Texas Instruments Power Supply SLVU013 User Manual

HighĆDensity Synchronous Buck  
Converter Design Using TPS56xx  
Controllers  
User’s Guide  
June 1999  
Mixed-Signal Linear Products  
SLVU013  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Preface  
Read This First  
About This Manual  
This user’s guide describes techniques for designing synchronous buck  
converters using TI’sSLVP1111–114evaluationmodules(EVM)andTPS56xx  
ripple regulator controllers.  
How to Use This Manual  
This document contains the following chapters:  
- Chapter 1 Introduction  
- Chapter 2 Design Procedure  
- Chapter 3 Test Results  
Information About Cautions and Warnings  
This book may contain cautions and warnings.  
This is an example of a caution statement.  
A caution statement describes a situation that could potentially  
damage your software or equipment.  
This is an example of a warning statement.  
A warning statement describes a situation that could potentially  
cause harm to you.  
The information in a caution or a warning is provided for your protection.  
Please read each caution and warning carefully.  
iii  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Trademarks  
Related Documentation From Texas Instruments  
- Synchronous Buck Converter Design Using TPS56xx Controllers in  
SLVP10x EVMs User’s Guide (literature number SLVU007).  
- TPS56xx data sheet (literature number SLVS177A)  
- Designer’s Notebook The TPS56xx Family of Power Supply Controllers  
(literature number SLVT140A)  
- Designing Fast Response Synchronous Buck Regulators Using the  
TPS5210 (literaure number SLVA044).  
FCC Warning  
Thisequipmentisintendedforuseinalaboratorytestenvironmentonly. Itgen-  
erates, uses, and can radiate radio frequency energy and has not been tested  
for compliance with the limits of computing devices pursuant to subpart J of  
part 15 of FCC rules, which are designed to provide reasonable protection  
against radio frequency interference. Operation of this equipment in other en-  
vironments may cause interference with radio communications, in which case  
the user at his own expense will be required to take whatever measures may  
be required to correct this interference.  
Trademarks  
TI is a trademark of Texas Instruments Incorporated.  
iv  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Contents  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
Synchronous Buck Regulator Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Hysteretic Control Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
Design Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  
Design Specification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8  
Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10  
2
Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
2.1 TPS56xx Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
2.1.1 Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
V
CC  
2.1.2 Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
2.1.3 Slowstart Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
2.1.4 Hysteresis Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
2.1.5 Noise Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
2.1.6 Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
2.1.7 Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
2.1.8 Power Good . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
2.1.9 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
2.1.10 Gate Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
External Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14  
2.2.1 Duty Cycle Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14  
2.2.2 Input Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14  
2.2.3 Output Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14  
2.2.4 Switching Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17  
2.2.5 Power MOSFET Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20  
2.2  
3
Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
3.1  
Test Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
3.1.1 Static Line and Load Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
3.1.2 Output Voltage Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
3.1.3 Efficiency and Power Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
3.1.4 Output Start-Up and Overshoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
3.1.5 Frequency Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
3.1.6 Load Current Transient Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
3.1.7 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
3.1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7  
3.2  
3.3  
v
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figures  
1–1  
1–2  
1–3  
1–4  
1–5  
1–6  
1–7  
2–1  
2–2  
2–3  
2–4  
2–5  
2–6  
3–1  
3–2  
3–3  
3–4  
3–5  
3–6  
3–7  
3–8  
3–9  
Simplified Synchronous Buck Converter Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Simplified Hysteretic Controlled Output Voltage Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
SLVP111–114 EVM Converter Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7  
Top Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10  
Bottom Assembly (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10  
Top Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10  
Bottom Layer (Top VIew) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11  
TPS56xx Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Block Diagram Showing Noise Suppression Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
V
Sensing Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
DS  
Gate Driver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11  
I–V Characteristic Curve for Low-Side Gate Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12  
Output Ripple Voltage Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18  
Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6  
