with resistor or gain changes.
288
278
64
5.6V to 1.1V, NEGATIVE ANALOG, DC COUPLED, VIDEO INTERFACE CIRCUIT DESCRIPTION.
0VDC Hs
56V 28,D3
SOCKET BOARD
Beam current
Feedback
Red Video Amp.
800
TC11
TC12
Filament
Fil. Ret.
Screen
Focus
Beam current
Feedback
Green Video Amp.
CRT
Beam current
Feedback
Blue Video Amp.
ARC PROTECT
EHT
FIL.
127V TC8
+127V
B+G+R=∑
H Sync
Beam
Current
Buffer
CRT Auto Bias
Auto
Bright
VSync
ABA
+16V
+12V
SOCKET BOARD CONNECTOR (TC) 206
TC7 Red
TC5 Green
TC 3 Blue
TC 10 TC 6
End Vertical Blanking
Vertical O/S or Delayed Vertical O/S.
+
100uF
209
GND
Blanking & Beam Current Limit
VIDEO GAIN
LINE
Remote
Control
S
1.62K
260
U
T
PCB
+12V
FDH400
1K
062
604Ω 1.21K
4-7VDC Vs
5-9Vpp 61,B4
1.62K
076
M. GAIN
1K
485
084
244
245
RC2
FDH400
2.7K
064
GND
1.21K
258
086
+12V
G
+12V
GND
11.5V-12.5V
FDH400
P
Note:
213
0Ω, CS=.30"
228
0Ω
293
+
271
270
268
100uF
267
4.7K
239
The clamp
diodes are
installed
16 13 9 6
Ro Go Bo
11
10
3
5
TTL
12
MGAIN
12V
VC
0
+AEN
+12V
-ABL
backwards with
respect to the
PCB legend.
BL
B
241
Controls
XRC5346A
4
GND
+12V
IN
R
IN
R
IN
R
R
G
G
B
R
B
3.92K
272
PN2222
2
1
14
15
7
8
3.5V
274
1N4148
271
1N4148
268
1N4148
270
340Ω
236
340Ω
218
301Ω
266
1K
2.15K
273
275
301Ω
278
340Ω
301Ω
277
276
GND
Video
Connecter
and there is no video amplifier output. For the red and
green channels, a 1 volt change at the video input
produces a 15 volt change at the video amplifier output.
For the blue channel this change is 18 volts but resistor
subtracts the equivalence of .6 volts from the input
which results in the same saturated color as the red and
green channels.
GND
R
VC
4
G
VC
5
B
VC
6
VC
3
RED
INPUT
GREEN
INPUT
BLUE
292
INPUT
265
In each of the video interface circuit configurations,
current from the interface circuit is converted to a
voltage at the CRT cathodes. The simplest current
path is accomplished by the negative analog video
interface configuration.
270
271
268
The clamp diodes , , & limit the
maximum current to the video amplifiers. This avoids
over driving the video amplifiers when undershoots at
the input cables are present. The clamp reference
273
278
The voltage drop across the input resistors 278 and
23, for the red channel, is the current which drives
the video amplifiers when the video gain line is at
8.2 volts. For a lower gain line voltage, part of the
current is directed to the +12 volt line. During blanking
all the input current flows to the +12 volt line.
236
voltage is set by resistors , , and buffer
272
274
275
transistor . Load resistor stabilizes this
buffered clamp voltage.
65
0V to .7V, POSITIVE ANALOG, DC COUPLED, VIDEO INTERFACE CIRCUIT DESCRIPTION.
Blanking & Beam Current Limit
To Video Board
VIDEO GAIN
LINE
Remote
Control
S
1.62K
260
T
U
PCB
+12V
FDH400
1K
062
TC7 Red
604Ω 1.21K
4-7VDC Vs
1.62K
076
TC5 Green
TC 3 Blue
M. GAIN
1K
485
62,B4
5-9Vpp
084
244
245
2.7K
064
RC2
FDH400
GND
1.21K
258
086
+12V
GND
+12V
GND
11.5-12.5V
FDH400
213
0Ω
228
15.8K
261
0Ω
293
+
100uF
267
5
TTL
16 13 9 6
11
EN
10
+12V
3
12
GAIN
12V
VC
0
-
BL
A
o
o
o
+
R
R
G
B
A
M
BBL
241
Controls
XRC5346A
4
GND
GND
*Replace
PN2222
221
IN
R
IN
R
IN
B
R
G
G
R
B
221 with a
0Ω jumper
for fixed
2
1
14
15
7
8
56pF
205Ω
black level.
234
265
A5
B5
A5
0Ω
219
0Ω
0Ω
243
0Ω
15.8K*
1.87K
15.8K*
2.15K
15.8K*
2.15K
J
K
L
225
233
10K
GND
223
242
231
0Ω
75.0Ω
226
84.5Ω
264
88.7Ω
232
070
+12V
218
3.92K
272
PN2222
274
1N4148
268
1N4148
271
1N4148
270
75Ω
276
75Ω
278
75Ω
277
75Ω
286
75Ω
75Ω
GND
GND
412Ω
273
30Ω
275
284
288
GND
BLUE
INPUT
GND
B
VC
6
R
VC
4
G
VC
5
VC
3
GREEN
INPUT
RED
INPUT
292
223
242
231
For DC coupled positive analog video signals, the
signal source black level is 0 volts. The standard
saturated color voltages are .7 volt and 1 volt.
Resistors , , & produce a voltage drop
across the gain resistors to offset the voltage drop
caused by the .6mA bias current across the input and
protection resistors. +12 volts to these resistors
produces a fixed black level. An optional black level
adjustment may replace the +12V with a range of
The RGB video signals and sync are connected to
292
the monitor through the video input connector .
288
286
284
Resistors , , & terminate the video
lines and load the input such that, when no signal
source is connected, the screen is dark.
070
0 volts to 11.3 volts. Potentiometer is buffered by
219
221
transistor and resistor which provide the
adjustment voltage.
278
277
276
Resistors , , & protect the video
The master gain line is connected to the video
241
interface IC from transients. They also act as
241
interface IC at pin 12. It multiplies the gain set
load resistors for the clamp diodes. The clamp diodes
, , & limit the peak amplitude of the
225
226
by the gain resistors , , etc. by 0 to 1.
Vertical and horizontal blanking set the gain to 0
during retrace. The gain is adjusted by the master
gain control 485through load resistor . The
maximum gain may also be limited by making solder
271
270
268
video, to prevent overdrive of the video amplifiers.
274
These diodes are connected to transistor and load
062
275
resistor . The base to emitter voltage of the
transistor 274balances the clamp diode’s forward
connections S, , & .
U
T
272
voltage for temperature compensation. Resistors
273
and set the clamp voltage.
213
084
086
Diodes , , & clamp the video lines
connected to the video board to prevent damage to the
video interface IC from arc related voltage spikes.
226
The gain of the input circuit is set by resistors 226 ,
, & .
264
232
66
1Vp-p, POSITIVE ANALOG, AC COUPLED, VIDEO INTERFACE CIRCUIT DESCRIPTION.
16 13 9 6
11
10
3
5
12
-
BL
A
o
o
o
+
EN
+12V
TTL
GAIN
R
G
B
A
M
+12V
GND
BBL
241
Controls
XRC5346A
4
GND
PN2222
Black Level
Adjustment
is optional.
R IN
RR
GIN
GR
15
BIN
B R
2
1
14
7
8
221
0Ω
A5
219
B5
A5
1N4937
225
1N4937
243
1N4937
233
J
L
K
1.87K
223
2.15K
242
2.15K
231
10K
070
0Ω
88.7Ω
226
100Ω
264
105Ω
232
218
2.7K
+12V
305
1nF
272
PN2222
MPS2907
MPS2907
MPS2907
MPS2907
1N4148
268
1N4148
274
1N4148
270
303
270Ω
278
270Ω
277
270Ω
276
238
266
237
10K
275
271
GND
1N4148
PN2222
PN2222
PN2222
270Ω
270Ω
270Ω
270Ω
310
308
307
315
317
313
311
312
1N4148
1.0M
273
.33uF
280
.33uF
283
.33uF
281
319
75Ω
75Ω
75Ω
GND
For separate -H sync
see schematic at DD8.
47nF
286
284
288
GND
For composite sync.
309
+ H. Sync.
320=.30”
2.7K
2
GND
B
VC
6
R
VC
4
G
VC
5
100pF
VC
3
BLUE
INPUT
GREEN
INPUT
RED
INPUT
H. Sync.
320+.45”
1
292
320
316
355
In the + analog AC coupled mode, the video black
If the coupling capacitor voltage, on the clamped side,
is high at clamp time, the clamp transistor shorts the
capacitor to GND by normal transistor action. If the
coupling capacitor voltage is low at clamp time the
clamp transistors act as dual diodes to raise the
capacitor voltage to GND, which is the black level
reference for the video input circuit.
level is set by a clamp circuit which is active during the
first part of horizontal sync. For this circuit to work
properly, the incoming video must be at the black level
voltage when horizontal sync starts and remain
blanked for at least 4.5uS.
The clamp circuit is dependent on the polarity of
incoming horizontal sync. For separate horizontal
sync, the sync polarity should be positive. For
composite sync, and positive going horizontal sync
The ground referenced video signal is then buffered
237
238
266
by transistors , , & through protection
278
277
276
resistors , , & . The buffer transistors
are needed to reduce the .6mA bias current, from the
video interface IC, to under 10uA which limits the
coupling capacitor voltage buildup to 2mV during one
horizontal cycle.
320
pulses, resistor (.30” long) is connected to the
inverting horizontal sync comparator which is the same
as separate, positive, horizontal sync. For composite
sync, with negative going horizontal sync pulses,
320
resistor (.45” long) makes the connection to the
275
271
270
268
Resistor and clamp diodes , , &
are connected to the coupling capacitors to limit the
voltage buildup when no sync is present. If this limit
did not exist, the monitor would show excessive
brightness without sync. When sync pulses are
noninverting vertical sync comparator. This connection
is valid since the horizontal and vertical sync lines are
connected together for composite sync.
The clamping function is accomplished by turning on
309
317
present, capacitor with rectifier diodes &
and filter capacitor apply a voltage to the
base of transistor which raises the voltage on the
303
transistor at the start of horizontal sync through
319
272
316
the differentiating action of capacitor and resistors
274
305
320
&
. The collector of this transistor is
clamp diodes to avoid interference with the video signal.
311
312
313
connected to clamp transistors , , &
310
308 307
, & with pull down
through resistors
,
225
243
233
Diodes , , & balance the base to
emitter voltage of the buffer transistors. The rest of
the video interface functions the same as the DC
coupled video interface circuit.
315
281
280
resistor . The coupling capacitors , , &
283
at the video input are set to the black level voltage
by the video source.
67
VIDEO AMPLIFIER CIRCUIT, FUNCTION, DESCRIPTION.
The video amplifier, is a high speed push pull
amplifier, which can swing as much as 90 volts.
The maximum dynamic output swing is limited to
60 volts. The rest of the output voltage range is
reserved for bias adjustment.
127V
560Ω
120V
18
K14
K17
140Ω
2SA1370
2SC3467
B14
K16
12.1K
K15
+12V
.015uF
885
1.49K
K9
2N
3904
Ω
301
K2
VIDEO
INTERFACE
40.2K
OUTPUT
16V
K19
K34
606
1
+
MPS2907
Ω
7
NE592
K7
15Ω
K4
14
945
5.62K
K11
C5346
681Ω
1.50K
K1
Bias Control Line
from Auto Bias IC
+9.25V line
K6
836Ω
K10
SIMPLIFIED VIDEO
AMPLIFIER CIRCUIT:
The NE592 is a 120MHz emitter coupled
differential amplifier which is connected to a
push pull output stage. This output stage
has a low bias current of 3mA and a
bandwidth of 25MHz. Although at 25MHz,
the output stage current increases to 15mA.
The video amplifier drive circuit is built on a
ceramic substrate which is a good heat sink.
The printed resistors and conductors are small
and have precise geometries which output a
faithful reproduction of the input signal with
good high frequency response and low overshoot.
VIDEO AMPLIFIER CIRCUIT DESCRIPTION
The video amplifier's output voltage, with
no input signal, is the black level which is the
picture tube cut off voltage. This voltage is set,
for each of the three video amplifiers, by the
auto bias circuit via the bias control line. This
black level voltage has a range of 80V to 110V.
The negative feedback circuit consists of
K9
K10
bias resistors , Kand output feedback
K19
resistor . The geometry of the feedback
circuit defines the AC negative feedback path.
The autobias output, which adjusts the black
level voltage, is also connected to this node
K11
A
through resistor . Solder connection
The voltage swing at the output is 60 volts
for a 10 mA current signal from the C5346.
For this same 10 mA current signal, the
voltage swing at the video amplifier input is
1.5 volts and the input voltage swing at the
NE592 is .80 volts. The reason for using the
K22
connects resistor , which raises the video
amp. output voltage by 10V, for some CRTs.
The voltage gain of the differential
K32
K8
amplifier is set by resistor . The
K5
output of the amplifier has a load resistor
for faster low going transitions and is
voltage divider and is that the C5346
K6
K7
minimum output voltage is 7.7 volts, and the
bias voltage at the NE592 input is 5.3 volts.
945
buffered by a PNP transistor with base
K20
matching resistor . The load resistor for
K3
this buffer amplifier is which is
The input signal is buffered by a NPN
connected to the 16 volt line.
K34
transistor for low input capacitance.
Resistors K1and K2 set the black level
The buffered output of the differential
amplifier is DC coupled to the NPN transistor
K21
input voltage at 10 volts. Resistor (see
K36
schematic next page) and diode protect
943
885
and AC coupled, by capacitor , to
the input against arc related transients.
951
the PNP transistor of the push-pull
K6
K7
Resistors and are used to set the
953
K18
output stage. Resistors and
protect the push-pull transistors from current
spikes caused by voltage transients when CRT
arcing occurs.
K35
input bias voltage for the NE592. Diode
acts as a temperature compensator to match
the emitter to base diode in the
buffer transistor.
68
127V
VIDEO AMPLIFIER SCHEMATIC.
.1uF
957
16V
120V
3
18
937
Blue Video Amplifier
Ω
560
K17
Ω
75
K13
14
MPS2907
950
13
12.1K
K15
+12V
2
10
17
1.49K
K9
Ω
18
Ω
301
K2
K14
40.2K
K19
140Ω
.1uF
250V
887
2SA
1370
4
K16
15
MMBT
3904
16
951
19
7
BLUE
VIDEO
TO
9.25V
K34
10
SOT
1
3
.015uF
885
10
Ω
180
7
Dark screen
80-110VDC
K18
20
CRT.
Ω
606
1nF
956
1.0K
K8
NE592
K32
3
K7
PART
OF
AUTO
BIAS
Ω
12
14
150
Ω
205
8
Jumper
2SC
3467
.5W
953
FDH400
K3
5
K33
4
.1uF
934
943
958
1N4148
MPS2907
7
1.8K
955
2SA
1370
33Ω
8
Ω
15
3pF
6
Beam
Current
Feedback
K36
100Ω
K20
K21
K4
9
A
945
1.8K
948
681Ω
5.62K
K11
11
1
K6
954
FROM
CA3224
2.2K
K5
3.32K
K12
1N4148
K35
21K
K22
836Ω
1.62K
K1
BIAS CONTROL LINE
K10
5 9 12
GND
GND
+12V
+12V
9.25V
1.8K
938
MPS A64
942
VIDEO INTERFACE
MG
VERTICAL and
HORIZONTAL
BLANKING,
Master Gain, &
Beam limiter
D
.1uF
930
3.92K
940
GND
R
G
B
951
950
transistor to the base of transistor
VIDEO SOURCE (external)
885
is the coupling capacitor which charges
through resistor on the positive part of
K16
the signal and discharges through the base of
transistor on the negative part of the
drive signal. Therefore the output stage,
bias current, is frequency dependent and has
a range of 3mA to 15mA.
The bias current of the push-pull output
stage is set by resistors K14 , K15 , K16,
K17
951
, and diode connected transistor .
950
950
Transistor is thermally connected to
transistor to maintain the same base to
951
K13
887
Resistor and capacitor , which are
connected to the 9.25 volt line, decouples the
video amplifier current pulses from the 127V
line. The 9.25 volt line is connected to the
emitter of the NPN push-pull transistor by
K17
emitter voltage drop. Note that resistor
adds 11mA to the diode connected transistor
950
. This current is available to drive the
951
base of transistor during periods of high
frequency amplification. This high base
current is needed because, the beta of
K4
resistor . This voltage establishes the
output voltage of the NE592 in the middle of
it's ±2 volt drive range. The 9.25 volt line is
951
transistor is low for high current pulses
and when high frequency is amplified many
high current pulses occur. The mechanism
for transferring the current from
942
regulated by darlington transistor with
938
940
voltage divider resistors & .
69
VIDEO BOARD POWER SUPPLY AND ARC PROTECT SCHEMATIC.
CC1
CC2
CC3
Caution! 2 pin degaussing coil plug (CC1 &
CC2) must be plugged in such that the pin
with the extra wire is closest to the fuse.
UNPLUG WHEN REPAIRING MONITOR.
+127fV
+120V
From MAIN PCB
FDH
400
959
FDH
400
886
FDH
400
835
FDH
400
899
FDH
400
845
FDH
400
849
971
1/2W
RED
G1
G2
Focus
900
8
6
1/2W
851
GREEN
BLUE
From Video Amp.
11
12
1/2W
883
10
9
5
7
1
150Ω
1/2W
880
970
EHT
150Ω
1/2W
882
1K
1/2W
855
Green
Wire
SOCKET
877
0Ω
896
2.2K
1/2W
881
961
EHT
FOCUS
SCREEN
10K 1/2W
873
Grid Pulse
330pF
871
-23 to -27Vdc Vs
10Vp-p 95uS
100K
876
1.87K
874
854
853
100K
1/2W
2.2nF
Socket Board
PCB
878
856
-16V to-25V
800
0VDC Hs
56V 31uS
GND
DAG GND
DAG GND
100uF
50V
FDH400
870
FIL.
FIL.
TC 11
872
868
1N4005
1uF
50V
846
Fil. GND
+127V
+16V
+
FIL.
848
TC 12
TC 8
TC 1
TC 4
0Ω
30Ω
857
962
+127fV
Power supply voltages shown, are
for the 2793-CGA monitor.
1N4937
847
859
+16V
Ω
150
+
18Ω
879
.1uF
801
.1uF
816
1/2W cc
875
200V
860
+120V
+120V Source
+12V
+12V
GND
GND
TC 2
Auto Bright Control Output.
The high voltage in the CRT, through an arc, can
be conducted to any tube socket connection on the
video board. To reduce the danger of these arcs
causing component failure, a number of arc current
paths are provided. The tube socket has integral
spark gaps which conduct arc current to the tube
ground (aquadag). through dissipation resistor .
The clamping voltage of the spark gaps to the
cathodes and G1 is about 1.5KV.
G1 is connected to a negative voltage to increase the
cutoff voltage which reduces the dot size and produces a
sharper picture. This negative voltage is generated by
rectifying the negative peaks of the filament flyback
870
868
pulse with diode , filter capacitor , and resistor
. Resistor is used to adjust the negative G1
872
872
882
876
voltage for different FBTs. Resistor provides a
fixed load to stabilize the -G1 voltage. The grid pulse is
874
developed across load resistor by a PNP transistor.
The peak arc current to the video amplifier
outputs is limited by resistors , , & .
Each amplifier output is connected to two clamp
The 120 volt line, which is also generated by the
900
851
883
filament voltage, is used to supply the video amplifier
857
output bias current. Capacitor translates the GND
835
899
845
849
886
859
diodes , , , , , & to
provide a current return to ground via the power
referenced filament flyback pulse to the 127 volt line.
