Xilinx Computer Hardware ML561 User Manual

Virtex-5 FPGA ML561  
Memory Interfaces  
Development Board  
User Guide  
UG199 (v1.2) April 19, 2008  
R
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table of Contents  
Guide Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Additional Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Additional Support Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
About the Virtex-5 FPGA ML561 Memory Interfaces Tool Kit . . . . . . . . . . . . . . . . 11  
Documentation and Reference Design CD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Initial Board Check Before Applying Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Applying Power to the Board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Hardware Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
DDR400 SDRAM Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
DDR2 DIMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
DDR2 SDRAM Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
QDRII SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
RLDRAM II Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Memory Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
External Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
200 MHz LVPECL Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
SMA Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
33 MHz Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
33 MHz System ACE Controller Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
GTP Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
General-Purpose Headers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
DIP Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
3
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Seven-Segment Displays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Light Emitting Diodes (LEDs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Pushbuttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Power On or Off Slide Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Soft Touch Probe Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Power Measurement Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Liquid Crystal Display Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Power Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Board Design Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
FPGA Internal Power Budget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Termination and Transmission Line Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Configuration Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
JTAG Chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
JTAG Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Parallel IV Cable Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
System ACE Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Signal Integrity Correlation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Summary and Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
How to Generate a User-Specific FPGA IBIS Model . . . . . . . . . . . . . . . . . . . . . . . . . 93  
FPGA #1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
FPGA #2 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
FPGA #3 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
4
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Display Hardware Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Hardware Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Controller – Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Controller – LCD Panel Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Controller – Power Supply Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
LCD Panel Used in Full Graphics Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
LCD Panel Used in Character Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
5
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
6
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Preface  
About This Guide  
®
This user guide describes the Virtex -5 FPGA ML561 Memory Interfaces Development  
Board. Complete and up-to-date documentation of the Virtex-5 family of FPGAs is  
available on the Xilinx website at http://www.xilinx.com/virtex5.  
Guide Contents  
This manual contains the following chapters:  
Additional Documentation  
The following documents are also available for download at  
Virtex-5 Family Overview  
The features and product selection of the Virtex-5 family are outlined in this overview.  
Virtex-5 FPGA Data Sheet: DC and Switching Characteristics  
This data sheet contains the DC and Switching Characteristic specifications for the  
Virtex-5 family.  
Virtex-5 FPGA User Guide  
Chapters in this guide cover the following topics:  
-
-
-
-
Clocking Resources  
Clock Management Technology (CMT)  
Phase-Locked Loops (PLLs)  
Block RAM  
Virtex-5 FPGA ML561 User Guide  
7
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
R
Preface: About This Guide  
-
-
-
-
Configurable Logic Blocks (CLBs)  
SelectIO™ Resources  
SelectIO Logic Resources  
Advanced SelectIO Logic Resources  
Virtex-5 FPGA RocketIO GTP Transceiver User Guide  
This guide describes the RocketIO™ GTP transceivers available in the Virtex-5 LXT  
and SXT platforms.  
Virtex-5 FPGA RocketIO GTX Transceiver User Guide  
This guide describes the RocketIO GTX transceivers available in the Virtex-5 FXT  
platform.  
®
Virtex-5 FPGA Embedded Processor Block for PowerPC 440 Designs  
This reference guide is a description of the embedded processor block available in the  
Virtex-5 FXT platform.  
Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC User Guide  
This guide describes the dedicated Tri-Mode Ethernet Media Access Controller  
available in the Virtex-5 LXT, SXT, and FXT platforms.  
Virtex-5 FPGA Integrated Endpoint Block User Guide for PCI Express Designs  
This guide describes the integrated Endpoint blocks in the Virtex-5 LXT, SXT, and FXT  
®
platforms used for PCI Express designs.  
Virtex-5 FPGA XtremeDSP Design Considerations User Guide  
This guide describes the XtremeDSP™ slice and includes reference designs for using  
the DSP48E.  
Virtex-5 FPGA Configuration Guide  
This all-encompassing configuration guide includes chapters on configuration  
interfaces (serial and SelectMAP), bitstream encryption, Boundary-Scan and JTAG  
configuration, reconfiguration techniques, and readback through the SelectMAP and  
JTAG interfaces.  
Virtex-5 FPGA System Monitor User Guide  
The System Monitor functionality available in all the Virtex-5 devices is outlined in  
this guide.  
Virtex-5 FPGA Packaging and Pinout Specifications  
This specification includes the tables for device/package combinations and maximum  
I/Os, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and  
thermal specifications.  
Virtex-5 FPGA PCB Designer’s Guide  
This guide provides information on PCB design for Virtex-5 devices, with a focus on  
strategies for making design decisions at the PCB and interface level.  
Additional Support Resources  
To search the database of silicon and software questions and answers, or to create a  
technical support case in WebCase, see the Xilinx website at:  
8
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Conventions  
Conventions  
This document uses the following conventions. An example illustrates each convention.  
Typographical  
This document uses the following typographical conventions. An example illustrates each  
convention.  
Convention  
Meaning or Use  
Example  
See the Virtex-5 Configuration Guide  
for more information.  
References to other documents  
Italic font  
The address (F) is asserted after  
clock event 2.  
Emphasis in text  
Underlined Text  
Indicates a link to a web page.  
Online Document  
The following conventions are used in this document:  
Convention  
Meaning or Use  
Example  
See the section “Additional  
Documentation” for details.  
Cross-reference link to a location  
in the current document  
Blue text  
Refer to “Clock Management  
Technology (CMT)” in  
Chapter 2 for details.  
Cross-reference link to a location See Figure 5 in the Virtex-5 FPGA  
Red text  
in another document  
Data Sheet  
Go to http://www.xilinx.com  
for the latest documentation.  
Blue, underlined text  
Hyperlink to a website (URL)  
Terminology  
of this document.  
DVW is the data valid window opening measured by the VIH and VIL masks. The  
Data Valid Window (DVW)  
smaller of the two values are listed as absolute time as well as in terms of the percentage  
of UI (Unit Interval), or bit time.  
The ultimate goal of a design is to ascertain quality of signal at the receiver I/O Buffer  
(IOB). This measurement can only be simulated. When the hardware measurements are  
correlated with the simulation at the probe point, the extra probe capacitance is  
removed from the IBIS schematics, and the simulation is repeated at two extreme  
corners (slow-weak and fast-strong). Removal of probe capacitance is important to  
represent the actual hardware. If the SI characteristics of these simulations are proved  
to be within the acceptable range with sufficient margin, then the performance  
requirements for data signal interface of the corresponding memory operation at the  
target clock frequency are proved to have been met.  
Extrapolation  
Virtex-5 FPGA ML561 User Guide  
9
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
R
Preface: About This Guide  
These measurements are the actual real-time measurements of an eye diagram and a  
segment of the test pattern (PRBS6) waveform captured on ML561 hardware at the  
designated probe point using an Agilent scope.  
Hardware Measurements  
As the frequency of operation increases, the signal delay is affected by the data pattern  
that precedes the current data bit. This is called the inter-symbol interference (ISI) effect.  
All testing is performed with a pseudo-random bitstream (PRBS) of order 6, that is,  
PRBS6. ISI is the jitter represented by the eye at all four voltage thresholds. The worst  
of the following two sum values are listed in this table:  
Inter-Symbol Interference  
(ISI)  
Sum of ISI at VIH(ac)-min and VIH(dc)-min  
Sum of ISI at VIL(ac)-max and VIL(dc)-max  
This is the noise margin available at the receiver. Measurements are taken at the AC  
voltage levels as the minimum vertical opening of the eye in the vicinity of the center  
of the bit period. Ideally, the input voltage needs to remain above the DC voltage  
specifications. However, by considering the AC voltage specifications for the nominal  
voltage level for VREF, these measurements are more conservative values that also  
include the effects of VREF variations.  
Noise Margin  
VIH margin: Difference between the top of the eye opening and VIH(ac)-min  
VIL margin: Difference between VIL(ac)-max and the bottom of the eye opening  
These measurements are performed in stand-alone fashion for the signal under test.  
Thus no consideration of crosstalk or Simultaneously Switching Output (SSO) effects  
are accounted for.  
Overshoot margin is the difference between the maximum allowable VIH per JEDEC  
specification and the maximum amplitude of the measured eye. Similarly, undershoot  
margin is the difference between the minimum amplitude of the measured eye and the  
minimum allowable VIL value per JEDEC specification. For both SSTL18 and 1.8V  
HSTL specifications:  
Overshoot / Undershoot  
Margin  
VIH(max) < (VDDQ + 300 mV) = (1.8 + 0.3)V = 2.1V  
VIL(min) > -300 mV = 0.3V  
The BoardSim utility of the HyperLynx simulator is used to extract the IBIS schematics  
of the same signal net for which hardware measurements are made. To replicate the  
hardware measurement probe set up at the probe point, a 0.5 pF probe capacitance is  
added based on Agilent probe loading specifications to the extracted IBIS schematics of  
the memory signal. For the FPGA devices soldered on the ML561 board under test, the  
process corner (slow, typical, or fast) is not known. Thus simulation is performed for all  
three corners (slow-weak, typical, and fast-strong), and the results of the case that best  
fits with hardware measurement is selected for tabulation.  
Simulation Correlation  
This term is the minimum input level at which the receiver must recognize input logic  
High.  
VIH(ac)-min  
VIH(dc)-min  
VIL(ac)-max  
VIL(dc)-max  
When the input signal reaches VIH(ac)-min, the receiver continues to interpret the  
input as a logic High as long as the signal remains above this voltage. (This parameter  
is basically the hysteresis for a logic ‘1’.)  
This term is the maximum input level at which the receiver must recognize input logic  
Low.  
When the input signal reaches VIL(ac)-max, the receiver continues to interpret the input  
as a logic Low as long as the signal remains below this voltage. (This parameter is  
basically the hysteresis for logic ‘0’.)  
10  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 1  
Introduction  
®
This chapter introduces the Virtex -5 FPGA ML561 reference design. It contains the  
following sections:  
About the Virtex-5 FPGA ML561 Memory Interfaces Tool Kit  
The Virtex-5 FPGA ML561 Memory Interfaces Tool Kit provides a complete development  
platform to interface with external memory devices for designing and verifying  
applications based on the Virtex-5 LXT FPGA platform. This kit allows designers to  
implement high-speed applications with extreme flexibility using IP cores and customized  
modules. The Virtex-5 LXT FPGA, with its column-based architecture, makes it possible to  
develop highly flexible memory interface applications.  
The Virtex-5 FPGA ML561 Memory Interfaces Tool Kit includes the following:  
Virtex-5 FPGA ML561 Memory Interfaces Development Board (XC5VLX50T-FFG1136  
FPGA)  
5V/6.5 A DC power supply  
Country-specific power supply line cord  
RS-232 serial cable, DB9-F to DB9-F  
Documentation and reference design CD-ROM  
Optional items that also support development efforts include:  
®
®
Xilinx ISE software  
JTAG cable  
Xilinx Parallel IV cable  
For assistance with any of these items, contact your local Xilinx distributor or visit the  
Xilinx online store at www.xilinx.com.  
The heart of the Virtex-5 FPGA ML561 Memory Interfaces Tool Kit is the Virtex-5 FPGA  
ML561 Development Board. This manual provides comprehensive information on Rev A3  
and later revisions of this board.  
Virtex-5 FPGA ML561 User Guide  
11  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
R
Chapter 1: Introduction  
Virtex-5 FPGA ML561 Memory Interfaces Development Board  
A high-level functional block diagram of the Virtex-5 FPGA ML561 Memory Interfaces  
Development Board is shown in Figure 1-1.  
External Interfaces:  
System ACE Controller,  
USB, RS-232, LCD  
SSTL18/SSTL2  
FPGA #1  
XC5VLX50T/  
FFG1136  
SSTL18  
HSTL  
FPGA #3  
XC5VLX50T/  
FFG1136  
FPGA #2  
XC5VLX50T/  
FFG1136  
WIDE  
UG191_c1_01_020807  
DEEP  
Figure 1-1: Virtex-5 FPGA ML561 Development Board Block Diagram  
The Virtex-5 FPGA ML561 Development Board includes the following major functional  
blocks:  
Three XC5VLX50T-FFG1136 FPGAs (see DS100, Virtex-5 Family Overview)  
DDR400 components: 128 MB (32M x 32 bits) at 200 MHz clock speed. See XAPP851,  
DDR SDRAM Controller Using Virtex-5 FPGA Devices.  
DDR2 DIMM: Five PC2-5300 DIMM sockets for up to 2 GB (128M x 144 bits). See  
XAPP858, High-Performance DDR2 SDRAM Interface in Virtex-5 Devices.  
DDR2-667 components: 64 MB (16M x 32 bits) at 333 MHz clock speed  
QDRII memory: 16 MB (2M x 72 bits) at up to 300 MHz clock speed. See XAPP853,  
QDR II SRAM Interface for Virtex-5 Devices.  
RLDRAM II memory: 64 MB (16M x 36 bits) at up to 300 MHz clock speed. See  
XAPP852, RLDRAM II Memory Interface for Virtex-5 FPGAs.  
One DB9-M RS-232 port and one USB 2.0 port  
A System ACE™ CompactFlash (CF) Configuration Controller that allows storing  
and downloading of up to eight FPGA configuration image files  
On-board power regulators with 5% output margin test capabilities  
12  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
R
Virtex-5 FPGA ML561 Memory Interfaces Development Board  
Figure 1-2 shows the Virtex-5 FPGA ML561 Development Board and indicates the  
locations of the resident memory devices.  
32-bit  
DDR400  
SDRAM  
144 bits wide  
DDR2  
SDRAM  
DIMM  
32-bit  
DDR2  
SDRAM  
72 bits wide,  
up to 4 deep  
72-bit  
QDRII  
SRAM  
36-bit  
RLDRAM II  
UG199_c1_02_050106  
S
A i
 
l N  
10 t  
hit  
/ d  
h d  
F/L  
Figure 1-2: Virtex-5 FPGA ML561 Development Board  
Virtex-5 FPGA ML561 User Guide  
13  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Chapter 1: Introduction  
14  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 2  
Getting Started  
This chapter describes the items needed to configure the Virtex-5 FPGA ML561 Memory  
Interfaces Development Board. The Virtex-5 FPGA ML561 Development Board is tested at  
the factory after assembly and should be received in working condition. It is set up to load  
a bitstream from the CompactFlash card at socket J27 through the System ACE controller  
(U45).  
This chapter contains the following sections:  
Documentation and Reference Design CD  
The CD included in the Virtex-5 FPGA ML561 Memory Interfaces Tool Kit contains the  
design files for the Virtex-5 FPGA ML561 Development Board, including schematics,  
board layout, and reference design files. Open the ReadMe.rtffile on the CD to review  
the list of contents.  
Initial Board Check Before Applying Power  
Perform these steps before applying board power:  
1. Set up the Configuration Mode jumpers (P27, P46, and P112) for JTAG configuration.  
See “Configuration Modes” on page 51 for all available modes for the Virtex-5 FPGA  
ML561 Development Board.  
2. Confirm that the JTAG chain jumpers P38, P44, and P109 are connecting pins 1 to 2 and  
pins 3 to 4. This way, all three devices are in the chain. Otherwise, the ISE iMPACT  
software will not find all three devices to configure. For more information see “JTAG  
3. Make sure that no inhibit jumpers are present on any of the power supply regulator  
modules. For more information, see Voltage Regulators” on page 34.  
4. The Virtex-5 FPGA ML561 Development Board has a 200 MHz on-board oscillator,  
which provides a copy of a differential LVPECL clock to each of the three FPGAs  
through a differential clock buffer (ICS853006). There is also a connection to a pair of  
SMA connectors (J19, J20) to provide a differential LVDS clock from an off-board signal  
generator. Another differential clock buffer (ICS853006) provides a copy of this clock to  
each of the three FPGAs. These clocks are available after configuration for the design to  
use for various system clocks.  
Virtex-5 FPGA ML561 User Guide  
15  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
R
Chapter 2: Getting Started  
5. Insert the CompactFlash card included in the kit into socket J27 on the Virtex-5 FPGA  
ML561 Development Board. To select the startup file, check that SW8 is set to position  
0.  
Applying Power to the Board  
The Virtex-5 FPGA ML561 Development Board is now ready to power on. The Virtex-5  
FPGA ML561 Development Board is shipped with a country-specific AC line cord for the  
universal input 5V desktop power supply. Follow these steps to power up the Virtex-5  
FPGA ML561 Development Board:  
1. Confirm that the ON-OFF switch, SW5, is in the OFF position.  
2. Plug the 5V desktop power supply into the 5V DC input barrel jack J28 on the Virtex-5  
FPGA ML561 Development Board. Plug the desktop power supply AC line cord into  
an electrical outlet supplying the appropriate voltage.  
3. Turn SW5 to the ON position. The power indicators for all regulator modules should  
come on, indicating output from the regulators. The System ACE status LED D37  
comes on when the System ACE controller (U45) extracts the BIT configuration file  
from the CompactFlash card to the FPGA. If no CompactFlash card is installed in the  
card socket J27 on the Virtex-5 FPGA ML561 Development Board, the red System ACE  
error LED D38 flashes.  
4. If a CompactFlash card is not installed in socket J27, a JTAG cable must be used to  
configure the FPGAs. To use a Parallel IV cable or other JTAG pod, download the  
FPGA configuration bitstream into each FPGA. After the DONE LED (D28) comes on,  
the FPGAs are configured and ready to use.  
5. Push the reset button SW4.  
16  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Chapter 3  
Hardware Description  
This chapter describes the major hardware blocks on the Virtex-5 FPGA ML561  
Development Board and provides useful design consideration. It contains the following  
sections:  
Hardware Overview  
The ML561 Development/Evaluation system reference design is implemented with three  
XC5VLX50T-FFG1136 devices from the Virtex-5 FPGA family to demonstrate high-speed  
external memory application interfaces. The memory technologies supported by the  
Virtex-5 FPGA ML561 Development Board are DDR2 SDRAM, DDR400 SDRAM, QDRII  
SRAM, and RLDRAM II SDRAM.  
Figure 3-1 provides a view of all the major components on ML561 board. It shows the  
placement of the three Virtex-5 FPGAs, and the position of the associated major interfaces  
for each FPGA.  
Virtex-5 FPGA ML561 User Guide  
17  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
R
Chapter 3: Hardware Description  
SSTL18  
MGT Connections  
FPGA #1  
LEDs  
SSTL2  
& V  
SPY  
A1  
V
TT  
REF  
DDR  
FPGA #2  
FPGA #1  
DDR  
SPY  
FPGA #1  
LEDs  
Test Header 1  
A1  
FPGA #2  
Test Header 2  
SSTL18  
LEDs  
MGT  
CLK  
DDR2  
DDR2  
AVC  
CPLL  
Config1  
V
& V  
TT  
REF  
Config2  
VVTTR  
XC  
AVTTX  
AVTRX  
DIP1  
FBD  
VCC  
12V Banana  
Jacks  
Clocks &  
Buffers  
7SEG2  
DIP2  
External  
CLK  
ON  
V
CCINT  
SSTL2  
RS-232  
Driver  
A1  
OFF  
7SEG1  
SPY  
HSTL  
12V -> 5V  
3.3V  
Serial Header  
QDRII  
QDRII  
V
/
12V Input  
Jack  
CCAUX  
CCO  
RLDRAM II  
V
RESET  
FPGA #3  
HSTL  
5V Banana  
Jacks  
RLDRAM II  
SPY  
V
& V  
TT  
REF  
System ACE  
Test Header 3  
ON  
Controller  
JTAG Test Header  
Config3  
FPGA #3 LEDs  
OFF  
5V Input  
Jack  
7SEG3  
DIP3  
HSTL  
Pwr Measure Header  
USB  
LCD Connector  
PROG  
JTAG  
UG199_c3_01_050106  
Figure 3-1: ML561 XC5VLX50T-FFG1136 Board Placement Diagram  
FPGA  
The ML561 uses three Virtex-5 XC5VLX50T-FFG1136 devices, each in a 1136-pin,  
35 mm x 35 mm BGA package. Figure 1-1, page 12 shows the memory devices associated  
with the three FPGAs. Refer to Appendix A, “FPGA Pinouts,” for a complete pinout of all  
Virtex-5 devices on the board. Refer to Appendix B, “Bill of Materials,” for a list of major  
components on the Virtex-5 FPGA ML561 Development Board, including their reference  
designators and links to their corresponding data sheets.  
18  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Hardware Overview  
Memories  
Table 3-1 lists the types of memories that the ML561 board supports.  
Table 3-1: Summary of ML561 Memory Interfaces  
Data/Strobe  
Ratios  
Memory Type  
Maximum Speed  
Data Rate  
Data Width  
I/O Standard  
DDR400 SDRAM  
DDR2 DIMM  
DDR2 SDRAM  
QDRII SRAM  
RLDRAM II  
200 MHz  
333 MHz  
333 MHz  
300 MHz  
300 MHz  
400 Mbps  
667 Mbps  
667 Mbps  
1.2 Gbps  
600 Mbps  
32  
144  
32  
SSTL2  
SSTL18  
SSTL18  
HSTL18  
HSTL18  
8:1  
8:1  
8:1  
72  
18:1, 36:1  
9:1, 18:1  
36  
When a larger data/strobe ratio is implemented, for example, a x36 QDRII device, the  
smaller configurations can also be demonstrated by programming the FPGA for a smaller  
data width, such as a 9:1 data/strobe ratio for the QDRII device.  
DDR400 SDRAM Components  
The Virtex-5 FPGA ML561 Development Board has two 200 MHz Micron  
MT46V32M16BN-5B (16-bit) DDR400 SDRAM components that provide a 32-bit interface.  
Each 16-bit device is packaged in a 60-ball FBGA package, with a common address and  
control bus and separate clocks and DQS/DQ signals.  
DDR2 DIMM  
The Virtex-5 FPGA ML561 Development Board contains five PC-5300 240-pin DIMM  
sockets for a maximum data width of 144 bits or a maximum depth of four DIMMs. The  
sockets are arranged in a row leading away from the FPGA so they can share common  
address and control signals. DIMM1 through DIMM4 share DQ/DQS signals to form a  
deep 72-bit memory interface, while DIMM5 has separate DQ/DQS signals.  
For the deep DDR2 interface, the sockets are to be populated starting at socket DIMM4.  
Table 3-2 illustrates how the sockets should be populated based on the interface wanted.  
Table 3-2: Populating DDR2 DIMM Sockets  
DIMM Sockets  
Populated  
DIMM Interface  
Interface Width  
One Deep  
Two Deep  
Three Deep  
Four Deep  
Two Wide  
5 or 4  
72-bit  
72-bit  
72-bit  
72-bit  
144-bit  
4 and 3  
4, 3, and 2  
4, 3, 2, and 1  
5 and 4  
Populating the DIMMs in this order is necessary due to the placement of the termination  
on the signals being shared. More detail on termination is given in “Board Design  
Virtex-5 FPGA ML561 User Guide  
19  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
R
Chapter 3: Hardware Description  
Wide  
Deep  
DQ and DQS  
BY0-BY7, CB0_7  
DQ and DQS  
BY8-BY15, CB8_15  
Address and Commands  
DIMM1 Control  
DIMM2 Control  
DIMM3 Control  
DIMM4 Control  
DIMM5 Control  
UG199_c3_02_050106  
Figure 3-2: DDR2 Deep and Wide DIMM Sockets  
DDR2 SDRAM Components  
The ML561 board contains two 333 MHz Micron MT47H32M16CC-3 (16-bit) DDR2  
SDRAM components that provide a 32-bit interface to FPGA #1. Each 16-bit device is  
packaged in an 84-ball FBGA package, with a common address and control bus and  
separate clocks and DQS/DQ signals.  
QDRII SRAM  
The ML561 board contains a 300 MHz QDRII SRAM interface with a 72-bit Read interface  
and a 72-bit Write interface using two Samsung K7R643684M-FC30 components (x36).  
They are packaged in a 165-ball FBGA package with a body size of 15 x 17 mm. These two  
components share the same address/control signals but have separate clock and data  
signals.  
RLDRAM II Devices  
The ML561 contains a 300 MHz 36-bit RLDRAM II interface using two Micron  
MT49H16M18BM-25 devices (x18) packaged in a 144-ball PBGA package. They share a  
common address and control bus but have separate clocks and DQS/DQ signals.  
20  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
R
Memory Details  
Memory Details  
DDR400 and DDR2 Component Memories  
The FPGA #1 device on the Virtex-5 FPGA ML561 Development Board is connected to  
DDR and DDR2 component memories, as shown in Figure 3-3.  
Figure 3-3 summarizes the distribution of DDR and DDR2 discrete component interface  
signals among the different banks of the FPGA #1 device.  
GTP I/O  
BANK 25 (40)  
BANK 6 (20)  
BANK 126  
BANK 21 (40)  
BANK 17 (40)  
BANK 4 (20)  
BANK 22 (40)  
BANK 122  
Global Clock Inputs  
BANK 2 (20)  
BANK 18 (40)  
BANK 118  
Voltage Control  
BANK 13 (40)  
DDR Components  
DQ 0, 1, 2  
BANK 114  
BANK 112  
(Configuration)  
BANK 0  
BANK 11 (40)  
DDR Components  
DQ 3 & Controls  
BANK 12 (40)  
USB Controls  
BANK 15 (40)  
BANK 1 (20)  
BANK 116  
BANK 120  
DDR2 Component  
DDR2 Component  
DQ 0, 1  
Address  
BANK 19 (40)  
BANK 3 (20)  
BANK 20 (40)  
RS232  
DDR2 Component  
DQ 2, 3  
DDR2 Component  
Controls  
Inter-FPGA MII Links  
BANK 23 (40)  
BANK 5 (20)  
BANK 124  
UG199_c3_03_050106  
Figure 3-3: FPGA #1 Banks for DDR400 and DDR2 Component (Top View)  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
21  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
R
Chapter 3: Hardware Description  
Table 3-3 describes all signals associated with DDR400 Component memories.  
Table 3-3: DDR400 Component Signal Summary  
Board Signal Name(s)  
DDR1_A[13:0]  
Bits  
14  
4
Description  
DDR400 Component Address  
DDR400 Component Differential Clock  
DDR400 Component Control Signals  
DDR1_CK[2:1]_[P,N]  
DDR1_[RAS,CAS,WE]_N, DDR1_CKE,  
DDR1_BA[1:0], DDR1_BY[0_1,2_3]_CS_N,  
DDR1_DM_BY[3:0]  
12  
DDR1_DQ_BY0_B[7:0], DDR1_DQS_BY0_P  
DDR1_DQ_BY1_B[7:0], DDR1_DQS_BY1_P  
DDR1_DQ_BY2_B[7:0], DDR1_DQS_BY2_P  
DDR1_DQ_BY3_B[7:0], DDR1_DQS_BY3_P  
9
9
9
9
DDR400 Data and Strobe: Byte 0  
DDR400 Data and Strobe: Byte 1  
DDR400 Data and Strobe: Byte 2  
DDR400 Data and Strobe: Byte 3  
Notes:  
1. DDR1_CKE signal has a weak 4.7KΩpull-down resistor to meet the memory power-up requirements.  
Table 3-4 describes all signals associated with DDR2 Component memories. For a complete  
list of FPGA #1 signals and their pin locations, refer to Appendix A, “FPGA Pinouts.”  
Table 3-4: DDR2 Component Signal Summary  
Board Signal Name(s)  
DDR2_A[12:0]  
Bits  
13  
Description  
DDR2 Component Address  
DDR2_CK[1:0]_[P,N]  
4
DDR2 Component Differential  
Clock  
DDR2_ODT[1:0], DDR2_[RAS,CAS,WE]_N,  
DDR2_CKE, DDR2_BA[1:0], DDR2_CS[1:0]_N,  
DDR2_DM_BY[3:0]  
14  
DDR2 Component Control Signals  
DDR2_DQ_BY0_B[7:0], DDR2_DQS_BY0_[P,N]  
DDR2_DQ_BY1_B[7:0], DDR2_DQS_BY1_[P,N]  
DDR2_DQ_BY2_B[7:0], DDR2_DQS_BY2_[P,N]  
DDR2_DQ_BY3_B[7:0], DDR2_DQS_BY3_[P,N]  
10  
10  
10  
10  
DDR2 Data and Strobe: Byte 0  
DDR2 Data and Strobe: Byte 1  
DDR2 Data and Strobe: Byte 2  
DDR2 Data and Strobe: Byte 3  
Notes:  
1. DDR2_CKE and DDR2_ODT[1:0] signals have a weak 4.7KΩpull-down resistor to meet the memory  
power-up requirements.  
XAPP851, DDR SDRAM Controller Using Virtex-5 FPGA Devices, XAPP858, High-  
Performance DDR2 SDRAM Interface in Virtex-5 Devices, and the corresponding demos are  
included on the CD shipped with the ML561 Tool Kit. For a complete list of FPGA #1  
signals and their pin locations, refer to Appendix A, “FPGA Pinouts.”  
22  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Memory Details  
DDR2 SDRAM DIMM  
The FPGA #2 device on the Virtex-5 FPGA ML561 Development Board is connected to  
DDR2 memories. The DDR2 memory interface includes a 144-bit wide DIMM connection  
to up to five 240-pin DDR2 DIMM sockets.  
For the 144-bit wide DIMM datapath, the data bytes are spread across multiple banks of  
the FPGA #2 device. Figure 3-4 summarizes the distribution of DDR2 DIMM interface  
signals among the different banks of the FPGA #2 device.  
BANK 124  
TX 0, 1  
BANK 5 (20)  
BANK 23 (40)  
BANK 120  
BANK 20 (40)  
DDR2 DIMM  
DQ 8, 9, 10  
BANK 3 (20)  
BANK 19 (40)  
DDR2 DIMM  
General I/O  
RX 0, 1  
Controls & DIMM1 Cntl  
BANK 116  
BANK 1 (20)  
BANK 15 (40)  
General I/O  
DDR2 DIMM  
DQ 0, 1, 2  
GTP CLK  
BANK 112  
BANK 12 (40)  
DDR2 DIMM  
BANK 11 (40)  
DDR2 DIMM  
(Configuration)  
DQ 11, 12, CB8_15  
DQ 6, 3 CB0_7  
BANK 114  
BANK 0  
BANK 13 (40)  
DDR2 DIMM  
DQ 5, 7, 4  
BANK 118  
BANK 18 (40)  
BANK 2 (20)  
BANK 17 (40)  
DDR2 DIMM  
DDR2 DIMM  
Inter-FPGA MII Links  
DQ 14, 15, 13  
BANK 22 (40)  
Common Controls  
BANK 122  
BANK 126  
BANK 4 (20)  
BANK 21 (40)  
DDR2 DIMM  
Global Clock Inputs  
DDR2 DIMM  
DIMM 4 & 5 Cntl  
DIMM 1, 2, 3 Cntl  
BANK 6 (20)  
BANK 25 (40)  
UG199_c3_04_050106  
Figure 3-4: FPGA #2 Banks for DDR2 DIMM (SSTL18) Interfaces (Top View)  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
23  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Chapter 3: Hardware Description  
Table 3-5 describes all the signals associated with DDR2 DIMM component memories. For  
the Deep DIMM interface to four DIMMs, the individual dedicated control signals are  
listed at the bottom of Table 3-5.  
Table 3-5: DDR2 DIMM Signal Summary  
Board Signal Name(s)  
DDR2_DIMM_A[15:0]  
Bits  
Description  
16 DDR2 DIMM Address  
DDR2_DIMM[5:1]_CK[2:0]_[P,N]  
30 DDR2 DIMM Differential Clocks: Three copies per  
DIMM  
DDR2_DIMM_[RAS,CAS,WE,RESET]_N,  
DDR2_DIMM[5:1]_CKE[1:0], DDR2_DIMM_BA[2:0],  
DDR2_DIMM[5:1]_CS[1:0]_N,  
37 DDR2 DIMM Common Control Signals  
20 DDR2 DIMM Dedicated Control Signals  
DDR2_DIMM[5:1]_ODT[1:0]  
DDR2_DIMM[1:5]_CS[1:0]_N,  
DDR2_DIMM[1:5]_CKE[1:0],  
DDR2_DIMM[1:5]_ODT[1:0]  
DDR2_DIMM_LB_BK[11,13,15]_[IN,OUT]  
6
3
Deep DIMMs (DIMM1 through DIMM4) Loopback  
Signals  
DDR2_DIMM_LB_BK[12,18,20]  
Wide DIMM (DIMM5) Loopback Signals (Total of six  
FPGA pins)  
DDR2_DIMM[1:5]_CNTL_PAR,  
DDR2_DIMM[1:5]_CNTL_PAR_ERR,  
20 Miscellaneous Place Holder Signals to the Five  
DIMMs  
DDR2_DIMM[1:5]_NC_019, DDR2_DIMM[1:5]_NC_102  
DDR2_DIMM_DQ_BY[0:15]_B[7:0],  
DDR2_DIMM_DQS_BY[0:15]_L_[P,N],  
DDR2_DIMM_DM_BY[0:15]  
176 DDR2 DIMM Data, Strobes, and Data Mask: Bytes 0  
through 15  
DDR2_DIMM_DQ_CB0_7_B[7:0],  
DDR2_DIMM_DQS_CB0_7_L_[P,N],  
DDR2_DIMM_DM_CB0_7  
11 DDR2 DIMM Data, Strobes, and Data Mask: Check  
Byte 0  
DDR2_DIMM_DQ_CB8_15_B[7:0],  
DDR2_DIMM_DQS_CB8_15_L_[P,N],  
DDR2_DIMM_DM_CB8_15  
11 DDR2 DIMM Data, Strobes, and Data Mask: Check  
Byte 1  
DDR2_DIMM[1:5]_SA[2:0]  
DDR2_DIMM_[SCL,SDA]"  
15 Serial PROM Address  
2
Serial PROM interface CLK and Data  
Notes:  
1. DDR2_DIMM_CKE and DDR2_DIMM_ODT signals are connected to a 4.7KΩpull-down resistor to meet the memory power-up  
requirements.  
XAPP858, High-Performance DDR2 SDRAM Interface in Virtex-5 Devices and its  
corresponding demo are included on the CD shipped with the ML561 Tool Kit.  
24  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Memory Details  
QDRII and RLDRAM II Memories  
Figure 3-5 summarizes the distribution of QDRII and RLDRAM II component interface  
signals among the different banks of the FPGA #3 device.  
BANK 124  
BANK 5 (20)  
BANK 23 (40)  
BANK 120  
BANK 116  
BANK 20 (40)  
RLDII Data  
BANK 3 (20)  
BANK 19 (40)  
QDRII Data  
Q1, 3 & D1  
General I/O  
DQ 0, 1 & D0  
BANK 1 (20)  
BANK 15 (40)  
QDRII Data  
D7, 2, 3, 0  
System ACE Controls  
BANK 112  
BANK 114  
BANK 12 (40)  
RLDII Data  
BANK 11 (40)  
QDRII Data  
Q0, 2 & D6  
(Configuration)  
DQ 2, 3 & D1  
BANK 0  
BANK 13 (40)  
QDRII Data  
Q4, 5, 6  
BANK 118  
BANK 18 (40)  
RLDII Data  
BANK 2 (20)  
BANK 17 (40)  
QDRII Data  
Inter-FPGA MII Links  
D 2, 3  
Q7 & D4, 5  
BANK 122  
BANK 22 (40)  
BANK 4 (20)  
BANK 21 (40)  
RLDII Address  
and Control  
QDRII Address  
and Control  
Global Clock Inputs  
BANK 126  
BANK 6 (20)  
BANK 25 (40)  
UG199_c3_05_050106  
Figure 3-5: FPGA #3 Banks for QDRII SRAM and RLDRAM II Interfaces (Top View)  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
25  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Chapter 3: Hardware Description  
Table 3-6 describes all the signals associated with QDRII component memories.  
Table 3-6: QDRII Component Signal Summary  
Board Signal Name(s)  
Bits  
19  
Description  
QDR2_SA[18:0]  
QDRII Address  
QDR2_CK_BY0_3_[P,N],  
QDR2_CK_BY4_7_[P,N]  
4
QDRII Differential Clock  
QDR2_[R,W,DLL_OFF]_N  
3
QDRII Control Signals  
QDR2_D_BY[3:0]_B[8:0],  
QDR2_K_BY0_3_[P,N],  
QDR2_BW_BY[3:0]  
42  
QDRII Write Data, Strobes, and Byte Write: Bytes 3:0  
QDR2_Q_BY[3:0]_B[8:0],  
QDR2_CQ_BY0_3_[P,N]  
38  
42  
QDRII Read Data and Strobes: Bytes 3:0  
QDR2_D_BY[7:4]_B[8:0],  
QDR2_K_BY4_7_[P,N],  
QDR2_BW_BY[3:0]  
QDRII Write Data, Strobes, and Byte Write: Bytes 7:4  
QDR2_Q_BY[7:4]_B[8:0],  
QDR2_CQ_BY4_7_[P,N]  
38  
QDRII Read Data and Strobes: Bytes 7:4  
Notes:  
1. QDR2_SA[18] is incorrectly labeled QDR2_NC_A3 in the ML561 schematics and layout file.  
XAPP853: QDR II SRAM Interface for Virtex-5 Devices and its corresponding demo are  
included on the CD shipped with the ML561 Tool Kit.  
For a complete list of FPGA #3 signals and their pin locations, refer to Appendix A, “FPGA  
Table 3-7 describes all signals associated with RLDRAM II devices.  
Table 3-7: RLDRAM II Component Signal Summary  
Board Signal Name(s)  
Bits  
23  
2
Description  
RLDRAM II Address  
RLD2_A[19:0], RLD2_BA[2:0]  
RLD2_CK_BY0_1 _[P,N]  
RLD2_CK_BY2_3 _[P,N]  
RLDRAM II Differential Clock  
RLDRAM II Differential Clock  
RLDRAM II Control Signals  
2
RLD2_CS_BY[0_1,2_3]_N, RLD2_[REF,WE]_N,  
8
RLD2_DM_BY[0_1,2_3]_N, RLD2_QVLD_BY[0_1,2_3]  
RLD2_DQ_BY[1:0]_B[8:0], RLD2_DK_BY0_1_[P,N],  
RLD2_QK_BY[1:0]_[P,N]  
24  
24  
RLDRAM II Data and Strobes: Bytes 1:0  
RLDRAM II Data and Strobes: Bytes 3:2  
RLD2_DQ_BY[3:2]_B[8:0], RLD2_DK_BY0_1_[P,N],  
RLD2_QK_BY[3:2]_[P,N]  
XAPP852, RLDRAM II Memory Interface for Virtex-5 FPGAs and its corresponding demo are  
included on the CD shipped with the ML561 Tool Kit.  
26  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
External Interfaces  
External Interfaces  
The external interfaces of the Virtex-5 FPGA ML561 Development Board are described in  
this section.  
RS-232  
The ML561 board provides an RS-232 serial interface using a Maxim MAX3316ECUP  
device. The maximum speed of this device is 460 Kbps.  
Hooks are provided to connect and disconnect FPGAs to the RS-232 serial interface, by  
placing jumpers on headers based on the FPGA involved in the communication. Only one  
FPGA is allowed in the communication, and others must be disconnected before operation.  
The ML561 toolkit CD contains code to implement a UART core in one FPGA for  
interfacing with a host PC.  
The RS-232 interface is accessible through a male DB-9 serial connector (P73).  
Table 3-8: RS-232 Jumper Settings  
To Connect FPGA # to  
TX  
RX  
DB-9 (P73)  
FPGA #1  
FPGA #2  
FPGA #3  
P52 Pin 2 -> P52 Pin 1  
P52 Pin 2 -> P51 Pin 1  
P52 Pin 2 -> P52 Pin 3  
P53 Pin 2 -> P53 Pin 1  
P53 Pin 2 -> P54 Pin 1  
P53 Pin 2 -> P53 Pin 3  
USB  
Full-speed (12 Mbps) USB functionality is proved using a Silicon Laboratories CP2102-GM  
USB to RS-232 Bridge. RS-232 and USB signals are converted between one another so a  
RS-232 core needs to be implemented in the FPGA for communication. A level translator is  
used to convert between the 2.5V I/O of the FPGA and the 3.3V I/O the CP2102 uses.  
Hooks are provided to connect and disconnect FPGAs to the USB connection, by placing  
jumpers on headers based on the FPGA involved in the communication. Only one FPGA is  
allowed in the communication, and others must be disconnected before operation.  
The USB interface is accessible through a female ‘A’ USB connector (J29).  
Table 3-9: USB Jumper Settings  
To Connect FPGA # to DB-9  
TX  
RX  
(J29)  
FPGA #1  
FPGA #2  
FPGA #3  
P36 Pin 2 -> P36 Pin 1  
P36 Pin 2 -> P35 Pin 1  
P36 Pin 2 -> P36 Pin 3  
P22 Pin2 -> P22 Pin 1  
P22 Pin2 -> P23 Pin 1  
P22 Pin2 -> P22 Pin 3  
Clocks  
The ML561 board contains a 200 MHz LVPECL clock oscillator and connectors for external  
clock inputs for use as system clocks (J19 and J20). The GTP transceivers use their own  
clock source that can be provided through SMA connectors on the board (J16 and J21).  
Virtex-5 FPGA ML561 User Guide  
27  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
R
Chapter 3: Hardware Description  
200 MHz LVPECL Clock  
The 200 MHz LVPECL clock source is an Epson EG-2121CA200M-PCHS oscillator (Y1)  
with a differential output. The oscillator runs at 200 MHz 100 PPM with an operating  
voltage of 2.5V 5%. This output is fed into an ICS853006 LVPECL buffer for generating a  
separate differential copy for each FPGA as well as a test point (P59).  
Table 3-10: FPGA 200 MHz IDELAY Reference Clock Source  
FPGA #  
Signal Name  
1
1
2
2
3
3
DIRECT_CLK_TO_FPGA1_P  
DIRECT_CLK_TO_FPGA1_N  
DIRECT_CLK_TO_FPGA2_P  
DIRECT_CLK_TO_FPGA2_N  
DIRECT_CLK_TO_FPGA3_P  
DIRECT_CLK_TO_FPGA3_N  
SMA Clock  
Two SMA connectors are provided for the input of an off-board differential clock (J19 and  
J20). A differential clock buffer (ICS853006) is used on the board (U17 and U18) to generate  
four LVPECL copies of the differential clock signal, one for each FPGA along with a probe  
point (P40) for testing. The traces from the buffer are routed as a differential pair to each  
FPGA where they are terminated with 100Ωdifferential termination.  
Table 3-11: FPGA External Clock Sources  
FPGA #  
Signal Name  
1
1
2
2
3
3
EXT_CLK_TO_FPGA1_P  
EXT_CLK_TO_FPGA1_N  
EXT_CLK_TO_FPGA2_P  
EXT_CLK_TO_FPGA2_N  
EXT_CLK_TO_FPGA3_P  
EXT_CLK_TO_FPGA3_N  
33 MHz Clock  
A single-ended 33 MHz Epson SG-8002CA oscillator is provided on the board (Y2) for  
testing purposes. Four copies of this clock are generated using a clock buffer (ICS8304) on  
the board, one per FPGA along with a probe point for testing (P41).  
The application using this clock source as an input to the PLL on the Virtex-5 device has  
not yet been fully verified.  
28  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
R
External Interfaces  
Table 3-12: FPGA Slow Clock Sources  
FPGA  
Signal Name  
1
2
3
FPGA1_LOW_FREQ_CLK  
FPGA2_LOW_FREQ_CLK  
FPGA3_LOW_FREQ_CLK  
33 MHz System ACE Controller Oscillator  
A single-ended 33 MHz Epson SG-8002CA oscillator is provided on the board (Y3) as a  
clock source for System ACE functionality.  
GTP Clocks  
Two SMA connectors are provided for the input of an off-board differential clock (J16 and  
J21). A differential clock buffer (ICS8543BG) is used on the board (U20) to generate four  
LVDS copies of the differential clock signal, two for FPGA #1, one for FPGA #2, and one for  
FPGA #3.  
A header is used to select between a clock forwarded by the GTP or from the external clock  
source used to provide a clock to the FPGA logic.  
User I/Os  
This subsection describes the devices that connect to the User I/Os of the ML561 board.  
These I/Os are provided to ease hardware development using the ML561.  
General-Purpose Headers  
The 16-pin test headers are surface mounted, one per FPGA. Of the two bytes of test  
signals, traces are matched for signals within a byte.  
Table 3-13: Test Headers  
Header Signal Description  
Location  
Header Pin #  
FPGA1_TEST_HDR_BY0_B[0:7]  
FPGA1_TEST_HDR_BY1_B[0:7]  
FPGA2_TEST_HDR_BY0_B[0:7]  
FPGA2_TEST_HDR_BY1_B[0:7]  
FPGA3_TEST_HDR_BY0_B[0:7]  
FPGA3_TEST_HDR_BY1_B[0:7]  
P20 (TEST1)  
P20 (TEST1)  
P21 (TEST2)  
P21 (TEST2)  
P93 (TEST3)  
P93 (TEST3)  
Odd pins: 1, 3, 5, 7, 9, 11, 13, 15  
Even pins: 2, 4, 6, 8, 10, 12, 14, 16  
Odd pins: 1, 3, 5, 7, 9, 11, 13, 15  
Even pins: 2, 4, 6, 8, 10, 12, 14, 16  
Odd pins: 1, 3, 5, 7, 9, 11, 13, 15  
Even pins: 2, 4, 6, 8, 10, 12, 14, 16  
DIP Switch  
One four-position DIP switch per FPGA (for a total of three) is available to externally pull  
up or pull down a signal on the FPGA. This can be used to manually set values used by the  
design running on the FPGA.  
Virtex-5 FPGA ML561 User Guide  
29  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
R
Chapter 3: Hardware Description  
Seven-Segment Displays  
One seven-segment display per FPGA (for a total of three) is available for use. The red  
Stanley-Electric NAR131SB displays are active Low, using seven inputs to display a  
character or number plus another input for a decimal point.  
7SEG_0_N  
7SEG_5_N  
7SEG_4_N  
7SEG_1_N  
7SEG_2_N  
7SEG_6_N  
7SEG_3_N  
7SEG_DP_N  
UG199_c3_06_050106  
Figure 3-6: Seven-Segment Display Signal Mapping  
Light Emitting Diodes (LEDs)  
Each FPGA is able to control four active-high green LEDs. The green is used to distinguish  
the User LEDs from the blue system LEDs on the Virtex-5 FPGA ML561 Development  
Board.  
Pushbuttons  
The ML561 board contains two momentary pushbuttons. Their functions and locations are  
described in Table 3-14.  
Table 3-14: User Pushbuttons  
Button  
Description  
Pin Connection  
SW7  
SW4  
PROG_B: Configure FPGA  
System ACE Controller: Pin 33  
RESET_N: Reset the FPGA designs FPGA #1: AH14  
FPGA #2: AH14  
FPGA #3: AH14  
The Reset signal goes to a buffer (U32) that provides a separate copy of Reset to each  
FPGA.  
30  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
R
External Interfaces  
Power On or Off Slide Switch  
The power on or off slide switch is a DPST slide switch used to apply input power to the  
board. While the board contains two such switches, the 5V switch is primarily used to  
supply 5V power to the board, whereas the 12V switch is available for testing only.  
Soft Touch Probe Points  
Soft Touch E5396A Probeless connection points are provided for monitoring FPGA #2 and  
FPGA #3 test signals with a compatible Agilent logic analyzer. FPGA #2 uses separate test  
signals for soft touch pins, while FPGA #3 shares the general-purpose test header signals  
with soft touch pins due to lack of available I/O pins.  
Power Measurement Header  
The ML561 comes with a 3M Pak 100 power measurement header to enable easy  
measurement of the power being consumed by the devices on the ML561. Each power  
regulator uses an Isotek Kelvin current sense resistor (SMV-R010-0.5) in the path from the  
output of the regulator to the power plane. The power can be computed by measuring the  
voltage drop across each of these resistors.  
R
= 10 mΩ  
KELVIN  
CCXXPR  
MARGIN+ MARGIN-  
+5V or +12V  
V
V
CCX  
V
To FPGA or  
Other Device  
V
V
OUT  
IN  
Voltage  
Regulator  
1KΩ  
Mon  
To  
CCXX  
V
Sense-  
Monitor  
Cable  
CCXX  
R
SET  
V
Sense+  
CCXX  
UG199_c3_07_050106  
Figure 3-7: Virtex-5 FPGA ML561 Development Board Power Measurement System  
Table 3-15: Power Measurement Header Pins (P102)  
Header Signal  
Power Header Pin #  
VCC1V0_SENSE+  
VCC1V0_SENSE-  
VCC1V0_MON  
VCC2V5_SENSE+  
VCC2V5_SENSE-  
VCC2V5_MON  
VCC3V3_SENSE+  
VCC3V3_SENSE-  
VCC3V3_MON  
1
2
3
5
6
7
9
10  
11  
Virtex-5 FPGA ML561 User Guide  
31  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
R
Chapter 3: Hardware Description  
Table 3-15: Power Measurement Header Pins (P102) (Continued)  
Header Signal  
Power Header Pin #  
VCC1V8_SENSE+  
VCC1V8_SENSE-  
VCC1V8_MON  
VCC1V5_SENSE+  
VCC1V5_SENSE-  
VCC1V5_MON  
VCC2V6_SENSE+  
VCC2V6_SENSE-  
VCC2V6_MON  
VCC5_SENSE+  
VCC5_SENSE-  
VCC5_MON  
VCC5  
13  
14  
15  
17  
18  
19  
21  
22  
23  
25  
26  
24  
20  
4
GND  
GND  
8
GND  
12  
16  
GND  
Liquid Crystal Display Connector  
Previous memory boards such as the ML461 had a DisplaytechQ 64128E-FC-BC-3LP  
64x128 LCD panel. This display was removed from the ML561, but the connection is still  
available for use with embedded systems if the user connects the display to connector  
(P104). The LCD panel needs to hang off the edge of the board as shown in Figure 3-8.  
32  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Power Regulation  
RS232  
Driver  
A1  
OFF  
7SEG1  
SPY  
HSTL  
Serial Header  
QDRII  
QDRII  
V
/
12V Input  
Jack  
CCAUX  
CCO  
RLDRAM II  
V
RESET  
FPGA3  
12V -> 5V  
HSTL  
5V Banana  
Jacks  
RLDRAM II  
SPY  
V
& V  
TT  
REF  
System ACE  
Test Header 3  
ON  
Controller  
JTAG Test Header  
3.3V  
Config3  
FPGA3 LEDs  
OFF  
5V Input  
Jack  
7SEG3  
DIP3  
HSTL  
Pwr Measure Header  
LCD Connector  
USB  
PROG  
JTAG  
UG199_c3_08_050106  
Figure 3-8: LCD Panel Connector for Possible LCD Support  
The product specification at  
information. Appendix C, “LCD Interface,” describes the LCD operation in detail.  
Power Regulation  
This section describes the devices that supply power to the Virtex-5 FPGA ML561  
Development Board. For electrical requirements and power consumption, see Chapter 4,  
Power Distribution  
The ML561 board uses +5V to drive numerous voltage regulators. Figure 3-9 shows a  
general overview of the power distribution system.  
Board Power  
To Devices  
+5V  
3.3V  
Slide  
Switch  
MGT  
Power  
MGT Power  
FPGA Power  
12V -> 5V  
+12V  
To All FPGAs  
V
or V  
/V  
CCINT  
CCAUX CCO  
Slide  
Switch  
FPGA Power  
SSTL18, HSTL, or SSTL2  
To FPGAs  
To Memories  
Memory Power  
SSTL18, HSTL, or SSTL2  
V
V
TT  
TT  
V
V
REF  
REF  
UG199_c3_09_050106  
Figure 3-9: Virtex-5 FPGA ML561 Development Board Power Distribution System  
The Virtex-5 FPGA ML561 Development Board is powered through the +5V input jack  
(J28) from the power supply included in the ML561 Tool Kit. Alternatively, the +5V can  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
33  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
R
Chapter 3: Hardware Description  
also be supplied from a bench supply using the two banana jacks: J25 (RED) for +5V and  
J24 (BLACK) for GND.  
The Rev-A assembly of the Virtex-5 FPGA ML561 Development Board does not support  
the +12V input via jack J23 or via banana jacks J18 (RED) for +12V and J17 (BLACK) for  
GND.  
The memory and FPGAs use separate power supplies for SSTL18, HSTL, and SSTL2,  
respectively. Thus the power being consumed can be easily measured for each using the  
power measurement header provided on the ML561.  
Voltage Regulators  
The +5V voltage source is supplied as input to nine on-board regulator modules. Six of  
those modules (TI PTH05010-WAZ) are used to generate the +1.0V, +2.5V, and +1.8V for  
SSTL18 at FPGA #1 and FPGA #2, +1.8V for HSTL18 at FPGA #3, +2.6V for SSTL2 at  
FPGA #1, and +3.3V voltages for the GTP power supplies, LEDs, etc. The remaining three  
modules (TI PTH05000-ADJ) are used to generate +1.8V for SSTL18 at the memories, +1.8V  
for HSTL at the memories, and +2.6V for SSTL2 at the memories.  
An additional three bulk voltage regulators (Fairchild FN6555) are used to generate  
termination (V ) and reference (V ) voltages each for the SSTL2, SSTL18, and HSTL  
TT  
REF  
power levels. By design, these voltage levels are half of the input reference voltage being  
supplied by the memory power supplies.  
The TI PTH05010-WAZ and TI PTH05000-ADJ regulator modules require a fixed 5V input.  
The output is adjustable over a range of 0.9V to 3.6V by changing the resistor tied between  
pin 4 and GND. The difference between these two modules is that the PTH05010-WAZ  
output voltage can be margined up to+ 5% of the nominal value by driving pin 10 to GND  
(or digital Low), or margined down to -5% of the nominal value by driving pin 9 Low. The  
PTH05010-WAZ also has a tracking feature that can be used to track another voltage  
source.  
TRACK  
VMARGIN_DN_xxxx_N  
VMARGIN_UP_xxxx_N  
10  
9
8
1
2
MRGNUP MRGNDN TRACK  
GND  
VIN  
GND  
VOUT  
7
6
PTH05010  
Voltage Regulator  
5V  
VO_ADJ VO_SENSE  
INHIBIT  
3
4
5
COUT  
+
+
CIN  
470 μF  
330 μF  
(optional)  
Inhibit  
Jumper  
RSET  
UG199_c3_10_050106  
Figure 3-10: PTH05010 Voltage Regulator  
There are two ways to apply the digital controls to the margin input pins of the PTH05010:  
either from FPGA #1 or manually with jumpers.  
34  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Power Regulation  
The FPGA can drive VMARGIN_DN_xxxx_N and VMARGIN_UP_xxxx_N signals, where  
xxxx indicates one of the six main power regulators: SSTL2, HSTL, SSTL18, VCC1V0,  
VCC2V5, and VCC3V3.  
Table 3-16: Manual Voltage Margining  
VMARGIN_UP_N  
VMARGIN_DN_N  
Output Voltage  
High  
High  
Low  
Low  
High  
Low  
High  
Low  
Nominal  
-5%  
+5%  
Not Applicable  
If both voltage-margining inputs to the power regulator are pulled Low, the output voltage  
is close to nominal but has the possibility of a slightly higher error in the output voltage.  
The power modules use a low-leakage open-drain control signal to control the voltage  
margining. In the FPGA, this can be approximated by using a control signal that drives the  
output Low when active and does not drive the signal at all when inactive (high-  
impedance output).  
Three-pin headers are available for performing manual voltage margining, using jumpers  
to select between Nominal, -5%, and +5%. Table 3-17 shows the jumper settings.  
Table 3-17: FPGA #1 Signals and On-Board Jumpers for Voltage Margining  
Power Regulator  
Signal Name  
Jumper Setting  
VCCINT (VR6)  
VMARGIN_UP_VCC1V0_N  
VMARGIN_DN_VCC1V0_N  
VMARGIN_UP_SSTL18_N  
VMARGIN_DN_SSTL18_N  
VMARGIN_UP_SSTL2_N  
VMARGIN_DN_SSTL2_N  
VMARGIN_UP_HSTL_N  
VMARGIN_DN_HSTL_N  
VMARGIN_UP_VCC2V5_N  
VMARGIN_DN_VCC2V5_N  
P48: 1 -> 2  
P48: 3 -> 2  
P4: 1 -> 2  
SSTL18 (VR1)  
SSTL2 (VR9)  
P4: 3 -> 2  
P450 1 -> 2  
P50: 3 -> 2  
P58: 1 -> 2  
P58: 3 -> 2  
P69: 1 -> 2  
P69: 3 -> 2  
HSTL (VR10)  
VCCAUX (VR12)  
The TI PTH05010-WAZ and TI PTH05000-ADJ regulator outputs can be enabled or  
inhibited through the use of on-board two-pin jumpers. The inhibit jumpers use the  
following conventions:  
Jumper OFF = Enabled  
Jumper ON = Inhibited  
Virtex-5 FPGA ML561 User Guide  
35  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Chapter 3: Hardware Description  
Table 3-18 summarizes the inhibit headers.  
Table 3-18: Headers for Voltage Regulator Inhibition  
Power Regulator  
CCINT (VR6)  
Inhibit Header  
V
P63  
P11  
P32  
P68  
P5  
SSTL18 (VR1)  
SSTL18_M (VR4)  
SSTL2 (VR9)  
SSTL2_M (VR2)  
HSTL (VR10)  
P74  
P105  
P79  
P101  
HSTL_M (VR14)  
VCCAUX (VR12)  
VCC3V3 (VR13)  
Board Design Considerations  
UG086, Memory Interface Generator (MIG) User Guide includes PCB implementation rules  
and guidelines to be followed for designing a board for a MIG reference design.  
The Virtex-5 FPGA ML561 Development Board design allows implementation of DCI  
termination scheme at the FPGA for each of the memory interfaces on the board. A  
preliminary analysis of the Weighted Average Simultaneously Switching Outputs  
(WASSO) for all three Virtex-5 devices indicates that the SSO guidelines are met for the  
current pinout. The following factors helped to reduce the SSO noise as compared to the  
Virtex-4 FPGA ML461 board implementation:  
SparseChevron pinout resulting in larger number of Power/GND pin pairs per bank  
A revised higher SSO allowance per Power/GND pair for SparseChevron packages  
Reduced thickness of the board (74 mils vs. 98 mils) resulting in reduced via  
inductance  
External terminations at both the memory and FPGA are provided for data signals for  
most of the memory interfaces on the Virtex-5 FPGA ML561 Development Board layout.  
The external V termination is implemented with a single 50Ω termination to the V  
TT  
REF  
level. See Chapter 5, “Signal Integrity Recommendations,” for specific recommendations  
and guidelines for terminations.  
These are V end terminations to the respective voltage levels for SSTL2, SSTL18, and  
TT  
HSTL signals. There are two topologies of end terminations for data signals:  
1. Fly-by termination: The parallel termination is placed after the receiver pin.  
2. Non-fly-by termination: The parallel termination is placed between the driver and the  
receiver along the trace as close to the receiver pin as possible. Also the stub from  
signal trace to the termination resistor is kept very short, within 0.1 inch.  
For Read data, terminations at the FPGA have non-fly-by termination topology. These  
terminations can be selectively depopulated on the ML561 board when DCI termination is  
implemented inside FPGA for received data. Due to non-fly-by termination topology, the  
result is a minimal stub for the signal, thus preserving good signal integrity for read data.  
36  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
R
Board Design Considerations  
For Write data and terminations at the memory, if the trace length from the receiver pin to  
the termination resistor can be guaranteed to be within 0.3 inches, then the fly-by  
termination scheme is implemented. Otherwise, the non-fly-by termination topology is  
implemented for Write data at the memory end.  
The physical dimensions of the raw PCB are 12.75 inches x 11.75 inches. With the  
overhangs due to edge connectors, the actual size of the fully assembled board is  
approximately 13 inches x 12 inches, with 1.5 inches height allowance for the DIMM  
modules. This 14-layer board has 6 signal layers, 4 GND layers, and 4 power planes and  
uses Polyclad 370HR material for lead-free assembly. Figure 3-11 shows a stack-up  
diagram of the ML561 Revision A PCB.  
Refer to UG203, Virtex-5 PCB Designer’s Guide for more information on the PCB design  
using Virtex-5 devices.  
1.0 oz, TOP, Z = 50Ω, width = 6 mils  
0
3.8 mils, Er = 4.4  
1.0 oz, 02_GND1  
4 mils, Er = 4.4  
0.5 oz, 03_INR1, Z = 50Ω, width = 4.5 mils  
0
5.3 mils, Er = 4.4  
1.0 oz, 04_PWR1  
8 mils, Er = 4.4  
0.5 oz, 05_INR2, Z = 50Ω, width = 4.5 mils  
0
3.2 mils, Er = 4.4  
1.0 oz, 06_GND2  
3 mils, Er = 4.4  
1.0 oz, 07_PWR2  
3.3 mils, Er = 4.4  
1.0 oz, 08_PWR3  
3 mils, Er = 4.4  
73.90 7 mils  
1.0 oz, 09_GND3  
3.2 mils, Er = 4.4  
0.5 oz, 10_INR5, Z = 50Ω, width = 4.5 mils  
0
8 mils, Er = 4.4  
1.0 oz, 11_PWR4  
5.3 mils, Er = 4.4  
0.5 oz, 12_INR6, Z = 50Ω, width = 4.5 mils  
0
4 mils, Er = 4.4  
1.0 oz, 13_GND4  
3.8 mils, Er = 4.4  
1.0 oz, BOTTOM, Z = 50Ω, width = 6 mils  
0
UG199_c3_11_102407  
Figure 3-11: ML561 Revision A PCB Stack-Up  
Virtex-5 FPGA ML561 User Guide  
37  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Chapter 3: Hardware Description  
Table 3-19 shows the details of the dielectric material and construction for each layer and  
the controlled impedance values for the signal layers.  
Table 3-19: ML561 Revision A PCB Controlled Impedance  
Cu  
Substrate  
Test  
Width  
(mils)  
Layer  
Name  
Z0  
(ohms)  
Seq #  
Type  
Usage  
Weight Thickness  
(oz.)  
Er  
Comment  
(mils)  
3.8  
4
1
TOP  
Metal  
Dielectric  
Metal  
Signal  
Substrate  
Plane  
1.0  
<Auto>  
4.4  
6
50  
50  
50  
5
5
5
Microstrip Signal Top  
2
3
02_GND1  
03_INR1  
04_PWR1  
05_INR2  
06_GND2  
07_PWR2  
08_PWR3  
09_GND3  
10_INR5  
11_PWR4  
12_INR6  
13_GND4  
BOTTOM  
1.0  
0.5  
1.0  
0.5  
1.0  
1.0  
1.0  
1.0  
0.5  
1.0  
0.5  
1.0  
1.0  
<Auto>  
4.4  
Ground Plane #1  
Stripline Signal - Inner #1  
Split Power Plane #1  
Stripline Signal - Inner #2  
Ground Plane #2  
4
Dielectric  
Metal  
Substrate  
Signal  
5
<Auto>  
4.4  
4.5  
4.5  
6
Dielectric  
Metal  
Substrate  
Plane  
5.3  
8
7
<Auto>  
4.4  
8
Dielectric  
Metal  
Substrate  
Signal  
9
<Auto>  
4.4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
Dielectric  
Metal  
Substrate  
Plane  
3.2  
3
<Auto>  
4.4  
Dielectric  
Metal  
Substrate  
Plane  
<Auto>  
4.4  
Split Power Plane #2  
Split Power Plane #3  
Ground Plane #3  
Dielectric  
Metal  
Substrate  
Plane  
3.3  
3
<Auto>  
4.4  
Dielectric  
Metal  
Substrate  
Plane  
<Auto>  
4.4  
Dielectric  
Metal  
Substrate  
Signal  
3.2  
8
<Auto>  
4.4  
4.5  
4.5  
6
50  
50  
50  
5
5
5
Stripline Signal - Inner #3  
Split Power Plane #4  
Stripline Signal - Inner #4  
Ground Plane #4  
Dielectric  
Metal  
Substrate  
Plane  
<Auto>  
4.4  
Dielectric  
Metal  
Substrate  
Signal  
5.3  
4
<Auto>  
4.4  
Dielectric  
Metal  
Substrate  
Plane  
<Auto>  
4.4  
Dielectric  
Metal  
Substrate  
Signal  
3.8  
<Auto>  
Microstrip Signal Bottom  
38  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Chapter 4  
Electrical Requirements  
This chapter provides the electrical requirements for the Virtex-5 FPGA ML561  
Development Board. It contains the following sections:  
Power Consumption  
Table 4-1 lists the operating voltages, maximum currents, and power consumption used by  
the ML561 board devices. The Virtex-5 FPGA ML561 Development Board has provisions  
for two power inputs: a 5V power supply and a 12V power supply. The maximum rating of  
a commercially available 5V power supply is limited to 8A, or a 40W maximum capacity.  