847
848
846
857
Rectifier diodes & and filter capacitor
175
860
supply filter capacitors & . The grid pulse
generate the V+ minus 7 volt supply. Capacitor is
drive to G1 is protected by a low pass filter made up
also used to adjust this voltage for different FBTs.
881
of elements , , & . Resistors ,
855
871
873
856
878
and capacitor also form a low pass filter for
the G2 to auto bright control output connection.
854
The filament voltage is adjusted by capacitor
853
and diode (or resistor) .
880
A dissipation resistor is connected to the
859
860
Resistor and capacitor decouples the video
amplifiers from the 127 volt line. This filter is needed,
in some models, to eliminate video amplifier distortion
caused by ripple current on the V+ line. This ripple
current is caused by the, V+ minus 7 volt line, power
supply.
focus spark gap to match the impedance of the
aquadag connection. This reduces reflections and
helps dissipate the arc energy. Resistor
879
supplies an additional ground path for arc energy.
70
CRT AUTO BIAS AND AUTO BRIGHT CIRCUIT, FUNCTION, DESCRIPTION.
The auto bias circuit is a control system that
forms a closed loop for controlling the CRT bias
voltage. It generates a set of conditions where
the current near the cutoff voltage of each gun is
measured, and then adjusts the bias voltage of
the video amplifiers, to set the correct black level
voltage for each gun. This color balance
adjustment is necessary, since each gun in the
color picture tube can have a different cutoff
voltage, which also, will change as the CRT ages.
If the picture tube gain changes, the auto
bias circuit would adjust all three guns in the
same direction to maintain constant black
level. This effect reduces the auto bias
voltage range which is needed for the cathode
differential voltage adjustment. To prevent
this occurrence a second control loop is added
to the system. This second control loop is
called the auto bright circuit and corrects for
CRT gain changes. The auto bright circuit
senses any common bias voltage change and
controls the screen grid (G2) to hold the
common bias voltage constant.
SIMPLIFIED PICTURE TUBE VIDEO BIAS CONTROL CIRCUIT: (One channel shown)
R
G
B
+
VIDEO
INTERFACE
Video
Amp.
CRT
G2
CA3224E
G1
927
10uF
.1uF
921
Auto Bright
Amplifier
Blue input
Beam
Current
Buffer
Blue
hold
cap.
+
FBT
Screen
adj.
A
+4.2V
5K
B
C
4.0V
33K
895
B
+
SW
normal
8
*
LM324
920
15.8K
LM324
comp.
.047uF
TC 9
4.0V
+
V ref.
200Ω
C8
33K
33K
169K
G
R
GREEN CHANNEL
RED CHANNEL
68.1K
900Ω
+6V
Grid pulse
V sync
sync
Counter, Decoder
Control Logic
Program Pulse
1.8K
-21V
H
*
Adjust FBT bottom pot for 4.0V to 4.4 at pin 8.
Note: Chassis before rev. E4, set to 4.6V.
which, if the bias was correct during the
previous cycle, exactly balances the voltage
stored in the coupling capacitor and no
difference is sensed at the channel input. The
channel amplifier, in this case, does not
output current and the voltage of capacitor
The auto bias circuit performs all of its
sensing and bias corrections during the
sixteenth to the twenty first horizontal cycle,
after the vertical sync pulse. Before the
sixteenth cycle, the SW in the auto bias IC is
open ( SW in "C" position).
stays unchanged.
895
During the 16,17, and 18 horizontal cycle,
the CRT is brought out of cutoff by the grid
pulse. The resulting beam current produces
a voltage at the beam current buffer output.
This voltage is applied to the coupling
If the CRT cathode is too far into cutoff, less
beam current flows at the grid pulse time.
This causes the beam current buffer to output
a smaller negative pulse and less voltage is
stored in the coupling capacitor. The program
pulse amplitude (which is constant) is now
larger than the stored (beam current) voltage
and the channel amplifier will add current to
the, bias voltage, storage capacitor 895thus
correcting the low bias voltage which caused
the cathode to be too far into cutoff. After the
program pulse is over, the SW is switched to
the open position again and the next time the
bias voltage can be adjusted is during the
next vertical blank time.
921
capacitor . At the other side of the
coupling capacitor is the channel input, which
is clamped to V ref. (SW in "A" position). The
voltage amplitude of the amplifier output with
the cathode current information is then stored
921
in the coupling capacitor during this
time.
During the next three horizontal cycles (19,
20, and 21), the SW is switched to pass current
895
to capacitor which is the bias voltage
storage capacitor. At the same time a
program pulse is applied to resistor
C8
71
CRT AUTO BIAS AND AUTO BRIGHT CIRCUIT DESCRIPTION.
909
Load resistor eliminates crossover distortion from
The beam current feedback circuit uses a PNP video
transistor to direct most of the beam current to the
954
920
852
856
the OP Amp. . Resistor and protects the
transistor and OP Amp. from damage due to CRT
arcing.
auto bias circuit while passing the voltage waveform,
from the video amplifiers to the CRT cathodes. Diode
928
958
956
and capacitor insure that no video waveform
PNP transistor is used as a voltage translator to
distortion occurs. An additional benefit of this circuit is
that it protects the video amplifiers from the destructive
arc energy. Resistors and divide energy due
to CRT arcing, between the video amplifier transistors
direct the grid pulse from the auto bias IC to G1. The
voltage on G1 is normally -15 to -27 volts depending on
which CRT is used. When the grid pulse at pin 11 is
948
955
933
low, the current from resistor is conducted to
874
and the beam current feedback transistor 954
.
The
resistor and produces a 10 volt pulse on the minus
871
855
873
941
beam current is filtered by capacitor and resistor
G1 line. Capacitor and resistors
&
C10
928
and is buffered by an operational amplifier, which
protect transistor from CRT arcing.
translates the beam current into a low impedance
voltage. This voltage is applied to a coupling capacitor
The auto bias IC (CA3224E) is designed for a supply
voltage of +10V and since the video amplifier requires
921
C8
.
903
905
906
through a 200 ohm resistor
+12V, three diodes , , and are used to
supply this IC. Resistors and form a voltage
C3
The 200 ohm and the 68.1K resistor forms the
program value which sets the black level voltage via the
action of the program pulse.
C4
C7
divider which supplies the, auto bright, bias voltage to
920
the LM324 . The green and blue channel circuits
922
Capacitor is used to stabilize the
are identical to the red channel and are controlled by
the timing logic in the same way.
transconductance amplifier which is used at the channel
input of the auto bias IC 927
the bias voltage of this channel in capacitor at pin
21. This voltage is buffered by an internal amplifier,
with output at pin 20, which is connected to the Blue
video amplifier bias control input.
.
The auto bias IC stores
Refer to the waveforms at the bottom left of page 34
for the timing relationship. The vertical retrace boost
pulse, from the LA7838, (15KHz models) or the delayed
vertical sync pulse from the sync delay circuit (25 &
31KHz models) starts the 21 count auto bias state
counter. This pulse is applied to the auto bias IC
895
Resistor , , and are part of the auto
908
910
911
bright circuit. They are used to sum the bias voltage of
each of the three channels via a voltage node at the auto
through resistor . The negative going flyback
pulse which is used to heat the filament also supplies
891
bright amplifier, pin 9. The resulting output
the horizontal sync to the auto bias IC via diode
920
884
voltage then controls the screen grid via transistor
.
and resistor . The grid pulse becomes active
850
888
Resistor protects the CRT grid from excessive
between the 15 and 18 horizontal cycle and the program
pulse is active between the 18 and 21 horizontal cycle.
These two pulses in conjunction with the internal
control of the transconductance amplifier output switch
are what establish the timing for the measurement and
setting of the video bias.
881
current during arcing. Capacitor supplies a low
878
AC impedance to GND to insure that the CRT gain is
constant during each horizontal line. Resistor and
858
defines the current gain of, and stabilizes, the auto
914
bright control loop.
CRT AUTO BIAS, VERTICAL SYNC CIRCUIT DESCRIPTION.
The auto bias vertical sync comes from from a buffer circuit
The vertical oscillator one shot (LA7851 pin 16)
supplies the start timing for the auto bias vertical
sync. This signal is conducted to the emitter of
for 15KHz operation. For 31KHz operation this signal is
generated by a delay counter. For both cases, the vertical
boost pulse is "and" connected with the Vertical Osc. O/S to
provide flicker free operation and laser beam protection. In
the case of vertical deflection failure, the loss of the boost signal
causes the auto bias vertical sync to stop, which stops the auto
bias function, and blanks the screen via the vertical blanking
circuit, thus providing for laser beam protection.
379
089
379
by jumper . The base of is connected
383
to the retrace boost pulse by resistor divider
and . Combining these signals in this way
384
produces a collector waveform which has the vertical
oscillator one shot timing and is dependent on the
retrace boost pulse.
100
For the 15KHz case, transistor inverts the
+12
CRT AUTO BIAS
VERTICAL SYNC
vertical oscillator one shot signal to produce the
Hfo=15KHz
6.8K
099
099
CRT auto bias vertical sync signal. Resistor
510Ω
006
is the pullup and resistor reduces the
PN2222
2
1
chance of arc damage to the transistor.
006
For Hfo=25-31KHz
3
+12
V
62K
098
099
For the 31KHz case, the vertical oscillator one
shot signal is directed to the clear of the 7 bit
counter . This O/S time out must occur after
1N4148
006
100
P
1N4148
2H Dly.
62K
100
024
4
the autobias delay time out and come before the
bias active pulse from the CA3224E. When the
clear is low, the counter counts horizontal pulses,
1 CL
2 KL
8,10,13 NC
14 Vdd
Q1 12
1N4148
0Ω
100A
7
PN2222
379
Q2 11
Q3 9
Q4 6
Q5 5
Q6 4
4H Dly.
025
099
by the clock connected voltage divider and
1N4148
8H Dly.
201. When the counter outputs ones at each diode
connected output, further counts are inhibited by
Vss
7
200K
CS=.45"
0Ω
CS=.74
389
027
3 Q7
1N4148
006
381
diode and pullup . This diode "or" signal
is also used for the CRT auto bias vertical sync.
The delay is set to locate the grid pulse generated
3 faint lines at the top of the screen with full
CD4024
100
16H Dly.
383
Autobias
Delay
200K
.1uF
101
028
22K
384
15.8K
381
201
220pF
GND
GND
vertical deflection. Capacitor produces a
delay to avoid a race condition between the counter
clock and the auto bias horizontal sync.
091
+24V
Filament
Vertical Osc. O/S, LA7851 pin 16
Retrace Boost
091
72
1/2W
CRT AUTO BIAS AND AUTO BRIGHT SCHEMATIC.
100K,
FBT
856
2.2nF, 1KV
878
2.2K
1/2W
881
10K
873
1K
855
330pF
G1 G2
R
G
B
1,000pF
AUTO BRIGHT CIRCUIT
CRT
871
Adjust the bottom pot
on the FBT for +4.2V
956
10
9
Beam current off on
power down circuit.
68.1K
100uF
085
2SC3675
FDH400
+12V
+
1/4
8
100K
852
1.8K
955
LM324
958
2SA1370
1N4005
090
VIDEO
INTERFACE
+16V
+
920
+
Video
Amp.
850
TC9
089
127K
15.8K
914
3.3K
909
169K
858
On main
087
954
board at DD1.
1.8K
948
Blue BEAM CURRENT
Blue video BIAS control line.
+12V Line
1N4005 X3
+10V
AUTO BIAS CIRCUIT
For XX92
C
10
900Ω
2.74K
Green &
Red BEAM
CURRENT
903 905 906
C17
C7
11
.1uF
907
3.8-
4.2V
AUTO BIAS IC
5
920
+
1/4
1
2
3
22
21
20
19
18
17
16
15
14
13
12
GND
CA3224E
Vcc
1.82K
C4
7
LM324
6
Ω
927
input
12
200
C8
4K
10uF
.1uF
921
7
5
4
Blue
Blue
hold
cap.
+
13
5K
C9
C10
2,200pF
941
14
895
68.1K
C3
sw.
normal
3
2
2.5-
6.7V
.047uF
922
33K
908
+
1/4
LM324
1
comp.
1.2-
2.5V
15
17
Ω
200
sw. in grid pls. pos.
4K
10uF
Green
Video Amp.
BIAS.
.1uF
923
C13
4
Green input Green
+
16
5K
C11
hold
cap.
5.7-
6.3V
68.1K
C2
894
2,200pF
818
C12
sw.
12
13
2.5-
6.7V
.047uF
924
33K
910
+
1/4
LM324
5
14
comp.
1.2-
2.5V
18
20
Ω
200
4K
10uF
+
Red
Video Amp.
BIAS.
.1uF
925
C16
6
Red input
sw.
Red
hold
cap.
19
5K
C14
5.7-
6.3V
892
2,200pF
815
68.1K
C1
C15
1
2.5-
6.7V
.047uF
926
33K
911
7
GND
TC 10
comp.
1.2-
2.5V
V. osc o/s or Delayed V. osc o/s
V. Osc. O/S
V. Blanking
6V REF.
22K
891
8
CL
BIAS
Filament Pls.
Bias active
.2-
.6V
START
4.6-5.2VDC
1
18
COUNTER
FF
Q
ABA
TC 6
9
Grid pulse
GND
5V REF
2-
3V
To
Program pulse
EN
Vertical
Blanking
21 H. LINE
COUNTER
CL
AUTO
BIAS
ACTIVE
1N4148
888
2,200pF
889
+12V
7.8 to 8.8Vdc Vs
8.4Vp-p 95uS
2.7K
884
10
Grid pulse
2.2 to 2.7Vdc Vs
4.2Vp-p 360uS
1.8K
9 to 10Vdc Vs
9.6Vp-p 95uS
DECODER
sw. control
933
MPS2907
11
GRID
PULSE
PROGRAM
PULSE
To CRT Grid #1
928
1.8K
874
1.8K
931
GND
-15V to -27V
73
Monitor, Block Diagram Review.
G2≈290V
On Video Board.
2 For Dual Focus
G1≈–20V
GAME
VIDEO
AMPS.
Bias
Beam
VIDEO
Interface
3
3
3
3
VIDEO
RGB
Current
Feedback
CRT
A
B
C
H
3
3
VDY
DY
SYNC
V. & H.
BLANKING
Auto
Bright
EHT≈25KV
F.B.P.
V retrace
Beam limit
M. gain
H
G
3
3
D
Beam current
buffer
High temp. limit
CRT AUTO
BIAS IC
H. sync (FBP)
V. sync
I
Program pulse
Grid pulse
Dynamic Focus
used only on Dual
Focus CRTs
SYNC
VERTICAL
SYNC
DELAY
F
Interface
CA3224E
E
J
s
Horizontal
Dynamic
Focus
2
VERTICAL
VERTICAL
H2
CONTROL &
OUTPUT
LA7838
V
OSCILLATOR
LA7851
K
I. V. Feedback
V+
L
Vertical
Dynamic
Focus
+
G2 EHT
H1
LA7851
HORIZONTAL
CONTROL
Sync delay
H.
Driver
H.
Output
FBT
2
s
H
N
O
P
M
H. Pos.
PINCUSHION
V. Size &
V. Ras. Pos.
REMOTE
CONTROLS
(PCB)
DIODE
Modulator
HORIZONTAL
Size Control
Q
R
S
Beam Current
+52V to +129V
ISOLATION
Transformer
VOLTAGE
DOUBLER
(VIDEO & DEFLECTION)
LOAD
V
Raw DC
320V
(IN GAME)
+12V
+16V
T
+12V
SWITCHING
Regulator
REGULATOR +24-27V
-200V
V-
W
Sync
Shutdown
U
Vertical Deflection
Supply
OVER
VOLTAGE
PROTECT
DEGAUSSING
CIRCUIT
FAULT
DETECTOR
FBP
+24V
Z
Y
X
74
BLANKING, MASTER GAIN, AND FAULT CIRCUIT, FUNCTION, DESCRIPTION.
SIMPLIFIED GAIN CONTROL CIRCUIT:
VIDEO INTERFACE
+
C5346
241
+12V
Video
To
GAIN SELECT
RESISTORS
Amp.
CRT
+12V
1K
485
MASTER GAIN
1K
3.6K
200Ω
VIDEO GAIN LINE
+7.5V
062
One of three input circuits.
HORIZONTAL BLANKING
PN2222
3
+3.4V
FLYBACK PULSE
FAULT CIRCUIT
To P/S OVP
1/4
LM324
SIGNAL
0VDC Hs
56Vpp 62,D6
CONDITIONING
CIRCUIT
2
072
Total
beam current
033
From FBT
BEAM CURRENT LIMITER
+6V
+12V
High Temp.
BIAS ACTIVE
VERTICAL BLANKING
Beam Limit
28.0K
020
6
HIGH Z
+2.5V
MPSA64
1N4148
1/2
LM393
PN2222
7
3
1N4148
253
5
+
D
Vertical Bias O/S
1/2
LM393
1
018
+
100K
@ 25°C
+
10uF
210
036
T
2
+2.5V
071
014
210
180
.047uF
207
The video P-P voltage amplitude at the
cathodes, is the video input signal
Blanking in this monitor is accomplished by
reducing the video gain to zero during the
vertical and horizontal blank time. During
video time, the gain is set by the master gain
control which is located on the remote control
PCB. If the overall beam current exceeds
.75mA or 1.5mA (depending on model) for
more then ten frames, the beam current
limiter circuit will reduce the video gain to
protect the FBT. A high temperature sensor,
close to the FBT, will also reduce the beam
current if the high temperature limit (70°C) is
exceeded.
amplitude times the master gain control
setting times the video amplifier gain.
The gain select resistors set the maximum
video gain via the master gain line. For a
greater range of brightness, (highlighting)
the video system is allowed to supply high
peak video currents which could damage
the FBT if sustained. The beam current
limiter circuit insures that the long term
maximum beam current is not exceeded.
Horizontal blanking is achieved by
The fault circuit senses the temperature
or beam current line and will turn off the
monitor if either of these signals exceeds the
beam current shut off value. If an abnormal
condition exists in the monitor or the cooling
system of the enclosure fails, the high
temperature sensor will activate the fault
circuit at 80°C. The fault circuit is also
turned on when the beam current becomes
large enough to damage the FBT. This
condition will happen if the video bias supply
(V+ –9V) on the video board fails. An OP
Amp. is used to sense the fault condition and
a transistor is used to transmit the fault
signal down to the power supply.
amplifying the flyback pulse (FBP) with
072
transistor . Vertical blanking starts
as soon as the LA7851 starts the vertical
retrace sequence and is terminated by the
auto bias, bias active signal. A comparator
is used to sense the vertical bias O/S, at pin
16 of the LA7851, which goes low when
207
vertical retrace starts. Capacitor
holds the vertical blanking active, between
the vertical bias O/S pulse, and the bias
active pulse. When the bias active line
207
goes high, the capacitor is reset and
vertical blanking ends, after the bias active
line returns to it's high impedance state.
75
BLANKING, MASTER GAIN, AND FAULT CIRCUIT DESCRIPTION.
485
The master gain control is connected
to the video gain line through a 1K resistor
The video gain line will source up to 32mA
during blank time, which is the reason for
buffering the vertical blank comparator with
062
. The voltage range of the video gain
line is programmable via resistors , 076
064
212
a PNP transistor .
251
252
and solder bridges at , , & .
Resistors and supply a voltage
that is midrange relative to the LA7851 pulse
for maximum noise immunity.
S
T
U
The solder bridges may connect resistors
244
245
260
258
, , , and to the video gain
line. This arrangement permits a variety of
input signals and picture tubes to be used
with the same monitor PCB.
248
250
Resistors and also supply another
midrange voltage for the bias active pulse
and the, vertical blanking, hold capacitor
211
207to work against. Resistors and
are used as jumpers.