This power supply is similar to the 5V brick used for previous memory tool kits, for  
example, ML461. This tool kit expects the Virtex-5 FPGA ML561 Development Board to  
exercise only one external memory interface at a time. In this case, the total power  
consumption of the board stays within the 40W limit.  
As shown in Table 4-1, if all three FPGA devices and their associated memory devices are  
activated simultaneously, then the total power consumption is approximately 57W, which  
exceeds the 40W capacity of the 5V power brick. So an alternate 12V power input jack (J23)  
is provided on the Virtex-5 FPGA ML561 Development Board to hook up a 12V power  
brick, for example, CUI DTS120500U with a 60W capacity. The 12V is converted to 5V  
using the TI PTH12010WAS power module (VR11), which can supply up to 12A of current  
at 5V, or a 60W capacity.  
Virtex-5 FPGA ML561 User Guide  
39  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
R
Chapter 4: Electrical Requirements  
Table 4-1: ML561 Power Consumption  
Current Power  
Device Description  
Total Available Power  
Quantity Voltage (V)  
Source  
(mA)  
(W)  
5V Power Supply  
1
1
5.0  
8000  
5000  
40.0 Bellus Power SPD-050-5  
60.0 CUI DTS120500U  
12V Power Supply  
12.0  
Power Consumed  
DDR400 Component Interface  
XC5VLX50T-FFG1136:  
FPGA #1 (DDR400)  
3.7  
1
1.0, 2.5, 2.6 1887  
DDR x16 Memory  
2
2.6  
1.2  
210  
16  
1.1 Micron DDR Component Data Sheet  
1.2 All signals. 608 mV swing around VTT  
DDR Comp VTT Termination  
DDR2 Component Interface  
60  
XC5VLX50T-FFG1136:  
FPGA #1 (DDR2)  
1.0, 1.8[S],  
2.5  
3.1  
1
1991  
DDR2 x16 Memory  
2
1.8  
1.2  
250  
16  
0.9 Micron DDR2 Component Data Sheet  
DDR2 Comp VTT Termination  
DDR2 DIMM Interface  
25  
0.5 Addr/Cntl: 603 mV swing around VTT  
XC5VLX50T-FFG1136:  
FPGA #2 (DDR2)  
1.0, 1.8[S],  
2.5  
10.2  
1
6420  
DDR2 DIMM  
2
1.8  
1.2  
1755  
16  
6.3 Micron DDR2 DIMM Data Sheet  
DDR2 DIMM VTT Termination  
QDRII Memory Interface  
160  
3.1 All signals: 603 mV swing around VTT  
XC5VLX50T-FFG1136:  
FPGA #3 (QDRII)  
1.0, 1.8[H],  
1.8[S], 2.5  
6.3  
1
3917  
QDRII Memory [H]  
2
1.8  
1.0  
950  
16  
3.4 Samsung QDRII Data Sheet  
QDRII VTT Termination  
RLDRAM II Memory Interface  
175  
2.8 All signals. 500 mV swing around VTT  
XC5VLX50T-FFG1136:  
FPGA #3 (RLDRAM II)  
1.0, 1.8[H],  
2.5  
4.5  
1
3069  
RLDRAM II Memory  
RLDRAM II VTT Termination  
Miscellaneous Circuit  
Clock Buffer  
2
1.8  
1.0  
920  
16  
3.3 Micron RLDRAM II Data Sheet  
60  
1.0 All signals. 500 mV swing around VTT  
1
2
1
1
2
3.3  
3.3  
3.3  
2.5  
3.3  
23  
115  
200  
30  
0.1 ICS8304 Data Sheet  
Differential Clock Buffer  
System ACE Controller  
200 MHz Oscillator  
0.8 ICS853006 Data Sheet  
0.7 DS080, System ACE CompactFlash Solution  
0.1 Epson EG2121CA Data Sheet  
0.3 Epson SG-8002CA Data Sheet  
53.2  
33 MHz Oscillator  
45  
Total Power Consumed  
40  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Power Consumption  
Table 4-1: ML561 Power Consumption (Continued)  
Current Power  
Device Description  
Quantity Voltage (V)  
Source  
(mA)  
(W)  
Power Modules Capacity  
VCCINT Power Plane (1.0V)  
HSTL FPGA Power Plane (1.8V)  
HSTL Memory Power Plane (1.8V)  
HSTL _VREF Power Plane (0.9V)  
SSTL18 FPGA Power Plane (1.8V)  
SSTL18 Memory Power Plane (1.8V)  
SSTL18 _VREF Power Plane (0.9V)  
SSTL2 FPGA Power Plane (2.6V)  
SSTL2 Memory Power Plane (2.6V)  
SSTL2 _VREF Power Plane (1.3V)  
2.5V Power Plane  
1
1
1
1
1
1
1
1
1
1
1
1
1
1.00  
1.80  
1.80  
0.90  
1.80  
1.80  
0.90  
2.60  
2.60  
1.30  
2.50  
3.30  
5.00  
15000 15.0 TI PTH05010 15A Module Data Sheet  
15000 27.0  
6000  
3000  
10.8 TI PTH05000 6A Module Data Sheet  
2.7 Fairchild FN6555 Data Sheet  
15000 27.0 TI PTH05010 15A Module Data Sheet  
6000  
3000  
10.8 TI PTH05000 6A Module Data Sheet  
2.7 Fairchild FN6555 Data Sheet  
15000 39.0 TI PTH05010 15A Module Data Sheet  
6000  
3000  
15.6 TI PTH05000 6A Module Data Sheet  
3.9 Fairchild FN6555 Data Sheet  
15000 37.5 TI PTH05010 15A Module Data Sheet  
15000 49.5  
3.3V Power Plane  
12V-to-5V Converter  
12000 60.0 TI PTH12010 12A Module Data Sheet  
Notes:  
1. [S] = 1.8V power for SSTL18 plane.  
2. [H] = 1.8V power for HSTL18 plane.  
Virtex-5 FPGA ML561 User Guide  
41  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 4: Electrical Requirements  
Table 4-2 lists the 12 different power planes on the Virtex-5 FPGA ML561 Development  
Board. For the SSTL2, SSTL18, and HSTL power, separate power modules are  
implemented for V to FPGA, and V to memory, allowing for ease of power  
CCO  
DD  
measurement for the FPGAs. The power modules for V  
inputs are implemented with  
CCO  
TI PTH05010 modules, which have provisions for 5% voltage margining pins.  
Table 4-2: Power Planes  
Stack-Up  
Layer  
Voltage Regulator Module (VRM) Part  
Power Plane  
VRM REFDES  
VCCINT Power Plane (1.0V)  
VR6  
VR1  
Layer 4  
Layer 7  
Layer 8  
Layer 11  
Layer 8  
Layer 11  
Layer 7  
Layer 8  
Layer 8  
Layer 8  
Layer 8  
Layer 7  
Layer 7  
Layer 7  
Layer 7  
SSTL18 FPGA Power Plane (1.8V)  
HSTL FPGA Power Plane (1.8V)  
VCCAUX Power Plane (2.5V)  
VR10  
VR12  
VR9  
TI PTH05010 15A Modules  
SSTL2 FPGA Power Plane (2.6V)  
TTL Power Plane (3.3V)  
VR13  
VR4  
SSTL18 Memory Power Plane (1.8V)  
HSTL Memory Power Plane (1.8V)  
SSTL2 Memory Power Plane (2.6V)  
SSTL18_VREF Power Plane (0.9V)  
SSTL18_VTT Power Plane (0.9V)  
HSTL_VREF Power Plane (0.9V)  
HSTL_VTT Power Plane (0.9V)  
SSTL2_VREF Power Plane (1.3V)  
SSTL2_VTT Power Plane (1.3V)  
TI PTH05000 6A Modules  
VR14  
VR2  
U14  
U42  
U2  
Fairchild FN6555 3A Bus Term Regulators  
(Separate outputs for VTT and VREF  
)
Each of the three Fairchild FN6555 Bus Terminator Regulators has two voltage outputs:  
one each for V and V . The FN6555 regulator is a push-pull device rated at 3A for the  
REF  
TT  
V
output and 3 mA for the V  
output.  
TT  
REF  
Because the V  
voltage is used by the FPGA and memory devices only as reference, the  
REF  
power supply does not source any real current. Thus the 3 mA capacity for the V  
is considered sufficient.  
output  
REF  
The V voltage is guaranteed to within 20 mV of the V  
regulator. The minimum driver output voltage swing around V  
SSTL18, SSTL2, and HSTL I/O standards as:  
output by the FN6555  
REF  
TT  
is specified for the  
REF  
SSTL2: 608 mV  
SSTL18: 603 mV  
HSTL: 500 mV (for HSTL18)  
For a given memory interface, the maximum number of single-ended (non-differential)  
signals that might need to be pulled up or down at a time for QDRII is 144 data bits and  
approximately 30 address and control signals. The differential pair signals offset for the  
sink and source of current. With a continuous current capacity of 3A for the FN6555  
regulator, the regulator can supply up to (3000 / 175) = 17 mA of current per signal. The  
maximum drive strength for a driver is specified at 16 mA. For a 50ΩV termination, this  
TT  
42  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Power Consumption  
current can support a voltage swing of up to (16 mA * 50Ω) = 800 mV, which is sufficient to  
meet the output voltage specifications for SSTL18, SSTL2, and HSTL18 I/O standards.  
Table 4-3 separates the power consumption information from Table 4-1 according to the  
nine TI power modules for the first set of nine power planes and the three Fairchild  
regulators for the V power planes. The positive values in the Excess Power column of  
TT  
Table 4-3 show that each of the 14 modules can supply the necessary power for the  
corresponding power plane.  
Table 4-3: ML561 Power Plane Capacities  
Device Description Quantity  
Total Available Power  
Excess  
Power  
(W)  
Voltage Current Power  
Source  
(V)  
(mA)  
(W)  
5V Power Supply  
1
1
5.0  
8000  
5000  
40.0  
60.0  
Bellus Power SPD-050-5  
CUI DTS120500U  
12V Power Supply  
12.0  
Power Consumed by Power Plane  
XC5VLX50T-FFG1136: FPGA #1  
(DDR400, DDR2)  
1
1
1
1
1.0  
1.0  
1.0  
1.0  
2289  
1945  
2675  
15000  
2.3  
1.9  
XC5VLX50T-FFG1136: FPGA #2  
(DDR2 DIMM)  
XC5VLX50T-FFG1136: FPGA #3  
(QDRII and RLDRAM II)  
2.7  
VCCINT Power Plane (1.0V) Capacity  
TI PTH05010 15A Module Data  
Sheet  
15.0  
8.1  
XC5VLX50T-FFG1136: FPGA #3  
(QDRII and RLDRAM II)  
1
1
1.8  
1.8  
3876  
7.0  
HSTL FPGA Power Plane (1.8V)  
Capacity  
TI PTH05010 15A Module Data  
Sheet  
15000  
27.0  
20.0  
QDRII Memory [H]  
RLDRAM II Memory  
2
2
1.8  
1.8  
950  
920  
3.4  
3.3  
Samsung QDRII Data Sheet  
Micron RLDRAM II Data Sheet  
HSTL_Mem Power Plane (1.8V)  
Capacity  
TI PTH05000 6A Module Data  
Sheet  
1
1.8  
1.0  
6000  
16  
10.8  
2.8  
4.1  
QDRII VTT Termination  
All signals. 500 mV swing  
175  
around VTT  
.
RLDRAM II VTT Termination  
HSTL _VREF Power Plane (0.9V)  
All signals. 500 mV swing  
60  
1
1.0  
0.9  
16  
1.0  
2.7  
around VTT  
.
3000  
-0.1 Fairchild FN6555 Data Sheet  
XC5VLX50T-FFG1136:  
FPGA #1 (DDR2)  
1
1
1.8  
1.8  
1011  
4258  
1.8  
7.7  
XC5VLX50T-FFG1136:  
FPGA #2 (DDR2 DIMM)  
Virtex-5 FPGA ML561 User Guide  
43  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Chapter 4: Electrical Requirements  
Table 4-3: ML561 Power Plane Capacities (Continued)  
Excess  
Power  
(W)  
Voltage Current Power  
Device Description  
Quantity  
Source  
(V)  
(mA)  
(W)  
SSTL18 FPGA Power Plane (1.8V)  
Capacity  
TI PTH05010 15A Module Data  
Sheet  
1
1.8  
15000  
27.0  
17.5  
DDR2 x16 Memory  
Micron DDR2 Component Data  
Sheet  
2
2
1
1.8  
1.8  
1.8  
250  
1755  
6000  
0.9  
6.3  
DDR2 DIMM  
Micron DDR2 DIMM Data Sheet  
SSTL18_Mem Power Plane (1.8V)  
Capacity  
TI PTH05010 15A Module Data  
Sheet  
10.8  
3.6  
DDR2 Comp VTT Termination  
DDR2 DIMM VTT Termination  
SSTL18 _VREF Power Plane (0.9V)  
Addr/Cntl: 603 mV swing  
around VTT  
25  
1.2  
16  
0.5  
All signals: 603 mV swing  
around VTT  
160  
1
1.2  
0.9  
16  
3.1  
2.7  
3000  
-0.9 Fairchild FN6555 Data Sheet  
XC5VLX50T-FFG1136: FPGA #1  
(DDR400, DDR2)  
1
1
1
2.5  
2.5  
2.5  
609  
218  
435  
1.5  
0.5  
1.1  
XC5VLX50T-FFG1136: FPGA #2  
(DDR2 DIMM)  
XC5VLX50T-FFG1136: FPGA #3  
(QDRII and RLDRAM II)  
Differential Clock Buffer  
200 MHz Osc  
2
1
2.5  
2.5  
115  
30  
0.8  
0.1  
ICS853006 Data Sheet  
Epson EG2121CA Data Sheet  
2.5V Power Plane Capacity  
TI PTH05010 15A Module Data  
Sheet  
1
2.5  
15000  
37.5  
34.1  
XC5VLX50T-FFG1136: FPGA #1  
(DDR400)  
1
1
2.6  
2.6  
950  
2.5  
SSTL2_FPGA Power Plane (2.6V)  
Capacity  
TI PTH05010 15A Module Data  
Sheet  
15000  
39.0  
36.5  
DDR x16 Memory  
Micron DDR Component Data  
Sheet  
2
1
2.6  
2.6  
210  
1.1  
SSTL2_Mem Power Plane (2.6V)  
Capacity  
TI PTH05010 15A Module Data  
Sheet  
6000  
15.6  
14.5  
DDR Comp VTT Termination  
All signals. 608 mV swing  
around VTT  
60  
1
1.2  
1.3  
3.3  
16  
3000  
23  
1.2  
3.9  
0.1  
SSTL2 _VREF Power Plane (1.3V)  
Clock Buffer  
2.7  
Fairchild FN6555 Data Sheet  
1
ICS8304 Data Sheet  
44  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Power Consumption  
Table 4-3: ML561 Power Plane Capacities (Continued)  
Excess  
Power  
(W)  
Voltage Current Power  
Device Description  
System ACE Controller  
Quantity  
Source  
DS080, System ACE  
(V)  
(mA)  
(W)  
1
2
1
3.3  
3.3  
3.3  
200  
45  
0.7  
0.3  
CompactFlash Solution  
33 MHz Oscillator  
Epson SG-8002CA Data Sheet  
3.3V Power Plane Capacity  
TI PTH05010 15A Module Data  
Sheet  
15000  
49.5  
47.8  
6.8  
Total Power Consumed  
53.2  
12V-to-5V Power Module Capacity  
TI PTH12010 12A Module Data  
Sheet  
1
5.0  
12000  
60.0  
Notes:  
1. [S] = 1.8V power for SSTL18 plane.  
2. [H] = 1.8V power for HSTL18 plane.  
Virtex-5 FPGA ML561 User Guide  
45  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 4: Electrical Requirements  
FPGA Internal Power Budget  
Table 4-4 summarizes power consumption estimates by each of the three  
XC5VLX50T-FFG1136 FPGAs on the Virtex-5 FPGA ML561 Development Board. This  
estimate derives the FPGA utilization information from the respective map report of a fully  
configured reference design.  
Table 4-4: ML561 FPGA Power Estimate Summary  
FPGA #  
FPGA #1  
FPGA #2(1)  
FPGA #3  
DDR400 Comp DDR2 Comp  
DDR2 DIMM  
(DCI)  
RLDRAM II  
Interface  
QDRII (DCI)  
(DCI)  
(DCI)  
(DCI)  
HSTL_18  
4.5  
I/O Standard  
SSTL_18  
HSTL_18  
Total Power (W)  
3.7  
3.1  
10.2  
6.3  
VCCINT (1.0V) mW  
763  
435  
763  
544  
1945  
544  
1160  
544  
1515  
544  
VCCAUX (2.5V) mW  
SSTL_18 VCCO (1.8V) mW  
SSTL_2 VCCO (2.6V) mW  
HSTL_18 VCCO (1.8V) mW  
1819  
7664  
2469  
4571  
2406  
I/O Frequency (MHz)  
200  
200  
400  
200  
400  
200  
400  
200  
400  
200  
Fabric Frequency (MHz)  
Number of Slices  
1500  
2000  
50  
1500  
2000  
50  
5910  
7352  
143  
2750  
2000  
750  
1951  
1800  
400  
Number of Flip-flops  
Number of Shift Register LUTs  
Number of Block RAMs  
Number of DCMs  
5
2
5
2
17  
2
14  
2
21  
2
Inputs  
10  
50  
36  
10  
50  
40  
10  
90  
90  
160  
0
13  
52  
36  
Outputs  
Bidirectionals  
192  
Ambient Temperature (°C)  
Airflow (LFM)  
25  
0
25  
0
25  
250  
5
25  
250  
5
25  
0
Heat Sink (Theta-J)  
n/a  
n/a  
n/a  
Junction Temperature (°C)  
67  
60  
78  
58  
76  
Notes:  
1. For DDR2 DIMMs as well as QDRII memory interfaces with DCI, an MD35E-10B heat sink is needed. A heat sink with Theta-J = 5.0  
should be okay without airflow. See http://www.alphanovatech.com/c_md35e.html for the heat sink profile. A heat sink with  
Theta-J = 5.0 might need airflow of 250 LFM.  
46  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Chapter 5  
Signal Integrity Recommendations  
Termination and Transmission Line Summaries  
The following are common recommendations for the signal termination scheme to all  
external memories implemented on the Virtex-5 FPGA ML561 Development Board:  
Single-ended signals: Simulation indicates that for a single-ended signal, there is no  
significant performance difference for a signal with split termination of 100Ω+ 100Ω  
between V and GND versus the V termination of 50Ωto the V voltage.  
DD  
TT  
REF  
Because the power consumption for the split termination is considerably higher than  
the V termination for the SSTL2, SSTL18, and HSTL I/O standards, V termination  
TT  
TT  
is recommended for single-ended signals on the board, such as data, address, and  
control. For bidirectional single-ended signals (for example, DDR2 DQ), the V  
TT  
termination is provided at both ends of the signal at the FPGA as well as at the  
memory.  
Differential signals: For differential pair signals, a 100Ωdifferential termination is  
provided between the two legs of the differential pair. This termination is placed  
closest to the load. For bidirectional differential signals (for example, DDR2 DQS), the  
differential SelectIO™ primitives in Virtex-5 FPGAs (for example,  
DIFF_SSTL_II_18_DCI), account for the differential termination within the IOB. So  
external differential termination is required only at the memory.  
Multiload signals: Address and control signals are driven by the FPGA, and they  
have multiple loads. The termination is placed at the end of the trace after the last  
load.  
Table 5-1 through Table 5-5 summarize the specific termination schemes used on the  
Virtex-5 FPGA ML561 Development Board for the following five different memory  
interfaces. For each signal category, these tables include reference to the preliminary IBIS  
(1)  
simulation results  
.
1. DDR400 SDRAM Components (Table 5-1)  
2. DDR2 SDRAM DIMM (Table 5-2)  
3. DDR2 SDRAM Components (Table 5-3)  
4. QDRII SRAM (Table 5-4)  
5. RLDRAM II (Table 5-5)  
1. Virtex-4 device IBIS models were used during the development of the ML561 board to understand the  
expected signal integrity of the memory interface signals. When the Virtex-5 device IBIS models are available,  
the results of post-layout IBIS simulations and characterization results will be reported.  
Virtex-5 FPGA ML561 User Guide  
47  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
R
Chapter 5: Signal Integrity Recommendations  
Table 5-1: DDR400 SDRAM Component Terminations  
Signal  
FPGA Driver  
SSTL2_II_DCI  
SSTL2_II_DCI  
SSTL2_II  
Termination at FPGA  
No termination  
Termination at Memory  
50Ωpull-up to 1.3V  
Data (DQ)  
Data Strobe (DQS)  
Clock (CK, CK)  
No termination  
50Ωpull-up to 1.3V  
No termination  
100Ωdifferential termination  
between pair  
Address (A, BA)  
SSTL2_II  
SSTL2_II  
No termination  
No termination  
50Ωpull-up to 1.3V after the last  
component  
Control (RAS, CAS, WE, CS, DM, and  
CKE)  
50Ωpull-up to 1.3V after the last  
component  
Table 5-2: DDR2 SDRAM DIMM Terminations  
Signal  
Data (DQ)  
FPGA Driver  
SSTL18_II_DCI  
DIFF_SSTL18_II_DCI  
SSTL18_II  
Termination at FPGA  
Termination at Memory  
No termination  
No termination  
No termination  
No termination  
No termination (use 75ΩODT(1)  
)
Data Strobe (DQS, DQS)  
Data Mask (DM)  
No termination (use 75ΩODT)  
No termination (use 75ΩODT)  
No termination(2)  
6 Pairs of Clocks (CK, CK),  
3 each per DIMM  
SSTL18_II  
Address (A, BA)  
SSTL18_II  
SSTL18_II  
No termination  
No termination  
50Ωpull-up to 0.9V after the second  
DIMM  
Control (RAS, CAS, WE,  
CS, CKE, and others)  
50Ωpull-up to 0.9V after the second  
DIMM  
Notes:  
1. Due to use of DCI I/O for DQ and DQS, these signals have parallel termination at the source during Write operations. Simulation  
results show that use of a weaker 75ΩODT instead of a matching 50ΩODT setting gives better noise margin at the memory.  
2. The DIMM already contains 120Ωdifferential termination. A 5 pF capacitive termination is provided on the board as per Micron  
Table 5-3: DDR2 SDRAM Component Terminations  
Signal  
FPGA Driver  
SSTL18_II_DCI  
DIFF_SSTL18_II_DCI  
SSTL18_II  
Termination at FPGA  
No termination  
No termination  
No termination  
No termination  
Termination at Memory  
No termination (use 75ΩODT)  
No termination (use 75ΩODT)  
No termination (use 75ΩODT)  
Data (DQ)  
Data Strobe (DQS, DQS)  
Data Mask (DM)  
Clock (CK, CK)  
SSTL18_II  
100Ωdifferential termination between  
pair  
Address (A, BA)  
SSTL18_II  
SSTL18_II  
No termination  
No termination  
50Ωpull-up to 0.9V after the last  
component  
Control (RAS, CAS, WE, CS,  
and CKE)  
50Ωpull-up to 0.9V after the last  
component  
48  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
R
Termination and Transmission Line Summaries  
Table 5-4: QDRII SRAM Terminations  
Signal  
Write Data (D)  
FPGA Driver  
Termination at FPGA  
Termination at Memory  
50Ωpull-up to 0.9V  
HSTL_I_18  
HSTL_I_DCI_18  
HSTL_I_18  
No termination  
No termination  
No termination  
No termination  
No termination  
Read Data (Q)  
No termination  
50Ωpull-up to 0.9V  
No termination  
Write Strobe (K, K)  
Read Strobe (CQ, CQ)  
Clock (CK, CK)  
HSTL_I_DCI_18  
HSTL_I_18  
100Ωdifferential termination  
between pair  
Address (A, BA)  
HSTL_I_18  
HSTL_I_18  
No termination  
No termination  
50Ωpull-up to 0.9V after the last  
component  
Control (RAS, CAS, WE,  
CS, CKE, and BW)  
50Ωpull-up to 0.9V after the last  
component  
Table 5-5: RLDRAM II Terminations  
Signal  
FPGA Driver  
Termination at FPGA  
No termination  
No termination  
No termination  
No termination  
Termination at Memory  
50Ωpull-up to 0.9V  
No termination  
Data (DQ for CIO)  
Data (Q for SIO)  
HSTL_II_DCI_18  
HSTL_I_DCI_18  
HSTL_I_18  
Write Data (D for SIO)  
Write Strobe (DK, DK)  
50Ωpull-up to 0.9V  
DIFF_HSTL_I_18  
100Ωdifferential termination  
between pair  
Read Strobe (QK, QK)  
Data Valid (QVLD)  
Clock (CK, CK)  
DIFF_HSTL_II_DCI_18 (for CIO)  
DIFF_HSTL_I_DCI_18 (for SIO)  
No termination  
No termination  
No termination  
No termination  
No termination  
No termination  
No termination  
HSTL_II_DCI_18 (for CIO)  
HSTL_I_DCI_18 (for SIO)  
DIFF_HSTL_I_18  
100Ωdifferential termination  
between pair  
Address (A, BA)  
HSTL_I_18  
50Ωpull-up to 0.9V after the last  
component  
Control (RAS, CAS, WE,  
CS, and CKE)  
HSTL_I_18  
50Ωpull-up to 0.9V after the last  
component  
Virtex-5 FPGA ML561 User Guide  
49  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
R
Chapter 5: Signal Integrity Recommendations  
50  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 6  
Configuration  
This chapter provides a brief description of the FPGA configuration methods used on the  
Virtex-5 FPGA ML561 Development Board. This chapter contains the following sections:  
Configuration Modes  
The Virtex-5 FPGA ML561 Memory Interfaces Development Board includes several  
options to configure the Virtex-5 FPGAs. The configuration modes are:  
System ACE mode  
JTAG mode  
Table 6-1 shows the Virtex-5 FPGA configuration modes. The Master and Slave (Parallel)  
SelectMAP configuration modes are not supported on the Virtex-5 FPGA ML561  
Development Board. A separate 6-pin 3x2 header is provide for each FPGA to control the  
Mode bits setting. The three headers are P27, P46, and P112 for FPGA #1, FPGA #2, and  
FPGA #3, respectively. The even pins (# 2, 4, and 6) of the headers are tied to GND, and the  
odd pins (# 1, 3, and 5) are connected to the respective Mode bit FPGA inputs (M0, M1, and  
M2, respectively). A weak (4.7KΩ) pull-up is applied to each of these pins to set a logic '1'  
by default.  
Table 6-1: Configuration Modes  
Mode Jumpers(3,4)  
XCONFIG  
P72  
JTAG  
P114  
Mode  
5 -> 6  
(M2)  
3 -> 4  
(M1)  
1 -> 2  
(M0)  
(2)  
Master Serial  
X(1)  
X
0
1
0
1
1
0
1
1
1
0
0
1
1
0
1
Slave Serial  
X
Master SelectMAP  
Slave SelectMAP  
JTAG  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
51  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
R
Chapter 6: Configuration  
Table 6-1: Configuration Modes (Continued)  
Mode Jumpers(3,4)  
XCONFIG  
P72  
JTAG  
P114  
Mode  
5 -> 6  
3 -> 4  
(M1)  
1 -> 2  
(M2)  
(M0)  
System ACE CF Card  
1
1
1
Notes:  
1. X = Supported.  
2. — = Not applicable.  
3. Corresponding jumper position is Closed.  
4. Corresponding jumper position is Open.  
JTAG Chain  
Four devices (the System ACE chip and three XC5VLX50T-FFG1136 FPGAs) are connected  
via a JTAG chain on the Virtex-5 FPGA ML561 Development Board. The order of the four  
devices in the JTAG chain is System ACE chip (U45), FPGA #1 (U7), FPGA #2 (U5), and  
FPGA #3 (U34). The DONE pin of the FPGAs in the chain are tied together to a single LED  
(D28). Each FPGA in the JTAG chain must be programmed for the board to be configured  
properly. To program FPGAs in the JTAG chain that do not need functionality, a blank  
design with no logic implementation can be used to compile to generate the corresponding  
configuration bitstream.  
Three different sources can be used to drive this JTAG chain:  
JTAG Port  
Xilinx Parallel IV Cable  
System ACE Controller  
JTAG Port  
The Virtex-5 FPGA ML561 Development Board provides a JTAG connector (P114) that can  
be used to program the Virtex-5 FPGAs, and program and/or configure other JTAG  
devices in the chain.  
Parallel IV Cable Port  
The Virtex-5 FPGA ML561 Development Board provides a Parallel IV Cable connector  
(P64) to configure the Virtex-5 FPGAs and program JTAG devices located in the JTAG  
chain.  
System ACE Interface  
The Virtex-5 FPGA ML561 Development Board provides a System ACE interface to  
configure the Virtex-5 FPGA. The interface also gives software designers the ability to run  
code (for soft processor IP within the FPGA) from removable CompactFlash cards.  
Refer to the DS080, System ACE CompactFlash Solution for detailed information on creating  
System ACE compatible ACE files, formatting the CompactFlash card, and storing  
multiple design images.  
52  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
R
System ACE Interface  
Table 6-2 shows the System ACE interface signal names, descriptions, and pin  
assignments.  
Table 6-2: System ACE Interface Signal Descriptions  
System ACE Pin Number  
Signal Name  
70  
69  
68  
67  
45  
44  
43  
66  
65  
63  
62  
61  
60  
59  
58  
77  
76  
42  
41  
39  
93  
SYSACE_MPA0  
SYSACE_MPA1  
SYSACE_MPA2  
SYSACE_MPA3  
SYSACE_MPA4  
SYSACE_MPA5  
SYSACE_MPA6  
SYSACE_MPD0  
SYSACE_MPD1  
SYSACE_MPD2  
SYSACE_MPD3  
SYSACE_MPD4  
SYSACE_MPD5  
SYSACE_MPD6  
SYSACE_MPD7  
SYSACE_CTRL0/MPOE  
SYSACE_CTRL1/MPWE  
SYSACE_CTRL2/MPCE  
SYSACE_CTRL3/MPIRQ  
SYSACE_CTRL4/MPBRDY  
SYSACE_CLK  
Virtex-5 FPGA ML561 User Guide  
53  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Chapter 6: Configuration  
54  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 7  
ML561 Hardware-Simulation  
Correlation  
This chapter contains the following sections:  
Introduction  
Signal integrity (SI) simulation is a very powerful tool that predicts the quality of signal at  
the receiver. The quality of signal at the I/O buffer of the receiver device is most important  
to the system designer. The observation point is buried within the IC device and is not  
accessible for attaching a physical probe. This signal can only be simulated. It cannot be  
measured on the hardware with an oscilloscope.  
Signals can only be measured on hardware at the via probe points of a printed circuit board  
(PCB) near the receiver device. For a high level of confidence in the SI simulation results, it  
is necessary to develop and validate the simulation model to get a good correlation with  
the hardware measurements at the probe points. When the correlation is obtained, the  
same simulation model is used to extrapolate and accurately predict the signal quality at  
the I/O buffer of the receiver device for the two significant corner driver conditions: slow-  
weak and fast-strong.  
The Virtex-5 FPGA ML561 Development Board implements five different memory  
interfaces:  
32-bit DDR2 component  
144-bit DDR2 DIMM  
72-bit QDRII SRAM  
32-bit DDR component  
36-bit RLDRAM II  
Each of these interfaces consists address, control, clock, data, and strobe signals. The  
ML561 board has over 500 unique signals.  
DDR2 SDRAMs and QDRII SRAM represent the large majority of Virtex-5 FPGA memory  
applications. The dual data rate (DDR) data bits are the most critical signals to analyze.  
This chapter presents SI analysis for only six representative data bit signals. The procedure  
Virtex-5 FPGA ML561 User Guide  
55  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
R
Chapter 7: ML561 Hardware-Simulation Correlation  
illustrated here for these signals can be easily adopted to perform SI analysis for any other  
memory interface signal on the ML561 board.  
This chapter presents the SI results for the following six data bit signals:  
DDR2 component DQ bit (DDR2_DQ_BY2_B3) for write operations  
DDR2 component DQ bit (DDR2_DQ_BY2_B3) for read operations  
DDR2 DIMM DQ bit (DDR2_DIMM_DQ_BY2_B3) for write operations  
DDR2 DIMM DQ bit (DDR2_DIMM_DQ_BY2_B3) for read operations  
QDRII D bit (QDR2_D_BY0_B5) for write operations  
QDRII Q bit (QDR2_Q_BY0_B5) for read operations  
Test Setup  
Hardware measurements were performed for the six specific signal nets, and then signal  
integrity (SI) simulations were performed for correlation and extrapolation. The test setup  
consisted of the following hardware equipment, simulation software tools, the stimulus  
test pattern, and test criteria for determining the quality of signals. The test bench is  
designed so that the test pattern is applied only to the signal under test, and all other data  
bits to the same memory interface are kept in a quiet Low state. This setup ensures that the  
hardware measurement is not altered due to any simultaneous switching output (SSO)  
effect.  
Hardware measurement equipment  
Agilent DSO80604B 6 GHz oscilloscope  
Agilent 1131A 3.5 GHz Infiniimax probe amplifier  
Agilent E2675A (Differential browser) or E2677A (Differential solder-in probe) or  
N5425A (ZIF probe)  
Virtex-5 FPGA ML561, Rev B2 board: S/N 103  
SRS Model CG635 Synthesized Clock Generator for low jitter clock source  
Simulation software  
Mentor Graphics HyperLynx EXT, Version 7.5 with LineSim and BoardSim  
features  
Xilinx Virtex-5 FPGA IBIS package file: ff1136_5vlx50t.pkg, Rev 1.0 dated  
June 12, 2006  
ML561, Rev B layout file: ML561_B_041706.hyp  
Micron DDR2-667 IBIS model for output and ODT input  
Micron PC2-5300 RDIMM IBIS model  
Molex DDR2 DIMM socket specification (P/N 087705-1041)  
Samsung QDRII HSTL 1.8V IBIS model  
IBISWriter Utility of ISE software suite to create customized IBIS model of the  
FPGA1 (U7) and FPGA3 (U34) devices on the ML561 board: Model files  
ml561_fpga1_u7.ibsand ml561_fpga3_u34.ibs. (See “How to Generate a  
User-Specific FPGA IBIS Model,” page 93 for steps on how to create a customized  
IBIS model of Virtex-5 FPGA for your design.)  
Stimulus  
Pseudo Random Bit Stream (PRBS) is accepted as the most effective test pattern to  
measure the quality of data signals because, unlike the periodic signals like clock and  
56  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Test Setup  
strobe, a random value can be applied to data bits from one cycle to another. A 63-bit  
(1)  
PRBS6 (PRBS of order 6) test pattern stimulus is used for this analysis. The value of  
this PRBS6 string is 63’h03F5_66ED_2717_9461, that is:  
63’b000001111110101011001101110110100100111000101111001010001100001.  
The HyperLynx stimulus setup is for: a 2-sequence repeat, 10 bits skipped, 1 eye, and  
0% jitter.  
Test criteria  
Quality of a signal is measured in terms of the opening of the signal eye at the receiver  
input for both the amplitude and the width. DDR2 SDRAM (Component and DIMM)  
interfaces utilize the SSTL_18 I/O standard, and the QDRII SRAM interface utilizes  
the HSTL 1.8V I/O standard. For each of these two I/O standards, the eye mask is  
defined by the trapezoid enclosed by the following four voltage thresholds at the  
receiver input:  
VIH(ac)-min at the rising edge  
VIH(dc)-min at the falling edge  
VIL(dc)-max at the rising edge  
VIL(ac)-max at the falling edge  
Refer to Figure 7-1 for the definition of voltage levels with regard to the trapezoidal  
eye mask. Refer to Terminology,” page 9 for definitions of the voltage thresholds.  
Because the HyperLynx SI simulation software does not support a trapezoidal mask  
definition, two separate triangular masks for VIH and VIL are defined, as shown in  
Figure 7-2, such that the third vertex of triangle falls on the VREF axis.  
VDDQ  
VOH(dc)  
VOH(ac)  
VIH(ac)  
VIH(dc)  
VREF  
VIL(dc)  
VIL(ac)  
VOL(ac)  
VOL(dc)  
VSS  
UG199_c7_01_062707  
Figure 7-1: Single Trapezoid Eye Mask Definition  
1. A maximal-length PRBS test sequence of order n generates all (2n – 1), n-bit combinations of test sequences  
(except all 0s). Thus the test sequence contains one n-bit long consecutive string of 1s and two (n-1)-bit long  
consecutive strings of 0s. With the PRBS6 test pattern, at the highest test frequency of 333 MHz (that is, the bit  
time is 1.5 ns), measurements in this setup result in a maximum settling time of (1.5 ns * 5) = 7.5 ns for a logic  
Low, and a maximum settling time of (1.5 ns * 6) = 9 ns for a logic High. 7.5 ns is sufficient time for the test  
signal to reach a steady state before the next transition. Thus a PRBS test pattern of higher order, such as 7 or  
9, does not change the eye pattern, as proven by sample simulation of one test signal with PRBS6, PRBS7, and  
PRBS9 stimuli.  
Virtex-5 FPGA ML561 User Guide  
57  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Chapter 7: ML561 Hardware-Simulation Correlation  
VDDQ  
VOH(dc)  
VOH(ac)  
VIH(ac)  
VIL(ac)  
VIH(dc)  
VIL(dc)  
VREF  
VOL(ac)  
VOL(dc)  
VSS  
UG199_c7_02_062707  
Figure 7-2: Two Triangular Eye Mask Definitions for VIH and VIL  
DDR2 mask (for nominal VDDQ = 1.8V and VREF = 0.9V):  
-
-
-
-
VIH(ac)-min = VREF + 200 mV = 1.1V  
VIH(dc)-min = VREF + 125 mV = 1.025V  
VIL(ac)-max = VREF – 200 mV = 0.7V  
VIL(dc)-max = VREF – 125 mV = 0.775V  
QDRII mask (for nominal values of VDDQ = 1.8V and VREF = 0.9V):  
-
-
-
-
VIH(ac)-min = VREF + 200 mV = 1.1V  
VIH(dc)-min = VREF + 100 mV = 1.0V  
VIL(ac)-max = VREF – 200 mV = 0.7V  
VIL(dc)-max = VREF – 100 mV = 0.8V  
Signal Integrity Correlation Results  
This section presents SI results for each of the six chosen memory signals on the ML561  
board. The following information is presented for each memory signal:  
A post-layout IBIS schematics of the signal under test  
(1)  
A description of the major circuit elements of this signal  
A summary of four SI results: hardware measurement, correlation simulation, slow-  
weak corner driver simulation extrapolation, and fast-strong corner driver simulation  
extrapolation  
A set of eight figures showing eye and waveform scope shots for each of the four SI  
results mentioned in the bulleted list in the previous section  
For an explanation of the different terms used to present these results, refer to  
Terminology,” page 9 for some definitions and routing terminologies.  
1. With regard to transmission line impedance, Table 3-19 in the “Board Design Considerations” section lists  
controlled impedance values of all routing layers. The design goal for the ML561 board is to keep the  
characteristic impedance for all routing layers as close to 50Ωas possible. Manufacturing tolerance is usually  
10%. The characteristic impedance of DIMM PCB is derived from the Micron DIMM layout file.  
58  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Signal Integrity Correlation Results  
DDR2 Component Write Operation  
This subsection shows the test results for the DDR2_DQ_BY2_B3 signal from FPGA1 (U7)  
to the DDR2 memory component (U12) measured at 333 MHz (667 Mb/s), where the unit  
interval (UI) = 1.5 ns.  
49.1 ohms  
47.132 ps  
0.302 in  
DDR2_DQ_BY2_B3  
49.1 ohms  
445.560 ps  
2.852 in  
DDR2_DQ_BY2_B3  
28.5 ohms  
4.473 ps  
0.028 in  
DDR2_DQ_BY2_B3  
49.0 ohms  
24.721 ps  
0.164 in  
DDR2_DQ_BY2_B3  
28.5 ohms  
3.579 ps  
0.022 in  
58.3 ohms  
25.244 ps  
AutoPadstk_19  
21.2 ohms  
1.000 ps  
AutoPadstk_3  
71.0 ohms  
27.482 ps  
U12.D3  
U7.P25  
DDR2_DQ_BY2_B3 AutoPadstk_3  
TL2  
TL3  
TL4  
TL8  
TL9  
TL6  
TL5  
TL1  
Virtex-5 FPGA  
MT47H32M16CC_…  
DQ11  
DDR2_DQ_BY2_B3  
DDR2_D…  
DDR2_D…  
DDR2_D…  
DDR2_D…  
DDR2_D…  
C9  
C7  
DDR2_D…  
22.9 fF  
58.1 fF  
140.8 fF  
22.9 fF  
22.9 fF  
500.0 fF  
365.6 fF  
500.0 fF  
UG199_c7_03_071907  
Figure 7-3: Post-Layout IBIS Schematics of DDR2 Component Write Data Bit (DDR2_DQ_BY2_B3)  
Table 7-1: Circuit Elements of DDR2 Component Write Data Bit  
(DDR2_DQ_BY2_B3)  
Element  
Designation  
U7.P25  
Description  
FPGA SSTL18_II_DCI_O  
Driver  
Receiver  
U12.D3  
C9  
DDR2 Memory, 75 ΩODT  
Via under the memory device  
ODT75 at load  
Probe Point  
PCB Termination  
Trace Length  
None  
TL 2, 4, 9, 6, 1  
3.37 inches  
Table 7-2: DDR2 Component Write Operation Correlation Results  
Noise Margin  
(VIH, + VIL) = Total  
(% of VREF)  
Overshoot / Undershoot  
Margin  
DVW(1)  
(%UI)  
ISI  
(% UI)  
Measurement  
(% of VREF)  
(80 + 80) = 160 ps  
(10.7%)  
(274 + 384) = 658 mV  
(73.1%)  
(550 + 470) = 1020 mV  
(113.3%)  
Hardware at probe  
point  
1.18 ns  
(78.7%)  
(77 + 36) = 113 ps  
(7.5%)  
(294 + 266) = 560 mV  
(62.2%)  
(461 + 490) = 951 mV  
(105.7%)  
Simulation correlation  
slow-weak corner  
1.22 ns  
(81.3%)  
40 ps  
47 ps  
98 mV  
69 mV  
(7.6%)  
Correlation Delta:  
HW vs. Simulation  
(2.6%)  
(3.2%)  
(10.9%)  
(91 + 36) = 127 ps  
(8.5%)  
(300 + 270) = 570 mV  
(63.3%)  
(469 + 501) = 970 mV  
(107.8%)  
Extrapolation at IOB  
slow-weak corner  
1.27 ns  
(84%)  
(34 + 20) = 54 ps  
(3.7%)  
(406 + 351) = 757 mV  
(84.1%)  
(304 + 381) = 685 mV  
(76.1%)  
Extrapolation at IOB  
fast-strong corner  
1.39 ns  
(92%)  
Notes:  
1. DVW = Data Valid Window, ISI = Inter-Symbol Interference  
Virtex-5 FPGA ML561 User Guide  
59  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Chapter 7: ML561 Hardware-Simulation Correlation  
DDR2 DQ is a bidirectional signal. To perform hardware measurements for a Write  
operation that is not interrupted by a Read response or a Refresh operation, the testbench  
on FPGA1 is controlled by DIP switches (SW2) as indicated in Table 7-3.  
Table 7-3: DIP[1:2] Settings  
Setting  
2’b00or 2’b11  
Description  
Normal alternating Write/Read sequence  
Write only, Refresh disabled  
2’b01  
2’b10  
Write once, then Read only, Refresh disabled  
60  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Signal Integrity Correlation Results  
UG199_c7_04_071107  
Figure 7-4: DDR2 Component Write HW Measurement - Eye Scope Shot at Probe Point (DDR2 Memory Via)  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.000  
Probe 3:C9.1 (at pin)  
-200.0  
0.000  
400.0  
800.0  
1200.0  
1600.0  
Time (ps)  
UG199_c7_05_070907  
333 MHz, Slow, PRBS6, 81.5% UI  
Cursor 1: 1.1028V, 123.6 ps  
Cursor 2: 1.0253V, 1.3458 ns  
Delta Voltage = 77.5 mV, Delta Time = 1.2222 ns (81.5% UI)  
Figure 7-5: DDR2 Component Write Correlation - Eye Scope Shot at Probe Point (Slow Corner)  
Virtex-5 FPGA ML561 User Guide  
61  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 7: ML561 Hardware-Simulation Correlation  
UG199_c7_06_071107  
Figure 7-6: DDR2 Component Write HW Measurement - Waveform Scope Shot at Probe Point  
(DDR2 Memory Via)  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.000  
Probe 3:C9.1 (at pin)  
-200.0  
65.000  
75.000  
85.000  
95.000  
105.000  
Time (ns)  
Figure 7-7: DDR2 Component Write Correlation - Waveform Scope Shot at Probe Point (Slow Corner)  
UG199_c7_07_070907  
62  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Signal Integrity Correlation Results  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
Probe 1:U12.D3 (at die)  
0.000  
-200.0  
-200.0  
200.0  
600.0  
1000.0  
1400.0  
1800.0  
Time (ps)  
UG199_c7_08_071007  
333 MHz, Slow, PRBS6, 84.5% UI  
Cursor 1: 1.1007V, 123.7 ps  
Cursor 2: 1.0253V, 1.3921 ns  
Delta Voltage = 75.4 mV, Delta Time = 1.2684 ns (84.5% UI)  
Figure 7-8: DDR2 Component Write Extrapolation - Eye Scope Shot at Receiver IOB (Slow Corner)  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
Probe 1:U12.D3 (at die)  
0.000  
-200.0  
65.000  
75.000  
85.000  
95.000  
105.000  
Time (ns)  
UG199_c7_09_071007  
Figure 7-9: DDR2 Component Write Extrapolation - Waveform Scope Shot at Receiver IOB (Slow Corner)  
Virtex-5 FPGA ML561 User Guide  
63  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 7: ML561 Hardware-Simulation Correlation  
1900.0  
1700.0  
1500.0  
1300.0  
1100.0  
900.0  
700.0  
500.0  
300.0  
100.0  
Probe 1:U12.D3 (at die)  
1200.0 1600.0  
-100.0  
800.0  
2000.0  
2400.0  
2800.0  
Time (ps)  
UG199_c7_10_071007  
333 MHz, Fast, PRBS6, 92.5% UI  
Cursor 1: 701.2 mV, 1.0026 ns  
Cursor 2: 774.6 mV, 2.3908 ns  
Delta Voltage = 73.4 mV, Delta Time = 1.3883 ns (92.5% UI)  
Figure 7-10: DDR2 Component Write Extrapolation - Eye Scope Shot at Receiver IOB (Fast Corner)  
1900.0  
1700.0  
1500.0  
1300.0  
1100.0  
900.0  
700.0  
500.0  
300.0  
100.0  
Probe 1:U12.D3 (at die)  
-100.0  
65.000  
75.000  
85.000  
95.000  
105.000  
Time (ns)  
UG199_c7_11_071007  
Figure 7-11: DDR2 Component Write Extrapolation - Waveform Scope Shot at Receiver IOB (Fast Corner)  
64  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Signal Integrity Correlation Results  
DDR2 Component Read Operation  
This subsection shows the test results for the DDR2_DQ_BY2_B3 signal from the DDR2  
memory component (U12) to FPGA1 (U7) measured at 333 MHz (667 Mb/s), where the  
unit interval (UI) = 1.5 ns.  
U7.P25  
U12.D3  
TL2  
TL3  
TL4  
TL8  
TL9  
TL6  
TL5  
TL1  
49.1 ohms  
47.132 ps  
0.302 in  
49.1 ohms  
445.560 ps  
2.852 in  
28.5 ohms  
28.5 ohms  
49.0 ohms  
21.2 ohms  
1.000 ps  
AutoPadstk_3  
58.3 ohms  
71.0 ohms  
27.482 ps  
AutoPadstk_3  
Virtex-5 FPGA  
DDR2_DQ_BY2_B3  
4.473 ps  
3.579 ps  
24.721 ps  
25.244 ps  
MT47H64M8CB-3  
DQ3  
0.028 in  
DDR2_DQ_BY2_B3  
0.022 in  
DDR2_DQ_BY2_B3  
0.164 in  
DDR2_DQ_BY2_B3  
AutoPadstk_19  
DDR2_DQ_BY2_B3 DDR2_DQ_BY2_B3  
DDR2_D…  
DDR2_D…  
58.1 fF  
DDR2_D…  
DDR2_D…  
DDR2_D…  
DDR2_D…  
C9  
C7  
500.0 fF  
22.9 fF  
140.8 fF  
22.9 fF  
22.9 fF  
500.0 fF  
365.6 fF  
UG199_c7_12_071907  
Figure 7-12: Post-Layout IBIS Schematics of the DDR2 Component Read Data Bit (DDR2_DQ_BY2_B3)  
Table 7-4: Circuit Elements of DDR2 Component Read Data Bit  
(DDR2_DQ_BY2_B3)  
Element  
Designation  
U12.D3  
Description  
DDR2 Memory  
Driver  
Receiver  
U7.P25  
C7  
FPGA SSTL18_II_DCI_I  
Via under FPGA1  
DCI at receiver  
Probe Point  
PCB Termination  
Trace Length  
None  
TL 2, 4, 9, 6, 1  
3.37 inches  
Table 7-5: DDR2 Component Read Operation Correlation Results  
Noise Margin  
(VIH + VIL) = Total  
(% of VREF)  
Overshoot /  
Undershoot Margin  
(% of VREF)  
ISI  
(% UI)  
Measurement  
DVW (% UI)  
(70 + 110) = 180 ps  
(12%)  
(423 + 416) = 839 mV  
(83.1%)  
(400 +400) = 800 mV  
(79.1%)  
1.28 ns  
(85%)  
Hardware at probe point  
(132 + 91) = 223 ps  
(14.9%)  
(406 +439) = 845 mV  
(83.8%)  
(279 +277) = 556 mV  
(61.9%)  
Simulation correlation  
slow-weak corner  
1.28 ns  
(85%)  
0 ps  
43 ps  
6 mV  
244 mV  
(17.2%)  
Correlation Delta:  
HW vs. Simulation  
(0.0%)  
(2.9%)  
(0.7%)  
(96 + 82) = 178 ps  
(11.9%)  
(418 + 449) = 867 mV  
(96.3%)  
(304 +265) = 569 mV  
(63.1%)  
Extrapolation at IOB  
slow-weak corner  
1.29 ns  
(86%)  
(29 + 67) = 96 ps  
(6.7%)  
(455 +435) = 890 mV  
(98.9%)  
(167 +182) = 349 mV  
(38.9%)  
Extrapolation at IOB  
fast-strong corner  
1.32 ns  
(88%)  
To perform hardware measurements for a Read operation that is not interrupted by a Write  
or a Refresh operation, the testbench on FPGA1 is controlled by the following DIP switch  
(SW2) setting:  
DIP[1:2] = 2’b10– Write once, then Read only, Refresh disabled  
Virtex-5 FPGA ML561 User Guide  
65  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Chapter 7: ML561 Hardware-Simulation Correlation  
UG199_c7_13_071107  
Figure 7-13: DDR2 Component Read HW Measurement - Eye Scope Shot at Probe Point (FPGA1 Via)  
1900.0  
1700.0  
1500.0  
1300.0  
1100.0  
900.0  
700.0  
500.0  
300.0  
100.0  
Probe 3:C7.1 (at pin)  
-100.0  
800.0  
1200.0  
1600.0  
2000.0  
2400.0  
2800.0  
Time (ns)  
UG199_c7_14_071107  
333 MHz, Slow, PRBS6, 85.9% UI  
Cursor 1: 697.1 mV, 1.2345 ns  
Cursor 2: 774.6 mV, 2.5191 ns  
Delta Voltage = 77.5 mV, Delta Time = 1.2846 ns (85.9% UI)  
Figure 7-14: DDR2 Component Read Correlation - Eye Scope Shot at Probe Point (Slow Corner)  
66  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Signal Integrity Correlation Results  
UG199_c7_15_071107  
Figure 7-15: DDR2 Component Read HW Measurement - Waveform Scope Shot at Probe Point (FPGA1  
Via)  
1900.0  
Probe 3:C7.1 (at pin)  
1700.0  
1500.0  
1300.0  
1100.0  
900.0  
700.0  
500.0  
300.0  
100.0  
-100.0  
65.000  
75.000  
85.000  
95.000  
105.000  
Time (ns)  
UG199_c7_16_071007  
Figure 7-16: DDR2 Component Read Correlation - Waveform Scope Shot at Probe Point (Slow Corner)  
Virtex-5 FPGA ML561 User Guide  
67  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 7: ML561 Hardware-Simulation Correlation  
1900.0  
Probe 1:U7.P25 (at die)  
1700.0  
1500.0  
1300.0  
1100.0  
900.0  
700.0  
500.0  
300.0  
100.0  
-100.0  
800.0  
1200.0  
1600.0  
2000.0  
2400.0  
2800.0  
Time (ps)  
UG199_c7_17_071007  
333 MHz, Slow, PRBS6, 85.5% UI  
Cursor 1: 1.0988V, 1.2170 ns  
Cursor 2: 1.0254V, 2.5029 ns  
Delta Voltage = 73.4 mV, Delta Time = 1.2859 ns (85.5% UI)  
Figure 7-17: DDR2 Component Read Extrapolation - Eye Scope Shot at Receiver IOB (Slow Corner)  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.000  
Probe 1:U7.P25 (at die)  
-200.0  
65.000  
75.000  
85.000  
95.000  
105.000  
Time (ns)  
UG199_c7_18_071007  
Figure 7-18: DDR2 Component Read Extrapolation - Waveform Scope Shot at Receiver IOB (Slow Corner)  
68  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Signal Integrity Correlation Results  
1900.0  
1700.0  
1500.0  
1300.0  
1100.0  
900.0  
Probe 1:U7.P25 (at die)  
700.0  
500.0  
300.0  
100.0  
-100.0  
800.0  
1200.0  
1600.0  
2000.0  
2400.0  
2800.0  
Time (ps)  
UG199_c7_19_071007  
333 MHz, Fast, PRBS6, 88% UI  
Cursor 1: 701.2 mV, 1.0772 ns  
Cursor 2: 774.6 mV, 2.3980 ns  
Delta Voltage = 73.4 mV, Delta Time = 1.3208 ns (88% UI)  
Figure 7-19: DDR2 Component Read Extrapolation - Eye Scope Shot at Receiver IOB (Fast Corner)  
Probe 1:U7.P25 (at die)  
1900.0  
1700.0  
1500.0  
1300.0  
1100.0  
900.0  
700.0  
500.0  
300.0  
100.0  
-100.0  
65.000  
75.000  
85.000  
95.000  
105.000  
Time (ns)  
UG199_c7_20_071007  
Figure 7-20: DDR2 Component Read Extrapolation - Waveform Scope Shot at Receiver IOB (Fast Corner)  
Virtex-5 FPGA ML561 User Guide  
69  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 7: ML561 Hardware-Simulation Correlation  
DDR2 DIMM Write Operation  
This subsection shows the test results for the DDR2_DIMM_DQ_BY2_B3 signal from  
FPGA2 (U5) to the DDR2 DIMM (XP2) measured at 333 MHz (667 Mb/s), where the unit  
interval (UI) = 1.5 ns.  
49.8 ohms  
94.605 ps  
0.606 in  
DDR2_DIMM_DQ_...  
49.8 ohms  
90.340 ps  
0.578 in  
DDR2_DIMM_DQ_...  
28.5 ohms  
4.473 ps  
0.028 in  
DDR2_DIMM_DQ_...  
49.8 ohms  
90.955 ps  
0.582 in  
DDR2_DIMM_DQ_...  
49.1 ohms  
78.216 ps  
0.501 in  
49.1 ohms  
41.316 ps  
0.264 in  
49.8 ohms  
864.365 ps  
5.533 in  
DDR2_DIMM_DQ_...  
71.6 ohms  
22.319 ps  
59.1 ohms  
12.486 ps  
AutoPadstk_12_B...  
U5_B00.H29  
AutoPadstk_3_B00  
DDR2_DIMM_DQ_... DDR2_DIMM_DQ_...  
59.8 ohms  
3.590 ps  
0.022 in  
59.8 ohms  
31.503 ps  
0.195 in  
59.8 ohms  
78.962 ps  
0.490 in  
59.8 ohms  
10.373 ps  
0.064 in  
J1_B01.31  
U3_B01.J1  
MDQ19_B01 MDQ19_B01 MDQ19_B01  
DQ19_B01  
RN6_B01  
22.0 ohms  
TL15  
TL16  
TL17  
TL18  
TL19  
TL20  
TL7  
TL6  
TL3  
Virtex-5 FPGA  
DDR2_DQ_BY2_B3  
XP2_B00.31  
XP3_B00.31  
XP4_B00.31  
XP5_B00.31  
TL1  
TL5  
TL11  
TL12  
MT47H64M8CB_C...  
DQ6  
????  
DDR2_DI...  
22.9 fF  
DDR2_DI...  
96.3 fF  
DDR2_DI...  
253.0 fF  
DDR2_DI...  
46.4 fF  
C8  
TL14  
????  
TL27  
????  
TL23  
????  
TL25  
????  
MDQ19_...  
17.3 fF  
C13  
500.0 fF  
50.3 ohms  
23.650 ps  
DDR2_D...  
50.3 ohms  
23.650 ps  
DDR2_D...  
50.3 ohms  
23.650 ps  
DDR2_D...  
50.3 ohms  
23.650 ps  
DDR2_D...  
500.0 fF  
R_00179...  
0.0 milliohms  
R7  
R5  
R6  
0.0 milliohms  
0.0 milliohms  
0.0 milliohms  
TL13  
TL26  
TL22  
TL24  
50.3 ohms  
23.650 ps  
DQ19_B...  
50.3 ohms  
23.650 ps  
DQ19_B...  
50.3 ohms  
23.650 ps  
DQ19_B...  
50.3 ohms  
23.650 ps  
DQ19_B...  
UG199_c7_21_071907  
Figure 7-21: Post-Layout IBIS Schematics of DDR2 DIMM Write Data Bit (DDR2_DIMM_DQ_BY2_B3)  
Table 7-6: Circuit Elements of DDR2 DIMM Write Data Bit  
(DDR2_DIMM_DQ_BY2_B3)  
Element  
Designation  
U5.H29  
Description  
FPGA SSTL18_II_DCI_O  
DDR2 DIMM, 75 ΩODT  
Via under memory on DIMM  
ODT at load  
Driver  
Receiver  
XP2-U3.J1  
C13  
Probe Point  
PCB Termination  
Trace Length  
None  
Multiple TLs  
8.975 inches  
The IBIS schematics for DDR2 DIMM interface is extracted from a multi-board project  
definition of the two-board combination, which includes the ML561 motherboard and the  
DDR2 DIMM at the XP2 connector of the motherboard. The impedance characteristics of  
the Molex socket pin (XP2, pin 31) is also included in the IBIS model as a (TL13,  
R_00179_CONN_0001, TL14) combination.  
The ML561 board under test (S/N 103) is assembled with DDR2 sockets XP3, XP4, and  
XP5, which can be utilized for deep DIMM interfaces as described in Table 3-2, page 19 and  
Figure 3-2, page 20. To accurately represent the IBIS model of the  
DDR2_DIMM_DQ_BY2_B3 signal, the IBIS schematics in Figure 7-21 have added stubs for  
the three socket pins at the XP3, XP4, and XP5 connectors.  
The DDR2 DIMM used for this correlation testing is a single-rank DIMM part (Micron part  
number MT9HTF6472xx-667). Thus for hardware measurements closest to the load, a  
probe point via on the DIMM for pin U3.J1 is available.  
70  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Signal Integrity Correlation Results  
Table 7-7: DDR2 DIMM Write Operation Correlation Results  
Noise Margin  
(VIH + VIL) = Total  
(% of VREF)  
Overshoot / Undershoot  
Margin  
DVW  
(%UI)  
ISI  
(% UI)  
Measurement  
(% of VREF)  
(300 + 200) = 500 ps  
(33.3%)  
(110 + 100) = 210 mV  
(23.3%)  
(620 + 620) = 1240 mV  
(137.7%)  
Hardware at Probe  
Point  
942 ps  
(62.8%)  
Simulation correlation  
at memory via (C13)  
slow-weak corner  
(80 + 54) = 134 ps  
(8.9%)  
(172 + 150) = 322 mV  
(35.9%)  
(606 + 636) =1242 mV  
(138%)  
1.16 ns  
(77.3%)  
Correlation Delta:  
HW vs. Simulation  
218 ps  
366 ps  
112 mV  
(12.6%)  
2 mV  
(14.5%)  
(24.4%)  
(0.3%)  
(85 + 32) = 117 ps  
(7.8%)  
(178 + 137) = 315 mV  
(35.0%)  
(604 + 632) = 1236 mV  
(137.3%)  
Extrapolation at IOB  
slow-weak corner  
1.23 ns  
(82%)  
(54 + 46) = 100 ps  
(6.7%)  
(146 + 107) = 253 mV  
(28.1%)  
(457 + 524) = 981 mV  
(109.0%)  
Extrapolation at IOB  
fast-strong corner  
1.32 ns  
(88%)  
DDR2 DQ is a bidirectional signal. To perform hardware measurements for a Write  
operation that is not interrupted by a Read response or a Refresh operation, the testbench  
on FPGA2 is controlled by DIP switches (SW1) as indicated in Table 7-8.  
Table 7-8: DIP[1:2] Settings  
Setting  
2’b00or 2’b11  
Description  
Normal alternating Write/Read sequence  
Write only, Refresh disabled  
2’b01  
2’b10  
Write once, then Read only, Refresh disabled  
Virtex-5 FPGA ML561 User Guide  
71  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Chapter 7: ML561 Hardware-Simulation Correlation  
UG199_c7_22_071107  
Figure 7-22: DDR2 DIMM Write HW Measurement - Eye Scope Shot at Probe Point #1 (DDR2 Memory Via)  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.000  
Probe 3:C13.1 (at pin)  
-200.0  
800.0  
1200.0  
1600.0  
2000.0  
2400.0  
2800.0  
Time (ps)  
UG199_c7_23_070907  
333 MHz, Slow, PRBS6, 77% UI  
Cursor 1: 1.1004V, 1.2553 ns  
Cursor 2: 1.0253V, 2.4105 ns  
Delta Voltage = 75.2 mV, Delta Time = 1.1582 ns (77% UI)  
Figure 7-23: DDR2 DIMM Write Correlation - Eye Scope Shot at Probe Point #1 (Slow Corner)  
72  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Signal Integrity Correlation Results  
UG199_c7_24_071107  
Figure 7-24: DDR2 DIMM Write HW Measurement - Waveform Scope Shot at Probe Point #1 (DDR2 Memory  
Via)  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.000  
Probe 3:C13.1 (at pin)  
-200.0  
95.000  
105.000  
115.000  
125.000  
135.000  
145.000  
Time (ns)  
UG199_c7_23_071007  
Figure 7-25: DDR2 DIMM Write Correlation - Waveform Scope Shot at Probe Point #1 (Slow Corner)  
Virtex-5 FPGA ML561 User Guide  
73  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 7: ML561 Hardware-Simulation Correlation  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.000  
Probe 6:U3_B01.J1 (at die)  
-200.0  
1000.0  
1400.0  
1800.0  
2200.0  
2600.0  
Time (ps)  
UG199_c7_26_071007  
333 MHz, Slow, PRBS6, 82% UI  
Cursor 1: 1.1028V, 1.2399 ns  
Cursor 2: 1.0253V, 2.4671 ns  
Delta Voltage = 77.5 mV, Delta Time = 1.2272 ns (82% UI)  
Figure 7-26: DDR2 DIMM Write Extrapolation - Eye Scope Shot at Receiver IOB (Slow Corner)  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.000  
Probe 6:U3_B01.J1 (at die)  
-200.0  
95.000  
105.000  
115.000  
125.000  
135.000  
145.000  
Time (ns)  
UG199_c7_27_071007  
Figure 7-27: DDR2 DIMM Write Extrapolation - Waveform Scope Shot at Receiver IOB (Slow Corner)  
74  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Signal Integrity Correlation Results  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.000  
Probe 6:U3_B01.J1 (at die)  
-200.0  
400.0  
800.0  
1200.0  
1600.0  
2000.0  
2400.0  
Time (ps)  
UG199_c7_28_071007  
333 MHz, Fast, PRBS6, 88% UI  
Cursor 1: 1.1004V, 646.3 ps  
Cursor 2: 1.0273V, 1.9659 ns  
Delta Voltage = 73.1 mV, Delta Time = 1.3196 ns (88% UI)  
Figure 7-28: DDR2 DIMM Write Extrapolation - Eye Scope Shot at Receiver IOB (Fast Corner)  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.000  
Probe 6:U3_B01.J1 (at die)  
95.000  
105.000  
115.000  
125.000  
135.000  
145.000  
Time (ns)  
UG199_c7_29_071007  
Figure 7-29: DDR2 DIMM Write Extrapolation - Waveform Scope Shot at Receiver IOB (Fast Corner)  
Virtex-5 FPGA ML561 User Guide  
75  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 7: ML561 Hardware-Simulation Correlation  
DDR2 DIMM Read Operation  
This subsection shows the test results for the DDR2_DIMM_DQ_BY2_B3 signal from the  
DDR2 DIMM (XP2) to FPGA2 (U5) measured at 333 MHz (667 Mb/s), where the unit  
interval (UI) = 1.5 ns.  