Horizontal blanking (
) is added
H B
368
072
to the gain line by transistors . This
transistor pulls down on the gain line when
the flyback pulse is high. Capacitor is
The beam current limiter circuit uses the
base to emitter voltage of a darlington
081
080
093
charged by diode and resistor such
that, as soon as the flyback pulse starts going
036
transistor to set the maximum beam
current. To sense the beam current,
072
positive the NPN transistor turns on
010
capacitor integrates the current pulses
and horizontal blanking starts. The time
constant of capacitor and resistors
and is chosen such that the capacitor
produced by rectifying the high voltage
flyback pulses. The beam current is
081
078
093
009
converted to a voltage across resistor .
will lead the FBP on the downward slope and
turn the horizontal blanking transistor off
just at the end of the FBP. This advanced
timing compensates for the turn off delay of
This voltage is applied to a long time
011
constant RC circuit, resistor and
014
capacitor , before it is sensed by the
darlington transistor. The sharpness of the
limiting response is set by resistors
072
transistor .
012
,
065
071
and 066 . Transistor then,
Vertical blank time is started when a low
going pulse from the LA7851 pin 16 causes
the output, pin 1, of the dual comparator
reduces the video gain by pulling down on
the master gain line upon excessive beam
current. The beam current is also reduced if
the FBT temperature sensor exceeds 74°C.
207
210
to go low. Capacitor is discharged
208
through resistor at this time. After the
Resistor sets the temperature at which
020
end of the LA7851 pulse, the capacitor
this circuit becomes active. The resistance
207
holds the output, pin 7 of the
of thermistor decreases with increasing
180
comparator, low until the bias active pulse
temperature until the voltage at the cathode
207
recharges the capacitor through diode
of diode is low enough to turn on
018
253
. During the high time of the bias
transistor which turns on transistor
036
active pulse, the comparator output pin 7 is
still low, because of the voltage drop across
and darkens the screen.
071
253
The fault circuit senses the temperature
or beam current line with a, comparator
the diode . The end of vertical blank
time occurs when the bias active line
returns to it's high impedance state. The
capacitor 207 holds the charge from the
bias active pulse until the next vertical
blank time. The advantage of this type of
vertical blanking circuit is that, if the CRT
auto bias IC fails to produce a bias active
pulse, the screen stays blanked. This action
protects the CRT when the vertical
033
connected, OP Amp. at pin 2 (– input).
The + input of the OP Amp. is biased to
034
3 volts by a voltage divider, resistors
037
and . The output of the, OP Amp. is
017
connected to a low pass filter, resistor
035
and capacitor to insure that the fault
circuit does not become active on power up.
008
Transistor conducts the fault signal to
the over voltage protect input of the power
deflection system fails since the output of the
LA7838 boost pulse is needed for the CRT
auto bias vertical sync (CA3224E pin 8).
005
supply IC. Resistor protects the voltage
008
translator transistor and the power
supply controller IC.
76
BLANKING, MASTER GAIN, BEAM LIMITER, AND FAULT CIRCUITS SCHEMATIC.
Remote control PCB
+12V
MASTER
1K
VIDEO GAIN LINE
GAIN
RC2
1K
485
GND
062
4-7VDC Vs
4-9Vpp 61,B4
+12V
VERTICAL
BLANKING
6.8K
251
6.8K
250
(BIAS ACTIVE)
From auto bias IC pin 13
0Ω
6
5
MPS2907
212
2-3VDC Vs
4Vpp 63,C4
1N4148
253
1/2
LM393
8
211
7
2
3
2.3-
2.7V
1/2
LM393
1
+
210
1.8K
368
+
(VERTICAL BIAS O/S)
From LA7851 pin 16
4-7VDC Hs
4-9Vpp 61,B4
1K
208
4
1.8K
248
4.5-5.3V Vs
5Vpp 16,E5
1.8K
252
.047uF
207
GND
HORIZONTAL BLANKING
PN2222
(FLYBACK PULSE)
270Ω
093
From FBT pin 8
0VDC Hs
56Vpp 62,D6
078
081
072
0Ω
077
1N4937
080
GND
C5346
241
M GAIN
GAIN SELECT RESISTORS
12
VIDEO INTERFACE IC
S
T
U
1.62K 2.7K
1.62K 604Ω 1.21K
+12V
076
064
244
260
245
FBT
1.21K
258
8
GND
453
EHT 4
Return
BEAM CURRENT
LIMITER CIRCUIT.
+12V
+6V
+
1K
10uF
014
28.0K
020
12.1K
034
012
009
MPSA64
LIMIT
62K
PN2222
BEAM CURRENT
D
+3.4V
1N4148
018
011
.1uF
010
036
15.8K
037
071
GND
7-10VDC
61, C2
75Ω
066
1K
065
100uF
035
CPR0432
180
T
FAULT
CIRCUIT
+
GND
3
0Ω
019
Temperature
Sensor
22K
1/4
1
LM324
Power supply
controller IC
017
2
2SA1371
GND
033
Excessive beam current or
high temperature comparator.
C5184
115
0Ω
109
200K
005
14
OVP
Shutdown
008
77
VERTICAL AND HORIZONTAL SYNC CIRCUIT DESCRIPTION.
For Interlaced Vertical Sync.
+
Vertical Sync
To LA7851 pin 19
To LA7851 pin 1
Composite
Sync
Sync Interface
2 Comparators
Vertical Sync To Horizontal Cycle Synchronization
and Composite Sync Decoder
Horizontal Sync
{
Composite sync or separate vertical and horizontal sync
are buffered by two comparators in the sync interface
circuit. A vertical sync synchronization circuit is used to
insure a stable raster and functions as a sync separator.
The synchronization circuit is bypassed, for interlaced
vertical sync, because this circuit rejects the half
horizontal line time variation used to generate the
interlaced vertical raster.
Vertical Sync
Horizontal Sync
FBP
+12V
9
7.15K
366
+
68.1K 15.8K
15.8K
353
1/4
7.15K
14
354
360
LM339
364
Hs
2.1-2.4VDC
8
355
0Ω
4.6Vpp 58,D6
Interlace (15KHz)
1K
357
364
59,D6
1.5-2VDC
10uF
259
+
0Ω
11
1K
1.8K
257
+
1/4
LM339
13
246
318
47nF
254
10
355
6.8K
321
+12V
3.92K
356
358
22K
323
6.8K
322
200K
246
Vs,Hs
7V pp 60,C5
.05VDC
1.8K
325
4
3
1/4
2
PN2222
LM339
270Ω
326
5
355
+
0Ω
GND
255
6
328
270Ω
1/4
LM339
1
330
PN2222
254
100K
257
1.8K
7
355
+
12
331
.14-.16V
.047uF
318
GND
200K
256
270Ω
327
s
VC
H
V
s
VC
1
Horizontal
Sync
Vertical
Sync
33K
247
2
GND
318
The sync interface comparators are biased to .15 volts,
Capacitor couples the vertical sync pulses to
323
327
255
by resistors
&
, to permit receiving low level
transistors 254& . When no sync pulse is present,
255
246
sync signals such as RS170. For low level composite
sync, the vertical and horizontal lines are tied together
transistor is turned on by resistor . For a
255
negative vertical sync pulse, transistor is turned off
by the negative pulse applied to resistor 257and the
window comparator pulse is allowed to be the vertical sync
pulse. For positive vertical sync pulse, transistor is
turned on by resistor
of transistor 255to GND also allowing the window
comparator pulse to act as the sync pulse.
328
and jumper is left off. For normal amplitude sync,
325
326
form an
(greater than 2.3 volts) resistors
&
254
attenuator to protect the sync interface comparators and
normalize the sync amplitude. This combination also
reduces noise sensitivity since the sync voltage amplitude
is low at the comparator input which slows the
247
256
, which shorts the base
&
comparator response and acts as a low pass filter.
A sawtooth waveform is produced on integrating
capacitor by applying the flyback pulse to resistors
321
358
For the interlaced sync case, the pullup resistor is
246
360
357
257
left off and the voltage divider resistors and act
as the pullup. Also the vertical sync synchronization
comparators are disabled by changing the input resistors
to bias the comparators in the high output state and
&
. This sawtooth waveform is connected to two
353
comparators which are biased by resistors ,
356
360
, 354 , & such that both comparator outputs are
high between 1.8 volts to 2.3 volts. This circuit would
produce a pulse on both the positive and negative slope
366
254
resistor is left off. Capacitor acts as a sync
259
357
separator for composite interlaced sync. Capacitor
and jumper 364are used to couple the composite sync to
the LA7851 vertical sync input pin 19.
parts of the sawtooth waveform. Resistor eliminates
the output pulse on the negative slope by introducing part
of the flyback pulse to pin 8 which keeps the comparator
from going high at this time. Resistors 364& 366 act as
a pullup for the window comparator and apply a 6 volt bias
to the vertical sync input, LA7851 pin 19. At 6 volts, the
vertical sync input is inactive. It becomes active only
when the window comparator output and the ± sync
transistors are all high.
The vertical sync synchronization window comparator
generates a pulse, a little after the midpoint of each
horizontal cycle. This pulse is shorted to GND by
transistors except when vertical sync is active. The
two transistor circuit permits using either positive or
negative pulses for vertical sync.
255
78
VERTICAL DEFLECTION CIRCUIT, FUNCTION, DESCRIPTION.
The LA7851 IC is used for the vertical oscillator. The LA7838 is a vertical deflection control
and high efficiency vertical yoke driver IC. Together they form a compact and efficient
vertical deflection system.
SIMPLIFIED VERTICAL DEFLECTION CIRCUIT
+23V to +27V
Vertical Sync
9
Retrace
Booster
Current
Source
One
Shot
Vertical Oscillator
2
LA7851
13
12
*
Drive
Output
5V
Clamp
Vertical
Linearity
Fine Tuning
Vertical
Yolk
+6V
LA7838
4
6
7
Ramp Control Circuit
Voltage Feedback
6V
+
393
390
Vertical
Size
1uF
401
449
392
375
388
403
391
385
Current Feedback
Clamp Enable Pulse
Voltage on 401
*
Yoke Current
Yoke Drive
The vertical oscillator in the LA7851
The combination, voltage and current,
feedback circuit senses the parabolic
supplies timing to the vertical deflection IC
to maintain a raster with no sync present.
Vertical sync supplies the timing when sync
is present.
waveform on the yoke coupling capacitor
449
and is connected to the yoke current
385
sense resistor . This circuit is then
connected to the other input of the differential
amplifier at pin 7. A capacitor
smoothes the parabolic waveform and a
The one shot in the LA7838 clamps the
ramp forming capacitor to 5V during the
first half of vertical retrace.
401
391
voltage divider is used to set the output bias
voltage. The time constant, of the capacitor
391and resistor 392, is set to produce good
vertical linearity. An additional linearity
correction circuit is added to fine tune vertical
linearity. This circuit can be set to add or
subtract deflection from the upper and lower
portions of the raster.
The ramp forming capacitor is supplied with
current by a current source at pin 6. The
current source has a fixed 6 volt input voltage
at pin 4. A linear ramp is generated if a fixed
resistor is connected from pin 4 to GND.
Feedback from the yoke current, via resistor
403 , is used to modify the linear ramp which
helps correct for nonlinearity introduced by
the voltage feedback circuit connected to
pin 7. The vertical size control is connected to
the current source input since adjusting the
slope of the ramp adjusts the vertical size.
This ramp with the clamp, as the discharge,
produces a sawtooth waveform which is
connected to the + input of the vertical control
differential amplifier at pin 6.
The differential amplifier controls the
power output stage which drives the vertical
deflection yoke. The retrace booster is
turned on when the ramp voltage is set to
the clamp voltage and is reset when the yoke
feedback voltage balances the ramp voltage.
79
VERTICAL DEFLECTION CIRCUIT DESCRIPTION.
LA7838
out
Ramp
Gen.
Reset
Ramp
Slope
Ramp
Reset
HEAT
SINK
378 Deflection
Vert.
Drive
Vertical
One Shot
out
V. size
Control
Retrace
Booster
377
Tr.
R/C
50/60Hz
Drive
+12V
+27V
1
2
3
4
5
6
7
8
9
10
5.5-6.4V Vs
Remote Control Board
510Ω
3Vpp 21,D5
RC8
RC6
5-6VDC Vs
1.4Vpp 22,E5
5.5-6.5V Vs
1.4Vpp
23,F4
004
470uF
380
Vertical
0Ω
500Ω
Size
68.1K
393
482
203
375
750Ω
.01uF
374
44.2K
402
1uF
401
Vertical
486
Raster
390
392
1,000pF
369
1K
GND
Position
483
RC3
+
See
Table
403
1.2Ω, 1W
385
391
388
RC4
18Ω
367
+12V SUPPLY
VERTICAL SYNC
V.+12V
GND
Vs
2.2M
363
127K
361
365K
362
.01uF
414
100uF
+
The vertical sync comes from the
synchronized vertical sync interface
circuit for monitors without interlace.
For monitors with interlace the vertical
sync comes from the sync comparator
via a coupling capacitor and bypasses
the synchronizing circuit. Pin 19 of the
LA7851 is the vertical sync input and will
start the next oscillator cycle on either the
positive or negative sync pulse. The vertical
CPC1058
.1uF
410
376
5.5-6.5V Vs
1.2Vpp 19,D5
.1-.3VCD Vs
3.8Vpp 17,E5
4-6VDC Vs
2.8Vpp 18,D5
V
1N4005
382
VERT.
OSC.
V. osc.
ADJ.
or
20
VERTICAL
19
18
17
H.+12V
VERTICAL
± SYNC INPUT
VERTICAL
OSCILLATOR
VERTICAL
OSC. O/S
V+
The one shot in the LA7838 clamps the ramp
forming capacitor to 5 volts for about half of
the vertical retrace time. Capacitor 384and
resistor form the RC circuit for the ramp
410
oscillator capacitor discharges to 4 volts
401
on the leading edge of the vertical sync by the
action of an internal transistor and resistor.
Capacitor 410is then charged by resistor
362until the next sync pulse or to
402
reset one shot.
8 volts, which ever comes first. The V. osc.
frequency is set low such that the adjustment
401
The ramp capacitor is charged by current
from a current generator with a 6 volt input node
at pin 4. The vertical size is adjusted by the
resistor can be used to act as a vertical
363
hold adjustment. Solder connection is
V
482
vertical size control which is connected to pin
used to make this adjustment.
003
375
4 via resistors & . The adjustment
375
range is set by resistor and the maximum
The vertical oscillator triggers the vertical
oscillator one shot, which outputs a pulse to
trigger the vertical sync input, pin 2, of the
LA7838. This one shot is also used to
synchronize the CRT auto bias IC.
361
403
deflection is set by resistor .
A third input
to pin 4 comes from the vertical linearity circuit.
This circuit uses the above and below GND parts of
the vertical current waveform separately.
Transistor 411conducts when the vertical current
waveform is below GND. This transistor’s emitter
is referenced to GND by diode and resistor
371. The emitter is connected to the vertical
current waveform through resistor which is
adjusted for each tube and yoke combination.
Resistor & capacitor set the
414
timeout which must be longer than the CRT
auto bias Vs delay and shorter than the
vertical blanking. Resistors 370& 408
supply the pullup for this one shot.
406
407
80
22-28V Vs
.8Vpp 24,F7
VERTICAL DEFLECTION SCHEMATIC.
Thermal Protection
196
Vertical Linearity Circuit
V.+12V
Vert.
Out
Capacitor multiplier for the 2793.
DECREASES
TOP AND
200K
412
200K
413
BOTTOM
VERT. SIZE.
270Ω
2SC4159E
MPS2907
196
Boost
409
GND
I
197
30Ω
198
11
12
13
D5
D5
1N4005
H
.1uF
399
200K
371
200K
372
+
1,000uF
119
1N4005
382
0Ω
395
199
INCREASES
TOP AND
GND
BOTTOM
PN2222
PN2222
VERT. SIZE.
411
373
2SC3467
1.5-2.7V Vs
24Vpp 24,E4
4.7Ω
RAS. POS.
V
See
Table
407
See
Table
404
1N4148
396
1N4148
0 TO 7 VDC
100Ω
1/2W
394
405
420
406
.1uF
397
VERTICAL
YOKE
YC1
426
12-16VDC Vs
50Vpp 28,F6
390Ω, 2W
421
YC2
427
1,000uF
35V
+
GND
449
The output of the vertical drive, differential
amplifier, is connected to the power amplifier
which drives the yoke. A booster circuit is
connected to the the power amplifier supply via
capacitor and clamp diode such that
when the booster is active, during vertical
retrace, the power supply to the vertical output
amplifier is doubled. Resistor
22K
370
4.5-5.3V Vs
5Vpp 16,E5
380
382
15.8K
408
16
15
14
GND
LA7851
396
397
and capacitor make up a high
frequency vertical output stabilization circuit.
V. Ref.
The vertical output at pin 12 is connected to
421
the vertical yoke. Resistor is a load resistor
In similar manner, the positive half of the
vertical current waveform is conducted by
across the yoke which stabilizes the vertical
deflection feedback loop. The yoke return is
decoupled by capacitor 449and the vertical
373
405
372
transistor diode , and resistors
373
411
404
and . Both transistors and may
385
current is sensed by resistor . The vertical
be connected to pin 4 via solder connection or
H
raster position is adjusted by injecting current in
the vertical yoke return. This is accomplished
by transistor , with emitter resistor ,
they may be connected to inverting transistor
413
409and resistors 412and .
420
394
The inverting transistor is connected with
483
and the V. RAS. POS. control .
solder connection and decreases the vertical
I
size at the top and bottom of the screen.
A capacitive multiplier circuit is connected in
series with the 27 volt line, in the 27” monitor, to
reduce the ripple voltage due to beam current
401
The ramp capacitor is connected to a
differential amplifier at pin 6 and the negative
feedback from the yoke return line is connected
to pin 7. This negative feedback, which senses
the DC component of the vertical output voltage,
is also the current feedback for the LA7838. It is
197
variations. Transistor conducts current
from the 27 volt line to the LA7838 deflection
supply input pin 8. Capacitor 119and resistors
196and 198 form a low pass filter which is
connected to the base of this transistor. Diode
388
made up of voltage divider resistors and
conducts the inductive current from the
199
390+ 393and a wave shaping integrator.
The wave shaping integrator, capacitor 391and
vertical yoke during the first part of retrace.
A jumper at 196replaces the capacitive
multiplier circuit in the chassis with smaller
CRTs.
resistor , is used as the primary vertical
392
linearity adjustment.
81
HORIZONTAL DEFLECTION CIRCUIT DESCRIPTION.
1N4007
2.2K.5W
Hs
12-18VDC
+24V to 27V Supply
33Vpp 27,E7
+
341
100uF
2SC4159E
342
338
5.4-6VDC
11, E5
200Ω 2W
+12V Supply
+24V
3.92K
418
3.92K
337
340
GND
417
12
11
Remote
Control
PCB
+
-
comp.
DELAYED
SYNC O/S
PICTURE
POSITION
O/S
1N4007
333
MULTIPLIER
Horizontal
Position
Horizontal
SYNC INPUT
SAW TOOTH
TR . GENERATOR
BIAS
0Ω
20K
RC7
RC4
2.7K
1
2
3
4
5
6
2
8
7.3-8.7V Hs
4Vpp 02,D6
7.3-8.7V Vs
-.2VDC Hs
3-4VDC Hs 2.4-3.4VDC
484
202
I4
7
4Vpp 03,D6 1.5Vpp 04,E6 1.4Vpp 05,E6 0Vpp 06,E6
NEG.
12K
I2
Hs
+
347
11
56pF
352
6.8K
1uF
1.8K
3
10K
IA
9
7.3VDC Hs
5.5Vpp 01,D6
I13
I1
18
1uF
I7
22K
8.8K
I12
25K
330pF
350
45K
I6
351
I5
I3
GND
17
348
+
344
6,10
1
GND
Horizontal
Sync
6,800pF-15KHz
3,300pF-31KHz
3,300pF-38KHz
220uF
334
1,000pF-15KHz
330pF-31KHz
330pF-38KHz
0VDC Hs
56Vpp 62,D6
I PRA
416
The functions of the horizontal control circuits are:
1. To provide the horizontal output circuit
with a stable frequency with or without
incoming horizontal sync.
The picture position O/S clamps timing capacitor
351
to 8.2 volts until horizontal sync triggers this O/S.
The voltage on the timing capacitor drops at a rate set
by the horizontal position control 484 and resistor
I4. When the voltage, at pin 2, drops below 4 volts
the delayed sync O/S is triggered and capacitor 351 is
reset to its clamped voltage. The delayed sync O/S
2. To be able to adjust the picture position,
horizontally, with respect to the raster.
3. To operate stability through periods of
missing horizontal sync pulses.
functions the same as the picture position O/S with the
exception that it is not adjustable.
4. To keep the picture from drifting within
the operating temperature range.
The flyback pulse, connected to pin 4 through
resistor , starts the negative slope of the saw
I6
tooth generator. When the sawtooth wave, which is
produced by a current to capacitor 348 , drops to 3
volts, the sawtooth generator switches back to the
positive slope part of the wave till the next FBP.
All of these functions except for the picture
position adjustment are accomplished by the
phase locked loop. Delaying the horizontal
sync with an adjustable timer produces the
picture position adjustment.
During the active part of the delayed sync pulse,
346
the multiplier gates current to capacitor which
The horizontal sync input circuit (pin 1) will
trigger the picture position one-shot (O/S) on
either the rising edge, or the falling edge, of the
horizontal sync pulse. To accomplish the edge
triggering, the sync pulse is differentiated by
capacitor 352 into two short pulses, one for the
rising edge and one for the falling edge of the
sync pulse. Which edge is the trigger depends
on the bias voltage at pin 1. For positive edge
triggering, the bias voltage is set to 7.8 volts by
is dependent on the sawtooth voltage at the
347
delayed sync pulse time. Capacitor sets the
"0" voltage for the multiplier which is the average
value of the sawtooth waveform.
If the delayed sync pulse occurs when the
sawtooth is at a low voltage part of its cycle,
346
capacitor discharges and the oscillator
frequency lowers. If the delayed sync pulse occurs
at the top part of the sawtooth wave no current
resistors
and . For negative edge
I3
I2
346
flows to capacitor . This action, phase locks
triggering, the bias voltage is set to 4.1V by
connecting via the solder connection I.
the horizontal oscillator to the incoming sync
pulses.
I12
IA
82
HORIZONTAL DEFLECTION SCHEMATIC.
19
2SC5690
NO DVM Hs
.9KVpp 27,G6
2
100Ω Horizontal
TC11
TC12
Fil.
Drive
I11
20
Fil. Rtn.
Screen
FOCUS
EHT
1N4007
Transformer
3
4
2.2nF
343
433
435
Video
Board
800
1
1.2Ω
434
332
GND
To Yoke
FLYBACK
TRANSFORMER
107V-127V
092
LA7851
10
EHT
HORIZONTAL
OSCILLATOR DISCHARGE
415
H. V+
10
092A
1K
10.8-12V
10, E6
7
8
9
6
451
452
465
3-7VDC Hs 5.5-6.3V Hs 5-6VDC Hs
.2Vpp 07,E6 3.6Vpp 08,E6 7Vpp 09,E6
FOCUS
9
8
336
SCREEN
Beam
4 Current
14
1K
H.Fo ADJ .
680Ω 340Ω
170Ω
I14
15
9.31K
I10
33K
17
13
I9
7
5
+200Hz
I8
I16
+800Hz
I15
+400Hz
16
.01uF
346
3
To P/S
V-
345
2
FIL.
G
E
F
6,800pF-15KHz
3,300pF-31KHz
3,300pF-38KHz
1
0Ω
467
453
GND
346
433
The voltage on capacitor controls the
The horizontal output transistor conducts
I8
horizontal oscillator frequency via
.
In the case
about three amps of horizontal flyback
of missing horizontal sync pulses, the multiplier does
transformer primary current and deflection
yoke current. This transistor has a beta as low
as three. To supply the high base current, a
horizontal output transistor drive transformer is
used. The drive transformer 332 builds up
energy during the on time of the drive
not sink current and flywheel capacitor holds
344
I7
the horizontal frequency constant. Resistor
permits small rapid changes of the control voltage at
pin 7 for locking of the oscillator to horizontal sync.
transistor, which is the off time of the
horizontal output transistor . Capacitor
and resistor I11damps the drive
343
337
The horizontal oscillator capacitor
345
433
charges to its upper voltage limit through resistors
I10
I16
I15
I14
336
, , ,
, and . This capacitor is
transformer primary waveform. To reduce
power dissipated by the horizontal output
transistor during turnoff, a clamp circuit is
connected to the drive transformer primary.
then discharged to the lower voltage limit through the
action of discharge pin 9 and resistor I9 . The free
running frequency (Hfo) may be adjusted by making
solder connections on the I PRA. (see page 65 for the I
PRA layout). In some cases where there are many
missing horizontal sync pulses, it is necessary to
adjust the Hfo closer than ±200 Hz. For fine tuning
the Hfo, resistor 336 is replaced with a pot.
This clamp consists of resistor , capacitor
341
3, and diode .
342
338
The flyback transformer's main function is to
supply EHT to the CRT. It also supplies the
focus and screen grid voltages which are taps on
the EHT supply. There are three low voltage
secondaries. One supplies the filament
current, negative G1 voltage, and timing on the
video board. Another supplies sync and EHT
information to the power supply. The third
secondary drives the horizontal blanking circuit
and supplies sync for the horizontal PLL, the
horizontal width control, & the vertical sync
synchronizing circuits.
The horizontal phase locked loop then consists
of an oscillator which sets the flyback timing.
The flyback pulse is then compared to the incoming
sync pulse and the difference voltage holds the
oscillator at the sync frequency.
The duty cycle of the horizontal drive transistor
is generated by comparing the oscillator waveform
against a fixed voltage. This fixed voltage is set by
resistors and 418 .
417
83
HORIZONTAL RASTER WIDTH CONTROL CIRCUIT DESCRIPTION.
The power output stage of the horizontal width
control circuit is a high efficiency switching mode
The purpose of the horizontal width control is to:
1. Provide a convenient means for adjusting
the horizontal raster size.
057
driver. The FBT pulse is integrated by capacitor
058
095
through resistor and level shifted by resistor
to produce a saw tooth waveform. See waveform block
TP 39. By connecting one input of the comparator, in
the LM392 , to this sawtooth signal and the other
2. Correct pincushion distortion in the vertical axis.
3. Correct horizontal raster distortion caused by
periods of high beam current.
049
input to the control amplifier a switched signal with a
duty cycle dependent on the control voltage is
055
056
produced at the output. Resistors and form
a voltage divider which limits the control voltage
amplitude to be within the sawtooth waveform.
Resistor acts as a pullup for the comparator
460
The horizontal width control circuit is comprised of
two main parts; The control circuit and the diode
modulator (DM). The control circuit combines four
signals in the monitor to produce the width control
circuit. These signals are:
output. Resistor couples the power MOSFET
461
to the comparator. Capacitor 463 and resistor
464
are connected as a snubber circuit to reduces noise due
to rapid drain transitions.
1. Horizontal size - - - - - - H. Size Pot.
2. Vertical current (Iv) - - V. current feedback resistor
3. Vertical parabolic + Iv Vertical yoke return.
4. Beam current - - - - - - - EHT return on the FBT
When the MOSFET is on (gate voltage high)
458
current increases in inductor and when the
MOSFET is turned off the current is dumped in to the
462
24-27V line through diode . The magnitude of
this current, from the diode modulator, is determined
by the duty cycle of the MOSFET which is a function
of the control voltage.
The diode modulator controls the horizontal yoke
current which affects the horizontal size. This is
accomplished by the diode forward current. In effect,
the diode shorts out the horizontal width coil to the
extent of the diode forward current during the previous
horizontal trace time. The current used to control the
diode forward current comes from the diode modulator
and is controlled by the control circuit and the
switching mode driver.
477
478
Diodes and with current equalizing
resistors 475 and 476 rectify the flyback waveform
present on the GND referenced node of the
horizontal tuned circuit. This current is conducted
457
through inductor and integrated by capacitor
456
and then is controlled by the driver circuit.
478
477
Diodes and are the diode modulator
diodes and the forward current which the drive
circuit controls is the current which determines the
turn on delay of the GND referenced node of the
horizontal tuned circuit. An increase in the current
The horizontal size voltage from the remote control
490
PCB 4
is applied directly to the current node
(LM392 Pin 5) of the control amplifier by resistor .
043
of diodes and produces a greater delay in
477
478
For pincushion correction, two separate signals are
used. The inverted vertical current waveform
the GND referenced node, and reduces the amplitude
of the flyback pulse at this node, which results in an
increased horizontal size.
(TP 34) and the yoke return waveform (TP 33). The
yoke return waveform includes a parabolic and linear
component. The inverse of the linear component is
added to the yoke return waveform to correct the
pincushion. The vertical current waveform (Iv) is
441
442
Capacitors and are the primary
horizontal tuning capacitors and must be the specified
value for a given chassis horizontal frequency and
yoke combination for proper operation of the monitor.
029
051
inverted by an Op Amp and resistors 0and
.
031
Resistor level shifts the inverted Iv to + 6V.
437
Capacitors and
The (vertical parabolic + Iv) is AC coupled by capacitor
are the diode modulator horizontal tuning
439
082
038
040
and resistor and . It is then
amplified by an Op Amp connected as a voltage
440
capacitors. Diodes and 438 clamp the GND
referenced node voltage to GND. Horizontal linearity
038
follower. Resistor protects the Op Amp against
arc related voltage spikes. Load resistors and
coil stores energy from the flyback pulse and
431
050
injects it into the horizontal yoke in the reverse
prevent cross over distortion of the Op Amps by
053
direction of the yoke current to decrease deflection at
the start of trace to balance the decreased deflection at
the end of the horizontal trace due to I2R losses in the
using only the current source transistors.
The inverted Iv and (parabolic voltage +Iv) are added
to the current node of the control amplifier by resistors
yoke during trace time. Capacitor and resistor
432
041, 042
,
0030 , & 052which then makes up the
keeps the linearity coil from ringing after retrace.
428
pincushion correction signal.
The raster may be shifted by making solder
The beam current from the FBT is converted to a
voltage by resistors and is filtered by capacitor
connections: left or right . The amount of the
SL SR
009
shift is set by solder connections , , & .
S1 S2
S4
010
. Resistor 097 then connects the signal to the
Inductor permits only the DC current to pass to
447
current node of the control amplifier, which
accomplishes the blooming correction function.
423
424 425
, & define
the yoke return. Resistors 4
,
the size of the shift together with the V+ plus 5V and
189
V+ minus 5V supplies. Resistor supplies a load
These circuits are designed around a virtual ground,
the +6 volt line. This line is generated by buffering a
on the V+ ±5V lines to avoid over-voltage of the filter
022
023
185
195
capacitors. Resistors , act as fuses to protect
the PCB in the case where both and
connections are made.
voltage divider and with an OP Amp.
026
021
Resistor and capacitor form the output filter.
SL
SR
84
HORIZONTAL RASTER WIDTH AND POSITION CONTROL SCHEMATIC.
Horizontal Raster Position Adjustment
22K
68Ω 1W
189
425
S4
0Ω
4.7Ω
V+(+5V)
V+(-5V)
150Ω 1/2W
424
191
185
SR
SL
S2
12mH
447
0Ω
4.7Ω
270Ω
423
195
188
S1
18Ω
H. S. +12V
+12V
+6V
Line
063
13
Vert. Output
Vertical
4
510Ω
10.0K
022
1/4
LM324
14
Yoke
021
+
033
12
+
11
100uF
026
100uF
026
1,000uF
449
+6 Volt
Source
10.0K
023
GND
HORIZONTAL YOKE
Horizontal
Output
FBT Pin 10
1.2Ω
HORIZONTAL WIDTH CONTROL
385
972
10.0K
10.0K
HS +12V
10.0K
029
031
051
0Ω
Hs
107V or 127VDC
9
YC4
445
120Vpp 250Vpp 32,F6
194
1/4
LM324
8
H Size
Max. Min.
446
10
+
6V
GND
033
YOKE
Matching
.33uF
10K
5
YC3
3.3K
050
3.3K
053
7
038
1/4
LM324
082
FR205
440
200K
-Linear
Pincushion
6
6V
5.6-6.2VDC Vs
2-3.6Vpp 33,B2
0Ω
033
040
430
428
432
Correction
FR205
438
Parabolic
Pincushion Correction
Vs
5.6-6.2VDC
1-1.7V 34,B2
Horizontal
Linearity
coil
FBT Pin 4
Beam Current
Load Resistor.
1.5KV
442
1.5KV
441
431
041
030
6V
6V
Q
R
Hs
4VDC 20VDC
See
Table
042
See
Table
052
30Vpp 200Vpp 35,H7
009
Blooming
Max. Min.
H Size
Correction.
200V
444
200V
443
I BEAM
097
.1uF
010
.01uF
054
457
4-19VDC Hs
27Vpp 36,J7
HER105 HER105
044
50uH
GND
.022uF
630V
437
1N4937
477
478
+24-27V Line
HS +12V
458
462
28.0K
H. Width Adjustment
Range.
0Ω
.68Ω .68Ω
1W
1W
476
096
454
44.2K
058
2.7K
060
2
3
475
439
5
MTP
8N08
1/2
8
1nF
100V
463
1
LM392
1/2
043
12.1K
045
7
Comp.
10K
055
LM392
Amp.
0Ω 510Ω
094 461
Vs
37,I6
H Size
4VDC 20VDC
11Vpp 15Vpp
Max. Min.
049
6
049
Ω
470
1/2W
464
6.8K
056
4
460
.01uF
047
10.0K
095
0.8-7VDC Hs
12Vpp 38,J7
H. Size
Control
2-2.5VDC Hs
4.4Vpp 39,B3
057
100V
456
GND
FBP, FBT Pin 8
GND
HORIZONTAL WIDTH DRIVE
85
DYNAMIC FOCUS CIRCUIT FUNCTION AND CIRCUIT DESCRIPTION.
Model 1793-31.5DF
NO DVM Hs
.8KVp-p 27,G6
FLYBACK
TRANSFORMER
Horizontal Drive
Transformer
CPT1505
CRT
EHT
10
1/2W, CC
470Ω
2
332
13
433
520
3
4
0Ω
FOCUS
#2 FOCUS
1N4007
435
V+
9
8
1
452
1.2Ω
434
SCREEN
12 Dynamic Focus
11
H PLL
DM Drive
GND
12-18VDC Vs
50Vpp 29,F6
0Ω
7
5
4
465
OVP
P/S Sync
YC1
426
Beam Current
VERTICAL
3
2
1,000uF
DEFLECTION
YOKE
Filament
V-
1
35V
Vs
YC2
+
CPT1555
453
GND
427
449
V+
2,200pF
1KV
1N4007
512
13-15VDC Vs
HORIZONTAL YOKE
3-5Vpp
31,F5
2.2MΩ 2.2MΩ
510 511
507
Vs
1.00MΩ
504
2SC3467
0VDC Vs
1.6Vpp
CPT1556
200KΩ
1
2
Horizontal
Linearity &
Width coils.
.33uF
500
514
1KΩ
0.1uF
250V
509
4
3
270Ω
501
518
.47uF
200V
.01uF
1.6KV
441
.47uF
443
0Ω
502
516
330pF
500V
515
517
191K
503
36K
505
1.2Ω, 1W
Hs
444
385
GND
Horizontal Width Control.
(Diode Modulator)
The dual focus CRTs require a waveform on the #2 focus grid. This voltage waveform is dependent on the
position of the beam on the CRT. The lowest voltage part of the waveform is in the center of the screen and the
highest voltage part of the waveform is at the corners of the screen.
The dynamic focus circuit produces a composite waveform which consists of the horizontal parabolic waveform
and the vertical parabolic waveform. This composite waveform is applied to the dynamic focus input, of the
flyback transformer, and produces a sharp picture on the dual focus picture tubes. Typically dual focus picture
tubes produces a sharper picture than the single focus picture tubes.
Dynamic Focus Circuit Operation: The vertical component of the dynamic focus circuit is derived by
amplifying the voltage waveform across the vertical yoke coupling capacitor. The horizontal component of the
dynamic to focus circuit is produced by applying the voltage waveform across the horizontal yoke coupling
capacitor to the dynamic focus transformer primary. This transformer steps up the horizontal parabolic
voltage from about 33V to about 300V to produce the horizontal component of the dynamic focus circuit.
509
Circuit Description: Transistor amplifies the vertical parabolic waveform which exists across capacitor
449
501
500
. This waveform is coupled to the transistor base via capacitor and resister . The bias for this
504
503
505
transistor is generated by resistors and . The gain of this amplifier is defined by resister and .
Note; Resister is connected to the vertical feed back line and not to ground. The supply voltage for the
collector is produced by diode which rectifiers the primary flyback pulse and is integrated by capacitor 507 .
The load resisters for this transistor are resistors and . The waveform on the collector, which is the
vertical parabolic waveform, is conducted through resister 514 and through transformer to the dynamic
focus input of the flyback transformer. Resisters and 501 provides arc protection for transistor . The
505
512
510
511
518
514
509
horizontal component of the dynamic focus waveform is produced by coupling the primary of the dynamic focus
518
transformer at to the horizontal yoke coupling capacitors at 443 and 444 . Capacitor 515 provides a low
impedance pass to ground for the horizontal parabolic waveform which is developed across the dynamic focus
518
517
transformer secondary at . Capacitor insures that there is no D. C. component across the
transformer primary. Resister 516protects the dynamic focus transformer primary from overload.
The flyback transformer couples the dynamic focus waveform to the #2 focus grid via an internal capacitor.
453
86
Vertical Booster Amplifier Circuit, Circuit And Function Description.
Monitors with vertical deflection current which exceeds
2.2 Ap-p cannot be driven directly by the LA7838 vertical
LA7838
deflection IC. The vertical booster amplifier circuit
reduces the output current of the LA7838 by amplifying
the vertical deflection current. The LA7838 is mounted
on the vertical booster amplifier circuit board to allow the
boosters circuit to be inserted at the output of the LA7838.
Thermal Protection
Vertical
Deflection
Vert.
Out
Retrace
Booster
377
Boost
Drive
+24V
GND
9
10
11
12
13
8
PCB View;
Foil Side.
+24V
E
C
B
NPN
603
TIP31A
602
E
C
B
FR205
604
NPN
602
Vertical Amp. PCB
CPB1615
1.2Ω
44Vp-p
E
C
B
PNP
601
605
1N4007
382
612, LA7838
470uF
380
+
1
3
5
7
9
11 13
Vertical yoke drive, voltage waveform.
TIP31A
603
609
Vertical Booster Circuit,
Operation. The following
waveforms are taken from
the 2793-VGA monitor.
See waveform #1 for the
vertical deflection current.
Waveform #2 shows the
LA7838 output current.
Waveform #3 shows the
current supplied by the
vertical booster amplifier
circuit. These current
waveforms describe how the
vertical booster circuit
reduces the LA7838 output
current to a current which is
well within the specification
of the IC.
FR205
611
4.7Ω
608
3.0Ap-p
#1
#3
#2
3.3Ω
610
Vertical yoke drive, current waveform.
4.7Ω
607
TIP32A
601
0.6Ap-p
#2
606
#1
LA7838 output, current waveform.
YC1
Vertical
Deflection
Yoke
2.4Ap-p
#3
2,200uF
.68Ω
+
YC2
385
449
Vertical booster, current waveform.