49.8 ohms  
94.605 ps  
0.606 in  
DDR2_DIMM_DQ_...  
49.8 ohms  
90.340 ps  
0.578 in  
DDR2_DIMM_DQ_...  
28.5 ohms  
4.473 ps  
0.028 in  
49.8 ohms  
90.955 ps  
0.582 in  
DDR2_DIMM_DQ_...  
49.1 ohms  
78.216 ps  
0.501 in  
49.1 ohms  
41.316 ps  
0.264 in  
49.8 ohms  
864.365 ps  
5.533 in  
DDR2_DIMM_DQ_...  
71.6 ohms  
22.319 ps  
59.1 ohms  
12.486 ps  
AutoPadstk_12_B...  
U5_B00.H29  
AutoPadstk_3_B00 DDR2_DIMM_DQ_...  
DDR2_DIMM_DQ_... DDR2_DIMM_DQ_...  
59.8 ohms  
3.590 ps  
59.8 ohms  
10.373 ps  
0.064 in  
59.8 ohms  
31.503 ps  
0.195 in  
59.8 ohms  
78.962 ps  
0.490 in  
0.022 in  
U3_B01.J1  
J1_B01.31  
MDQ19_B01  
DQ19_B01  
MDQ19_B01 MDQ19_B01  
TL15  
TL16  
TL17  
TL18  
TL19  
TL20  
TL7  
TL6  
TL3  
RN6_B01  
22.0 ohms  
Virtex-5 FPGA  
DIMM_DQ_BY2_B3  
XP2_B00.31  
XP3_B00.31  
XP4_B00.31  
XP5_B00.31  
TL12  
TL1  
TL5  
TL11  
MT47H64M8CB_C...  
DQ6  
????  
DDR2_DI...  
22.9 fF  
DDR2_DI...  
96.3 fF  
DDR2_DI...  
253.0 fF  
DDR2_DI...  
46.4 fF  
C8  
TL14  
TL27  
TL23  
TL25  
????  
50.3 ohms  
23.650 ps  
DDR2_D...  
MDQ19_...  
17.3 fF  
????  
C13  
????  
50.3 ohms  
23.650 ps  
DDR2_D...  
????  
50.3 ohms  
23.650 ps  
DDR2_D...  
50.3 ohms  
23.650 ps  
DDR2_D...  
500.0 fF  
500.0 fF  
R_00179...  
0.0 milliohms  
R7  
R5  
R6  
0.0 milliohms  
0.0 milliohms  
0.0 milliohms  
TL13  
TL26  
TL22  
TL24  
50.3 ohms  
23.650 ps  
DQ19_B...  
50.3 ohms  
23.650 ps  
DQ19_B...  
50.3 ohms  
23.650 ps  
DQ19_B...  
50.3 ohms  
23.650 ps  
DQ19_B...  
UG199_c7_30_071907  
Figure 7-30: Post-Layout IBIS Schematics of the DDR2 DIMM Read Data Bit (DDR2_DIMM_DQ_B)  
Table 7-9: Circuit Elements of DDR2 DIMM Read Data Bit  
(DDR2_DIMM_DQ_BY2_B3)  
Element  
Designation  
XP2-U3.J1  
Description  
Driver  
DDR2 DIMM  
Receiver  
U5.H29  
C8  
FPGA SSTL18_II_DCI_I  
Via under FPGA2 (U5.H29)  
DCI at load  
Probe Point  
PCB Termination  
Trace Length  
None  
Multiple TLs  
8.975 inches  
Table 7-10: DDR2 DIMM Read Operation Correlation Results  
Noise Margin  
(VIH + VIL) = Total  
(% of VREF)  
Overshoot / Undershoot  
Margin  
DVW (%  
UI)  
ISI  
(% UI)  
Measurement  
(% of VREF)  
904 ps  
(60%)  
Hardware at probe  
point  
(107 + 62) = 169 ps  
(11.2%)  
(623 + 613) = 1236 mV  
(137.3%)  
(242 + 258) = 500 mV  
865 ps  
(59%)  
Simulation correlation  
slow-weak corner  
(130 + 83) = 213 ps  
(14.2%)  
(524 + 504) = 1028 mV  
(114.2%)  
(+292 + 298) = 590 mV  
90 mV (10%)  
Correlation Delta:  
HW vs. Simulation  
39 ps  
(2.6%)  
44 ps (2.9%)  
208 mV (23.1%)  
(243 + 303) = 546 mV  
(60.7%)  
(594 + 544) = 1138 mV  
(116.5%)  
Extrapolation at IOB  
slow-weak corner  
1.23 ns  
(82%)  
(139 + 75) = 224 ps  
(14.9%)  
Extrapolation at IOB  
fast-strong corner  
1.24 ns  
(83%)  
(131 + 60) = 191 ps  
(12.7%)  
(288 + 282) = 570 mV  
(63.3%)  
(+481 + 508) = 989 mV  
(109.9%)  
To perform hardware measurements for a Read operation that is not interrupted by a Write  
or a Refresh operation, the testbench on FPGA1 is controlled by the following DIP switch  
(SW1) setting:  
DIP[1:2] = 2’b10– Write once, then Read only, Refresh disabled  
76  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Signal Integrity Correlation Results  
UG199_c7_31_071107  
Figure 7-31: DDR2 DIMM Read HW Measurement - Eye Scope Shot at Probe Point (FPGA1 Via)  
1900.0  
1700.0  
1500.0  
1300.0  
1100.0  
900.0  
700.0  
500.0  
300.0  
100.0  
Probe 3:C8.1 (at pin)  
-100.0  
2000.0  
2400.0  
2800.0  
3200.0  
3600.0  
Time (ps)  
UG199_c7_32_071107  
333 MHz, Slow, PRBS6, 59% UI  
Cursor 1: 1.0988V, 2.5207 ns  
Cursor 2: 1.0254V, 3.3859 ns  
Delta Voltage = 73.4 mV, Delta Time = 865.2 ps (59% UI)  
Figure 7-32: DDR2 DIMM Read Correlation - Eye Scope Shot at Probe Point (Slow Corner)  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
77  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 7: ML561 Hardware-Simulation Correlation  
UG199_c7_33_071107  
Figure 7-33: DDR2 DIMM Read HW Measurement - Waveform Scope Shot at Probe Point (FPGA1 Via)  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
Probe 3:C8.1 (at pin)  
45.000  
0.000  
-200.0  
25.000  
35.000  
55.000  
65.000  
75.000  
Time (ns)  
UG199_c7_34_071007  
Figure 7-34: DDR2 DIMM Read Correlation - Waveform Scope Shot at Probe Point (Slow Corner)  
78  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Signal Integrity Correlation Results  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
Probe 6:U5_B00.H29 (at die)  
0.000  
-200.0  
2000.0  
2400.0  
2800.0  
3200.0  
3600.0  
4000.0  
Time (ps)  
UG199_c7_35_071007  
333 MHz, Slow, PRBS6, 82% UI  
Cursor 1: 1.1007V, 2.3997 ns  
Cursor 2: 1.0232V, 3.6257 ns  
Delta Voltage = 77.5 mV, Delta Time = 1.2260 ns (82% UI)  
Figure 7-35: DDR2 DIMM Read Extrapolation - Eye Scope Shot at Receiver IOB (Slow Corner)  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.000  
Probe 6:U5_B00.H29 (at die)  
-200.0  
30.000  
40.000  
50.000  
60.000  
70.000  
Time (ns)  
UG199_c7_36_071007  
Figure 7-36: DDR2 DIMM Read Extrapolation - Waveform Scope Shot at Receiver IOB (Slow Corner)  
Virtex-5 FPGA ML561 User Guide  
79  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 7: ML561 Hardware-Simulation Correlation  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
Probe 6:U5_B00.H29 (at die)  
0.000  
-200.0  
400.0  
800.0  
1200.0  
1600.0  
2000.0  
2400.0  
Time (ps)  
UG199_c7_37_071007  
333 MHz, Fast, PRBS6, 83% UI  
Cursor 1: 697.0 mV, 763.0 ps  
Cursor 2: 776.6 mV, 2.0052 ns  
Delta Voltage = 79.5 mV, Delta Time = 1.2422 ns (83% UI)  
Figure 7-37: DDR2 DIMM Read Extrapolation - Eye Scope Shot at Receiver IOB (Fast Corner)  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.000  
Probe 6:U5_B00.H29 (at die)  
-200.0  
30.000  
40.000  
50.000  
60.000  
70.000  
Time (ns)  
UG199_c7_38_071007  
Figure 7-38: DDR2 DIMM Read Extrapolation - Waveform Scope Shot at Receiver IOB (Fast Corner)  
80  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Signal Integrity Correlation Results  
QDRII Write Operation  
This subsection shows the test results for the QDR2_D_BY0_B5 signal from FPGA3 (U34)  
to QDRII memory (U35) measured at 300 MHz (600 Mb/s), where the unit interval  
(UI) = 167 ns.  
49.0 ohms  
5.283 ps  
0.035 in  
VCC0V7…  
0.9V  
QDR2_D_BY0_B5  
R1586  
49.9 ohms  
TL6  
49.8 ohms  
28.5 ohms  
4.473 ps  
28.5 ohms  
4.404 ps  
0.027 in  
49.0 ohms  
45.1 ohms  
7.862 ps  
AutoPadstk_19  
70.8 ohms  
16.339 ps  
AutoPadstk_3  
520.665 ps  
3.333 in  
71.0 ohms  
27.482 ps  
11.902 ps  
U34.M31  
0.028 in  
0.079 in  
QDR2_D_BY0_B5  
U35.G11  
QDR2_D_BY0_B5  
QDR2_D_BY0_B5  
QDR2_D_BY0_B5 AutoPadstk_3  
TL2  
TL4  
TL5  
TL7  
TL8  
TL3  
TL1  
Virtex-5 FPGA  
QDR2_D_BY0_B5  
K7R323684M_1.8V  
D5  
QDR2_D...  
C7  
QDR2_D...  
QDR2_D...  
22.9 fF  
QDR2_D...  
22.9 fF  
QDR2_D...  
QDR2_D...  
22.9 fF  
177.3 fF  
399.1 fF  
500.0 fF  
58.1 fF  
UG199_c7_39_070907  
Figure 7-39: Post-Layout IBIS Schematics of QDRII Write Data Bit (QDR2_D_BY0_B5)  
Table 7-11: Circuit Elements of QDRII Write Data bit (QDR2_D_BY0_B5)  
Element  
Designation  
U34.M31  
Description  
FPGA HSTL_I_18  
Driver  
Receiver  
U35.G11  
C7  
QDRII memory  
Probe Point  
PCB Termination  
Trace Length  
Via under Memory  
External termination at memory  
3.46 inches  
R1586  
TL 2, 5, 8, 1  
Table 7-12: QDRII Write Operation Correlation Results  
Noise Margin  
(VIH + VIL) = Total  
(% of VREF)  
Overshoot / Undershoot  
Margin  
DVW  
(% UI)  
ISI  
(% UI)  
Measurement  
(% of VREF)  
Hardware at probe  
point  
1.40 ns  
(84.1%)  
(340 + 400) = 740 mV  
(82.2%)  
(450 + 400) = 850 mV  
(94.5%)  
(50 + 70) = 120 ps (7.2%)  
(136 + 91) = 227 ps (13.6%)  
107 ps (6.4%)  
Simulation correlation  
slow-weak corner  
1.39 ns  
(83.5%)  
(344 + 398) = 742 mV  
(82.5%)  
(483 + 452) = 935 mV  
(103.9%)  
Correlation Delta:  
HW vs. Simulation  
10 ps  
(0.6%)  
2 mV (0.3%)  
85 mV (9.4%)  
1.38 ns  
(83%)  
(172 + 141) = 313 ps  
(18.8%)  
Extrapolation at IOB  
slow-weak corner  
(329 + 358) = 687 mV  
(76.3%)  
(400 + 361) = 761 mV  
(84.5%)  
1.49 ns  
(89%)  
Extrapolation at IOB  
fast-strong corner  
(353 + 376) = 729 mV  
(81.0%)  
(156 + 30) = 186 mV  
(20.7%)  
(126 + 91) = 217 ps (13.0%)  
Virtex-5 FPGA ML561 User Guide  
81  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Chapter 7: ML561 Hardware-Simulation Correlation  
UG199_c7_40_071107  
Figure 7-40: QDRII Write HW Measurement - Eye Scope Shot at Probe Point (QDRII Memory Via)  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
Probe 3:C7.1 (at pin)  
0.000  
-200.0  
0.000  
400.0  
800.0  
1200.0  
1600.0  
Time (ps)  
UG199_c7_41_070907  
300 MHz, Slow, PRBS6, 83.5% UI  
Cursor 1: 699.1 mV, 90.0 ps  
Cursor 2: 801.0 mV, 1.4770 ns  
Delta Voltage = 101.9 mV, Delta Time = 1.3870 ns (83.5% UI)  
Figure 7-41: QDRII Write Correlation - Eye Scope Shot at Probe Point (Slow Corner)  
82  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Signal Integrity Correlation Results  
UG199_c7_42_071107  
Figure 7-42: QDRII Write HW Measurement - Waveform Scope Shot at Probe Point (QDRII Memory Via)  
1900.0  
1700.0  
1500.0  
1300.0  
1100.0  
900.0  
700.0  
500.0  
300.0  
100.0  
Probe 3:C7.1 (at pin)  
-100.0  
110.000  
120.000  
130.000  
140.000  
150.000  
160.000  
Time (ns)  
UG199_c7_43_071007  
Figure 7-43: QDRII Write Correlation - Waveform Scope Shot at Probe Point (Slow Corner)  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
83  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 7: ML561 Hardware-Simulation Correlation  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.000  
Probe 6:U35.G11 (at die)  
-200.0  
0.000  
400.0  
800.0  
1200.0  
1600.0  
Time (ps)  
UG199_c7_44_070907  
300 MHz, Slow, PRBS6, 83% UI  
Cursor 1: 699.1 mV, 61.3 ps  
Cursor 2: 801.0 mV, 1.4433 ns  
Delta Voltage = 101.9 mV, Delta Time = 1.3820 ns (83% UI)  
Figure 7-44: QDRII Write Extrapolation - Eye Scope Shot at Receiver IOB (Slow Corner)  
1900.0  
1700.0  
1500.0  
1300.0  
1100.0  
900.0  
700.0  
500.0  
300.0  
100.0  
Probe 6:U35.G11 (at die)  
-100.0  
110.000  
120.000  
130.000  
140.000  
150.000  
160.000  
Time (ns)  
UG199_c7_45_071007  
Figure 7-45: QDRII Write Extrapolation - Waveform Scope Shot at Receiver IOB (Slow Corner)  
84  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Signal Integrity Correlation Results  
3100.0  
2600.0  
2100.0  
1600.0  
1100.0  
600.0  
100.0  
-400.0  
-900.0  
-1400.0  
-1900.0  
Probe 6:U35.G11 (at die)  
800.0  
1200.0  
1600.0  
2000.0  
2400.0  
2800.0  
Time (ps)  
UG199_c7_46_070907  
300 MHz, Fast, PRBS6, 89% UI  
Cursor 1: 699.1 mV, 1.1440 ns  
Cursor 2: 801.0 mV, 2.6334 ns  
Delta Voltage = 101.9 mV, Delta Time = 1.4894 ns (89% UI)  
Figure 7-46: QDRII Write Extrapolation - Eye Scope Shot at Receiver IOB (Fast Corner)  
3400.0  
2900.0  
2400.0  
1900.0  
1400.0  
900.0  
400.0  
-100.0  
-600.0  
-1100.0  
Probe 6:U35.G11 (at die)  
-1600.0  
110.000  
120.000  
130.000  
140.000  
150.000  
160.000  
Time (ns)  
UG199_c7_47_070907  
Figure 7-47: QDRII Write Extrapolation - Waveform Scope Shot at Receiver IOB (Fast Corner)  
Virtex-5 FPGA ML561 User Guide  
85  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 7: ML561 Hardware-Simulation Correlation  
QDRII Read Operation  
This subsection shows the test results for the QDR2_Q_BY0_B5 signal from QDRII  
memory (U35) to FPGA3 (U34) measured at 300 MHz (600 Mb/s), where the unit interval  
(UI) = 1.67 ns.  
49.1 ohms  
28.5 ohms  
4.473 ps  
49.1 ohms  
28.5 ohms  
4.404 ps  
71.8 ohms  
22.319 ps  
AutoPad...  
427.654 ps  
2.737 in  
71.6 ohms  
22.319 ps  
AutoPadstk_3  
95.834 ps  
0.028 in  
0.613 in  
QDR2_Q_BY0_B5  
0.027 in  
U35.F11  
U34.G33  
QDR2_Q_BY0_B5  
QDR2_Q_BY0_B5  
QDR2_Q_BY0_B5  
TL3  
TL6  
TL7  
TL8  
TL1  
TL2  
K7R323684M_1.8V  
C5  
Virtex-5 FPGA  
QDR2_Q_BY0_B5  
QDR2_Q...  
513.2 fF  
QDR2_Q...  
QDR2_Q...  
22.9 fF  
QDR2_Q...  
96.3 fF  
C7  
QDR2_Q...  
22.9 fF  
96.3 fF  
500.0 fF  
UG199_c7_48_071907  
Figure 7-48: Post-Layout IBIS Schematics of QDRII Read Data Bit (QDR2_Q_BY0_B5)  
Table 7-13: Circuit Elements of QDRII Read Data Bit (QDR2_Q_BY0_B5)  
Element  
Designation  
U36.F11  
Description  
QDRII memory  
Driver  
Receiver  
U34.G33  
C7  
FPGA HSTL_I_DCI_18  
Via under FPGA3 (U34)  
DCI at FPGA  
Probe Point  
PCB Termination  
Trace Length  
None  
TL 1, 3, 6, 8  
3.41 inches  
Table 7-14: QDRII Read Operation Correlation Results  
Noise Margin  
(VIH + VIL) = Total  
(% of VREF)  
Overshoot / Undershoot  
Margin  
DVW  
(% UI)  
ISI  
(% UI)  
Measurement  
(% of VREF)  
1.09 ns  
(65.4%)  
(400 + 400) = 800 mV  
(88.9%)  
(500 + 500) = 1000 mV  
(111.1%)  
Hardware at probe point  
(70 + 50) = 120 ps (7.2%)  
(72 + 75) = 147 ps (8.8%)  
27 ps (1.6%)  
984 ps  
Simulation correlation  
slow-weak corner  
(250 + 264) = 514 mV  
(57.1%)  
(532 + 518) = 1050 mV  
(105.5%)  
(59.0%)  
Correlation Delta:  
HW vs. Simulation  
106 ps  
(6.4%)  
386 mV (31.8%)  
50 mV (5.6%)  
1.46 ns  
(88%)  
Extrapolation at IOB  
slow-weak corner  
(237 + 272) = 509 mV  
(56.5%)  
(608 + 575) = 1183 mV  
(131.5%)  
(49 + 36) = 85 ps (5.1%)  
1.45 ns  
(87%)  
Extrapolation at IOB  
fast-strong corner  
(341 +201) = 542 mV  
(60.3%)  
(532 + 661) = 1193 mV  
(132.6%)  
(27 + 39) = 66 ps (4.0%)  
86  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Signal Integrity Correlation Results  
UG199_c7_49_071107  
Figure 7-49: QDRII Read HW Measurement - Eye Diagram Scope Shot at Probe Point (FPGA3 Via)  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
Probe 3:C7.1 (at pin)  
0.000  
-200.0  
800.0  
1200.0  
1600.0  
2000.0  
2400.0  
Time (ps)  
UG199_c7_50_070907  
300 MHz, Slow, PRBS6, 59% UI  
Cursor 1: 1.1007V, 1.4881 ns  
Cursor 2: 1.0029V, 2.4719 ns  
Delta Voltage = 97.9 mV, Delta Time = 983.8 ps (59% UI)  
Figure 7-50: QDRII Read Correlation - Eye Diagram Scope Shot at Probe Point (Slow Corner)  
Virtex-5 FPGA ML561 User Guide  
87  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 7: ML561 Hardware-Simulation Correlation  
UG199_c7_51_071107  
Figure 7-51: QDRII Read HW Measurement - Waveform Scope Shot at Probe Point (FPGA3 Via)  
1900.0  
1700.0  
1500.0  
1300.0  
1100.0  
900.0  
700.0  
500.0  
300.0  
Probe 3:C7.1 (at pin)  
100.0  
-100.0  
20.000  
30.000  
40.000  
50.000  
60.000  
70.000  
Time (ns)  
UG199_c7_52_071007  
Figure 7-52: QDRII Read Correlation - Waveform Scope Shot at Probe Point (Slow Corner)  
88  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Signal Integrity Correlation Results  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
Probe 6:U34.G33 (at die)  
0.000  
-200.0  
1000.0  
1400.0  
1800.0  
2200.0  
2600.0  
Time (ps)  
UG199_c7_53_070907  
300 MHz, Slow, PRBS6, 88% UI  
Cursor 1: 1.1008V, 1.2758 ns  
Cursor 2: 998.9 mV, 2.7352 ns  
Delta Voltage = 101.9 mV, Delta Time = 1.4594 ns (88% UI)  
Figure 7-53: QDRII Read Extrapolation - Eye Scope Shot at Receiver IOB (Slow Corner)  
1900.0  
1700.0  
1500.0  
1300.0  
1100.0  
900.0  
700.0  
500.0  
300.0  
100.0  
Probe 6:U34.G33 (at die)  
-100.0  
30.000  
40.000  
50.000  
60.000  
70.000  
Time (ns)  
UG199_c7_54_071007  
Figure 7-54: QDRII Read Extrapolation - Waveform Scope Shot at Receiver IOB (Slow Corner  
Virtex-5 FPGA ML561 User Guide  
89  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Chapter 7: ML561 Hardware-Simulation Correlation  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.000  
Probe 6:U34.G33 (at die)  
-200.0  
1200.0  
1600.0  
2000.0  
2400.0  
2800.0  
Time (ps)  
UG199_c7_55_070907  
300 MHz, Fast, PRBS6, 87% UI  
Cursor 1: 801 mV, 2.7263 ns  
Cursor 2: 697.0 mV, 1.2744 ns  
Delta Voltage = 104.0 mV, Delta Time = 1.4519 ns (87% UI)  
Figure 7-55: QDRII Read Extrapolation - Eye Scope Shot at Receiver IOB (Fast Corner)  
1900.0  
1700.0  
1500.0  
1300.0  
1100.0  
900.0  
700.0  
500.0  
300.0  
100.0  
Probe 6:U34.G33 (at die)  
-100.0  
25.000  
35.000  
45.000  
55.000  
65.000  
75.000  
Time (ns)  
UG199_c7_56_071007  
Figure 7-56: QDRII Read Extrapolation - Waveform Scope Shot at Receiver IOB (Fast Corner)  
90  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Summary and Recommendations  
Summary and Recommendations  
The first objective of this exercise is to establish correlation between hardware  
measurements and the simulation at the probe point. The intention was to validate the  
simulation model for the targeted signal. The degree of correlation achieved is looked at in  
terms of absolute difference as well as relative percentage. The relative percentage  
differences are presented in terms of unit interval (UI) for timing characteristics and in  
terms of VREF voltage for the voltage margin characteristics.  
Correlation simulation is performed under ideal conditions, that is, the stimulus is  
generated without any jitter. On the other hand, the hardware measurements are subject to  
jitter (which tends to increase ISI), board-level power fluctuation (which can affect the eye  
amplitude), and stability of the probing station. Thus some correlation differences are  
expected. The user ultimately uses his or her own judgment to account for these  
differences, and adjusts the values extrapolated for quality of signal at the receiver IOB.  
Table 7-15 contains this information for all six test signals.  
Table 7-15: Summary of Correlation Differences: Hardware vs. Simulation  
Overshoot /  
Undershoot Margin  
(% VREF)  
ΔDVW  
ΔISI  
(% UI)  
Noise Margin  
(% VREF)  
Operation  
(% UI(1)  
)
98 mV  
69 mV  
(7.6%)  
40 ps  
(2.6%)  
47 ps  
(3.2%)  
DDR2 Component Write  
DDR2 Component Read  
DDR2 DIMM Write  
DDR2 DIMM Read  
QDRII Write  
(10.9%)  
0 ps  
6 mV  
244 mV  
(17.2%)  
43 ps  
(2.9%)  
(0%)  
(0.7%)  
112 mV  
(12.6%)  
2 mV  
218 ps  
(14.5%)  
366 ps  
(24.5%)  
(0.3%)  
90 mV  
208 mV  
(23.1%)  
39 ps  
(2.6%)  
44 ps  
(2.9%)  
(10.0%)  
2 mV  
85 mV  
(9.4%)  
10 ps  
(0.6%)  
107 ps  
(6.4%)  
(0.3%)  
386 mV  
(31.8%)  
50 mV  
(5.6%)  
106 ps  
(6.4%)  
27 ps  
(1.6%)  
QDRII Read  
Notes:  
1. Unit Interval (UI): 1.5 ns for DDR2 and 1.67 ns for QDRII. VREF = 0.9V for DDR2 and QDRII.  
There are varying degrees of correlation differences among the six test signals. In general,  
there is a good match between hardware measurements and the correlation simulation,  
except for some yet-to-be analyzed differences, for example, DDR2 DIMM Write DVW and  
QDRII read noise margin.  
The remainder of this section summarizes the extrapolation results of the data bit interface  
for all six memory operations on the ML561 board. The measure of SI characteristics of  
each signal is determined by the worst-case extrapolation measurement from among the  
simulations with drivers at slow-weak and fast-strong corners. The values chosen between  
these two corner cases are:  
Minimum of DVW, noise margin, and overshoot/undershoot margin  
Maximum of ISI  
Virtex-5 FPGA ML561 User Guide  
91  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Chapter 7: ML561 Hardware-Simulation Correlation  
Table 7-16 summarizes the extrapolated SI characteristics of all six test signals.  
Table 7-16: Summary of Worst-Case SI Characteristics  
Overshoot /  
Undershoot Margin  
(% VREF)  
ΔDVW  
(% UI)  
ΔISI  
(% UI)  
Noise Margin  
(% VREF)  
Operation  
127 ps  
(8.5%)  
570 mV  
(63.3%)  
685 mV  
(76.1%)  
1.27 ns  
(84%)  
DDR2 Component Write  
DDR2 Component Read  
DDR2 DIMM Write  
DDR2 DIMM Read  
QDRII Write  
178 ps  
867 mV  
(96.3%)  
349 mV  
(38.9%)  
1.29 ns  
(86%)  
(11.9%)  
117 ps  
(7.8%)  
253 mV  
(28.1%)  
981 mV  
1.23 ns  
(82%)  
(109.0%)  
224 ps  
546 mV  
(60.7%)  
989 mV  
1.23 ns  
(82%)  
(14.9%)  
(109.9%)  
313 ps  
687 mV  
(76.3%)  
186 mV  
(20.7%)  
1.38 ns  
(83%)  
(18.8%)  
85 ps  
509 mV  
(56.5%)  
1183 mV  
(131.5%)  
1.45 ns  
(87%)  
QDRII Read  
(5.1%)  
Here are some observations about extrapolated SI characteristics among these test signals:  
The Data Valid Window (DVW) values already account for the degradation caused by  
ISI due to the PRBS6 test pattern. For timing analysis, two values need to be taken into  
consideration appropriately. For a PRBS6 test pattern, the worst-case DVW value  
(after discounting for ISI) is 82% UI for DDR2 DIMM operations.  
DDR2 write operations, as compared to QDRII write operations, have a lower noise  
margin due to the always on nature of the DCI termination on the DQ signal for the  
SSTL18_II_DCI I/O standard at the FPGA. Consequently, the overshoot/undershoot  
margin for DDR2 write operations is higher than for QDRII write operations. The  
DDR2 DIMM write operation has the lowest VIL noise margin of 107 mV.  
For read operations, the sum of VIH and VIL noise margins beyond the AC value  
specifications is at least 509 mV (56.6% of VREF). QDRII read operations have the  
lowest VIL noise margin of 201 mV.  
All six signals have positive values for overshoot and undershoot margins. QDRII  
write operations have the lowest undershoot margin value of 30 mV.  
(For Table 5-1, page 48 through Table 5-5, page 49, the recommendations remain the same  
except for a clarification for DDR2 ODT as “75 ohm ODT”.)  
92  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
How to Generate a User-Specific FPGA IBIS Model  
How to Generate a User-Specific FPGA IBIS Model  
The following steps indicate how to generate an IBIS model:  
1. Under ISE, open your fully compiled project.  
2. Go to the Tcl Shell tab, and issue an ibiswritercommand as:  
ibiswriter –allmodels <your top level project design file>.ncd <name up  
to 24 lowercase characters>.ibs ;  
For example, ibiswriter –allmodels mem_interface_top.ncd  
ml561_fpga3_u34.ibs  
3. Unzip the Virtex-5 FPGA IBIS models ZIP file located at the Xilinx Download Center  
(under the “Device Models” sidebar link). Then unzip the ZIP file containing the  
device package files and extract a package file for your device, for example,  
ff1136_5vlx50t.pkg. Place this file in the same directory as the FPGA IBIS file (for  
example, ml561_fpga3_u34.ibs).  
4. Open the ml561_fpga3_u34.ibsfile generated by ibiswriter in HyperLynx Visual  
IBIS Editor. Check the file for correctness by clicking on the check (9) button in the top  
toolbar. Warnings are okay.  
5. Open the ff1136_5vlx50t.pkgfile using a text editor and locate the [Define  
Package Model]line. Copy and paste this line into the ml561_fpga3_u34.ibsfile  
just above the line with the [Package]declaration. Edit the copied line to change  
[Define Package Model]to [Package Model].  
6. Again, check the file for correctness by clicking on the check (9) button in the top  
toolbar. Multiple errors will appear. The package model file defines I/O definitions for  
all usable pins, but now ibiswriter only declares pins defined under the UCF. Thus  
errors are displayed for all the undefined pins, for example:  
ERROR - Pin 'AK9' found in Package_Model 'ff1136_xc5vlx50t_fga0106_dc' Pin_Numbers  
list not found in Component 'VIRTEX-5' Pin list.  
7. Copy all these errors into a text file with a .txtfile type.  
Open this text file with Excel and provide the delimiter as (‘), which puts all the  
unused pin names in one column. Delete all other columns before and after the  
one with the pin names.  
In column 2, fill in Unused_IOfor all pins.  
In column 3, fill in the name of one of the I/O standards defined under the  
[Model] section of the ml561_fpga3_u34.ibsfile, for example,  
LVCMOS25_S_12. Choose a name that is not an output only standard, because it  
might conflict with other outputs in the same bank.  
Right-justify the indentation for all three columns and make sure that each  
column is wider by a few spaces than the longest string in that column.  
Save this file with the Save As command in Excel using the Formatted Text (space  
delimited) (*.prn) option to create a text file with text columns separated by  
spaces. (The IBIS checker gives a warning if the .ibsfile contains tabs.)  
8. Open the .prnfile with a text editor and copy all these lines to the .ibsfile at the end  
of the [Pin]definitions section (just above the [Diff Pin]declarations).  
9. Check (9) the .ibsfile again. There should not be any errors. Again, warnings are  
okay.  
10. The result is an accurate custom-made IBIS model of a Virtex-5 device specific to your  
design.  