610
The output of the LA7838 is connected to the yoke by a 3.3Ω resister at . It also drives the
601
603
bases of transistors and through 4.7Ω stabilization resistors. When the voltage drop
610
across resistor reaches ±.7V the respective transistor (601 for -.7V & 603 for +.7V) takes
over most of the additional vertical yoke drive current.
The retrace booster pulse, from the LA7838 pin 9, is connected to the retrace booster capacitor at
380
602
and is also buffered by an NPN transistor at 6. The output of the retrace boost is
603
connected to the LA7838 at pin 13 and to the vertical booster NPN transistor at .
604
611
Diodes and conduct current, right at the start of retrace. This current is produced by
382
the energy in the yoke, from the end of the last trace. Diode supplies the deflection current
to both the LA7838 and the booster amplifier circuits during trace time.
606
609
Stabilization capacitors and are not used at present, but may be needed with other
output transistors.
87
SIMPLIFIED POWER SUPPLY CIRCUIT, FUNCTION, DESCRIPTION.
V+
+52V to +127V
LOAD
H Dy & EHT
VIDEO
FLYBACK
DIODE
+
+
Res.
142
GND
AC
GND
line
C5184
Error Amp.
FET
SECONDARIES
User supplied
Isolation
Comp.
+
DRIVER
166
Transformer
136
V-
ENABLE
VREF.
OSC.
115
V- (-200V)
137
The switching regulator includes the
When the FET is turned off, the stored
energy in the inductor continues supplying
current to GND. But in this case, the
current path is from V+ to GND, instead of
V-to GND. During this part of the cycle,
the current in the inductor is decreasing.
136
power FET which passes current from
166
V- to GND through the inductor .
During the time the FET is on, the current
in the inductor is increasing and the
inductor is storing energy.
Under normal conditions, the current will decrease to zero and the voltage will ring.
FET drain voltage
Current in inductor
Current supplying GND
Current from V-
137
Voltage across
142
Current in diode
Current added to the +127V line
Flyback pulse
115
As can be seen from the waveforms, the
largest number of changes occur when the FET is
turned off. Also, the FET drain voltage switches
fast due to the high inductor current. To
minimize video interference from the power
supply, the power supply is synchronized to the
horizontal oscillator such that horizontal
The C5184 is the series regulator
IC. All of the control circuits that are
built into this IC work together to produce
one output signal, which is the FET drive
signal. This signal can take on many
shapes depending on the load conditions of
the power supply. The waveforms for
blanking is coincident with the FET turn off time. normal operation are shown above.
For the shorted +127V to GND condition, which also occur right on power up,
the waveforms are:
FET Gate Drive
FET Drain Voltage
Inductor Current
next cycle with current still flowing in the
flyback diode, a current spike of 6A would
occur, which is a power spike of 2,000W.
The reason for this is that the diode stores
charge when current flows which turns into
reverse current for a short time when the
voltage is reversed across the diode.
The first FET pulse is a full on pulse
which causes current to flow in the inductor.
After the FET is turned off the current in
the inductor drops much more slowly than
normal since the inductor is discharging
into a much lower than normal voltage. If
the FET were turned on for full power in the
88
SIMPLIFIED POWER SUPPLY CIRCUIT DESCRIPTION.
The FET drive circuit avoids this problem
A 0-30 volt @ 1A, DC, isolated power supply
is a tool necessary for trouble shooting
by sensing flyback diode conduction. If the
flyback diode conduction is sensed, the low
current start mode is selected. This mode
turns the FET on, to a current of .1A, for not
more than 4uS. If before or during the low
current FET on time, the flyback diode breaks
free, and the FET drain voltage goes down,
the flyback diode voltage comparator will
signal the regulator to permit the FET to be
turned on for a full power cycle. The cycle
after the last low power cycle in the waveform,
on the previous page, is an example of this
condition. The flyback diode voltage
comparator inputs are located at pins 12 & 13
of the C5184. The two resistor dividers ( see
next page ) J10 , J11and J12, 134connect
the comparator across the flyback diode 142.
The comparator enables the FET drive only
after a 10% voltage drop is measured across
this diode.
CERONIX monitors. When trouble shooting
the power supply, it can be connected to V-
and the +17V line to keep the power supply
running while checking the voltages and
waveforms to find the fault. Caution, do not
exceed 20 volts on the 17 volt line. It can also
be used to supply the GND to +16V line for
checking the horizontal circuit. If the
horizontal circuit does not work, the power
supply will chirp. Without the horizontal
circuit working, there is not enough load on
the power supply for transformer action to
keep the regulator IC +17V line up to the
minimum of +12V. A quick check for this
condition is to clip a 2-4K @ 10W power
resistor from GND to V+. If the chirping
stops, the horizontal is probably not working.
The heart of the power supply is the
oscillator which supplies the basic timing.
The FET drive is always low during the
negative slope of the oscillator or, when
synchronized, after the start of the sync pulse.
The low to high transition of the FET drive,
pin 10, is determined by the voltage at the
output of the error amplifier. If V+ goes up in
voltage, the error amplifier voltage goes up,
which then intersects the oscillator waveform
at a higher voltage and causes the FET on
time to start later and be shorter. This
negative feedback accomplishes the control
loop of the power supply.
Another fault condition exists when the
FET exceeds 5A drain current. This
condition can occur if the oscillator frequency
is too low, the FET drain is shorted to GND or
V+, the transformer has a shorted secondary,
or the core is broken. In these cases the
137
voltage across the FET source resistor
exceeds 1.6V which is sensed by the over
current comparator at pin 11. If pin 11
exceeds 1.6V, the FET drive is set to 0V for
the rest of the cycle. In some cases, this
condition can produce an output waveform
which looks normal, but the voltage across the
load (+127V to GND) would be low or
The regulator IC has a built in reference
voltage which is used by the error amplifier
to set and hold the V+ constant. Solder
connections on the J PRA are used to adjust
V+ in steps of ±1.5V.
unstable. A quick check for this condition is
to check the peak voltage across the FET
source resistor. CAUTION; Whenever
connecting a scope ground to V-, be sure that
the other scope probe or common grounded
devices are not connected to the monitor GND.
The over voltage protect ( OVP ) circuit,
when activated, turns off the regulator IC
until power is disconnected. This circuit is
connected to the rectified flyback pulse, which
outputs a voltage that is proportional to the
EHT. The circuit's main purpose is to protect
the user against excessive x-ray which is
caused by excessive EHT. The OVP circuit is
also activated if the monitor temperature goes
too high or if too much beam current is
demanded from the FBT. The purpose of the
last two functions is to protect the FBT and
the CRT from component failure on the main
or video boards.
Most of the power supply fault conditions
cause the power supply to chirp because the
source of +17V for the C5184 is generated by
the power supply. A special circuit is built
into the C5184, which permits charging the
+17V line filter capacitor with only a very low
load from the C5184. This circuit turns the
rest of the C5184 on only after the voltage at
pin 15 reaches 17V. If the transformer does
not supply at least 12V to this line before the
filter capacitor discharges to 12V, the C5184
turns off. The reason for the audible chirp, is
that, the power supply is not full on for each
cycle which produces a frequency low enough
to hear. See the bottom waveform on the
previous page.
89
SWITCH MODE POWER SUPPLY CIRCUIT DESCRIPTION.
Oscillator waveform without sync:
Oscillator waveform with sync:
Error Amp. V.
Fet Drive
FET drive,
C5184 pin 10:
With Sync
115
133
The series regulator IC , controls
sense the max. current. Resistors 140 ,
current to the monitor GND by pulse width
modulation. A PNP transistor , has an
and capacitor 138 reduce power supply
112
electrical noise. Transistor 127and diode
116
emitter current, that is directly proportional to
short the FET drive to V- when the
J1
the 127V line voltage due to resistor and
monitor is turned off to protect the FET from
conducting current with a still large drain
voltage. Resistors J10 , J11, J12and 134
provide a means for checking flyback diode
42 conduction via a comparator. If the
comparator measures low flyback diode voltage
the FET is turned on to the .3A low current
mode. This mode is necessary for power up,
since initially the +127V line is 0V and no
reverse diode voltage exists. The over voltage
protect circuit, at pin 14, has a trip voltage of
8V and when it is activated, it shuts down the
power supply. The EHT is measured by
J14
. This
J13
adjustment resistors
&
current is transmitted to the power supply V-
J5
J15
line, and is applied to a resistor , , &
J16
. The voltage across these resistors is
compared to a reference voltage by the error
amplifier. If the +127V line goes up the output
of the error amplifier voltage goes up.
The pulse width modulation, which controls the
+ 127V line voltage, is accomplished by turning
the FET drive on at some particular voltage
along the rising slope of the oscillator waveform.
This particular voltage is the error amplifier
output voltage. See waveforms above.
rectifying the flyback pulse, with diode ,
130
from a secondary winding of the FBT.
Capacitors , and resistors ,
125
124
126
J9
The FET drive is always off during the
are connected as a low pass filter to smooth out
the simulated EHT voltage which is then
negative slope of the oscillator, or just after the
sync pulse. Since the FET drive pulse is started
by the error amplifier voltage and terminated by
the end of the oscillator cycle, a control system
via pulse width modulation has been established.
The oscillator waveform is produced by charging
applied to the C5184 at pin 14. Resistor
J8
protects the IC current sense input from
voltage spikes and resistor protects the
113
PNP transistor from momentary overvoltage
damage due to line spikes. Zener diode
102
capacitor with a constant current set by
181
protects the horizontal and video circuits from
overvoltage due to power supply failure. If the
J7
resistor to a voltage of 5V and then
discharging the capacitor with double the
+127V line exceeds 160V, the zener diode
charging current to 2.5V. Adding the flyback
181
shorts to GND the +127V line.
123
pulse, via capacitor to this waveform
synchronizes the oscillator, since the oscillator
frequency is set below the horizontal frequency.
At the input to the power supply is a
J2
108
J4 and capacitor limit the
Resistors
,
voltage doubler which outputs between 240 to
425VDC depending on the AC line voltage. It
error amplifier's AC gain, to hold the control loop
stable. Capacitor 107 holds the error amplifier
stable. Capacitor 110 reduces power supply
noise, but, if too large, will cause the power
supply to be unstable. The 127V line is adjusted
by making solder connections on the J PRA (refer
146
has a three amp fuse to protect the PCB
traces, an inrush current limiter 159to
protect the rectifier diodes 148& 156 .
Capacitors 150and are used to reduce
155
diode noise from the monitor to the AC input.
For 220VAC operation the voltage doubler is
replaced by a full wave rectifier by adding
to page 65 for the layout). Solder connections
JC
and are used to raise the 127V line up to 4.5
JD
volts in steps of 1.5 volts. Connections and J
JA
JB
diodes , , capacitors , and
151
154
152
153
lower the 127V line as much as 4.5V.
removing the jumper at .
144
&
163
152
are the raw DC filter capacitors. Resistor
J6
supplies the power supply start current and
resistors and balances the series
connected filter capacitors for 220VAC
operation.
143A
143B
136
The FET works together with the
166
transformer to provide a low resistance
current path from V- to GND. This low
resistance coupled with no large voltage times
current products is what makes the power
Caution! When working on a monitor with a
degaussing relay, unplug the degaussing coil
to avoid causing the residual current relay to
close on a cold posistor. This can happen if the
24V line is energized by a external power supply.
468
137
supply efficient. Resistor provides a
means for sensing the FET current. In the low
current mode, it is used to set the 300mA current
and in the full on mode it is used to
90
SWITCH MODE POWER SUPPLY SCHEMATIC.
V+ plus 20V ---Video Supply
V+ plus 5V---H. Raster Shift
+24, 28V to Vertical Deflection.
+16V, 18V to 12V Regulator.
V+ minus 5V---H. Raster Shift
167A
182
V+
+
1N4937
100uF
120
100uF
118
0Ω
198A
JA
JB
-3V
-1.5V
170
+
+
20
1N4937
+16V
2.33K
J13
4.67K
J14
250V
175
+
+
193K
J1
169
1,000uF
171
1,000uF
+
1mF
1N4937 1N4937
121 122
387
1N5954B
GND
167
160V Zener
181
2SA1371E
112
1
450
GND
100K
113
SMXFR
1
2
8
6
3
4
V+
16.3-19VDC
55, E1
5
6
1
6.5-7.5VDC
41,D1
1N4937
16 14.8-18VDC
+15V
INPUT
10.6K
J5
1N4937
141
30Ω
15
9
168
1,000pF
FR205
142
+17V
INPUT
ERROR
AMP.
10
27
110
139
JD
132
12
5
260Ω
J16
3
+3V
5
2
3
6.5-7.5VDC
166
2.2nF
INPUT
COMP.
149
From Fault Crcuit
JC
18Vz
88K
J4
Over
130Ω
J15
.5-.8VDC
1N4148
130
+1.5V
150
Voltage
Protect
INPUT
14 5.5-6.8VDC
}
4
FR205
16
56pF
107
126
38.3K
J9
3.3nF
108
3,300pF
.1uF
124
11K
J2
4
148
Output
V-
3.4-4.2VDC
2.2nF-230V
2
20
125
23.2K
3-5VDC
56pF
104
CONTROL &
FAULT SENSE
No DVM
300Vpp 40,G1
52,F1
5Vpp
152
1.00M
J10
1.00M
134
18
J3
.1-.5VDC
FR205
230V
12
13
See
4uS
5
6
COMP.
DELAY
+
17
Table
106
3-6VDC
2SK1446LS
105
9
HEAT
SINK
135
151
103
15.8K
J12
14.7K
J11
0.1VDC
1Vpp 51,F1
REMOVE
FOR
230V
0Ω
OUTPUT
33.2K
5.7-6.3VDC
62K
143A
36K
143B
Rx
136
13
220pF
1KV
138
J7
510Ω
11
12
Current
Osc.
GND
144
SENSE
J8
1-4VDC
152
12Vpp
50,E2
47Ω
1/2W
CC
7
8
0Ω
114
0.33Ω
2W
137
2.2nF
18Ω
Cx
10
9
250V
163
DRIVE
102
133
155
7
8,14
140
FR205
V-
+7.5VREF.
1N4005
116
90K
J6
3-4VDC
3Vpp
MPSA64
XRC5184
V-
J PRA
111
47,D2
156
2.2nF-230V
115
TP49, G1
D
127
100pF
129
100uF
128
220pF
123
2,200pF
131
153
& 19
J PRA PINS: 3,10,15,
FR205
230V
V-
V-
0VDC Hs
27Vpp 57,F1
NOTES: POWER SUPPLY VOLTAGES REFERENCED FROM V-.
SCOPE GND MUST NOT BE CONNECTED TO GND AND V- AT THE SAME TIME.
154
VOLTAGE CURRENT CIRCUIT SUPPLIED DIODE FILTER CAP.
POWER
SUPPLY
17VDC
16VDC
7mA
500mA
POWER SUPPLY CONTROL 141
100uF 128
1,000uF 171
1,000uF 173
100uF 118
100uF 120
220uF 174
Inrush Current Limit
LOW VOLTAGE
SECONDARIES
170
168
121
VIDEO AND INPUT
V. & H. DEFLECTION
H. RASTER SHIFT - LEFT
24-27VDC
350mA
C-200-7
25-.5Ω
+24V
(V+) -5VDC 150mA
(V+)+5VDC 150mA
(V+)+20VDC 60mA
159
V+ MODIFIER
SECONDARIES
H. RASTER SHIFT - RIGHT 122
167
.5A,240V
Relay
1VIDEO BOOSTER
GND
The degaussing coil drive
158
CPR0430
CPR0434
Posistor
circuit may use a dual posistor
468
158
or a single posistor with a
3A Fuse
468
shorting relay . The off
0Ω
471
146
current of the single posistor is
large enough to cause raster
movement when there is a
differance between the line
frequency and the vertical
sync frequency.
TR250-145U
160
145
Degaussing
PC 230VAC
PC
1
Connector
120VAC
2
161
162
Degaussing Coil
INPUT
91
Equipment Setup For Repairing The Model XX93 Monitor.
+17.1
DVM
ISOLATION
115
VAC
OSCILLOSCOPE
TRANSFORMER
No DVM
320Vpp
40,G1
ISOLATED
DUAL 1A DC
POWER
SUPPLY
1-4VDC
12Vpp 50,E2
0 to 30V 0 to 30V
VARIABLE
TRANSFORMER
When all else fails,
connect 20 volts to the
power supply 17 volt
line and slowly
increase the AC
voltage up to just
before the the power
supply chirps. This is
called the smoke test.
Test
Generator
or
Signal
CERONIX Model XX93
Source
Legend Description
Represents the XX93 board part number. The parts list gives the
CERONIX PART NUMBER which is indexed to the board part number.
No.
LTR.No.
{
Part numbers of the resistors on the PRA indicated by LTR.
PRA pin number. To determine which PRA the pin number
belongs to, look for the nearest PRA part number on that line.
X
X
{
X-
Y V
LEGEND
DC voltages are measured to GND except in the power supply
where V- is the reference. Use a DVM for DC measurements.
No
X-Y VDC
BOARD PART No.
PART No. ON PRA.
PRA PIN No.
.
LTR.No
Test Point, board cross REFerence location.
X-Y VDC Sync.
Vp-p TP-REF.
.
X
X
The waveform is normally checked with a oscilloscope.
{
DC VOLTAGE RANGE,
WAVEFORM
X-
Y
Vp-p
.
It has a P-P voltage amplitude of
{
USING A DMM.
X-Y VDC
Measurements
are taken with
USE V. or H. SYNC.
X-Y VDC Sync.
CAUTION: When making measurements
on the power supply be sure that the other
scope probe is not connected to GND.
TEST POINT
ASS. REF.
AC VOLTS
Peak to Peak
a white screen. Vp-p TP-REF.
Hs - 5uS/div.
Vs - 2mS/div.
WAVEFORM
Measured with scope
92
Ausrüstung Gegründet Für Die Reparatur Des Monitors Des Modells XX93.
+17.1
DVM
LOKALISIERUNG
TRANSFORMATOR
115
VAC
OSZILLOGRAPH
No DVM
320Vpp
40,G1
LOKALISIERTE
DOPPEL 1A
GLEICHSTROM
VERSORGUNGSTEIL
1-4VDC
12Vpp 50,E2
0 to 30V 0 to 30V
VARIABLER
TRANSFORMATOR
Wenn ganz sonst
ausfällt, schließen Sie
20 Volt an das
Versorgungsteil eine
17-Volt-Zeile an und
erhöhen Sie langsam die
AC Spannung bis, kurz
bevor das
Prüfen Sie
Generator
oder
Signalquelle
CERONIX Modell XX93
Versorgungsteil
zwitschert. Dieses wird
die Feuerprobe genannt.
Legende Beschreibung
Dieses stellt die Teilnummer des Brettes XX93 dar. Die Stückliste gibt die
CERONIX-Teilnummer, die zur Brettteilnummer registriert wird.
No.
{
LTR.No.
Teilnummern der Widerstände auf dem PRA angezeigt von LTR.
PRA Anschlußstiftzahl. Gehört, um festzustellen welchem PRA die
Anschlußstiftzahl, suchen Sie nach der nächsten PRA Teilnummer auf dieser Zeile.
X
X
{
X-
Y V
Gleichstromspannungen werden gemessen, um ausgenommen in das Versorgungsteil
zu reiben, in dem V- die Referenz ist. Verwenden Sie ein DVM für Gleichstrommessen.
X-Y VDC
Prüfpunkt, Brettquerverweisstandort.
X-Y VDC Sync.
Vp-p TP-REF.
LEGENDE
Die Wellenform wird normalerweise mit einem
Oszillograph überprüft. Sie hat einen P-P
Vp-p
{
No
BRETTTEIL-Nr.
TEIL-Nr. AUF PRA.
PRA Anschlußstift-Nr.
WAVEFORM
LTR.No
.
Spannung Umfang
.
Messen werden
mit einem
weiflen
X
X
GLEICHSTROM
Spannung
STRECKE MIT A DMM
VERWENDEN Sie V.- oder
H.-Synchronisierung.
X-
Y
V
VORSICHT: Wenn Sie Messen auf
dem Versorgungsteil bilden, seien Sie
sicher, daß die andere
Bereichprüfspitze nicht an Erden
angeschlossen wird.
{
X-Y VDC
Bildschirm
genommen.
X-Y VDC Sync.
Vp-p TP-REF.
Hs - 5uS/div.
Vs - 2mS/div.
Volt
PRüFPUNKT
ASS. REF.
Wechselstrompaek
Wellenform
zur Spitze.
Gemessen mit oszillograph.
93
POWER SUPPLY, TROUBLE SHOOTING TIPS.
SAFETY FIRST; Use only one hand when working on a powered up monitor to avoid electrical shock.
Always wear safety glasses.
Many of the failures that cause burnt
components and boards are eliminated by the
load sensitive switching mode power supply in
the CERONIX monitor. This feature can cause
problems with servicing the monitor if the proper
trouble shooting approach is not used. The
equipment setup, shown here, is necessary for
efficient trouble shooting of the CERONIX
monitors.
181
3. If the V+ crowbar zener is shorted, a fault
exists in the power supply which permitted the V+
line to exceed +160V. First replace the zener.
Never operate the monitor without the crowbar
zener installed. Then read the POWER SUPPLY
TEST section on this page. Shorts on the V+, 24V,
and 16V lines other than the crowbar zener are not
likely to be connected to the power supply even
though the power supply chirps. By operating the
power supply with the +20V external power supply
many of these problems can be found using the
same procedure as are used in trouble shooting
monitors with linear power supplies.
Problems that cause the power supply to chirp are:
1. Insufficient V+ line load.
2. Overloaded V+, +24V, or +16V lines.
3. Shorted V+, +24V, or +16V lines.
4. Power supply component failure.
5. Raw DC (V+ to V-) voltage too low.
4. The power supply may chirp if:
The transformer core is broken or a
winding is shorted.
The .33 ohm current sensing
resistor value is too high.
1. A quick check for the insufficient V+ load is to
connect a 2K to 4K ohm 10 watt power resistor
from GND to the V+ (cathode of diode ). If the
181
The +17V line is open. (goes away
when external. PS is used)
chirping stops, proceed to check the horizontal
deflection circuit. First disconnect the board from
the AC supply. Then connect 16 volts to the 16V
5. There is a line voltage range of about 60% to
70% AC line voltage where a correctly
operating monitor will chirp.
169
line at the cathode of . Also connect 24 volts
168
to the 24V line at the cathode of diode and to
181
V+ at the cathode of diode on the monitor.
Now the complete horizontal and vertical circuits
can be checked with the oscilloscope and DVM.
The flyback waveform will be about 170Vp-p
instead of 900Vp-p which permits checking even
the H. output transistor, collector, waveform.
POWER SUPPLY TEST
To verify that the power supply is working
correctly, connect the 17V line, as indicated in
section 2 on this page. Also connect the
2. For the overloaded supply line problems, the
monitor power supply can be made to run
continuously by connecting the external power
supply to the 17V line. To accomplish this,
connect the external supply 0V clip lead to V-
oscilloscope GND to V- and the oscilloscope probe to
116
the FET drive (anode of diode ). There should
be a waveform at this point. If there is no FET
drive waveform, check the voltages and waveforms
on the C5184 pins and compare them to the
voltages and waveforms on the schematic.
137
(resistor lead by the power transformer) and
+20V clip lead to the monitor power supply +17V
141
Connect the AC power cord with the AC voltage,
from the variable transformer turned down to 0
volts. TAKE CARE NOT TO TOUCH THE
OSCILLOSCOPE AND MONITOR CHASSIS
DURING THIS TEST, SINCE THE VOLTAGE
DIFFERENCE CAN BE AS HIGH AS 400 VOLTS.
Connect the DVM to GND and V+. Slowly
increase the AC line voltage and observe the power
supply response. Do not exceed +145V on V+. If
the monitor runs normally, a fault may still exist
in the power supply +17V line circuit. Note; if
the crowbar zener is shorted and the FET is
line (cathode of diode ). Sometimes the
monitor will operate normally in this mode, in
which case, watch for smoke and after a few
minutes of operation disconnect the power
connections and carefully feel around the
conductor side of the board for hot spots. Overload
conditions will not harm the power supply unless
there is a problem in the power supply. If the
power supply is suspect, read the POWER SUPPLY
TEST section on this page. Next check the DC
voltage of each of the power supply outputs. The
overloaded line will have a lower than normal
voltage reading. The defective component can be
located by measuring the voltage drop along the
trace of this line.
internally shorted, the C5184 IC should also
115
be replaced.
94
Trouble Shooting Handbook
The information that is written in this handbook is to help repair XX93 Monitors.
Here is a guideline in which this handbook will follow:
Color problems.
No video with power.
No V-H sync.
1.
2.
3.
4.
5.
Always wear safety glasses.
Caution; Use only one hand
when working on a powered up
monitor to avoid electrical
shock.
Retrace lines.
No power.
Color Problems.
A helpful hint when working with color problems is by identifying the
color of the three grid lines at the top of the screen.
When there is a missing color and the lines are white the problem lies in the video
interface section. This means it can be found between the customers game and pin 8 of
the Video Amplifier (K-Film). If the lines are not white it would be a output problem,
which is anything after pin 8 to the picture tube.
If the problem is excessive blue, green, or red background color,
tap on related K-film to see if it is defective.
If blue is the problem, check for damaged traces around the outside of
the video board, since most of these traces go to the blue K-film.
If monitor shuts down due to excessive color, disconnect the filament for
voltage tests. (Desolder CRT socket pin 9.)
Note: All voltage measurements are: DC with -lead to GND unless other wise noted.
Problem
Tests
Probable Solution
If 0V to .05V, check video
connector and drive electronics.
1. Check voltage on 75Ω input
Missing
Color.
288
286
284
resistors
,
, &
.
241
2. If voltage, IC pins 16, 13, or 9 Check for open between IC and
less than 7V & K-Films pin 1>8V.
Refer to the
schematic for
the specific pin
numbers of
each color.
associated K-Film.
3. If voltage, K-Film pin 1 is 10V and Ohm gain resistors at pins, if OK
IC 241 Pins 1,15, & 8 are .3 to.7V.
241
replace video interface IC .
4. If voltage, K-Film pin 1 over 10.6V If pin 1 over 10.6V, replace K-Film.
Desolder pin 1. Make open to trace.
Color may be tested by connecting a clip
lead to GND and a 1.62KΩ resistor.
Contact the resistor to K-Film pin 1.
If pin 1 is 10V, replace the diode of
Pins, listed in
table, are in
order of Red,
Green,
213
086
084
,
, &
.
missing color
241
If still missing color, replace IC 241 .
and Blue.
5. If voltage, K-Film pin 20, different
than voltage at CRT socket pin.
Resistance between these two
points should not exceed 1.1KΩ.
6. If voltage, K-Film pin 20 is
over 115V.
First replace, for shorted arc
suppression, diodes of affected color.
Tests should
preformed in order
to reduce chance of
replacing wrong
component.
835
845
886
899
849
959
Red
Green
Blue
Then try replacing the K-Film.
If not solution, change the
transistors in the amplifier.
Arc
suppression
diodes:
95
Problem
Tests
Probable Solution
If pin 1 still different
Turn down M. Gain.
1.
Excessive
Measure voltage of K-Film pin 1
for each color. If affected color
has a .3V difference then others
Desolder pin 1. Make open to trace.
replace K-Film.
color.
If pin 1 voltage same as others,
Turn down
G2 (bottom
pot of FBT)
if excessive
color is too
bright.
241
replace IC
.
846
2. Measure voltage across cap. 8
.
If this voltage is less than 5V,
check filament pulse. If OK
857
replace capacitor
.
3. Turn up M. Gain.
Refer to the
schematic for
the specific pin
numbers of
each color.
837
Red
Green
Blue
Measure voltage,
of affected color,
base to emitter:
If the voltage is greater than .7V
or 0V , Replace the transistor.
842
954
4. Ohm check,
Red, pin 8
Green, pin 6
Blue, pin 11
If resistance is below 2K, replace
the CRT socket.
CRT socket.
pin of effected
color to pin 12.
Tests should
preformed in
order to reduce
chance of
replacing
wrong
If voltage is 3-8V replace the
2SC3467 & the PNP transistor pair.
5. Measure voltage, of affected color,
K-Film pin 4.
component.
If voltage is less than 2V replace
PNP transistor connected to pin.
Problem
Tests
Probable Solution
1. Note; Blanking should be > 5V.
Measure blanking voltage on
The vertical booster pulse supplies
part of vertical sync to the auto bias
No Picture.
215
927
jumper . If .6V to 1V check
vertical output for waveform.
IC . With no sync to pin 8 of
Check that the
master gain pot
is turned up.
927
, vertical blanking is not reset.
2. Check light from filament.
If no light check FBP before and
If FBT waveform is the same on both
sides of the filament adjustment cap.
854
854
after capacitor .
, ohm out the filament circuit.
3. Measure voltage on Blue K-Film
If this voltage is over 10V, replace
942
pin 7. This voltage should be 9.3V. transistor
.
If this voltage is under 100V, check
that the FBT bottom pot is turned
up. Replace CRT Socket if GND to
G2 is less than 100KΩ.
4. Measure G2 voltage on
877
CRT socket pin 7.
920
5. Measure voltage on LM324
pin 8.
If this voltage is 9-11V, replace the
C-Film and or LM324 .
917
920
Problem
Tests
Probable Solution
1. Vertical osc. frequency adjustment;
Add or remove V solder connection. p30
No
Sync.
2. Check H. free running freq. (Hfo)
If out ±500Hz of sync, adj. Hfo. p75
If input sync to the LA7851 is OK
Tests should
preformed in
order to reduce
chance of
3. Check sync waveforms at input of
LA7851. Hs=pin 1, Vs=pin 19.
415
and picture roles replace IC .
Also should check other voltages in this circuit.
355
4. Check voltage, LM339, pin 14.
replacing wrong
component.
355
If outside range replace IC .
Normal range is 5V to 7V.
96
Problem
Tests
Probable Solution
1. Turn down M. Gain to minimum.
Retrace
Lines .
927
Measure voltage, auto bias IC
pins 2, 4, & 6 for 5.5V to 6.5V.
Also measure voltage, pins 3, 5,
& 7 for 1.1V to 2.7V
If any of the voltages are
not in the listed voltage
range, replace IC .
927
If old style C-Film (no solder
connection) & pin 5 voltage is 4.8V
add a 7.15K resistor pins 8 to 11.
Otherwise replace C-Film.
920
2. Measure voltage, LM324
pin 5. Should be less than 4.5V.
215
3. Check video gain line (J
)
If either V. or H. blanking is
missing, go to that circuit for
further tests.
215
scope sync on Vs , .2mS/cm,
and verify V. & H. blanking.
Problem
Tests
Probable Solution
846
If screen turns bright & shutdown. Check voltage across cap. 5-10V
1.
Monitor
Shuts
Down.
2. If shutdown right after power up.
Check V+, Hfo, & EHT at power up.
If solution, check fault circuit.
019
3.
4.
Disable fault; clip to GND.
109
Disable shutdown; clip V- to .
Measure EHT, should be less than 27KV.
Problem
Tests
Probable Solution
146
1.
2.
With power applied, check voltage If 0V to 100V, ohm out fuse
&
No
Power.
156
159
ground to (V-) anode of diode . inrush current limiter 25Ω to .5Ω.
181
Measure voltage, V+ line is 0V &
PS chirps
Ohm out crowbar zener diode .
433
Also ohm out H. output Xsr .
If the zener is shorted and the fuse
is blown, replace fuse 146 ,
If fuse is blown.
Ohm out 160V crowbar zener 1
3.
146
181
.
181
136
zener , power FET ,
115
and the C5184 IC .
Ohm out the 17V line; V- to anode
4. If the power supply chirps and
high voltage can be heard.
141
139
141
149
132
of , , , ,
,
115
J -Film pins 8-14 & IC pin 15.
5. If the power supply chirps, check
for shorted secondary voltages by;
142
168
First, ohm out diodes; , ,
169, 181 .
Disconnect power to chassis.
If PS current less than .5A and 12V
line=11.5V to 12.5V, go to next test.
Apply external DC PS to 16V
line at cathode of diode .
169
If PS current less than .3A, line OK.
Check base of H. output for
Apply second DC voltage to 24V
433
168
line at cathode of
.
drive waveform. If OK connect 24V
line to V+ line and check flyback
FBT Check at low voltage;
433
waveform at collector of .
(Without H. deflection load, PS
chirps) If large and small pulses
observed, replace the FBT.
97
Filament Voltage Test.
When replacing either the flyback transformer or the video
board, the filament voltage may not be correct.
Measuring the filament voltage is not accurate using a true
RMS voltage meter, because of the high frequency components,
which make up the filament voltage. An oscilloscope, with RMS
capability, may be used to measure the filament voltage.
Although a visual check of the filament color is a indicator of the
filament voltage, it is a good practice to check the filament voltage if
there is any doubt about this important monitor parameter.
The following filament voltage test is an accurate method of
finding the true RMS voltage to the filament. This is accomplished
by comparing the light output of the filament when it is driven by
the monitor to the light output of the filament with an applied DC
voltage using a loaded photocell.
ISOLATED
DUAL 1A DC
POWER
SETUP:
10
0Ω, 904
1N4005
+
10uF
11
SUPPLY
906 10uF
895
+
250V
1N4005
9
+
+
905
0 to 30V 0 to 30V
18Ω, 879
13
14
15
16
17
18
19
20
FIL. FIL.
2.2nF,889
11
10
BLUE
8
0Ω, 896
901
RED
0Ω, 897
12
0Ω, 898
7
+6.30V
DVM
G2
GAPS
GND
10
9
900
11
8
12
7
6
6
+
CELL
GREEN
.150V
DVM
5
470Ω, CF
2K,852
1
5
G1
FR205
853
1K
CF
XX93
Video Board
.033uF, 854
100K, CF
855
24.3K
To find the filament voltage;
1. Solder two short buss wires to the filament pins to clip on.
2. Use black tape to secure the photocell over the hole in
the plastic CRT socket connector. Caution: Be sure
not to move the photocell between the two tests.
Record the DC voltage output from the photocell with the monitor running normally.
The monitor should be powered up for 10 minutes before making this measurement.
3.
4. Turn off the monitor.
5. Connect the variable voltage, 1 amp, DC power supply to the filament.
The negative lead to the filament ground at the CRT socket pin 10.
6. Adjust the power supply voltage for the photocell reading, recorded in step 3.
The equivalent filament RMS voltage is now recorded by measuring the DC voltage
at the CRT socket pins 9 and 10.
7.
98
HeizfadenSpannung Test.
Wenn der EHT-Transformator oder die Videokarte geändert wird, kann
die Heizfadenspannung falsch sein.
Die Heizfadenspannung besteht aus Hochfrequenzbestandteilen. Genaues Messen
der Heizfadenspannung kann nicht mit einem Effektivwertmeßinstrument erhalten
werden. Ein Oszillograph mit Effektivwertmessen-Fähigkeit kann benutzt werden,
um die Heizfadenspannung zu messen.
Obgleich ein Sichtprüfen der Heizfadenfarbe eine Anzeige der
Heizfadenspannung ist, ist es gutes üblich, die Heizfadenspannung zu
überprüfen, wenn es irgendeinen Zweifel ¸ber diesen wichtigen
Monitorparameter gibt.
Der folgende Heizfadenspannung Test ist eine genaue Methode des
Findens der zutreffenden Effektivwertspannung zum Heizfaden. Dieses
wird vollendet, indem man die helle Ausgabe des Heizfadens vergleicht,
wenn es durch den Monitor zur hellen Ausgabe des Heizfadens mit einer
angewandten Gleichstromspannung mit einer einprogrammiert Fotozelle
angetrieben wird.
LOKALISIERTE
DOPPEL 1A
KONFIGURATION:
10
GLEICHSTROM
VERSORGUNGSTEIL
0Ω, 904
1N4005
+
10uF
11
906 10uF
895
+
250V
1N4005
9
+
+
905
0 to 30V 0 to 30V
18Ω, 879
13
14
15
16
17
18
19
20
FIL. FIL.
2.2nF,889
11
10
BLUE
8
0Ω, 896
901
RED
0Ω, 897
12
0Ω, 898
7
+6.30V
DVM
G2
GAPS
GND
10
9
900
11
8
12
7
6
6
+
CELL
GREEN
.150V
DVM
5
470Ω, CF
2K,852
1
5
G1
FR205
853
1K
CF
XX93
Videokarte
.033uF, 854
100K, CF
855
24.3K
Die Heizfadenspannung finden;
1. Löten Sie zwei kurze bussleitungen zu den Heizfadenanschlußstiften weich.
2.
Benutzen Sie schwarzes Band, um die Fotozelle über der Bohrung im
Plastik-CRT-Einfaßung Stecker zu sichern.
Vorsicht: Seien Sie sicher, die Fotozelle nicht zwischen die zwei Tests zu
verschieben.
Speichern Sie die Gleichstromspannung, die von der Fotozelle mit dem
Monitor ausgegeben wird, der normalerweise läuft. Der Monitor Muß
laufen damit 10 Minuten die Heizfadenspannung messen.
3.
4.
5.
Drehen Sie weg den Monitor Ab.
Schließen Sie die variable Spannung, 1 Ampere, Gleichstrom-Versorgung zum
Heizfaden an. Das Negativ führen zu den Heizfaden, der am CRT-Einfaßung
Anschlußstift 10 gerieben wird.
Stellen Sie die Versorgungsteilspannung auf das Fotozelle Messen ein, gespeichert
in J obstep 3.
6.
7.
Die gleichwertige Heizfadeneffektivwertspannung wird jetzt gespeichert, indem man die
Gleichstromspannung an den CRT-Einfaßung Anschlußstiften 9 und 10 mißt.
99
SETUP AND CONVERGENCE PROCEDURE
7. Adjust the yoke position, on the CRT neck,
1. Use a knife to brake free the magnetic rings
on the yoke, which are usually locked with
red varnish. Bring the adjustment tabs on
each pair of magnetic rings in line for the
starting point.
to the center of purity. One way to locate
this yoke position is to make a felt pen mark
on the CRT neck at the rear extreme of
purity and another mark at the front extreme
of purity. Make a third mark between the
two marks and set the yoke to this position.
Rotate the yoke to line up, the raster top line,
with the top of the picture tube. Tighten the
yoke clamp. Tilt the yoke side to side and up
and down while watching the red field to
verify that purity is good.
Loosen the yoke clamp. Remove the yoke
wedges and the tape from the CRT.
2.
3.
Connect a test generator to the video input.
8. If the yoke position adjustment does not
pr odu ce good pu r it y, a dju st t h e pu r it y
magnets. Tabs closest to the yoke winding.
4. Turn the monitor on.
Switch the test
generator to red field. Adjust the horizontal
and vertical raster size, on the remote control
board, for under scan. Let the monitor run
for at least half an hour.
9. Switch the generator to the red/blue grid.
Adjust the 4 pole magnets (center pair)
for convergence of the red and blue guns in
the center of the screen.
Check the auto bright control voltage with a
DVM. Connect the DMM to GND and pin 8
of the LM324 on the video board. The
5.
920
voltage range is 4.0V to 4.4V.
range, adjust this voltage to 4.2V by using
pliers to rotate the bottom knob on the FBT.
If out of
10. Tilt the yoke up and down for the best
convergence around the edge of the grid.
Insert the top yoke wedge. Tilt the yoke side
to side for the best convergence around the
edge of the grid and insert the rest of the
yoke wedges. Secure the wedges with tape.