Virtex-5 FPGA ML561 User Guide  
93  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Chapter 7: ML561 Hardware-Simulation Correlation  
94  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Appendix A  
FPGA Pinouts  
This appendix provides the pinouts for the three FPGAs on the Virtex-5 FPGA ML561  
Development Board. The toolkit CD shipped with every ML561 contains sample UCFs for  
each memory interface. These UCFs are for pinout reference only and do not include other  
constraints, like I/O standards.  
FPGA #1 Pinout  
Table A-1 lists the connections for FPGA #1 (U7).  
Table A-1: FPGA #1 Pinout  
Signal Name  
Pin  
Signal Name  
Pin  
DDR400 Component Interface  
DDR1_A0  
DDR1_A1  
M32  
L33  
E33  
E32  
E34  
DDR1_CK1_N  
DDR1_CK1_P  
DDR1_CK2_N  
DDR1_CK2_P  
DDR1_CKE  
AJ34  
AH34  
AE34  
AF34  
AC34  
N32  
DDR1_A10  
DDR1_A11  
DDR1_A12  
DDR1_A13  
DDR1_A2  
F33  
K32  
DDR1_LB_BK11  
DDR1_LB_BK11  
DDR1_LB_BK13  
DDR1_LB_BK13  
DDR1_RAS_N  
P32  
DDR1_A3  
K34  
AJ32  
AK32  
AB32  
AD34  
AG32  
Y32  
DDR1_A4  
L34  
DDR1_A5  
J34  
DDR1_A6  
H34  
H33  
F34  
DDR1_WE_N  
DDR1_A7  
DDR1_DM_BY0  
DDR1_DM_BY1  
DDR1_DM_BY2  
DDR1_DM_BY3  
DDR1_DQ_BY0_B0  
DDR1_DQ_BY0_B1  
DDR1_DQ_BY0_B2  
DDR1_DQ_BY0_B3  
DDR1_A8  
DDR1_A9  
G33  
P34  
DDR1_BA0  
DDR1_BA1  
DDR1_BY0_1_CS_N  
DDR1_BY2_3_CS_N  
DDR1_CAS_N  
AK33  
AK34  
AB33  
AC33  
AC32  
G32  
AP32  
AN32  
AN33  
AN34  
Virtex-5 FPGA ML561 User Guide  
95  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
R
Appendix A: FPGA Pinouts  
Table A-1: FPGA #1 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
DDR400 Component Interface (cont.)  
DDR1_DQ_BY0_B4  
DDR1_DQ_BY0_B5  
DDR1_DQ_BY0_B6  
DDR1_DQ_BY0_B7  
DDR1_DQ_BY1_B0  
DDR1_DQ_BY1_B1  
DDR1_DQ_BY1_B2  
DDR1_DQ_BY1_B3  
DDR1_DQ_BY1_B4  
DDR1_DQ_BY1_B5  
DDR1_DQ_BY1_B6  
DDR1_DQ_BY1_B7  
DDR1_DQ_BY2_B0  
DDR1_DQ_BY2_B1  
DDR1_DQ_BY2_B2  
DDR1_DQ_BY2_B3  
AM32  
AM33  
AL33  
AL34  
Y34  
DDR1_DQ_BY2_B4  
R32  
R33  
R34  
T33  
DDR1_DQ_BY2_B5  
DDR1_DQ_BY2_B6  
DDR1_DQ_BY2_B7  
DDR1_DQ_BY3_B0  
DDR1_DQ_BY3_B1  
DDR1_DQ_BY3_B2  
DDR1_DQ_BY3_B3  
DDR1_DQ_BY3_B4  
DDR1_DQ_BY3_B5  
DDR1_DQ_BY3_B6  
DDR1_DQ_BY3_B7  
DDR1_DQS_BY0_P  
DDR1_DQS_BY1_P  
DDR1_DQS_BY2_P  
DDR1_DQS_BY3_P  
D34  
C34  
D32  
C32  
C33  
B33  
AA34  
AA33  
Y33  
V34  
W34  
V33  
A33  
B32  
V32  
U31  
AD32  
AF33  
K33  
J32  
U32  
T34  
U33  
DDR2 Component Interface  
DDR2_A0  
DDR2_A1  
DDR2_A10  
DDR2_A11  
DDR2_A12  
DDR2_A2  
DDR2_A3  
DDR2_A4  
DDR2_A5  
DDR2_A6  
DDR2_A7  
DDR2_A8  
DDR2_A9  
DDR2_BA0  
DDR2_BA1  
K12  
K13  
G22  
J15  
DDR2_CAS_N  
DDR2_CK0_N  
DDR2_CK0_P  
DDR2_CK1_N  
DDR2_CK1_P  
DDR2_CKE  
J14  
K19  
L19  
J19  
K16  
H23  
G23  
H12  
J12  
K18  
K17  
H20  
H19  
T28  
T29  
M28  
N28  
H18  
H17  
H13  
DDR2_CS0_N  
DDR2_CS1_N  
DDR2_LB_BK15  
DDR2_LB_BK15  
DDR2_LB_BK19  
DDR2_LB_BK19  
DDR2_ODT0  
K22  
K23  
K14  
L14  
K21  
J22  
DDR2_ODT1  
DDR2_RAS_N  
96  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
FPGA #1 Pinout  
Table A-1: FPGA #1 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
DDR2 Component Interface (cont.)  
DDR2_WE_N  
DDR2_DM_BY0  
J21  
U30  
L29  
K27  
J27  
DDR2_DQ_BY2_B2  
N25  
P25  
P24  
N24  
P27  
P26  
M26  
M25  
J25  
DDR2_DQ_BY2_B3  
DDR2_DQ_BY2_B4  
DDR2_DQ_BY2_B5  
DDR2_DQ_BY2_B6  
DDR2_DQ_BY2_B7  
DDR2_DQ_BY3_B0  
DDR2_DQ_BY3_B1  
DDR2_DQ_BY3_B2  
DDR2_DQ_BY3_B3  
DDR2_DQ_BY3_B4  
DDR2_DQ_BY3_B5  
DDR2_DQ_BY3_B6  
DDR2_DQ_BY3_B7  
DDR2_DQS_BY0_N  
DDR2_DQS_BY0_P  
DDR2_DQS_BY1_N  
DDR2_DQS_BY1_P  
DDR2_DQS_BY2_N  
DDR2_DQS_BY2_P  
DDR2_DQS_BY3_N  
DDR2_DQS_BY3_P  
DDR2_DM_BY1  
DDR2_DM_BY2  
DDR2_DM_BY3  
DDR2_DQ_BY0_B0  
DDR2_DQ_BY0_B1  
DDR2_DQ_BY0_B2  
DDR2_DQ_BY0_B3  
DDR2_DQ_BY0_B4  
DDR2_DQ_BY0_B5  
DDR2_DQ_BY0_B6  
DDR2_DQ_BY0_B7  
DDR2_DQ_BY1_B0  
DDR2_DQ_BY1_B1  
DDR2_DQ_BY1_B2  
DDR2_DQ_BY1_B3  
DDR2_DQ_BY1_B4  
DDR2_DQ_BY1_B5  
DDR2_DQ_BY1_B6  
DDR2_DQ_BY1_B7  
DDR2_DQ_BY2_B0  
DDR2_DQ_BY2_B1 23  
T25  
U25  
T26  
U26  
R27  
R26  
U28  
U27  
E31  
F31  
J29  
J24  
L26  
L25  
L24  
K24  
N30  
M31  
P29  
N29  
E27  
E26  
H27  
G27  
H29  
F30  
G30  
F29  
E29  
T24  
R24  
FPGA #1 Clock and Reset Signals  
CLK_TO_FPGA1_MGT_116_N  
CLK_TO_FPGA1_MGT_116_P  
CLK_TO_FPGA1_MGT_118_N  
CLK_TO_FPGA1_MGT_118_P  
DIRECT_CLK_TO_FPGA1_N  
H3  
H4  
DIRECT_CLK_TO_FPGA1_P  
AG22  
AG13  
AH12  
AH20  
AH14  
EXT_CLK_TO_FPGA1_N  
EXT_CLK_TO_FPGA1_P  
FPGA1_LOW_FREQ_CLK  
FPGA1_RESET_N  
AF3  
AF4  
AH22  
Virtex-5 FPGA ML561 User Guide  
97  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Appendix A: FPGA Pinouts  
Table A-1: FPGA #1 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
FPGA #1 MII Link Interface  
FPGA2_TO_FPGA1_MII_TX_CLK  
FPGA2_TO_FPGA1_MII_TX_DATA0  
FPGA2_TO_FPGA1_MII_TX_DATA1  
FPGA2_TO_FPGA1_MII_TX_DATA2  
FPGA2_TO_FPGA1_MII_TX_DATA3  
FPGA2_TO_FPGA1_MII_TX_EN  
FPGA2_TO_FPGA1_MII_TX_ERR  
FPGA2_TO_FPGA1_MII_TX_SPARE  
J10  
C13  
B13  
K9  
FPGA3_TO_FPGA1_MII_TX_CLK  
FPGA3_TO_FPGA1_MII_TX_DATA0  
FPGA3_TO_FPGA1_MII_TX_DATA1  
FPGA3_TO_FPGA1_MII_TX_DATA2  
FPGA3_TO_FPGA1_MII_TX_DATA3  
FPGA3_TO_FPGA1_MII_TX_EN  
FPGA3_TO_FPGA1_MII_TX_ERR  
FPGA3_TO_FPGA1_MII_TX_SPARE  
D10  
H10  
C12  
D12  
J11  
K8  
L11  
L10  
J9  
A13  
H9  
K11  
FPGA #1 Configuration Signals  
FPGA_INIT  
FPGA_PROGB  
FPGA_TMS  
N14  
M22  
FPGA1_D_IN  
P15  
M15  
FPGA1_DONE  
FPGA1_DOUT_B  
FPGA1_HSWAPEN  
FPGA1_TCK  
AC14  
L23  
AD15  
M23  
FPGA_VBATT  
FPGA1_CCLK  
N15  
AB15  
AC15  
AD14  
FPGA1_CNFG_M0  
FPGA1_CNFG_M1  
FPGA1_CNFG_M2  
AD21  
AC22  
AD22  
FPGA1_TDI_IN  
FPGA1_TDO 15  
FPGA #1 Test and Debug Signals  
FPGA1_DIP0  
AG18  
AG15  
AH15  
AG20  
AF26  
H8  
FPGA1_TEST_HDR_BY0_B6  
E8  
E9  
FPGA1_DIP1  
FPGA1_TEST_HDR_BY0_B7  
FPGA1_TEST_HDR_BY1_B0  
FPGA1_TEST_HDR_BY1_B1  
FPGA1_TEST_HDR_BY1_B2  
FPGA1_TEST_HDR_BY1_B3  
FPGA1_TEST_HDR_BY1_B4  
FPGA1_TEST_HDR_BY1_B5  
FPGA1_TEST_HDR_BY1_B6  
FPGA1_TEST_HDR_BY1_B7  
FPGA1_DIP2  
E12  
L9  
FPGA1_DIP3  
FPGA1_SPYHOLE_BK21  
FPGA1_TEST_HDR_BY0_B0  
FPGA1_TEST_HDR_BY0_B1  
FPGA1_TEST_HDR_BY0_B2  
FPGA1_TEST_HDR_BY0_B3  
FPGA1_TEST_HDR_BY0_B4  
FPGA1_TEST_HDR_BY0_B5  
M10  
E11  
F11  
L8  
G8  
G10  
F10  
M8  
G12  
F8  
F9  
98  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
FPGA #1 Pinout  
Table A-1: FPGA #1 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
FPGA #1 Test Display Signals  
FPGA1_7SEG_0_N  
FPGA1_7SEG_1_N  
FPGA1_7SEG_2_N  
FPGA1_7SEG_3_N  
FPGA1_7SEG_4_N  
FPGA1_7SEG_5_N  
AG17  
AH18  
AE18  
AF18  
AG16  
AH17  
FPGA1_7SEG_6_N  
FPGA1_7SEG_DP_N  
FPGA1_LED0  
AF19  
AG21  
AD19  
AE19  
AE17  
AF16  
FPGA1_LED1  
FPGA1_LED2  
FPGA1_LED3  
FPGA #1 External Interfaces  
FPGA1_LCD_BL_ON  
FPGA1_LCD_CSB  
FPGA1_LCD_DB0  
FPGA1_LCD_DB1  
FPGA1_LCD_DB2  
FPGA1_LCD_DB3  
FPGA1_LCD_DB4  
FPGA1_LCD_DB5  
FPGA1_LCD_DB6  
FPGA1_LCD_DB7  
FPGA1_USB_CTS_N  
FPGA1_USB_DSR_N  
FPGA1_USB_DTR_N  
FPGA1_USB_RST_N  
M6  
FPGA1_LCD_E  
M5  
N8  
L6  
M7  
K6  
K7  
P6  
FPGA1_LCD_R_WB  
FPGA1_LCD_RESET_N  
FPGA1_LCD_RS  
N7  
R11  
G5  
P9  
FPGA1_RS232_CTS  
FPGA1_RS232_RTS  
FPGA1_RS232_RX  
FPGA1_RS232_TX  
FPGA1_TXN0_BK124  
FPGA1_TXP0_BK124  
FPGA1_USB_RTS_N  
FPGA1_USB_RX  
P7  
L5  
L4  
H5  
B9  
P5  
N5  
G6  
E6  
B10  
G7  
T9  
E7  
FPGA1_USB_SUSPEND  
FPGA1_USB_TX  
T11  
U10  
T10  
FPGA #1 Voltage Margining Interface  
VMARGIN_DN_3V3_N  
VMARGIN_DN_HSTL_N  
VMARGIN_DN_SSTL18_N  
VMARGIN_DN_SSTL2_N  
VMARGIN_DN_VCC1V0_N  
VMARGIN_DN_VCC2V5_N  
AE22  
AE13  
AF13  
AF23  
AF20  
AE14  
VMARGIN_UP_3V3_N  
AE23  
AE12  
AG12  
AG23  
AF21  
AF14  
VMARGIN_UP_HSTL_N  
VMARGIN_UP_SSTL18_N  
VMARGIN_UP_SSTL2_N  
VMARGIN_UP_VCC1V0_N  
VMARGIN_UP_VCC2V5_N  
Virtex-5 FPGA ML561 User Guide  
99  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Appendix A: FPGA Pinouts  
FPGA #2 Pinout  
Table A-2 lists the connections for FPGA #2 (U5).  
Table A-2: FPGA #2 Pinout  
Signal Name  
Pin  
Signal Name  
Pin  
DDR2 DIMM Deep Interface  
DDR2_DIMM_A0  
DDR2_DIMM_A1  
AG30  
AH29  
AF31  
AC29  
AD30  
AA30  
AA29  
AC30  
AH30  
AJ30  
AF30  
AF29  
AK31  
AJ31  
AD29  
AE29  
AB30  
AA31  
AB31  
V29  
DDR2_DIMM1_CK0_N  
DDR2_DIMM1_CK0_P  
DDR2_DIMM1_CK1_N  
DDR2_DIMM1_CK1_P  
DDR2_DIMM1_CK2_N  
DDR2_DIMM1_CK2_P  
DDR2_DIMM1_CKE0  
DDR2_DIMM1_CKE1  
DDR2_DIMM1_CS0_N  
DDR2_DIMM1_CS1_N  
DDR2_DIMM1_ODT0  
DDR2_DIMM1_ODT1  
DDR2_DIMM2_CK0_N  
DDR2_DIMM2_CK0_P  
DDR2_DIMM2_CK1_N  
DDR2_DIMM2_CK1_P  
DDR2_DIMM2_CK2_N  
DDR2_DIMM2_CK2_P  
DDR2_DIMM2_CKE0  
DDR2_DIMM2_CKE1  
DDR2_DIMM2_CS0_N  
DDR2_DIMM2_CS1_N  
DDR2_DIMM2_ODT0  
DDR2_DIMM2_ODT1  
DDR2_DIMM3_CK0_N  
DDR2_DIMM3_CK0_P  
DDR2_DIMM3_CK1_N  
DDR2_DIMM3_CK1_P  
DDR2_DIMM3_CK2_N  
M26  
M25  
J25  
DDR2_DIMM_A10  
DDR2_DIMM_A11  
J24  
DDR2_DIMM_A12  
L26  
DDR2_DIMM_A13  
L25  
DDR2_DIMM_A14  
G28  
DDR2_DIMM_A15  
H28  
DDR2_DIMM_A2  
V27  
DDR2_DIMM_A3  
V28  
DDR2_DIMM_A4  
H24  
DDR2_DIMM_A5  
H25  
DDR2_DIMM_A6  
AF26  
AF25  
AG25  
AF24  
AJ26  
AH27  
AE24  
AD24  
W27  
Y27  
DDR2_DIMM_A7  
DDR2_DIMM_A8  
DDR2_DIMM_A9  
DDR2_DIMM_BA0  
DDR2_DIMM_BA1  
DDR2_DIMM_BA2  
DDR2_DIMM_CAS_N  
DDR2_DIMM_LB_BK11_IN  
DDR2_DIMM_LB_BK11_OUT  
DDR2_DIMM_LB_BK13_IN  
DDR2_DIMM_LB_BK13_OUT  
DDR2_DIMM_LB_BK15_IN  
DDR2_DIMM_LB_BK15_OUT  
DDR2_DIMM_RAS_N  
DDR2_DIMM_RESET_N  
DDR2_DIMM_WE_N  
P32  
H33  
AJ32  
AK32  
T28  
AE26  
AE27  
AA24  
Y24  
T29  
Y28  
AC27  
AB27  
AA26  
Y29  
W29  
100  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
FPGA #2 Pinout  
Table A-2: FPGA #2 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
DDR2 DIMM Deep Interface (cont.)  
DDR2_DIMM3_CK2_P  
DDR2_DIMM3_CKE0  
DDR2_DIMM3_CKE1  
DDR2_DIMM3_CS0_N  
DDR2_DIMM3_CS1_N  
DDR2_DIMM3_ODT0  
DDR2_DIMM3_ODT1  
DDR2_DIMM4_CK0_N  
DDR2_DIMM4_CK0_P  
DDR2_DIMM4_CK1_N  
DDR2_DIMM4_CK1_P  
DDR2_DIMM4_CK2_N  
DDR2_DIMM4_CK2_P  
DDR2_DIMM4_CKE0  
DDR2_DIMM4_CKE1  
DDR2_DIMM4_CS0_N  
DDR2_DIMM4_CS1_N  
DDR2_DIMM4_ODT0  
DDR2_DIMM4_ODT1  
DDR2_DIMM_DM_BY0  
DDR2_DIMM_DM_BY1  
DDR2_DIMM_DM_BY2  
DDR2_DIMM_DM_BY3  
DDR2_DIMM_DM_BY4  
DDR2_DIMM_DM_BY5  
DDR2_DIMM_DM_BY6  
DDR2_DIMM_DM_BY7  
DDR2_DIMM_DM_CB0_7  
DDR2_DIMM_DQ_BY0_B0  
DDR2_DIMM_DQ_BY0_B1  
DDR2_DIMM_DQ_BY0_B2  
DDR2_DIMM_DQ_BY0_B3  
AA25  
AE28  
AH28  
W25  
V25  
DDR2_DIMM_DQ_BY0_B4  
R27  
R26  
U28  
U27  
N29  
M30  
L30  
J31  
DDR2_DIMM_DQ_BY0_B5  
DDR2_DIMM_DQ_BY0_B6  
DDR2_DIMM_DQ_BY0_B7  
DDR2_DIMM_DQ_BY1_B0  
DDR2_DIMM_DQ_BY1_B1  
DDR2_DIMM_DQ_BY1_B2  
DDR2_DIMM_DQ_BY1_B3  
DDR2_DIMM_DQ_BY1_B4  
DDR2_DIMM_DQ_BY1_B5  
DDR2_DIMM_DQ_BY1_B6  
DDR2_DIMM_DQ_BY1_B7  
DDR2_DIMM_DQ_BY2_B0  
DDR2_DIMM_DQ_BY2_B1  
DDR2_DIMM_DQ_BY2_B2  
DDR2_DIMM_DQ_BY2_B3  
DDR2_DIMM_DQ_BY2_B4  
DDR2_DIMM_DQ_BY2_B5  
DDR2_DIMM_DQ_BY2_B6  
DDR2_DIMM_DQ_BY2_B7  
DDR2_DIMM_DQ_BY3_B0  
DDR2_DIMM_DQ_BY3_B1  
DDR2_DIMM_DQ_BY3_B2  
DDR2_DIMM_DQ_BY3_B3  
DDR2_DIMM_DQ_BY3_B4  
DDR2_DIMM_DQ_BY3_B5  
DDR2_DIMM_DQ_BY3_B6  
DDR2_DIMM_DQ_BY3_B7  
DDR2_DIMM_DQ_BY4_B0  
DDR2_DIMM_DQ_BY4_B1  
DDR2_DIMM_DQ_BY4_B2  
DDR2_DIMM_DQ_BY4_B3  
AB26  
AB25  
AK9  
AK8  
AJ11  
AK11  
AD11  
AD10  
AG11  
AG10  
W26  
Y26  
J30  
G31  
H30  
L29  
E31  
F31  
J29  
H29  
F30  
G30  
F29  
E29  
J32  
AE11  
AF11  
U30  
R31  
T31  
F34  
G33  
E33  
E32  
E34  
F33  
G32  
Y34  
AA34  
AA33  
Y33  
L33  
AK34  
AG32  
P34  
AK33  
M32  
T25  
U25  
T26  
U26  
Virtex-5 FPGA ML561 User Guide  
101  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Appendix A: FPGA Pinouts  
Table A-2: FPGA #2 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
DDR2 DIMM Deep Interface (cont.)  
DDR2_DIMM_DQ_BY4_B4  
DDR2_DIMM_DQ_BY4_B5  
DDR2_DIMM_DQ_BY4_B6  
DDR2_DIMM_DQ_BY4_B7  
DDR2_DIMM_DQ_BY5_B0  
DDR2_DIMM_DQ_BY5_B1  
DDR2_DIMM_DQ_BY5_B2  
DDR2_DIMM_DQ_BY5_B3  
DDR2_DIMM_DQ_BY5_B4  
DDR2_DIMM_DQ_BY5_B5  
DDR2_DIMM_DQ_BY5_B6  
DDR2_DIMM_DQ_BY5_B7  
DDR2_DIMM_DQ_BY6_B0  
DDR2_DIMM_DQ_BY6_B1  
DDR2_DIMM_DQ_BY6_B2  
DDR2_DIMM_DQ_BY6_B3  
DDR2_DIMM_DQ_BY6_B4  
DDR2_DIMM_DQ_BY6_B5  
DDR2_DIMM_DQ_BY6_B6  
DDR2_DIMM_DQ_BY6_B7  
DDR2_DIMM_DQ_BY7_B0  
DDR2_DIMM_DQ_BY7_B1  
DDR2_DIMM_DQ_BY7_B2  
DDR2_DIMM_DQ_BY7_B3  
DDR2_DIMM_DQ_BY7_B4  
DDR2_DIMM_DQ_BY7_B5  
DDR2_DIMM_DQ_BY7_B6  
V34  
W34  
V33  
DDR2_DIMM_DQ_BY7_B7  
Y32  
D34  
C34  
D32  
C32  
C33  
B33  
DDR2_DIMM_DQ_CB0_7_B0  
DDR2_DIMM_DQ_CB0_7_B1  
DDR2_DIMM_DQ_CB0_7_B2  
DDR2_DIMM_DQ_CB0_7_B3  
DDR2_DIMM_DQ_CB0_7_B4  
DDR2_DIMM_DQ_CB0_7_B5  
DDR2_DIMM_DQ_CB0_7_B6  
DDR2_DIMM_DQ_CB0_7_B7  
DDR2_DIMM_DQS_BY0_L_N  
DDR2_DIMM_DQS_BY0_L_P  
DDR2_DIMM_DQS_BY1_L_N  
DDR2_DIMM_DQS_BY1_L_P  
DDR2_DIMM_DQS_BY2_L_N  
DDR2_DIMM_DQS_BY2_L_P  
DDR2_DIMM_DQS_BY3_L_N  
DDR2_DIMM_DQS_BY3_L_P  
DDR2_DIMM_DQS_BY4_L_N  
DDR2_DIMM_DQS_BY4_L_P  
DDR2_DIMM_DQS_BY5_L_N  
DDR2_DIMM_DQS_BY5_L_P  
DDR2_DIMM_DQS_BY6_L_N  
DDR2_DIMM_DQS_BY6_L_P  
DDR2_DIMM_DQS_BY7_L_N  
DDR2_DIMM_DQS_BY7_L_P  
DDR2_DIMM_DQS_CB0_7_L_N  
DDR2_DIMM_DQS_CB0_7_L_P  
V32  
AP32  
AN32  
AN33  
AN34  
AM32  
AM33  
AL33  
AL34  
U31  
A33  
B32  
N30  
M31  
P30  
P31  
U32  
L31  
T34  
K31  
J34  
U33  
R32  
H34  
AE34  
AF34  
AE32  
AD32  
K32  
K33  
AJ34  
AH34  
K34  
L34  
R33  
R34  
T33  
AF33  
AB33  
AC33  
AB32  
AC32  
AD34  
AC34  
DDR2 DIMM Wide Interface  
DDR2_DIMM5_CK0_N  
DDR2_DIMM5_CK0_P  
DDR2_DIMM5_CK1_N  
DDR2_DIMM5_CK1_P  
AM13  
AN13  
AA10  
AB10  
DDR2_DIMM5_CK2_N  
AP14  
AN14  
AC10  
AM11  
DDR2_DIMM5_CK2_P  
DDR2_DIMM5_CKE0  
DDR2_DIMM5_CKE1  
102  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
FPGA #2 Pinout  
Table A-2: FPGA #2 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
DDR2 DIMM Wide Interface (cont.)  
DDR2_DIMM5_CS0_N  
DDR2_DIMM5_CS1_N  
V24  
W24  
AA9  
AA8  
F5  
DDR2_DIMM_DQ_BY11_B5  
G6  
T11  
T10  
J6  
DDR2_DIMM_DQ_BY11_B6  
DDR2_DIMM_DQ_BY11_B7  
DDR2_DIMM_DQ_BY12_B0  
DDR2_DIMM_DQ_BY12_B1  
DDR2_DIMM_DQ_BY12_B2  
DDR2_DIMM_DQ_BY12_B3  
DDR2_DIMM_DQ_BY12_B4  
DDR2_DIMM_DQ_BY12_B5  
DDR2_DIMM_DQ_BY12_B6  
DDR2_DIMM_DQ_BY12_B7  
DDR2_DIMM_DQ_BY13_B0  
DDR2_DIMM_DQ_BY13_B1  
DDR2_DIMM_DQ_BY13_B2  
DDR2_DIMM_DQ_BY13_B3  
DDR2_DIMM_DQ_BY13_B4  
DDR2_DIMM_DQ_BY13_B5  
DDR2_DIMM_DQ_BY13_B6  
DDR2_DIMM_DQ_BY13_B7  
DDR2_DIMM_DQ_BY14_B0  
DDR2_DIMM_DQ_BY14_B1  
DDR2_DIMM_DQ_BY14_B2  
DDR2_DIMM_DQ_BY14_B3  
DDR2_DIMM_DQ_BY14_B4  
DDR2_DIMM_DQ_BY14_B5  
DDR2_DIMM_DQ_BY14_B6  
DDR2_DIMM_DQ_BY14_B7  
DDR2_DIMM_DQ_BY15_B0  
DDR2_DIMM_DQ_BY15_B1  
DDR2_DIMM_DQ_BY15_B2  
DDR2_DIMM_DQ_BY15_B3  
DDR2_DIMM_DQ_BY15_B4  
DDR2_DIMM5_ODT0  
DDR2_DIMM5_ODT1  
DDR2_DIMM_LB_BK12  
DDR2_DIMM_LB_BK12  
DDR2_DIMM_LB_BK18  
DDR2_DIMM_LB_BK18  
DDR2_DIMM_LB_BK20  
DDR2_DIMM_LB_BK20  
DDR2_DIMM_DM_BY10  
DDR2_DIMM_DM_BY11  
DDR2_DIMM_DM_BY12  
DDR2_DIMM_DM_BY13  
DDR2_DIMM_DM_BY14  
DDR2_DIMM_DM_BY15  
DDR2_DIMM_DM_BY8  
DDR2_DIMM_DM_BY9  
DDR2_DIMM_DM_CB8_15  
DDR2_DIMM_DQ_BY10_B0  
DDR2_DIMM_DQ_BY10_B1  
DDR2_DIMM_DQ_BY10_B2  
DDR2_DIMM_DQ_BY10_B3  
DDR2_DIMM_DQ_BY10_B4  
DDR2_DIMM_DQ_BY10_B5  
DDR2_DIMM_DQ_BY10_B6  
DDR2_DIMM_DQ_BY10_B7  
DDR2_DIMM_DQ_BY11_B0  
DDR2_DIMM_DQ_BY11_B1  
DDR2_DIMM_DQ_BY11_B2  
DDR2_DIMM_DQ_BY11_B3  
DDR2_DIMM_DQ_BY11_B4  
T6  
F6  
R6  
W10  
Y6  
K6  
K7  
E11  
F11  
G11  
R11  
G5  
P6  
P7  
L4  
AD7  
AC7  
AB5  
AA5  
AB7  
AB6  
AC5  
AC4  
V9  
Y11  
AH7  
W11  
M8  
G12  
H5  
H8  
G8  
V10  
AK6  
AK7  
U8  
G10  
F10  
F8  
F9  
V8  
E8  
AJ6  
AJ7  
W6  
AE6  
AD6  
Y7  
E9  
E7  
E6  
U10  
T9  
G7  
AA6  
Virtex-5 FPGA ML561 User Guide  
103  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Appendix A: FPGA Pinouts  
Table A-2: FPGA #2 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
DDR2 DIMM Wide Interface (cont.)  
DDR2_DIMM_DQ_BY15_B5  
DDR2_DIMM_DQ_BY15_B6  
DDR2_DIMM_DQ_BY15_B7  
DDR2_DIMM_DQ_BY8_B0  
DDR2_DIMM_DQ_BY8_B1  
DDR2_DIMM_DQ_BY8_B2  
DDR2_DIMM_DQ_BY8_B3  
DDR2_DIMM_DQ_BY8_B4  
DDR2_DIMM_DQ_BY8_B5  
DDR2_DIMM_DQ_BY8_B6  
DDR2_DIMM_DQ_BY8_B7  
DDR2_DIMM_DQ_BY9_B0  
DDR2_DIMM_DQ_BY9_B1  
DDR2_DIMM_DQ_BY9_B2  
DDR2_DIMM_DQ_BY9_B3  
DDR2_DIMM_DQ_BY9_B4  
DDR2_DIMM_DQ_BY9_B5  
DDR2_DIMM_DQ_BY9_B6  
DDR2_DIMM_DQ_BY9_B7  
DDR2_DIMM_DQ_CB8_15_B0 20  
DDR2_DIMM_DQ_CB8_15_B1  
DDR2_DIMM_DQ_CB8_15_B2  
DDR2_DIMM_DQ_CB8_15_B3  
AD5  
AD4  
Y8  
DDR2_DIMM_DQ_CB8_15_B4  
N7  
N8  
M5  
M6  
J9  
DDR2_DIMM_DQ_CB8_15_B5  
DDR2_DIMM_DQ_CB8_15_B6  
DDR2_DIMM_DQ_CB8_15_B7  
DDR2_DIMM_DQS_BY10_L_N  
DDR2_DIMM_DQS_BY10_L_P  
DDR2_DIMM_DQS_BY11_L_N  
DDR2_DIMM_DQS_BY11_L_P  
DDR2_DIMM_DQS_BY12_L_N  
DDR2_DIMM_DQS_BY12_L_P  
DDR2_DIMM_DQS_BY13_L_N  
DDR2_DIMM_DQS_BY13_L_P  
DDR2_DIMM_DQS_BY14_L_N  
DDR2_DIMM_DQS_BY14_L_P  
DDR2_DIMM_DQS_BY15_L_N  
DDR2_DIMM_DQS_BY15_L_P  
DDR2_DIMM_DQS_BY8_L_N  
DDR2_DIMM_DQS_BY8_L_P  
DDR2_DIMM_DQS_BY9_L_N  
DDR2_DIMM_DQS_BY9_L_P  
DDR2_DIMM_DQS_CB8_15_L_N  
DDR2_DIMM_DQS_CB8_15_L_P  
G13  
F13  
N9  
J10  
J7  
N10  
E13  
E12  
L9  
H7  
U7  
T8  
M10  
A13  
H9  
AF6  
AE7  
V7  
H10  
C12  
D12  
J11  
W7  
AF5  
AG5  
C13  
B13  
K9  
K11  
D11  
P5  
K8  
N5  
R8  
L6  
R7  
M7  
DDR2 DIMM Miscellaneous Signals  
DDR2_DIMM1_CNTL_PAR  
DDR2_DIMM1_CNTL_PAR_ERR  
DDR2_DIMM1_NC_019  
G27  
H27  
DDR2_DIMM3_CNTL_PAR  
AA28  
AG28  
AK29  
AJ29  
AG8  
DDR2_DIMM3_CNTL_PAR_ERR  
DDR2_DIMM3_NC_019  
K24  
DDR2_DIMM1_NC_102  
L24  
DDR2_DIMM3_NC_102  
DDR2_DIMM2_CNTL_PAR  
DDR2_DIMM2_CNTL_PAR_ERR  
DDR2_DIMM2_NC_019  
AD26  
AD25  
AK28  
AK27  
DDR2_DIMM4_CNTL_PAR  
DDR2_DIMM4_CNTL_PAR_ERR  
DDR2_DIMM4_NC_019  
AH8  
AL10  
AE8  
DDR2_DIMM2_NC_102  
DDR2_DIMM4_NC_102  
104  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
FPGA #2 Pinout  
Table A-2: FPGA #2 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
DDR2 DIMM Miscellaneous Signals (cont.)  