6. Degauss the picture tube and front part of
the frame.
11. Switch the generator to the white grid.
Adjust the 6 pole magnets (Pair closest to the
video board) for convergence of the green
gun. Step #10 and this step may have to be
repeated for optimum convergence.
CAUTION: To avoid electrical shock,
take care not to touch the yoke conductors or
push against the anode cap.
Always keep one hand free to avoid making a
complete electrical circuit.
12. If t h e cor n er con ver gen ce is st ill n ot
acceptable, shunts may be used to correct
this problem.
Shunts are available from CERONIX.
Shunt order number is CPM2011.
100
SETUP UND KONVERGENZ PROZEDUR
7. J ustieren Sie das J och auf die CRT, um
Mitte der Reinheit zu erreichen.
1. Benutzen Sie eine scharfes Messer, um die
magnetischen Ringe auf dem J och frei zu
bremsen, die normalerweise mit rotem Lack
Ein Weg, diese J och Position zu finden, soll
eine Kugelschreiber Markierung auf dem
DATE N S I CH TGE Rä T H a ls a n d er
Hinterseite und den vorderen Extremen der
Reinheit machen.
Ma ch en Sie ein e dr it t e Ma r kier u n g
zwischen den zwei Markierungen und Satz
das J och zu dieser Position.
Drehen Sie das J och auszurichten, die
raster oberste Linie, mit dem Oberteil Rohr
des Bilds.
Ziehen Sie die J och Klammer fest. Kippen
Sie die J och Seite zu Seite und auf und ab
während Zuschauen des roten Felds zu
beglaubigen, daß jene Reinheit gut ist.
ge s p e r r t
w e r d e n .
H ole n
S ie
d ie
J u s t a get a bu la t or en a u f jed em P a a r
magnetischen Ringen in der Zeile für den
Ausgangspunkt.
2. Lösen Sie den Klemmring des J ochs.
Löschen Sie die J ochkeile von der CRT.
Löschen Sie das Band von der CRT.
3. Schließen Sie einen Testgenerator an den
videoinput an.
4. Schalten Sie den Monitor ein. Schalten Sie
den Testgenerator zum roten Feld. J ustieren
S ie d ie h or izon t a le u n d ver t ik a le
Rastergröße, mit dem Fernbedienungbrett,
für Unterscan. Lassen Sie den Monitorlauf
für mindestens halbe Stunde.
8.
9.
Wenn die J och Position Regelung gute
Reinheit nicht herstellt, stellen Sie den
Rein h eit Ma gn et en ein . Diese sin d die
m a gn et isch en Rin ge der n ä ch st J och
Winden.
Schalten Sie den Generator zum rot/blauem
Raster. Stellen Sie den 4 Stange Magneten
(Mitte Paar) für Zusammenlaufen vom roten
und blauen in der Mitte des Schirms ein.
Ü b e r p r ü f e n
S i e
d i e
h e l l e
5.
St eu er selbst spa n n u n g m it ein em DVM.
Sch ließen Sie da s DMM a n er den u n d
920
Anschlußstift 8 des LM324 920 auf der
Videokarte an. Die Spannung Strecke ist
4.0V zu 4.4V. Wenn aus Strecke heraus,
justieren Sie diese Spannung auf 4.2V, indem
Sie Zangen verwenden, um den unteren
Drehknopf auf dem FBT zu drehen.
10. Kippen Sie das J och auf und ab für das
beste Zusammenlaufen um die Kante des
Rasters. Fügen Sie den obersten J och Keil
ein. Kippen Sie die J och Seite zu Seite für
das beste Zusammenlaufen um die Kante des
Rasters und fügen Sie den restlichen J och
Keile ein. Befestigen Sie die Keile.
Degauss die CRT und das Vorderteil des
6.
Monitorchassis.
Schalten Sie den Generator zum weißen
Raster. Stellen den 6 Stange Magneten
(P a a r en n a h st zu m Videoa u ssch u ß) fü r
Zusammenlaufen vom grünen. Schritt #10
und dieser Schritt können für das günstigste
Zusammenlaufen wiederholt werden müssen.
11.
VORSICHT: Um elektrischen Schlag zu
vermeiden, berühren Sie nicht sich zu den
J ochleitern oder -presse gegen die Anode
Schutzkappe.
Ha lten Sie immer eine Ha nd frei beim
Arbeiten auf Elektronik.
12. Wen n die E ckkon ver gen z n och n ich t
a n n eh m ba r ist , kön n en Sh u n t s ben u t zt
werden, um dieses Problem zu beheben.
Sh u n t s sin d von CE RONIX vor h a n den .
Shuntauftragsnummer ist CPM2011.
101
CERONIX, INC.
13350 New Airport Road
Auburn, California 95602-7419
Tel. (530) 886 - 6400
Fax. (530) 888 - 1065
WEB. www.ceronix.com
REPLACEMENT PARTS PURCHASE ORDER FORM
Date
Requisition No.
Purchase Order No.
Name
BILL TO
SHIP TO
STREET & N0.
STREET & N0.
CITY
STATE
ZIP
CITY
STATE
ZIP
Fax No.
Phone No.
Shipping Information
Comments
CERONIX
Part No.
Description
Quantity Price
1
2
3
4
5
6
7
8
9
10
11
12
Please copy form and fill in, parts order, on copy.
102
DEGAUSSING COIL ATTACHMENT SPECIFICATION.
For The Model 1493 Video Monitor.
Use degaussing coil part number CPS1766.
ATTACH THE
GROUNDING
STRAP FIRST.
With the degaussing coil leads centered on the bottom of the
CRT, FORM THE COIL to avoid the remote control board.
INSTALL A WIRE TIE through
INSTALL A WIRE TIE through
the top hole in the right CRT ear.
the top hole in the left CRT ear.
INSTALL WIRE TIES through
INSTALL WIRE TIES through
the bottom hole, with the
grounding strap spring, in the
right CRT ear.
the bottom hole in the left CRT ear.
103
Degaussing Coil & Grounding Strap Attachment Specification.
For The Model 1793, 1993, 2093 Video Monitor.
The first item to attach to the picture tube is the grounding strap. Lay the tube face
down on a soft surface. Slide the folded over end of the braided wire over the top left
CRT mounting ear (The braided wire is oriented to the left). Attach the spring at the
other end to the left hole of the right bottom mounting ear.
1.
2. Next attach the degaussing coil. Locate the connector wires at the bottom center of
the CRT. Form the degaussing coil to the contour of the tube at the top two corners.
Attach and tighten two 3" wire ties on the inside hole of the top two corners.
Loosely attach two 15" wire ties around the degaussing coil and around the bottom
ears. Tighten the wire ties.
CAUTION: The ground cable from the enclosure to the monitor chassis
must be connected before applying power to the monitor.
3" Wire Tie
2PL
CPM2003
Top of CRT
Grounding Strap
CPS1791
Degaussing
coil
CPS1771
CPS1828
CPS1847
CPS1860
Anode Connection
Ground
Connector.
Attach to
CRT socket
board.
15" Wire Tie
2PL
CPM2013
Degaussing coil Connector
Spring
Plugs in main board left side of fuse.
3 Blue
Yoke Connector.
Plugs in main board left side of
flyback transformer.
3
2
Blue
1
2
1
Black
Bottom
View
Schematic:
(pins)
104
Degaussing Coil & Grounding Strap Attachment Specification.
For The Model 2793 and 3693 Video Monitor.
1. The first item to attach to the picture tube is the grounding strap. Lay the tube face
down on a soft surface. Slide the folded over end of the braid over the left top CRT
mounting ear. Attach the spring at the other end to the, right side top, slot in the
rimband. Pull the bare wire through the bottom slot in the rimband (tension the
spring) and back around the braid. The coils of the spring should measure about 1.25".
2. Next attach the degaussing coil. Locate the connector wires at the bottom center of
the CRT. Loosely attach the degaussing coil with 5" wire ties as shown below.
Adjust the coil for an equal size top and bottom coil half. Tighten the wire ties.
3. Plug the yoke connectors on the yoke as shown below.
CAUTION:
The ground cable from the enclosure to the monitor chassis
must be connected before applying power to the monitor.
Top of CRT
Grounding Strap
Degaussing
coil
Anode Connection
CPS1786
CPS1856
Ground
Connector.
Attach to
CRT socket
board.
Degaussing coil Connector
Plugs in main board left side of fuse.
3 Blue
Yoke Connector.
Plugs in main board left side of
flyback transformer.
3
2
Blue
1
2
1
Black
Bottom
View
Schematic:
(pins)
105
Highpot, For Shock Hazards, Circuit Description.
For the models 1493,1793, 1993, 2093, 2793, and 3693 video monitors.
It is the responsibility of the company which uses the Ceronix
monitor in there system to make sure that no shock hazards
exist. Below is a description of the highpot test to verify that
the monitor is properly connected to an isolation transformer.
Once the monitor is installed in the enclosure, the protective
earth ground connection must be connected. The connection
point is located on the inside of the main board metal frame
behind the serial number label.
Machine in which the monitor is used.
The MONITOR is connected to
the enclosure ground via the
signal cable, monitor support
hardware, and the protective
earth ground wire.
The chassis ground must be
connected to earth ground.
Building wiring
All the large accessible metal
parts are connected to ground.
FUSE
AC line
Isolation
Transformer
GROUND
HIGH
POT
TESTER
106
Highpot, Für Schock Gefahren, StromkreisBeschreibung.
Für die Modelle 1493,1793,1993,2093,2793, und 3693 videomonitoren.
Es ist die Verantwortung der Firma, die den Ceronix Monitor in dort
system benutzt, sich zu vergewissern, daß kein Schock Gefahren
existieren. Unten ist eine Beschreibung Prüfung des highpot zu
beglaubigen, daß der Monitor ordentlich an einen Isolierung Umformer
angeschlossen wird.
Nachdem der Monitor in der Einschlieflung installiert wird, muß der
schützende Erde Erdanschluß verbunden werden. Der Anschluß Punkt
wird sich auf dem innerhalb des Hauptausschusses Metalls Rahmens
hinter dem Seriennummer Etikett befunden.
Maschine, in der der Monitor benutzt wird.
Der MONITOR wird an den
Einschließung Erden über das
Signalkabel, Monitor Stütze
Hardware und den schützende
Erde Erdungsdraht
angeschlossen.
Der Chassiserden muß an die
Masse Erdletung angeschlossen
werden.
Gebäudeverdrahtung
Alle großen zugänglichen
Metallteile werden an erden
angeschlossen.
SICHERUNG
Lokalisierung
Wechselstromezeile
Transformator
ERDEN
HIGHPOT
Prüfvorrichtung
107
Wire Routing Instructions.
Attach the protective earth,
Fold remote cable to clear
CRT and add wire tie.
green / yellow, ground wire.
Rout yoke wires
over CRT neck.
Shorten focus wire
and add wire tie.
Shorten EHT wire
and add wire tie.
Plug in video board.
Fold video flat cable to
avoid contacting the
metal frame. Secure
fold with a wire tie.
Finished assembly with the
different voltage type wires
not touching each other.
Rout G2 wire around
CRT socket, shorten
with loop, and add
wire tie.
108
Precision Resistor Arrays (PRAs).
Make solder connection CA when using these C PRAs for replacement parts on the XX92 product line.
Ω
200
C13
Ω
C8
200
Ω
C16
200
4K
4K
4K
20K 1.82
K
2.74K 1.82
K
C10
C11
C14
CA
5.00K
C9
5.00K
C12
5.00K
C15
C5
C6
68.1K
C1
68.1K
C2
68.1K
C3
C7
C4
Ω
900
C17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
RED
i sense
19
RED
Amp FB
20
H.
Program
Program
PULSE
Program
PULSE
RED
GREEN
i Beam
BLUE
i Beam
12V
4.8V
BLUE
Amp out
BLUE
Amp FB
BLUE
i sense
GREEN
i sense
GREEN
Amp FB
GREEN
Amp out
RED
NC
GND
PULSE
Blank
i Beam
LINE
LINE
Amp out
5
7
6
LM324 Pin No.
2
13
14
4
1
C
AUTO BIAS RESISTOR ARRAY "C Film"
P/N CPR0506
IA - Inverts Horizontal Sync. IB, IC, & ID Adjust the Horizontal Oscillator Frequency. For 31.5KHz Operation; IB=Hfo +400 Hz, IC=Hfo +800Hz,
&
ID=Hfo +1,600Hz.
2.78K
I13
200
IB
IC
ID
2.7K
200
8.8K
I12
1.8K
45K
I1
I2
Ω
340
I15
Ω
680
9.31K
Ω
170
I16
I14
1/2
I11
20K
I5
IA
I10
12K
I4
22K
1/2
I3
33K
10K
1K
I11
I6
I7
I8
I9
1
2
3
5
6
7
8
9
10
11
13
14
OSC.
15
16
Hfo
SET
17
18
19
20
Damper
Cap.
PLL
Fly-
wheel
Cap.
HORZ.
H. Pos.
H. Sync
Cap.
H. Sync
Output
1
H. Pos.
O/S
PLL
O/S
PLL
H. +12V
Line
H. Drive
Damper
Osc.Dis-
charge
output
GND
GND
FBP
POT
SYNC
+12V
Cap.
7
2
3
4
LA7851 Pin No.
8
9
I
Horizontal Control Resistor Array "I Film"
P/N CPR0502
J A - Decreases V+ line by 1.5V
J B - Decreases V+ line by 3V
J C - Increases V+ line by 1.5V
J D - Increases V+ line by 3V
2.33K
4.67K
J 14
101.6K
91.4K
POWER SUPPLY RESISTOR ARRAY. "J "
P/N CPR0501
J 13
Ω
130
1M
J 1
J 18
J 10
JC
JD
45K
45K
JA
JB
J 15
JE
J 6
J 17
Ω
260
15.8K
14.7K
J 16
38.8K
J 9
J11
J 12
Ω
510
33.2K
10.6K
11K
23.2K
127K
J 3
J 2
J 4
J 7
J 8
J 5
1
2
3
4
5
6
7
8
9
10
V-
12
13
14
15
V-
16
17
18
142
- Comp.
12
19
20
D
142
D
V+
SENSE
V+
E. AMP.
-FB CAP.
E. Amp
Output
E. Amp
+Input
1/2 Raw
DC
Osc.
Rx
FET
FET
Source
O.V.P.
LOAD
V-
17V
+17V
15
V+
Adj.
i Sense
11
+ Comp.
13
V-
2
1
C5184 Pin No.
14
J
Normally GND -200V.
V-, 100V to 300V below GND.
Power Supply Resistor Array "J Film"
P/N CPR0501
109
Precision Resistor Arrays (PRAs).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
K
A - Increases Output Voltage by 10V
1.62K
K1
21K
K22
0Ω
K33
606Ω
K7
820Ω
K10
A
2
1
7
6
5
4
3
1.49
K
5.62K
K11
C
K9
3904
B
689Ω
1.2K
K34
E
N E 5 9 2
1N4148
K8
K32
K6
K35
40.2K
11 12 13 14
10
8
9
K19
1N4148
K36
150Ω
100Ω
2.2K
K3A
K21
K5
15Ω
12.1K
K15
18Ω
3.32K
K12
75Ω
301Ω
150Ω
560Ω
33Ω
K20
180Ω
140Ω
K16
K18
K2
K13
K3B
K4
K17
K14
VIDEO
INPUT
NPN
B
NPN
E
9.25V
LINE
NE592
Output
AUTO
BIAS
127V
LINE
PNP
CAP.
E
PNP
E
PNP
B
PNP
DIODE
B
120V
LINE
PNP
C
AMP
Output
+12V
+16V
+12V
GND
GND
GND
LINE
LINE
LINE
K
Video Amplifier Resistor Array
"K Film"
P/N CPR0510
110
Precision Resistor Arrays (PRAs).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
B L U E
A - Increases Output Voltage by 10V
1.29K
K1
21K
K22
0Ω
K33
606Ω
820Ω
K10
A
K7
2
1
7
6
5
4
3
1.49
K
5.62K
K11
C
K9
3904
B
689Ω
1.2K
K34
N E 5 9 2
1N4148
K35
K8
K32
E
K6
40.2K
11 12 13 14
10
8
9
K19
1N4148
K36
150Ω
100Ω
2.2K
K3A
K21
K5
15Ω
12.1K
K15
18Ω
3.32K
K12
75Ω
240Ω
150Ω
560Ω
33Ω
180Ω
140Ω
K16
K18
K2
K20
K13
K3B
K4
K17
K14
VIDEO
INPUT
NPN
B
NPN
E
9.25V
LINE
NE592
Output
AUTO
BIAS
127V
LINE
PNP
CAP.
E
PNP
E
PNP
B
PNP
DIODE
B
120V
LINE
PNP
C
AMP
Output
+12V
+16V
+12V
GND
GND
GND
LINE
LINE
LINE
BLUE
"BLUE Film" P/N CPR0511
Video Amplifier Resistor Array
111
T I P 3 1 A
T I P 3 1 A
T I P 3 2 A
F R 2 0 5
6 0 4
6 0 4
1 W
6 0 5
6 0 5
, Ω 1 . 2
6 0 6 0 6
, 6 Ω 0 7 4 . 7
6 0 8
, 6 Ω 0 8 4 . 7
609
6 1 0
, 6 Ω 1 0 3 . 3
1 W
F R 2 0 5
6 1 1
6 1 1
112
The "Drive Signals To The Monitor Input" form is included here for those people who have
problems interfacing their drive electronics with the Ceronix Monitor.
DRIVE SIGNALS to the MONITOR INPUT
voltage and waveforms, work sheet.
CERONIX
Company name:
Date:
13350 New Airport Road
Auburn, CA, USA 95602-7419
Fax (530) 888-1065
For CERONIX Monitor
Model number:
For the following measurements use an oscilloscope.
RED GREEN BLUE
VIDEO:
With no load, the black level voltage of the video drive signal is:
With no load, the saturated color voltage is:
To simulate the monitor input resistance.
RED GREEN BLUE
With 75Ω load on the video drive signal
or other
Ω load.
the black level voltage is:
the saturated color voltage is:
If available, sketch the video drive circuit on the back of a copy of this form.
Horizontal or composite sync:
Horizontal frequency:
Horizontal sync pulse time:
"High" voltage:
"Low" voltage:
KHz
uS
V
V
Compare your sync to
this table and check
the best fit.
For composite sync.
Sketch if different.
Vertical sync:
Vertical frequency:
Vertical sync pulse time:
Hz "High" voltage:
uS "Low" voltage:
V
V
Check correct polarity.
If there are any questions, Complete form and send to: CERONIX, INC.
call (530) 886-6400.
13350 New Airport Road
Auburn, CA. 95602-7419
or FAX us (530) 888-1065
113
DECLARATION OF CONFORMITY
Manufacturer:
Equipment:
C. CERONIX
13350 New Airport Road
Auburn, California 95602
USA
Component Color Monitor.
Models: 1493-CGA, 1493-VGA, 1493-SVGA.
1793-VGA, 1793-SVGA.
1993-VGA, 1993-SVGA.
2093-CGA, 2093-VGA.
2793-CGA, 2793-VGA.
3693-CGA.
Component Isolation Transformer Assembly.
Models: ISOXFR-75W, ISOXFR-100W.
IEC 60950, 3rd Edition
Standards:
'National Differences: AT, AU, CA, DE, ES, FR, GB, HU, RU, US, ZA.'
CAS/CAN 60950-00
UL 60950, 3rd Edition
IEC 65:85 + A1:87 + A2:89 + A3:92, 5th Edition
'National Differences: KR.'
I hereby declare that the equipment named above has been tested and
found to comply with the relevant sections of the above referenced
specifications. The unit complies with all essential requirements of
the standards. The declaration is issued under the sole responsibility
of the manufacturer.
Authorized
Signatory:
Don Whitaker
President
Title:
Date:
02
February 26, 2002
114
Models: ISO XFR-75W
ISO XFR-100W
SAFETY ISOLATING TRANSFORMER
115
Circuit Function Description.
The basic function of the ISO XFR-75W and ISO XFR-100W is to
isolate the line power for monitors requiring an isolation transformer.
The transformer is designed to have a low leakage flux value which
allows it to be mounted close to the CRT. To accomplish the low
leakage flux, the transformer has two sets of primary and secondary
coils mounted on a modified toroid type core. The ideal transformer
would be a toroid but this type transformer is expensive because it is
difficult to wind.
A relay is used to connect the two primary coils in series or parallel to
accommodate 240VAC or 120VAC line voltages. Before power is
applied, the relay connects the transformer primary windings in series to
avoid excessive primary current for the 240VAC case. The control
circuit energizes the relay when the line voltage is 120VAC.
240VAC
240VAC
or
or
120VAC
50 or 60 Hz
Input
Output
120VAC
Relay Control
Circuit Description.
T506
The fuse protects the mains wires and the control PCB.
The power transformer has two internal 2 amp temperature sensitive fuses.
Each primary half has one, built in, series connected fuse.
T507
A resettable fuse is connected to the relay driver power supply.
This fuse protects the relay control circuit from square wave input which would
T512
occur if an inverter is used as the power source. Capacitor supplies
T513
T510
current from the line to capacitor through diode which forms the, relay
T511
T512
control, power supply. Diode charges capacitor during the negative
going part of the line wave. Transient Voltage Suppressor regulates the
T516
24V power supply and protects the relay coil from over heating.
T514
The Mos Fet shorts out the 24 volt power supply when the input line
voltage is 240VAC.
The input line voltage, at which the Mos Fet turns on, is set by the Mos Fet turn
T509 T505 T504
on voltage (about 4V), the voltage drops across resistors , , , and
T503
the zener diode . 154VAC is the approximate line voltage at which the
T518
T508
T502
relay switches. Capacitor and diode keep the Mos Fet turned
T513
on for the complete AC cycle to eliminate ripple current in the capacitor .
T504
T508
Resistor limits the peak current to capacitor to avoid relay switching
T515
due to line transients. The zener diode which is connected from the Mos
Fet source to gate protects the Mos Fet gate against over voltage. Resistor
T519
is needed to limit the mains current when the relay arcs across both sets of
T517
T520
T518
contacts. Capacitors and reduce the relay contact noise which
may be generated when switching.
116
Shield YEL / GRN
Screw
ISO XFR-75W, ISO XFR-100W Schematic.
3A Fuse
CPR0425
0Ω
T501
Brown
L PC1
BLK
Screw
T506
7
1N4007
T502
6
BRN
6Ω, .45A, 250V
T507
!
5
WHITE
BLACK
YEL
2.2nF
1KV
PC1
TZL200B
200Vz
T503
120VAC
output to
monitor.
ORG
RED
!
T517
1.5uF, 400V
!
Isolation
T512
2.7Ω ±10%, 1W, CC
Transformer
120 or 240VAC,
50-60Hz input
power.
T519
33K, ±5%
1/4W, CF
T504
2
3
4
BLU
WHT
GRY
PC2
1N4007
T510
1N4007
T511
2.2nF
1KV
0.1uF 365K, ±1%
250V
T508
+
1/4W, MF
T505
T520
IRF520
T514
!
1
24VDC
8
OPTIONAL WIRING.
P6KE27A
27V TVS
127K, ±1%
1/4W, MF
T509
100uF
50V
T513
RTE24024
+
1N4742A
12Vz
T515
DPDT Relay
WHITE
PC1
YEL
T516
Blue
T518
240VAC
output to
monitor.
ORG
RED
L PC3
BLACK
BLU
PC2
ISO XFR-75W, ISO XFR-100W PCB.
YEL / GRN
PCB 500
RED
YEL
GRN - Ground
White
CAUTION:
501
REPLACE WITH SAME TYPE FUSE AND
RATING. ATTENTION: UTILIZER UN FUSIBLE
DE RECHANGE DE MEME TYPE ET CALIBRE.
Output
ORG
BLU
Black
516
GRY
516
8
517
517
Connect ORG to RED for
230VAC output.
BRN
7
Blue
5
Input
502
502
Brown
Input
6
3
503
3A SLOW BLOW FUSE
504
503
504
CPR0425
506
G
505
505
3A, 250V
518
D
+
509
510
507
S
+
508
509
514
1
2
4
513
510
511
512
511
520
520
519
519
WHT
BLK
Note: The "T" in front of the board numbers refers to this PCB.
RED
YEL
YEL / GRN
PCB 500
GRN - Ground
White
0Ω, 501
Output
ORG
BLU
516
P6KE27A
Black
GRY
Connect ORG to RED for
230VAC output.
517
BRN
7
Blue Input
2.2nF
Brown
4007,502
503
3A SLOW BLOW FUSE
Input
TZL200B
33K, 504
365K, 505
8
1
6
5
!
G
D
S
24V DPDT Relay, 518
CPR0425
506
CPR0436
CPR0431
Fuse, 507
.1uF, 250V
508
509
127K,
+
100uF
50V
!
514
2
3
4
510
4007,
1.5uF, 400V
512
2.7Ω ±10%,
1W. 519
511
4007,
2.2nF
513
!
WHT
BLK
520
ISO XFR-75W, ISO XFR-100W Assembly Drawing.
117
Stromkreisfunktion Beschreibung
Die grundlegende Funktion des XFR75W und des XFR100W ist, die Zeile
Energie für die benötigenden Monitoren und Lokalisierung Transformator zu
lokalisieren. Der Transformator wird entworfen, um einen niedrigen
Durchsickernflusswert zu haben, der erlaubt, daß er nah an der CRT
eingehangen wird. T vollenden den niedrigen Durchsickernfluß, hat der
Transformator zwei Sets der Primär- und Sekundärspulen, die an einem
geänderten Ringkörperartkern eingehangen werden. Der ideale
Transformator würde ein Ringkörper sein, aber diese Art des
Transformators ist kostspieliges becuase zu wickeln, das ist schwierig.
Ein Relais wird benutzt, um die zwei Primärspulen in den Serien oder in der
ähnlichkeit anzuschließen, um Spannungen der Zeile anzupassen 240VAC
oder 120VAC. Bevor Energie angewendet wird, schließt das Relais die
Transformatorprimärwicklungen in den Serien an, um übermäßigen
Primärstrom für den Fall 240VAC zu vermeiden. Der Steuerstromkreis
versorgt das Relais mit Energie, wenn die Zeile Spannung 120VAC ist.
240VAC
240VAC
or
or
120VAC
50 or 60 Hz
Input
Output
120VAC
Relay Control
Stromkreis Beschreibung
T506
Die Sicherung T506 schützt die Hauptleitungen Leitungen und das
Steuer-cPwb. Der Leistungstranformator hat zwei interne
2-Ampere-temperaturempfindliche Sicherungen. Jede Primärhälfte hat ein,
das in der angeschlossenen Serie aufgebaut wird, fixieren. Eine
T507
rückstellbare Sicherung wird an das Relaistreiber. Versorgungsteil
angeschlossen. Diese Sicherung schützt den Relaissteuerstromkreis vor
quadratischem Welle Input, der auftreten würde, wenn ein Inverter als
Energiequelle benutzt wird. Kondensator gibt Strom von der Zeile an
T512
T513
Kondensator
durch Diode
an, die das Relaissteuer.
T510
T512
T511
Versorgungsteil bildet. Kondensator Ladungen der Diode während
des negativen gehenden Teils der Zeile Welle. Vorübergehender Spannung
T516
Entstörer regelt das 24V Versorgungsteil und schützt die Relaisspule
T514
vor der überhitzung. Das MosFet schließt aus dem 24 Volts.
Versorgungsteil kurz, wenn die Inputzeile Spannung 240VAC ist.
Die Inputzeile Spannung, an der das MosFet einschält, wird durch das
MosFet einschalten Spannung eingestellt (über 4v). Die Spannung fällt über
T509
T505
T504
T503
Widerstände , , und die zenerdiode . 154 VAC ist die
T518
T508
ungefähre Zeile Spannung, an der das Relais schält. Kondensator
T502
und Diode halten das MosFet eingeschalten, damit die komplette
Wechselstromschleife den Kräuselungstrom in den Begrenzungen
T513
T504
Kondensatort . Resistor der Spitzenstrom zum Kondensator
T508
beseitigt, um das Relaisschalten wegen der Zeile Ausgleichströme zu
T515
vermeiden. Die zenerdiode 5 , die von der MosFet-Quelle an Gatter
angeschlossen wird, schützt das MosFet-Gatter gegen überspannung.
T519
Widerstand ist erforderlich, den Hauptleitungen Strom zu begrenzen,
wenn das Relais über beiden Sets Kontakten einen Bogen bildet.
T517
T520
Kondensatoren und verringern die Kontaktgeräusche des Relais
, die beim Schalten festgelegt werden kann.
T518
118
WARNING! Grounding of the monitor is to be evaluated in the end user application.
Installation Instructions.
1. Mount the unit on a, grounded, flat metal surface using at least two screws.
Note; The mounting surface should not have holes larger than
0.2" diameter under the enclosure.
2. Connect the mains cable to the Molex plug
mounted on the enclosure.
3. Connect the output cable from the unit to the
monitor power input connecter.
AVERTISSEMENT. La mise á la terre de l’écran doit être évaluée dans le produit fini.
Instructions d’installation
1. Fixer l’appareil á une surface métallique plane et mise á la terre par au moins
deux vis. Note. La surface de montage ne doit pas présenter de
trous de plus de 5.1mm (0.2 po) sous le boîtier.
2. Raccorder le câble du secteur á la prise molex sur le boîtier.
3. Raccorder le câble de sortie de l’appareil au connecteur d’entrée de l’écran.
WARNING! Die Erdung des Monitors soll in die Endbenutzeranwendung ausgewertet werden.
Installationsanweisungen
Stellen Sie die Einheit auf einer geerdeten, flachen Metalloberfläche Gebrauch
wenigstens zwei Schrauben auf.
1.
Anmerkung:
Die Oberfläche soll Löcher größer als 0.2" in Durchmesser nicht haben.
2. Verbinden Sie das haupt ac Spannung Kabel zum Molex Verbinder auf der
Transformator.
3.
Verbinden Sie das Ausgangskabel vom Transformator zur Kraft Verbinder des
Monitors.
119
INSTALLATION of the
ISO XFR-75W, ISO XFR-100W
ISOLATION TRANSFORMERS.
Connector:
AC Line or
neutral
AC Line
Mains power.
Preferred
orientation for
optimum cooling.
CERONIX CHASSIS.
The ISO XFR-75W/-100W MUST be grounded by mounting
on a grounded, conductive surface via at least two screws.
Mains power and ground connections must be made before
power is applied to the ISO XFR-75W or the ISO XFR-100W
Isolation Transformers.
WARNING:
WARNING: FOR CONTINUED SAFETY, REPLACE SAFETY CRITICAL
COMPONENTS ONLY WITH MANUFACTURER'S RECOMMENDED PARTS (REFER
TO SERVICE LITERATURE).
AVIS: POUR MAINTENIR LE DEGRE DE SECURITE DE L'APPAREIL NE
REMPLACER LES COMPOSANTS DONT LE FONCTIONNEMENT EST CRITIQUE
POUR LA SECURITE QUE PAR DES PIECES RECOMMANDEES PAR LA
FABRICANT (CONSULTER LE GUIDE DE DEPANNAGE).
120
INSTALLATION Isolierung Transformator
des XFR75W und des XFR100W.
Wechselstromzeile
oder -neutrales.
Stecker:
WechselstromZeile.
Hauptlinie Spannung
Lagebestimmung
Prefered für das
optimale Abkühlen.
CERONIX CHASSIS.
Das XFR75W und das XFR100W müssen geerdet werden,
indem man an einer geerdeten, leitenden Oberfläche mit
mindestens zwei Schrauben einhängt.
WARNING:
WARNING:
Haupt ac Kraft und Erdanschlüsse müssen gemacht
werden, bevor Spannung für DEN XFR75W oder Den
XFR100W Isolierung †ransformator gegolten wird
Zu anhaltender Sicherheit ersetzen Sie Sicherheit
kritische Bestandteile nur durch empfohlene Teile des
Herstellers (Siehe Service-Literatur).
121
Model ISO XFR-75W Specifications.
Notes:
Electrical:
Rating;
Input
Output
108VAC to 146VAC
108VAC to 146VAC
216VAC to 292VAC
216VAC to 292VAC
50Hz to 60Hz
0VA
Volts; 120VAC
Volts; 240VAC
Volts; 120VAC
Volts; 240VAC
Frequency
108VAC to 132VAC
216VAC to 264VAC
108VAC to 132VAC
216VAC to 264VAC
50Hz to 60Hz
Output wired
for 120VAC.
}
}
Output wired
for 240VAC.
Input = output.
Power
.84 Watts Maximum
100VA
No Load.
Power
Full Load.
75VA
Capacitance
Highpot Voltage
250pF input to output.
3,000VAC input to output.
Environmental:
Mechanical:
Operating temperature range is -20°C to +60°C.
Storage temperature range is -25°C to +70°C.
Operating humidity; 20% to 80% (Noncondensing).
Unit weight: 4.2Lb 1.91Kg
Enclosure dimensions:
0.20" DIA. holes
on a 0.40"grid.
.190" DIA. X .375" DIA.
2.10"
2.10"
1.83"
4 PL.
0.25"
2.94"
5.26"
6.38"
2.94"
0.933"
0.45"
0.092"
0.56" 4 PL.
0.56" 4 PL.
0.25"
0.25"
0.328"
.50"
0.32"
0.375"
3.66"
4.25"
4.75"
MATERIAL:
.052" THICK 18AWG MILD STEEL.
FINISH: CLEAR ZINC COATING
TOLERANCE:
±0.015" Except where noted.
DIMENSIONS IN INCHES.
122
Model ISO XFR-100W Specifications.
Notes:
Electrical:
Rating;
Input
Output
108VAC to 146VAC
108VAC to 146VAC
216VAC to 292VAC
216VAC to 292VAC
50Hz to 60Hz
0VA
Volts; 120VAC
Volts; 240VAC
Volts; 120VAC
Volts; 240VAC
Frequency
108VAC to 132VAC
216VAC to 264VAC
108VAC to 132VAC
216VAC to 264VAC
50Hz to 60Hz
Output wired
for 120VAC.
}
}
Output wired
for 240VAC.
Input = output.
Power
1.24 Watts Maximum
125VA
No Load.
100VA
Power
Full Load.
Capacitance
Highpot Voltage
275pF input to output.
3,000VAC input to output.
Environmental:
Operating temperature range is -20°C to +60°C.
Storage temperature range is -25°C to +70°C.
Operating humidity; 20% to 80% (Noncondensing).
0.325"
Mechanical:
0.45"
Unit weight: 5.9Lb 2.68Kg
0.200"DIA. Holes on a 0.375" grid.
Enclosure dimensions:
0.200"DIA. Holes on a 0.375" grid.
2.40"
0.45"
2.40"
0.45"
2.575" ±0.020"
0.190" X 0.375" DIA. HOLES
4 PL.
0.250"
0.55"
0.45"
0.45"
3.375"
6.000"
6.75"
6.15"
7.25"
0.933"
0.50"
1.00"
0.43"
0.250"
0.328" Dia. ±0.003"
0.30"
0.325"
0.35"
5.150"
0.375"
0.50"
0.250"
0.250"
5.75"
6.25"
MATERIAL:
.052" THICK 18AWG MILD STEEL.
FINISH: CLEAR ZINC COATING
TOLERANCE:
±0.015" Except where noted.
DIMENSIONS IN INCHES.
0.200"DIA. Holes on a 0.375" grid.
20PL.
NOTE:
When box is placed on
a flat, the highest point
shall not xceed 0.015".
0.45"
0.325"
123
Equipment setup for trouble shooting the
ISO XFR-75W, ISO XFR-100W Isolation
Transformers.
Use only one hand when working on a
powered up ISO XFR-75W, ISO XFR-100W
to avoid electrical shock.
SAFETY FIRST;
Always wear safety glasses when working
on powered up electronic equipment.
Mains Power
2A Fuse
VARIABLE
Ground
TRANSFORMER
100W
120V
100W
120V
ISOLATION
Isolation
transformer, wired
for 240VAC output.
TRANSFORMER
ISO XFR-75W, ISO
Note;
XFR_100W output wired
for 120VAC.
Ground
Note: When using this isolation supply for working on monitors, it is important to have some resistance
(10MΩ or less) to ground. An insulated monitor connected to a insulated power supply may attain a high
static voltage. When this voltage discharges through the ISO XFR-75W, ISO XFR-100W control circuit,
the FET in the control circuit may be damaged.
124
Vorrichtungen haben zum Lösen von Problemen mit
dem 75W und dem 100W Isolierung Transformatoren
benutzt.
SICHERHEIT ZUERST:
Um elektrischen Shock zu vermeiden, benutzen Sie nur
eine Hand beim Arbeiten auf einem angeschaltenen
Transformator 75W oder 100W.
Tragen Sie immer Sicherheitsgläser beim Arbeiten auf
angeschaltener elektronischer Ausrüstung.
Hauptlinie
Spannung
VARIABLER
2A Fuse
Erden
TRANSFORMATOR
100W
120V
100W
120V
ISOLIERENDEN
Isolierenden
Transformator
verdrahtet für
Ausgabe
Anmerkung:
XFR75W- oder XFR100W
Ausgabe hat für 120VAC
verdrahtet
TRANSFORMATOR
240VAC.
Erden
Anmerkung: Beim Benutzen dieser Isolierung Versorgung von Monitoren dem Bearbeiten zu, ist es
wichtig, irgendeinen Widerstand zu haben, (10 Meg.Ω oder kleiner) zu erden. Ein Isoliermonitor, der
an eine Isolierenergie kann angleschlossen wird eine hohe statische Spannung supply, erreichen.
Wenn diese Spannung Entladungen durch das XFR75W oder den XFR100W Steuerstromkreis, der
FET im Steuerstromkreis beschädigt werden können.
125
ISO XFR-75W, ISO XFR-100W Schematic (Manual Voltage Select).
Shield YEL / GRN
3A Fuse
CPR0425
Screw
0Ω
T501
Brown
L PC1
BLK
Screw
T506
7
!
6
BRN
5
WHITE
BLACK
YEL
120 or 240VAC,
50-60Hz input
power.
PC1
!
120VAC
output to
monitor.
ORG
RED
!
Switch
T518
Isolation
0Ω
Shown In 240VAC
Input Mode
Transformer
T519
2
4
BLU
3
WHT
GRY
PC2
Blue
L PC3
OPTIONAL WIRING.
WHITE
YEL
PC1
240VAC
output to
monitor.
ORG
RED
BLACK
BLU
PC2
ISO XFR-75W, ISO XFR-100W Assembly Drawing.
RED
YEL / GRN
GRN - Ground
PCB 500
REPLACE WITH SAME TYPE FUSE AND
RATING. ATTENTION: UTILIZER UN FUSIBLE
DE RECHANGE DE MEME TYPE ET CALIBRE.
YEL
White
CAUTION:
Ω
0 , 501
Output
ORG
BLU
Black
516
GRY
Connect ORG to RED for
230VAC output.
BRN
Blue Input
517
Brown
Input
502
7
2
6
3
5
3A SLOW BLOW FUSE
8
503
504
DPDT
Switch,
518
!
G
D
S
CPR0425
506
505
!
509
510
+
508
507
514
1
4
513
Ω
0 , 519
512
511
520
WHT
BLK
Note: The "T" in front of the board numbers refers to this PCB.
126
Parts List Addendum.
127
Parts List Addendum.
128
Parts List Addendum.
129
Parts List Addendum.
130
|