DDR2_DIMM5_CNTL_PAR  
DDR2_DIMM5_CNTL_PAR_ERR  
DDR2_DIMM5_NC_019  
DDR2_DIMM5_NC_102  
DDR2_DIMM_SCL  
AB8  
AM12  
AC9  
AL11  
W31  
Y31  
DDR2_DIMM2_SA2  
N24  
P27  
P26  
N28  
K27  
L28  
K28  
E26  
F28  
E28  
DDR2_DIMM3_SA0  
DDR2_DIMM3_SA1  
DDR2_DIMM3_SA2  
DDR2_DIMM4_SA0  
DDR2_DIMM4_SA1  
DDR2_DIMM4_SA2  
DDR2_DIMM5_SA0  
DDR2_DIMM5_SA1  
DDR2_DIMM5_SA2  
DDR2_DIMM_SDA  
DDR2_DIMM1_SA0  
T24  
DDR2_DIMM1_SA1  
R24  
DDR2_DIMM1_SA2  
N25  
P25  
DDR2_DIMM2_SA0  
DDR2_DIMM2_SA1  
P24  
FPGA #2 Clock and Reset Signals  
CLK_TO_FPGA2_MGT_N  
CLK_TO_FPGA2_MGT_P  
DIRECT_CLK_TO_FPGA2_N  
DIRECT_CLK_TO_FPGA2_P  
H3  
H4  
EXT_CLK_TO_FPGA2_N  
AG13  
AH12  
AH20  
AH14  
EXT_CLK_TO_FPGA2_P  
FPGA2_LOW_FREQ_CLK  
FPGA2_RESET_N_IN  
AH22  
AG22  
FPGA #2 MII Link Interface  
FPGA1_TO_FPGA2_MII_TX_CLK  
FPGA1_TO_FPGA2_MII_TX_DATA0  
FPGA1_TO_FPGA2_MII_TX_DATA1  
FPGA1_TO_FPGA2_MII_TX_DATA2  
AE14  
AE16  
AF15  
AF21  
FPGA1_TO_FPGA2_MII_TX_DATA3  
AF20  
AD20  
AE21  
AF14  
FPGA1_TO_FPGA2_MII_TX_EN  
FPGA1_TO_FPGA2_MII_TX_ERR  
FPGA1_TO_FPGA2_MII_TX_SPARE  
FPGA #2 Configuration Signals  
FPGA_INIT  
FPGA_PROGB  
FPGA_TMS  
N14  
M22  
FPGA2_D_IN  
P15  
M15  
FPGA2_DONE  
FPGA2_DOUT_B  
FPGA2_HSWAPEN  
FPGA2_TCK  
AC14  
L23  
AD15  
M23  
FPGA_VBATT  
FPGA2_CCLK  
N15  
AB15  
AC15  
AD14  
FPGA2_CNFG_M0  
FPGA2_CNFG_M1  
FPGA2_CNFG_M2  
AD21  
AC22  
AD22  
FPGA2_TDI_IN  
FPGA2_TDO  
Virtex-5 FPGA ML561 User Guide  
105  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Appendix A: FPGA Pinouts  
Table A-2: FPGA #2 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
FPGA #2 Test and Debug Signals  
FPGA2_DIP0  
AG18  
AG15  
AH15  
AG20  
H20  
H19  
H13  
J14  
FPGA2_SOFTTOUCH_BY1_B7  
H17  
P29  
FPGA2_DIP1  
FPGA2_SPYHOLE_BK15  
FPGA2_SPYHOLE_BK18  
FPGA2_DIP2  
W9  
FPGA2_DIP3  
FPGA2_TEST_HDR_BY0_B0  
FPGA2_TEST_HDR_BY0_B1  
FPGA2_TEST_HDR_BY0_B2  
FPGA2_TEST_HDR_BY0_B3  
FPGA2_TEST_HDR_BY0_B4  
FPGA2_TEST_HDR_BY0_B5  
FPGA2_TEST_HDR_BY0_B6  
FPGA2_TEST_HDR_BY0_B7  
FPGA2_TEST_HDR_BY1_B0  
FPGA2_TEST_HDR_BY1_B1  
FPGA2_TEST_HDR_BY1_B2  
FPGA2_TEST_HDR_BY1_B3  
FPGA2_TEST_HDR_BY1_B4  
FPGA2_TEST_HDR_BY1_B5  
FPGA2_TEST_HDR_BY1_B6  
FPGA2_TEST_HDR_BY1_B7  
AE23  
AE22  
AG12  
AF13  
AG23  
AF23  
AE12  
AE13  
K12  
FPGA2_SOFTTOUCH_BY0_B0  
FPGA2_SOFTTOUCH_BY0_B1  
FPGA2_SOFTTOUCH_BY0_B2  
FPGA2_SOFTTOUCH_BY0_B3  
FPGA2_SOFTTOUCH_BY0_B4  
FPGA2_SOFTTOUCH_BY0_B5  
FPGA2_SOFTTOUCH_BY0_B6  
FPGA2_SOFTTOUCH_BY0_B7  
FPGA2_SOFTTOUCH_BY1_B0  
FPGA2_SOFTTOUCH_BY1_B1  
FPGA2_SOFTTOUCH_BY1_B2  
FPGA2_SOFTTOUCH_BY1_B3  
FPGA2_SOFTTOUCH_BY1_B4  
FPGA2_SOFTTOUCH_BY1_B5  
FPGA2_SOFTTOUCH_BY1_B6  
J21  
J20  
H15  
H14  
J19  
K13  
K18  
G16  
G15  
L18  
H23  
G23  
H12  
J12  
K17  
H18  
K22  
K23  
FPGA #2 Test Display Signals  
FPGA2_7SEG_0_N  
FPGA2_7SEG_1_N  
FPGA2_7SEG_2_N  
FPGA2_7SEG_3_N  
FPGA2_7SEG_4_N  
FPGA2_7SEG_5_N  
AG17  
AH18  
AE18  
AF18  
AG16  
AH17  
FPGA2_7SEG_6_N  
AF19  
AG21  
AD19  
AE19  
AE17  
AF16  
FPGA2_7SEG_DP_N  
FPGA2_LED0  
FPGA2_LED1  
FPGA2_LED2  
FPGA2_LED3  
FPGA #2 External Interfaces  
FPGA2_116_TX0_N  
FPGA2_116_TX0_P  
FPGA2_120_RX0_N  
FPGA2_120_RX0_P  
FPGA2_120_RX1_N  
G2  
F2  
FPGA2_120_RX1_P  
D1  
B10  
B9  
FPGA2_124_TX0_N  
FPGA2_124_TX0_P  
FPGA2_124_TX1_N  
FPGA2_124_TX1_P  
A2  
A3  
C1  
B6  
B5  
106  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
FPGA #2 Pinout  
Table A-2: FPGA #2 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
FPGA #2 External Interfaces (cont.)  
FPGA2_TXN0_BK120  
FPGA2_TXN1_BK120  
FPGA2_TXP0_BK120  
FPGA2_TXP1_BK120  
FPGA2_RS232_CTS  
FPGA2_RS232_RTS  
FPGA2_RS232_RX  
FPGA2_RS232_TX  
B3  
D2  
FPGA2_USB_CTS_N  
L15  
K16  
J15  
FPGA2_USB_DSR_N  
FPGA2_USB_DTR_N  
FPGA2_USB_RST_N  
FPGA2_USB_RTS_N  
FPGA2_USB_RX  
B4  
E2  
L21  
L16  
J22  
K14  
L14  
G22  
H22  
FPGA2_USB_SUSPEND  
FPGA2_USB_TX  
L20  
K21  
Virtex-5 FPGA ML561 User Guide  
107  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Appendix A: FPGA Pinouts  
FPGA #3 Pinout  
Table A-3 lists the connections for FPGA #3 (U34).  
Table A-3: FPGA #3 Pinout  
Signal Name  
Pin  
Signal Name  
Pin  
QDRII Memory Interface  
QDR2_CK_BY0_3_N  
QDR2_CK_BY0_3_P  
QDR2_CK_BY0_3_P  
QDR2_CK_BY4_7_N  
QDR2_CK_BY4_7_P  
QDR2_CK_BY4_7_P  
QDR2_CQ_BY0_3_N  
QDR2_CQ_BY0_3_P  
QDR2_CQ_BY4_7_N  
QDR2_CQ_BY4_7_P  
QDR2_DLL_OFF_N  
QDR2_K_BY0_3_N  
QDR2_K_BY0_3_P  
QDR2_K_BY4_7_N  
QDR2_K_BY4_7_P  
QDR2_LB_BK11  
QDR2_LB_BK11  
QDR2_LB_BK13  
QDR2_LB_BK13  
QDR2_LB_BK17  
QDR2_LB_BK17  
QDR2_LB_BK19  
QDR2_LB_BK19  
QDR2_NC_A3  
K34  
G28  
QDR2_SA11  
QDR2_SA12  
QDR2_SA13  
QDR2_SA14  
QDR2_SA15  
QDR2_SA16  
QDR2_SA17  
QDR2_SA2  
QDR2_SA3  
QDR2_SA4  
QDR2_SA5  
QDR2_SA6  
QDR2_SA7  
QDR2_SA8  
QDR2_SA9  
QDR2_W_N  
AB26  
AB25  
AA24  
Y24  
L34  
AJ34  
AA31  
AH34  
E26  
AC27  
AB27  
AA26  
AJ27  
AK26  
AF28  
AE28  
AH28  
AG28  
AA28  
AB28  
AH27  
M32  
K33  
AA29  
AD32  
AK27  
F28  
E28  
AC30  
AB30  
P32  
P34  
AE34  
AJ32  
AE29  
AF31  
K27  
QDR2_BW_BY0_N  
QDR2_BW_BY1_N  
QDR2_BW_BY2_N  
QDR2_BW_BY3_N  
QDR2_BW_BY4_N  
QDR2_BW_BY5_N  
QDR2_BW_BY6_N  
QDR2_BW_BY7_N  
QDR2_D_BY0_B0  
QDR2_D_BY0_B1  
QDR2_D_BY0_B2  
QDR2_D_BY0_B3  
QDR2_D_BY0_B4  
L33  
L28  
K28  
AK33  
AK34  
AC29  
AD30  
T28  
M28  
AG25  
AF24  
AJ26  
AJ29  
AK29  
AC28  
QDR2_NC_C6  
QDR2_R_N  
U30  
QDR2_SA0  
R31  
QDR2_SA1  
T31  
QDR2_SA10  
N30  
108  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
FPGA #3 Pinout  
Table A-3: FPGA #3 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
QDRII Memory Interface (cont.)  
QDR2_D_BY0_B5  
QDR2_D_BY0_B6  
QDR2_D_BY0_B7  
QDR2_D_BY0_B8  
QDR2_D_BY1_B0  
QDR2_D_BY1_B1  
QDR2_D_BY1_B2  
QDR2_D_BY1_B3  
QDR2_D_BY1_B4  
QDR2_D_BY1_B5  
QDR2_D_BY1_B6  
QDR2_D_BY1_B7  
QDR2_D_BY1_B8  
QDR2_D_BY2_B0  
QDR2_D_BY2_B1  
QDR2_D_BY2_B2  
QDR2_D_BY2_B3  
QDR2_D_BY2_B4  
QDR2_D_BY2_B5  
QDR2_D_BY2_B6  
QDR2_D_BY2_B7  
QDR2_D_BY2_B8  
QDR2_D_BY3_B0  
QDR2_D_BY3_B1  
QDR2_D_BY3_B2  
QDR2_D_BY3_B3  
QDR2_D_BY3_B4  
QDR2_D_BY3_B5  
QDR2_D_BY3_B6  
QDR2_D_BY3_B7  
QDR2_D_BY3_B8  
QDR2_D_BY4_B0  
M31  
P30  
P31  
L31  
J27  
QDR2_D_BY4_B1  
AH29  
AH30  
AJ30  
AF30  
AF29  
AK31  
AJ31  
AD29  
V30  
QDR2_D_BY4_B2  
QDR2_D_BY4_B3  
QDR2_D_BY4_B4  
QDR2_D_BY4_B5  
QDR2_D_BY4_B6  
QDR2_D_BY4_B7  
QDR2_D_BY4_B8  
QDR2_D_BY5_B0  
QDR2_D_BY5_B1  
QDR2_D_BY5_B2  
QDR2_D_BY5_B3  
QDR2_D_BY5_B4  
QDR2_D_BY5_B5  
QDR2_D_BY5_B6  
QDR2_D_BY5_B7  
QDR2_D_BY5_B8  
QDR2_D_BY6_B0  
QDR2_D_BY6_B1  
QDR2_D_BY6_B2  
QDR2_D_BY6_B3  
QDR2_D_BY6_B4  
QDR2_D_BY6_B5  
QDR2_D_BY6_B6  
QDR2_D_BY6_B7  
QDR2_D_BY6_B8  
QDR2_D_BY7_B0  
QDR2_D_BY7_B1  
QDR2_D_BY7_B2  
QDR2_D_BY7_B3  
QDR2_D_BY7_B4  
QDR2_D_BY7_B5  
M26  
M25  
J25  
J24  
L26  
L25  
L24  
K24  
L29  
E31  
F31  
J29  
W27  
Y27  
W25  
V25  
W26  
Y26  
V24  
W24  
U31  
U32  
T34  
H29  
F30  
G30  
F29  
E29  
K31  
P29  
N29  
M30  
L30  
J31  
U33  
R32  
R33  
R34  
T33  
N32  
T25  
U25  
T26  
J30  
G31  
H30  
AG30  
U26  
R27  
R26  
Virtex-5 FPGA ML561 User Guide  
109  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Appendix A: FPGA Pinouts  
Table A-3: FPGA #3 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
QDRII Memory Interface (cont.)  
QDR2_D_BY7_B6  
QDR2_D_BY7_B7  
QDR2_D_BY7_B8  
QDR2_Q_BY0_B0  
QDR2_Q_BY0_B1  
QDR2_Q_BY0_B2  
QDR2_Q_BY0_B3  
QDR2_Q_BY0_B4  
QDR2_Q_BY0_B5  
QDR2_Q_BY0_B6  
QDR2_Q_BY0_B7  
QDR2_Q_BY0_B8  
QDR2_Q_BY1_B0  
QDR2_Q_BY1_B1  
QDR2_Q_BY1_B2  
QDR2_Q_BY1_B3  
QDR2_Q_BY1_B4  
QDR2_Q_BY1_B5  
QDR2_Q_BY1_B6  
QDR2_Q_BY1_B7  
QDR2_Q_BY1_B8  
QDR2_Q_BY2_B0  
QDR2_Q_BY2_B1  
QDR2_Q_BY2_B2  
QDR2_Q_BY2_B3  
QDR2_Q_BY2_B4  
QDR2_Q_BY2_B5  
QDR2_Q_BY2_B6  
QDR2_Q_BY2_B7  
QDR2_Q_BY2_B8  
QDR2_Q_BY3_B0  
QDR2_Q_BY3_B1  
U28  
U27  
T29  
J34  
QDR2_Q_BY3_B2  
G27  
F26  
QDR2_Q_BY3_B3  
QDR2_Q_BY3_B4  
QDR2_Q_BY3_B5  
QDR2_Q_BY3_B6  
QDR2_Q_BY3_B7  
QDR2_Q_BY3_B8  
QDR2_Q_BY4_B0  
QDR2_Q_BY4_B1  
QDR2_Q_BY4_B2  
QDR2_Q_BY4_B3  
QDR2_Q_BY4_B4  
QDR2_Q_BY4_B5  
QDR2_Q_BY4_B6  
QDR2_Q_BY4_B7  
QDR2_Q_BY4_B8  
QDR2_Q_BY5_B0  
QDR2_Q_BY5_B1  
QDR2_Q_BY5_B2  
QDR2_Q_BY5_B3  
QDR2_Q_BY5_B4  
QDR2_Q_BY5_B5  
QDR2_Q_BY5_B6  
QDR2_Q_BY5_B7  
QDR2_Q_BY5_B8  
QDR2_Q_BY6_B0  
QDR2_Q_BY6_B1  
QDR2_Q_BY6_B2  
QDR2_Q_BY6_B3  
QDR2_Q_BY6_B4  
QDR2_Q_BY6_B5  
QDR2_Q_BY6_B6  
F25  
H24  
H34  
H33  
J32  
H25  
G26  
G25  
F34  
G33  
E33  
E32  
E34  
T24  
R24  
N25  
P25  
P24  
N24  
P27  
P26  
N28  
G32  
D34  
C34  
D32  
C32  
C33  
B33  
A33  
B32  
H28  
H27  
AP32  
AN32  
AN33  
AN34  
AM32  
AM33  
AL33  
AL34  
AK32  
AF34  
AE33  
AF33  
AB33  
AC33  
AB32  
AC32  
AD34  
AC34  
Y32  
Y34  
AA34  
AA33  
Y33  
V34  
W34  
110  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
FPGA #3 Pinout  
Table A-3: FPGA #3 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
QDRII Memory Interface (cont.)  
QDR2_Q_BY6_B7  
QDR2_Q_BY6_B8  
QDR2_Q_BY7_B0  
QDR2_Q_BY7_B1  
QDR2_Q_BY7_B2  
QDR2_Q_BY7_B3  
V33  
V32  
AB31  
Y29  
QDR2_Q_BY7_B4  
W29  
Y31  
W31  
V27  
V28  
QDR2_Q_BY7_B5  
QDR2_Q_BY7_B6  
QDR2_Q_BY7_B7  
QDR2_Q_BY7_B8  
Y28  
V29  
RLDRAM II Memory Interface  
RLD2_A0  
RLD2_A1  
AD10  
AD9  
RLD2_CK_BY2_3_N  
AE11  
AF11  
AK9  
AK8  
AH8  
AG8  
AH10  
AH9  
C13  
B13  
K9  
RLD2_CK_BY2_3_P  
RLD2_CS_BY0_1_N  
RLD2_CS_BY2_3_N  
RLD2_DK_BY0_1_N  
RLD2_DK_BY0_1_P  
RLD2_DK_BY2_3_N  
RLD2_DK_BY2_3_P  
RLD2_QK_BY0_N  
RLD2_QK_BY0_P  
RLD2_QK_BY1_N  
RLD2_QK_BY1_P  
RLD2_QK_BY2_N  
RLD2_QK_BY2_P  
RLD2_QK_BY3_N  
RLD2_QK_BY3_P  
RLD2_QVLD_BY0_1  
RLD2_QVLD_BY2_3  
RLD2_REF_N  
RLD2_A10  
RLD2_A11  
RLD2_A12  
RLD2_A13  
RLD2_A14  
RLD2_A15  
RLD2_A16  
RLD2_A17  
RLD2_A18  
RLD2_A19  
RLD2_A2  
AC8  
AP12  
AA9  
AA8  
AM13  
AN13  
AA10  
AB10  
AP14  
AN14  
AE8  
K8  
J7  
RLD2_A3  
AL10  
AL11  
AC9  
H7  
RLD2_A4  
U7  
RLD2_A5  
T8  
RLD2_A6  
AC10  
AM11  
AM12  
AB8  
F11  
RLD2_A7  
U10  
AJ9  
AF9  
D11  
H8  
RLD2_A8  
RLD2_A9  
RLD2_WE_N  
RLD2_BA0  
RLD2_BA1  
RLD2_BA2  
RLD2_CK_BY0_1_N  
RLD2_CK_BY0_1_P  
AJ11  
RLD2_D_BY0_B0  
RLD2_D_BY0_B1  
RLD2_D_BY0_B2  
RLD2_D_BY0_B3  
RLD2_D_BY0_B4  
AK11  
AD11  
AG11  
AG10  
G8  
G10  
F10  
Virtex-5 FPGA ML561 User Guide  
111  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Appendix A: FPGA Pinouts  
Table A-3: FPGA #3 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
RLDRAM II Memory Interface (cont.)  
RLD2_D_BY0_B5  
RLD2_D_BY0_B6  
RLD2_D_BY0_B7  
RLD2_D_BY0_B8  
RLD2_D_BY1_B0  
RLD2_D_BY1_B1  
RLD2_D_BY1_B2  
RLD2_D_BY1_B3  
RLD2_D_BY1_B4  
RLD2_D_BY1_B5  
RLD2_D_BY1_B6  
RLD2_D_BY1_B7  
RLD2_D_BY1_B8  
RLD2_D_BY2_B0  
RLD2_D_BY2_B1  
RLD2_D_BY2_B2  
RLD2_D_BY2_B3  
RLD2_D_BY2_B4  
RLD2_D_BY2_B5  
RLD2_D_BY2_B6  
RLD2_D_BY2_B7  
RLD2_D_BY2_B8  
RLD2_D_BY3_B0  
RLD2_D_BY3_B1  
RLD2_D_BY3_B2  
RLD2_D_BY3_B3  
RLD2_D_BY3_B4  
RLD2_D_BY3_B5  
RLD2_D_BY3_B6  
RLD2_D_BY3_B7  
RLD2_D_BY3_B8  
RLD2_DM_BY0_1_N  
F8  
F9  
RLD2_DM_BY2_3_N  
T9  
G13  
F13  
N9  
N10  
E13  
E12  
L9  
RLD2_DQ_BY0_B0  
RLD2_DQ_BY0_B1  
RLD2_DQ_BY0_B2  
RLD2_DQ_BY0_B3  
RLD2_DQ_BY0_B4  
RLD2_DQ_BY0_B5  
RLD2_DQ_BY0_B6  
RLD2_DQ_BY0_B7  
RLD2_DQ_BY0_B8  
RLD2_DQ_BY1_B0  
RLD2_DQ_BY1_B1  
RLD2_DQ_BY1_B2  
RLD2_DQ_BY1_B3  
RLD2_DQ_BY1_B4  
RLD2_DQ_BY1_B5  
RLD2_DQ_BY1_B6  
RLD2_DQ_BY1_B7  
RLD2_DQ_BY1_B8  
RLD2_DQ_BY2_B0  
RLD2_DQ_BY2_B1  
RLD2_DQ_BY2_B2  
RLD2_DQ_BY2_B3  
RLD2_DQ_BY2_B4  
RLD2_DQ_BY2_B5  
RLD2_DQ_BY2_B6  
RLD2_DQ_BY2_B7  
RLD2_DQ_BY2_B8  
RLD2_DQ_BY3_B0  
RLD2_DQ_BY3_B1  
RLD2_DQ_BY3_B2  
RLD2_DQ_BY3_B3  
E8  
E9  
R11  
R7  
J6  
T6  
R6  
M10  
E11  
J10  
B12  
A13  
H9  
H10  
C12  
D12  
J11  
K6  
K7  
P6  
P7  
V9  
V10  
AK6  
AK7  
U8  
V8  
K11  
E7  
AJ6  
AJ7  
W9  
Y8  
E6  
G7  
G6  
AD7  
AC7  
AB5  
AA5  
AB7  
AB6  
AC5  
AC4  
G12  
F6  
F5  
J5  
G5  
H5  
L4  
P5  
N5  
L6  
112  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
FPGA #3 Pinout  
Table A-3: FPGA #3 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
RLDRAM II Memory Interface (cont.)  
RLD2_DQ_BY3_B4  
RLD2_DQ_BY3_B5  
RLD2_DQ_BY3_B6  
M7  
N7  
N8  
RLD2_DQ_BY3_B7  
RLD2_DQ_BY3_B8  
M5  
M6  
FPGA #3 Clock and Reset Signals  
CLK_TO_FPGA3_MGT_N  
CLK_TO_FPGA3_MGT_P  
DIRECT_CLK_TO_FPGA3_N  
DIRECT_CLK_TO_FPGA3_P  
D4  
E4  
EXT_CLK_TO_FPGA3_N  
AG13  
AH12  
AH20  
AH14  
EXT_CLK_TO_FPGA3_P  
FPGA3_LOW_FREQ_CLK  
FPGA3_RESET_N_IN  
AH22  
AG22  
FPGA #3 MII Link Interface  
FPGA1_TO_FPGA3_MII_TX_CLK  
FPGA1_TO_FPGA3_MII_TX_DATA0  
FPGA1_TO_FPGA3_MII_TX_DATA1  
FPGA1_TO_FPGA3_MII_TX_DATA2  
AE14  
AE16  
AF15  
AF21  
FPGA1_TO_FPGA3_MII_TX_DATA3  
AF20  
AD20  
AE21  
AF14  
FPGA1_TO_FPGA3_MII_TX_EN  
FPGA1_TO_FPGA3_MII_TX_ERR  
FPGA1_TO_FPGA3_MII_TX_SPARE  
FPGA #3 Configuration Signals  
FPGA_INIT  
FPGA_PROGB  
FPGA_TMS  
N14  
M22  
FPGA3_D_IN  
P15  
M15  
FPGA3_DONE  
FPGA3_DOUT_B  
FPGA3_HSWAPEN  
FPGA3_TCK  
AC14  
L23  
AD15  
M23  
FPGA_VBATT  
FPGA3_CCLK  
N15  
AB15  
AC15  
AD14  
FPGA3_CNFG_M0  
FPGA3_CNFG_M1  
FPGA3_CNFG_M2  
AD21  
AC22  
AD22  
FPGA3_TDI_IN  
FPGA3_TDO  
FPGA #3 Test and Debug Signals  
FPGA3_DIP0  
FPGA3_DIP1  
AG18  
AG15  
AH15  
AG20  
R8  
FPGA3_TEST_HDR_BY0_B3  
AF13  
AG23  
AF23  
AE12  
AE13  
AE24  
AD24  
AD25  
AD26  
FPGA3_TEST_HDR_BY0_B4  
FPGA3_TEST_HDR_BY0_B5  
FPGA3_TEST_HDR_BY0_B6  
FPGA3_TEST_HDR_BY0_B7  
FPGA3_TEST_HDR_BY1_B0  
FPGA3_TEST_HDR_BY1_B1  
FPGA3_TEST_HDR_BY1_B2  
FPGA3_TEST_HDR_BY1_B3  
FPGA3_DIP2  
FPGA3_DIP3  
FPGA3_SPYHOLE_BK12  
FPGA3_SPYHOLE_BK13  
FPGA3_TEST_HDR_BY0_B0  
FPGA3_TEST_HDR_BY0_B1  
FPGA3_TEST_HDR_BY0_B2  
AG32  
AE23  
AE22  
AG12  
Virtex-5 FPGA ML561 User Guide  
113  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Appendix A: FPGA Pinouts  
Table A-3: FPGA #3 Pinout (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
FPGA #3 Test and Debug Signals (cont.)  
FPGA3_TEST_HDR_BY1_B4  
FPGA3_TEST_HDR_BY1_B5  
AC24  
AC25  
FPGA3_TEST_HDR_BY1_B6  
FPGA3_TEST_HDR_BY1_B7  
AE26  
AE27  
FPGA #3 Test Display Signals  
FPGA3_7SEG_0_N  
FPGA3_7SEG_1_N  
FPGA3_7SEG_2_N  
FPGA3_7SEG_3_N  
FPGA3_7SEG_4_N  
FPGA3_7SEG_5_N  
AG17  
AH18  
AE18  
AF18  
AG16  
AH17  
FPGA3_7SEG_6_N  
AF19  
AG21  
AD19  
AE19  
AE17  
AF16  
FPGA3_7SEG_DP_N  
FPGA3_LED0  
FPGA3_LED1  
FPGA3_LED2  
FPGA3_LED3  
FPGA #3 External Interfaces  
FPGA3_RS232_CTS  
FPGA3_RS232_RTS  
FPGA3_RS232_RX  
FPGA3_RS232_TX  
FPGA3_USB_CTS_N  
FPGA3_USB_DSR_N  
G15  
L18  
H18  
K17  
H14  
J14  
FPGA3_USB_DTR_N  
H13  
L19  
H15  
J20  
FPGA3_USB_RST_N  
FPGA3_USB_RTS_N  
FPGA3_USB_RX  
FPGA3_USB_SUSPEND  
FPGA3_USB_TX  
K19  
J21  
FPGA #3 System ACE Control Signals  
SYSACE_CTRL0  
SYSACE_CTRL1  
SYSACE_CTRL2  
SYSACE_CTRL3  
SYSACE_CTRL4  
SYSACE_MPA0  
SYSACE_MPA1  
SYSACE_MPA2  
SYSACE_MPA3  
SYSACE_MPA4  
H12  
G23  
H23  
K13  
K12  
G22  
H22  
L14  
K14  
K23  
SYSACE_MPA5  
K22  
J12  
SYSACE_MPA6  
SYSACE_MPD0  
SYSACE_MPD1  
SYSACE_MPD2  
SYSACE_MPD3  
SYSACE_MPD4  
SYSACE_MPD5  
SYSACE_MPD6  
SYSACE_MPD7  
L21  
L20  
L15  
L16  
J22  
K21  
K16  
J15  
114  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Appendix B  
Bill of Materials  
This appendix lists the bill of materials (BOM) for many of the components used for the  
assembly of the Virtex-5 FPGA ML561 Development Board, Revision A. Wherever feasible  
and practical, the associated reference designators are also listed for each part. The  
component part number in the “Mfr. Part Number” column includes a link to the  
corresponding manufacturer or supplier’s web page. Check with the manufacturer for  
current information regarding the location and status of component data sheets.  
Table B-1: Bill of Materials  
Category  
Description  
Manufacturer  
Mfr. Part Number  
Reference Designators  
FPGA  
Virtex-5 FPGA  
Xilinx  
XC5VLX50T-FFG1136 -2 speed grade  
U5, U7, U34  
XP1, XP2, XP3, XP4, XP5  
(DIMM)  
DDR2 Registered DIMM  
DDR2 Unbuffered DIMM  
Micron  
Micron  
XP1, XP2, XP3, XP4, XP5  
(DIMM)  
DDR400 SDRAM  
DDR2 SDRAM  
QDRII  
Micron  
Micron  
U6, U9  
Memory  
U11, U12  
U35, U41  
U25, U33  
Samsung  
Micron  
RLDRAM II  
XP1, XP2, XP3, XP4, XP5  
(Socket)  
DIMM Socket  
SMP Technology  
33 MHz Oscillator  
200 MHz Oscillator  
System ACE Controller  
JTAG Port  
Epson  
Epson  
Xilinx  
Molex  
Y2, Y3  
Y1  
Clock  
U45  
Configuration  
P114  
Virtex-5 FPGA ML561 User Guide  
115  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Appendix B: Bill of Materials  
Table B-1: Bill of Materials (Continued)  
Category  
Description  
Manufacturer  
Mfr. Part Number  
Reference Designators  
VR1, VR6, VR9, VR10,  
VR12, VR13  
15A Power Module  
Texas Instruments  
6A Power Module  
4A LDO  
Texas Instruments  
Maxim  
VR2, VR4, VR14  
VR3, VR5, VR7, VR8  
U15  
1.5A VLDO Regulator  
Linear Technology  
DDR Bus Termination  
Regulator  
Fairchild  
Semiconductor  
Power  
U1, U2, U14, U42  
Power Measurement Header  
500 mA VLDO Regulator  
5A LDO  
3M  
P102  
U16, U22  
U23  
Linear Technology  
Texas Instruments  
R63, R724, R764, R777,  
R874, R885, R954  
Power Sensing Resistor  
Isotek Corp.  
USB to RS-232 Bridge  
Schmitt Inverter  
Silicon Labs  
Toshiba  
U43  
U32  
Glue Logic  
Level Translator  
Maxim  
U10  
RS-232 Compatible Transceiver  
CMOS Octal Buffer  
Maxim  
U31  
ON Semiconductor  
U37, U38  
Integrated Device  
Technology  
LVCMOS, 1-to-4  
U19  
U30, U44  
U17, U18  
U20  
Integrated Device  
Technology  
LVCMOS, 1-to-4, 5V Tolerant  
Differential LVPECL, 1-to-6  
Diff. LVPECL-to-LVDS, 1-to-4  
Diff. HCSL, 1-to-4  
Integrated Device  
Technology  
Clock Buffer  
Integrated Device  
Technology  
Integrated Device  
Technology  
U24  
Display  
7-Segment LED  
Banana Jack (Red)  
Banana Jack (Black)  
RS232 DB-9 Port  
Stanley Electric  
Hirschmann  
Hirschmann  
Tyco Electronics  
KYCON  
D17, D23, D35  
J18, J25  
J17, J24  
P73  
USB Port  
J29  
Test Headers (2x8)  
CompactFlash Holder  
CompactFlash Ejector  
5V Power Input Jack  
Power Fuse  
Tyco Electronics  
Molex  
P20, P21, P93  
J27  
Socket/  
Connector  
Molex  
CUI Inc.  
J28  
Digikey  
F1, F2  
SMA for Ext Clock Inputs  
AMPHENOL-RF  
J16, J19, J20, J21  
116  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Table B-1: Bill of Materials (Continued)  
Category  
Description  
DIP (Test Inputs)  
System Reset (Black)  
Configuration Reset (Red)  
Power Input (12V and 5V)  
Rotary 8-position  
0402 (Assorted Values)  
0603 (Assorted Values)  
0805 (Assorted Values)  
Tantalum C  
Manufacturer  
ITT_INDUSTRIES  
Panasonic  
Panasonic  
APEM  
Mfr. Part Number  
Reference Designators  
SW1, SW2, SW6  
SW4  
Switch  
SW7  
SW3, SW5  
SW8  
Digikey  
Panasonic  
Panasonic  
Panasonic  
Kemet  
MLC_CAP_0402  
MLC_CAP_0603  
MLC_CAP_0805  
TANT_CAP_C  
TANT_CAP_D  
TANT_CAP_E  
Lxx  
Capacitor  
Inductor  
Tantalum D  
Kemet  
Tantalum E  
Kemet  
DO3316  
Coilcraft  
TDK  
Ferrite Bead  
FBxx  
0805 (assorted values)  
0402 (assorted values)  
0603 (assorted values)  
0805 (assorted values)  
MOSFET  
Digikey  
Lxx  
Panasonic  
Panasonic  
Panasonic  
Diodes  
Rxxx  
Resistor  
Rxxx  
Rxxx  
Transistor  
Qxx  
Virtex-5 FPGA ML561 User Guide  
117  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Appendix B: Bill of Materials  
118  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Appendix C  
LCD Interface  
This appendix describes the LCD interface for the Virtex-5 FPGA ML561 Development  
Board.  
General  
The Virtex-5 FPGA ML561 Development Board has a full graphical LCD panel. This  
display was chosen because of its possible use in embedded systems. A character-type  
display also can be connected because the graphical LCD has the same interface as the  
character-type LCD panels.  
A hardware character generator must be designed to display characters on the screen.  
Display Hardware Design  
The FPGA (I/O functioning at 2.5V) is connected to the graphic LCD panel through a set of  
voltage-level converting devices. These switches translate the 2.5 I/O voltage to a 3.3V  
voltage for the LCD panel.  
A graphics-based LCD panel from DisplayTech (64128EFCBC-XLP) is used on the Virtex-5  
FPGA ML561 Development Board. The control for this LCD panel is based on the KS0713  
controller from Samsung. The KS0713 is a 65-column, 132-segment driver-controller device  
for graphic dot matrix LCD systems. The chip accepts serial or parallel display data. The  
8-bit parallel interface is compatible with most LCD panel manufacturers. The serial  
connection mode is write only.  
Extra features added to the interface in addition to the normal parallel signals are:  
Intel or Motorola compatible interface  
External reset of the chip  
External chip select  
The interface also contains the following built-in options for the display and controller:  
On-chip oscillator circuitry  
On-chip voltage converter (x2, x3, x4, and x5)  
A 64-step electronic contrast control function  
Virtex-5 FPGA ML561 User Guide  
119  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
R
Appendix C: LCD Interface  
Table C-1 summarizes the controller specifications.  
Table C-1: Display Controller Specifications  
Parameter  
Specification  
Supply Voltage  
2.4V to 3.6V (VDD  
)
LCD Driving Voltage  
Power Consumption  
4V to 15V (VLCD = V0 - VDD)  
70 μA typical (VDD = 3V, x4 boost, V0 = 11V,  
internal supply = ON)  
Sleep Mode  
2 μA  
Standby Mode  
10 μA  
The on-chip RAM size is 65 x 132 = 8580 bits.  
Hardware Schematic Diagram  
Figure C-1 illustrates the schematic for the display.  
LCD-BUS  
LED  
Rst  
MI  
-
+
Vcc Gnd  
LCD_D[7:0]  
IC19  
3.3V  
ENA, R/W, RSEL, CS1B  
3.3V  
3.3V  
IC22  
IC23  
68xx  
3.3V  
DIP1_4  
68xx  
Default = 68xx  
Default =  
Resistor to Gnd  
Backlight ON/OFF  
UG199_C_01_050106  
Figure C-1: Display Schematic Diagram  
120  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
R
Hardware Schematic Diagram  
Peripheral Device KS0713  
Figure C-2 is a block diagram of the Samsung KS0713.  
VDD  
33 Common  
Driver  
132 Segment  
Driver  
33 Common  
Driver  
Circuits  
Circuits  
Circuits  
VSS  
Segment Controller  
Common Controller  
V/F  
Circuit  
Page  
Address  
Circuit  
I/O  
Buffer  
Display Data RAM  
65 x132 =  
Line  
Address  
Circuit  
Display  
Timing  
Generator  
Circuit  
8580 Bits  
V/R  
Circuit  
Column Address  
Circuit  
Oscillator  
V/C  
Circuit  
Instruction Register  
Instruction Decoder  
Status Register  
Bus Holder  
MPU Interface (Parallel & Serial)  
KS0713 Samsung  
UG199_C_02_050106  
Figure C-2: KS0713 Block Diagram  
Virtex-5 FPGA ML561 User Guide  
121  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Appendix C: LCD Interface  
Figure C-3 shows only the signals of interest for the LCD controller. The data sheet from  
the Samsung web pages provides a complete signal listing.  
1
2
3
4
5
6
7
8
9
VSS  
VDD  
MI  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
Jumper J3  
Parallel or Serial Selection.  
Default is Parallel.  
S128  
10 DB1  
11 DB0  
12 E  
13 R/W  
14 RS  
C64  
LCD Panel  
15 RST  
16 CS1B  
17 LED+  
18 LED-  
LED Backlight  
UG199_C_03_050106  
Figure C-3: 64128EFCBC-XLP Block Diagram  
Figure C-4 shows the dimensions for the 64128EFCBC-XLP LCD panel.  
74.00  
69.00  
56.00  
J2  
J1  
17 18  
LED  
128 x 64 DOTS  
1
2
30  
1
2.50  
2.54  
Dimensions in mm  
8.00 Max  
UG199_C_04_050106  
Figure C-4: 64128EFCBC-XLP Dimensions  
122  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Hardware Schematic Diagram  
Controller – Operation  
The pixels for the LCD panel are stored in the controller data RAM. This RAM is a 65-row  
by 132-column array. Each display pixel is represented by a single bit in the RAM array.  
The interface to the RAM array goes through the 8-bit (DB0 – DB7) LCD interface.  
Therefore, the 65-bit rows are split into eight pages of eight lines. The ninth page is a single  
line page (DB0 only).  
Interface designs can read from or write to the RAM array.  
The display page is changed through the 4-bit page address register.  
The column address (line address) is set with a two-byte register access. The line address  
corresponds to the first line that is going to be displayed on the LCD panel. This address is  
located in a 6-bit address register.  
The RAM array is configured such that there are two characters per row (page), where each  
character pair uses eight rows of the display panel. Table C-2 shows the input data bytes,  
address lines, ADC control, and LCD outputs (segments).  
Table C-2: LCD Panel  
Line  
Address  
DB3 DB2 DB1 DB0 Data  
DB0  
DB1  
DB2  
DB3  
00H  
01H  
02H  
03H  
0
0
0
0
Page 0  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0
0
0
1
Page 1  
0CH  
0DH  
0EH  
0FH  
Virtex-5 FPGA ML561 User Guide  
123  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Appendix C: LCD Interface  
Table C-2: LCD Panel (Continued)  
Line  
DB3 DB2 DB1 DB0 Data  
Address  
10H  
11H  
DB0  
DB1  
DB2  
DB3  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
0
0
0
0
0
1
1
1
1
0
0
0
1
0
1
Page 2  
Page 3  
Page 4  
Page 5  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
0
124  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Hardware Schematic Diagram  
Table C-2: LCD Panel (Continued)  
Line  
Address  
DB3 DB2 DB1 DB0 Data  
DB0  
DB1  
DB2  
DB3  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
0
1
1
0
Page 6  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
0
1
1
0
1
0
1
0
Page 7  
Page 8  
ADC = 0  
ADC = 1  
0
1
2
3
4
5
6
7
8
9
A
B
7E 7F 80 81 82 83  
Column  
Address  
83 82 81 80 7F  
7
E
7
D
7
C
7
B
7
A
79 78  
5
4
3
2
1
0
LCD Output  
When a page is addressed, all the bits representing dots on the LCD panel can be accessed  
in that page. An array of 8x132 bits is available. The line address dictates what line of the  
RAM is going to be displayed on the first line of the glass panel.  
Controller – LCD Panel Connections  
The controller die, KS0713, connects to the LCD glass panel and user connection pins via a  
small PCB. Other necessary pins have default connections on the PCB.  
Virtex-5 FPGA ML561 User Guide  
125  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Appendix C: LCD Interface  
Controller – Power Supply Circuits  
Figure C-5 shows the power supply circuits. The power supply is used in the five times  
boost mode, where VDD is 3.3V and VOUT is 16.5V. VOUT is the operating voltage of the  
operational amplifier delivering the operating voltage, V0, for the LCD panel.  
DUTY1  
DUTY2  
BSTS  
VOUT  
VR  
5 x VDD  
MS  
INTRS  
2
VDD  
17 VDD  
18 VOUT  
25  
26  
27  
VDD  
28  
29  
1
VSS  
30 VSS1  
16 VSS  
DCDC5B  
VSS  
UG199_C_05_050106  
Figure C-5: Power Supply Circuits  
The LCD operating voltage, V0, is set with two resistors R and R . INTRS is driven Low  
A
B
when the resistors are external. INTRS is driven High when the resistors are internal. For  
the Virtex-5 FPGA ML561 Development Board, internal resistors are selected.  
The LCD operating voltage (V0) and the Electronic Volume Voltage (V ) can be calculated  
EV  
in units of V using Equation C-1 and Equation C-2:  
RB  
V0 = 1 + ------ × VEV  
Equation C-1  
Equation C-2  
RA  
63 α  
VEV = 1 -------------- × VREF  
300  
In Equation C-2, V  
is equal to 2.0V at 25 °C.  
REF  
The values of the reference voltage parameter, α, and the ratio R /R are determined with  
A
B
bit settings in the LCD controller’s instruction registers. Thus, it is possible to change  
physical operating parameters of the LCD through register bit settings, controlling the  
operating voltage, and the electronic volume level.  
126  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
R
Hardware Schematic Diagram  
The voltage and contrast settings must be configured before the LCD panel is ready for  
operation. Figure C-6 shows the initialization procedure required to set up the LCD  
controller.  
Setup Instruction Flow  
Power ON  
Board Power Supply Start  
RESETB Pin is Kept LOW  
Start FPGA Configuration  
RESETB Pin is Kept LOW  
FPGA Configured and Application Running  
RESETB Pin is Taken HIGH  
ADC Select  
- ADC = 0 SEG1 --> SEG132  
- ADC = 1 SEG132 --> SEG1  
LCD Bias  
ADC Select  
SHL Select  
LCD Bias Select  
DUTY0, 1 is "11".  
LCD Bias 0 = 1/7  
LCD Bias 1 = 1/9  
SHL Select  
- SHL = 0 COM1 --> COM64  
- SHL = 1 COM64 --> COM1  
Voltage Converter ON  
Voltage Regulator ON  
Voltage Follower ON  
Wait longer than 1 ms between  
each instruction to let the voltages stabilize.  
The on-chip resistors are used.  
Therefore, the selection MUST be  
set to 101.  
Regulator Resistor Select  
Set Reference Voltage  
Setting Reference Voltage  
is a two-pass instruction:  
End Initialization  
- Set Reference Voltage Mode  
- Set Reference Voltage Register  
UG199_C_06_050106  
Figure C-6: LCD Controller Initialization Flow  
Operation Example of the 64128EFCBC-3LP  
The KS0713 LCD controller has several default settings of operation on the LCD panel  
PCB. Some settings are forced through direct bonding on the chip. The default settings are:  
Master mode  
Parallel mode  
Internal oscillator  
Duty cycle ratio is set to 1/65  
Voltage converter input is between 2.4V VDD 3.6V, where VDD connects to 3.3V  
Internal voltage divider resistors  
Temperature coefficient is set to -0.05%/°C  
Normal power mode is set  
Virtex-5 FPGA ML561 User Guide  
127  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Appendix C: LCD Interface  
The voltage follower and voltage regulator are set to:  
Five times boost mode  
The V4, V3, V2, V1, and V0 outputs depend on the bias settings of 1/9 or 1/7.  
Because of these default settings, the following display controller connections are not used:  
DISP: Turns into an output when Master mode is selected  
FRS: Static driver segment output  
M: Used in Master/Slave display configurations  
CL: Clock pin used in Master/Slave display configurations  
When RESETB is Low, the display controller is initialized as indicated in Table C-3.  
Table C-3: Display Controller Initialization (RESETB is Low)  
Parameter  
Initial Value  
Display  
OFF  
OFF  
OFF  
OFF  
Entire Display  
ADC Select  
Reverse Display  
Power Control  
0,0,0 (VC, VR, VF)  
LCD Bias  
1/7  
Read-Modify-Write  
SHL Select  
OFF  
OFF  
Static Indicator Mode  
Static Indicator Register  
Display Start  
OFF  
0,0 (S1, S0)  
0 (First line)  
Column Address  
Page Address  
0
0
Regulator Select  
Reference Voltage  
Reference Voltage Register  
0,0,0 (R2, R1, R0)  
OFF  
1,0,0,0,0,0 (SV5, SV4, SV3, SV2, SV1, SV0)  
When RESETB is High, the display must be initialized. The first steps to be taken to  
guarantee correct operation of the display and the controller are:  
Configure the ADC bit. This bit determines the scanning direction of the segments.  
When the RESETB signal is active, ADC is reset to 0, meaning that the segments  
are scanned from SEG1 up to SEG132.  
When ADC is set to 1, the segments are scanned in opposite direction.  
Configure the SHL bit. This bit sets the scanning direction of the COM lines.  
When the RESETB signal is active, SHL is reset to 0, meaning that the segments  
are scanned from COM1 up to COM64.  
When SHL is set to 1, the common lines are scanned in opposite direction.  
128  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Hardware Schematic Diagram  
After the SHL bit is configured, these settings normally are not changed.  
Select the LCD bias settings.  
The duty cycle is selected as 1/65 by hardwiring the controller IC pads on the  
display PCB.  
The LCD bias is set to:  
-
-
1/7: when the BIAS bit is 0  
1/9: when the BIAS bit is 1  
The following steps are performed next:  
Start the onboard converter, regulator, and follower  
Set the regulator resistor values (see Table C-4)  
Configure the reference voltage register parameters (see Table C-5)  
Table C-4: Resistor Value Settings  
3-Bit Data Settings (R2 R1 R0)  
000  
001  
010  
011  
100  
101  
110  
111  
1+(Rb/Ra)  
1.90  
2.19  
2.55  
3.02  
3.61  
4.35  
5.29  
6.48  
Table C-5: Reference Voltage Parameters  
SV5  
SV4  
SV3  
SV2  
SV1  
SV0  
Reference Voltage Parameter (α)  
0
0
0
0
0
0
0
0
0
0
0
1
0
1
..  
..  
..  
..  
..  
..  
..  
..  
..  
..  
..  
..  
..  
1
1
1
1
1
1
1
1
1
1
0
1
62  
63  
At startup of the LCD controller (after RESETB operation), the resistor and reference  
voltage values are:  
Resistor selection is: 0,0,0  
Reference voltage is: 1,0,0,0,0,0  
The resistor selection value MUST be set to 101b when using this LCD panel.  
After the display is brought to operational mode, it is best to wait at least 1 ms to ensure the  
stabilization of power supply levels. After this time, all other necessary display  
initializations can be performed.  
Virtex-5 FPGA ML561 User Guide  
129  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Appendix C: LCD Interface  
Instruction Set  
Table C-6 shows the instruction set for the LCD panel.  
Table C-6: Display Instructions  
Instruction  
RS  
RW  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
Read display data  
1
1
Read Data  
8-bit data specified by the column and page address can be read from the Display Data RAM. The column address is increased automatically,  
thus data can be read continuously from the addressed page.  
Write display data  
1
0
Write Data  
8-bit data can be written into a RAM location specified by the column and page address. The column address is increased automatically, thus  
data can be written continuously to the addressed page.  
Read status  
0
1
BUSY  
ADC  
ONOFF  
RESETB  
0
0
0
0
BUSY: Device is BUSY when internal operation or reset. (0=active, 1 =busy).  
ADC: Indicates the relationship between RAM column address and segment driver.  
ONOFF: Indicates display ON or OFF status.  
RESETB: Indicates if initialization is in progress.  
Display ON/OFF  
Turn display ON or OFF. (1=ON, 0 = OFF)  
Initial display line  
0
0
0
1
0
0
1
1
0
1
1
1
DON  
ST0  
0
ST5  
ST4  
ST3  
ST2  
ST1  
Sets the line address of the display RAM to determine the initial line of the LCD panel.  
ST5  
0
ST4  
0
ST3  
0
ST2  
0
ST1  
0
ST0  
0
Line address 0  
Line address 1  
..  
0
0
0
0
0
1
..  
..  
..  
..  
..  
..  
1
1
1
1
1
0
Line address 62  
Line address 63  
1
1
1
1
1
1
Set reference voltage mode  
Set reference voltage register  
0
0
0
0
1
x
0
x
0
0
0
0
0
1
SV5  
SV4  
SV3  
SV2  
SV1  
SV0  
This is a two-byte instruction. The first instruction sets the reference voltage mode. The second instruction sets the reference voltage parameter.  
SV5  
SV4  
SV3  
SV2  
SV1  
SV0  
0
0
..  
1
1
0
0
..  
1
1
0
0
..  
1
1
0
0
..  
1
1
0
0
..  
1
1
0
1
..  
0
1
0
1
..  
62  
63  
130  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Hardware Schematic Diagram  
Table C-6: Display Instructions (Continued)  
Instruction  
RS  
RW  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
Set page address  
0
0
1
0
1
1
P3  
P2  
P1  
P0  
This instruction sets the address of the display data page. Any RAM data bit can be accessed when its page address and column address are  
specified. Changing the Page Address does not affect the display status.  
P3  
0
P2  
0
P1  
0
P0  
0
page 0  
page 1  
...  
0
0
0
1
..  
..  
..  
..  
0
1
1
1
page 7  
page 8  
1
0
0
0
Set column address MSB  
Set column address LSB  
0
0
0
0
0
0
0
0
0
0
1
0
Y7  
Y3  
Y6  
Y2  
Y5  
Y1  
Y4  
Y0  
This instruction sets the address of the display data RAM. When a read or write to or from the display data RAM occurs, the addresses are  
automatically increased.  
Y7  
0
Y6  
0
Y5  
0
Y4  
0
Y3  
0
Y2  
0
Y1  
0
Y0  
0
Col  
Addr 0  
Col  
Addr 1  
0
..  
0
..  
0
..  
0
..  
0
..  
0
..  
0
..  
1
..  
...  
Col  
Addr  
130  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
Col  
Addr  
131  
ADC select  
0
0
1
0
1
0
0
0
0
ADC  
This instruction changes the relationship between RAM column address and segment driver.  
ADC = 0, SEG1 --> SEG132 default mode  
ADC = 1, SEG132 --> SEG1  
Virtex-5 FPGA ML561 User Guide  
131  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Appendix C: LCD Interface  
Table C-6: Display Instructions (Continued)  
Instruction  
RS  
RW  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
Reverse display ON/OFF  
0
0
1
0
1
0
0
1
1
REV  
REV  
RAM bit data = '1'  
Pixel ON  
RAM bit data = '0'  
Pixel OFF  
0
1
Pixel OFF  
Pixel ON  
Entire display ON/OFF  
0
0
1
0
1
0
0
1
0
EON  
This instruction forces the display to be turned on regardless the contents of the display data RAM. The contents of the display data RAM are  
saved. This instruction has priority over reverse display.  
LCD bias select  
0
0
1
0
1
0
0
0
1
BIAS  
This instruction selects the LCD bias.  
Duty  
ratio  
Bias = 0  
1/7  
Bias = 1  
1/9  
1/65  
Set modify-read  
0
0
1
1
1
0
0
0
0
0
This instruction stops the automatic incrementing of the column address by a read operation. The automatic increment is still done with a  
write operation.  
Reset modify-read  
This instruction resets the changed modify-read to the normal.  
Reset  
0
0
1
1
1
0
1
1
1
0
0
0
1
1
1
0
0
0
1
0
This instruction resets the LCD controller registers to the default values. The instruction CANNOT initialize the LCD power supply initialized  
with RESETB.  
SHL select  
0
0
1
1
0
0
SHL  
x
x
x
This instruction sets the COM output scanning direction.  
SHL = 0, COM1 ----> COM64 (default)  
SHL = 1, COM64 ----> COM1  
Power Control  
0
0
0
0
1
0
1
VC  
VR  
VF  
This instruction selects one of the eight power circuit functions. In the case of the DisplayTech 64128EFCBC display, these must be kept at "000"  
Regulator resistor select  
0
0
0
0
1
0
0
R2  
R1  
R0  
This instruction selects the resistor ratio Rb/Ra.  
Set static indicator mode  
Set static indicator register  
0
0
0
0
1
x
0
x
1
x
0
x
1
x
1
x
0
SM  
S0  
S1  
This is a two-byte instruction. The first instruction enables the second instruction. The second instruction update the contents of the static  
indicator register.  
132  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R
Hardware Schematic Diagram  
Read/Write Characteristics (6800 Mode)  
Table C-7 list the read and write timing parameters in 6800 mode. The associated  
waveforms for these parameters are illustrated in Figure C-7.  
Table C-7: Read/Write Characteristics in 6800 Mode  
Parameter  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
Signal  
Symbol  
TAS  
Min  
13  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
RS  
TAH  
17  
-
-
TDS  
35  
-
-
-
-
DB7 to DB0  
TDH  
13  
Access Time  
TACC  
TOD  
-
-
125  
90  
-
Output Disable Time  
System Cycle Time  
10  
-
RS  
TCYC  
400  
TPWR  
TPWW  
-
125  
55  
-
Enable Pulse Width  
Read/Write  
E_RD  
-
RS  
RW  
T
AS  
T
AH  
CS1B  
T
CYC  
T
PWR  
T
PWW  
E
T
DS  
T
DH  
WRITE  
DB0-DB7  
T
ACC  
T
OD  
READ  
UG199_C_07_050106  
Figure C-7: Read/Write Timing Waveforms (6800 Mode)  
Virtex-5 FPGA ML561 User Guide  
133  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
R
Appendix C: LCD Interface  
Design Examples  
LCD Panel Used in Full Graphics Mode  
The LCD controller RAM has eight 132-byte pages (in fact, there are nine pages; page 9 is  
special). Each page is one byte wide. If all the pages are put in one memory block, the  
needed space is 8 pages x 8 bits x 132 pixels or 8448 bits (1056 bytes).  
One Virtex-5 FPGA block RAM can be configured as 8+1 by 2048.  
One block RAM can be used to store one complete pixel view of the LCD panel. There is  
enough space left for commands.  
The ninth bit in the block RAM indicates whether the data in the block RAM is real data to  
be displayed or is a command for the controller.  
The interface to the LCD panel is slow. The E signal can be used as the controller clock  
signal. This signal has a minimum cycle time of 400 ns for displaying 8 bits (equal to 8 dots)  
on the LCD. One full page of the display takes up to 132 x 400 ns = 52.8 μs. Updating the  
full display takes 52.8μs x 8 = 423μs.  
If using the dual port and data width capabilities of the block RAM, then writes to the  
block RAM can be 32 bits (+4 control bits), and reads from the block RAM on the LCD side  
can be 8 bits (1 control bit). An entire LCD page is updated in 33 write operations.  
The interface on the LCD panel side sequentially reads the block RAM, and thus, updates  
the screen contiguously (like a television screen). The controller (microcontroller or other)  
side of the block RAM can be written at any time.  
The write operation happens on the rising edge of the clock and the read (LCD update)  
happens on the falling edge of the clock. Normally write and read operations at the same  
address give corrupt read data when the read and write clock edges do not respect the  
clock-to-clock setup timing. This problem is solved by using both edges of the clock.  
A state machine provides correct timing of the signals on the LCD panel side. The panel  
can be used in write-only mode or in read/write mode. Most of the time, LCD panels  
operate in write-only mode.  
At first, the block RAM must be initialized with some data (instructions to the LCD) to  
make the LCD operate correctly. Figure C-8 illustrates a general block diagram of the LCD  
panel in full graphics mode.  
134  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Hardware Schematic Diagram  
RData (8+gnd)  
DataIn (8)  
DB (8)  
DataOut (8)  
IorD = '1' Instruction  
'0' Data  
WData (32+4)  
Address  
Write  
IorD (bit 9)  
Addr  
CS1B  
read  
RS  
Enable  
ena  
RW  
Clock  
Clock  
E
Clock  
Block RAM  
Reset  
E
Clock  
TC  
State  
Machine  
Clock  
Reset  
Design for Full Graphics Interface, Attached to CoreConnect Bus  
UG199_C_08_050106  
Figure C-8: General Block Diagram of LCD Panel in Full Graphics Mode  
LCD Panel Used in Character Mode  
This design example requires a byte representing a command or data to be displayed as  
input.  
When the Enable signal is Low, nothing happens. The display interface design is  
locked.  
When the Enable signal is High and the data_or_command control signal is Low, the  
byte written is a display command.  
When the Enable signal and the data_or_command control signal are High, the byte  
written is the ASCII character code of the character to be put on the display.  
Display Command Byte  
The command set of the display can be found in Table C-6, page 130.  
When the LCD interface is enabled for the first time, a set of command bytes is sent to the  
LCD. This command set provides the basic initialization of the LCD controller. When this  
initialization is done, the normal LCD interface is freed for normal use. Command bytes  
from the valid command set can be sent to the display (controller).  
The Toplevel.vhd.txtfile provides a detailed description of the LCD controller  
interface.  
Virtex-5 FPGA ML561 User Guide  
135  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Appendix C: LCD Interface  
Display Data Byte  
The supplied byte must be a valid ASCII representation of a character as shown in  
UG199_C_09_050106  
Figure C-9: ASCII Character Representations  
The character set is stored in block RAM (used as ROM). The CharacterSet.xlsfile  
contains the layout of the block RAM character set. The block RAM (see Figure C-10) is  
organized as small arrays of eight bytes, which is easy for address calculation.  
136  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Hardware Schematic Diagram  
Data[7:0]  
2047  
F0 - FF  
E0 - EF  
D0 - DF  
C0 - CF  
B0 - BF  
A0 - AF  
Not Used  
Not Used  
70 - 7F  
60 - 6F  
50 - 5F  
40 - 4F  
30 - 3F  
20 - 2F  
10 - 1F  
Not Used  
The RAM array is divided in  
pages of eight bytes by 16,  
forming an array of 128 bytes.  
This array represents one  
column of standard ASCII table.  
A character is stored as:  
1280  
1279  
Addr[10:0]  
N-x  
1024  
1023  
N
N-1  
Shift  
Direction  
Addr  
256  
255  
0
RAMB16_S9  
0
0 1 2 3 4 5 6 7 Data  
UG199_C_10_050106  
Figure C-10: Block RAM Organization  
When presenting byte value 30 hex, character 0 must be displayed. Shifting the value  
00110000b (30h) up three positions gives the value 180h or 348d.  
Because each character uses eight byte locations, character 0 in the character set starts from  
memory location 348 decimal.  
For example, character X has byte value 58h or 01011000b. Shifting this value three  
positions gives the value 2C0h or 704d.  
Virtex-5 FPGA ML561 User Guide  
137  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Appendix C: LCD Interface  
Figure C-11 shows a block diagram of the LCD character generator controller. Character  
data is latched and then shifted left three positions. This shifted value is the start byte for a  
counter that outputs an address to the block RAM. The result is a stream of bytes  
representing a character for the display.  
A small second counter determines when a new character is loaded into the block RAM  
address counter.  
Position  
Register  
Page  
8
Data  
0
1
DesRst  
Counter A  
DI  
8
8
11  
11  
DataIn  
Ena  
DO  
Addr  
8
Ena  
E
E
L
3
Rst  
DesRst Ssr  
RAMB16_S9  
Display  
Register  
Clk  
Clk  
We  
Clk  
DesRst  
DesRst  
Clk  
E
TC  
Load  
LUT-ROM  
Display  
Counter B  
Initialization  
DesRst  
Count to 8.  
Clk  
Stop both counters at TC.  
Send character position and  
line to the LCD.  
Load new value in counter A.  
Switch to character ROM.  
Enable counters.  
RS  
Rst  
DesRst  
RW  
E
Ena  
State Machine  
Clk  
UG199_C_11_050106  
Figure C-11: LCD Character Generator Controller  
A state machine manages the processing order.  
A minimum cycle time of 400 ns on the E signal used as a reference. The 200 MHz system  
clock frequency is used as reference system clock. One E cycle uses at least 80 system clock  
cycles when the design is running at 200 MHz. The E pulse is part of the state machine, and  
the design only depends on the system clock. Timing is met as long as the system clock  
does not exceed 200 MHz.  
This design can be adapted easily to fit the MicroBlaze™ or PPC405 CoreConnect bus  
system.  
138  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
R
Hardware Schematic Diagram  
Array Connector Numbering  
Figure C-12 shows the LCD connections for Bank 0.  
Bank 0  
Connector Pin  
A
B
C
D
E
F
G
H
I
D9  
LCD_D0  
D7  
D5  
D3  
LCD_D4  
LCD_D5  
LCD_D6  
10  
9
8
D1  
LCD_D7  
7
6
E10  
LCD_RST  
E8  
E6  
E4  
E2  
F5  
LCD_D1  
LCD_D2  
LCD_D3  
LCD_ENA  
LCD_R/W  
5
4
3
2
1
F3  
F1  
LCD_RSEL  
LCD_CS1B  
Connector J32  
UG199_C_12_050106  
Figure C-12: LCD Connections (Bank 0)  
Virtex-5 FPGA ML561 User Guide  
139  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
R
Appendix C: LCD Interface  
140  
Virtex-5 FPGA ML561 User Guide  
UG199 (v1.2) April 19, 2008  
Download from Www.Somanuals.com. All Manuals Search And Download.  

Whirlpool Clothes Dryer WGD86HEB User Manual
Whirlpool Washer Dryer LDR3822PQ User Manual
Woodstock Saw D3614 User Manual
Xantech Electronic Accessory HDMI3X1 User Manual
Xilinx Network Card 01ADASM User Manual
Zanussi Clothes Dryer TD30 User Manual
Zanussi Cooktop ZYB 594 User Manual
Zanussi Electric Pressure Cooker ZKG6040 User Manual
Zanussi Washer ZWF 1222 User Manual
Zebra Technologies Battery Charger Cameo User Manual