SLVP111 Measured Load Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7  
SLVP111Measured Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7  
SLVP111Measured Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8  
SLVP111Measured Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8  
SLVP111 Measured Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9  
SLVP111Measured Start-Up (INHIBIT) Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9  
SLVP111 Measured Start-Up (V ) Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
CC  
SLVP111Measured Start-Up (V ) Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
IN  
3–10 SLVP111 Measured Load Transient Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11  
3–11 SLVP112 Measured Load Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11  
3–12 SLVP112 Measured Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12  
3–13 SLVP112 Measured Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12  
3–14 SLVP112 Measured Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13  
3–15 SLVP112 Measured Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13  
3–16 SLVP112 Measured Start-Up (INHIBIT) Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14  
3–17 SLVP112 Measured Start-Up (V ) Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14  
CC  
3–18 SLVP112 Measured Start-Up (V ) Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15  
IN  
3–19 SLVP112 Measured Load Transient Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15  
3–20 SLVP113 Measured Load Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16  
3–21 SLVP113 Measured Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16  
3–22 SLVP113 Measured Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17  
3–23 SLVP113 Measured Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17  
3–24 SLVP113 Measured Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18  
3–25 SLVP113 Measured Start-Up (INHIBIT) Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18  
3–26 SLVP113 Measured Start-Up (V ) Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19  
CC  
vi  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3–27 SLVP113 Measured Start-Up (V ) Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19  
IN  
3–28 SLVP113 Measured Load Transient Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20  
3–29 SLVP114 Measured Load Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20  
3–30 SLVP114 Measured Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21  
3–31 SLVP114 Measured Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21  
3–32 SLVP114 Measured Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22  
3–33 SLVP114 Measured Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22  
3–34 SLVP114 Measured Start-Up (INHIBIT) Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23  
3–35 SLVP114 Measured Start-Up (V ) Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23  
CC  
3–36 SLVP114 Measured Start-Up (V ) Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24  
IN  
3–37 SLVP114 Measured Load Transient Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24  
Tables  
1–1  
1–2  
1–3  
Summary of EVM Converter Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  
EVM Converter Operating Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
SLVP111–114 EVMs Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8  
Contents  
vii  
Download from Www.Somanuals.com. All Manuals Search And Download.  
viii  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chapter 1  
Introduction  
The SLVP111/112/113/114 evaluation modules (EVMs) have been designed  
and tested using the TPS56xx hysteretic controllers. These boards are  
synchronous dc-dc buck converters with fixed output voltages of 3.3 V, 2.5 V,  
1.8 V and 1.5 V respectively. They use only surface mount components and  
are design examples of how to use TI’s TPS56xx controllers in high density,  
low loss applications with tight static and dynamic output voltage  
requirements. Detailed test results taken from the EVMs are presented.  
Design simplicity, low component count, and lower cost make buck converters  
popular solutions where low input voltages are available for the converter and  
where isolation is not a requirement.  
This user’s guide describes techniques for designing synchronous buck  
converters using TI’s SLVP111–114 EVMs and TPS56xx ripple regulator  
controllers. Synchronous buck converters provide an elegant power supply  
solution for rapidly transitioning DSP loads (such as the Texas Instruments  
TMS320C62x/67x family), fast memory, and similar processors. An order of  
magnitude improvement in dynamic response of this converter over standard  
control methods reduces hold-up capacitance needs near the transitioning  
loads, thus saving cost and board space.  
Topic  
Page  
1.1 Synchronous Buck Regulator Operation . . . . . . . . . . . . . . . . . . . . . . . . 1–2  
1.2 Hysteretic Control Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3  
1.3 Design Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4  
1.4 Design Specification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5  
1.5 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7  
1.6 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8  
1.7 Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10  
1-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Synchronous Buck Regulator Operation  
1.1 Synchronous Buck Regulator Operation  
The synchronous buck converter is a variation of the traditional buck  
converter. The main switching device is usually a power MOSFET and is  
driven in the same manner as in a traditional buck converter. The freewheeling  
rectifier, usually a Schottky device, is replaced by a power MOSFET and is  
driven in a complementary or synchronous fashion relative to the main  
switching device; when one MOSFET is on, the other is off. The freewheeling  
MOSFET is selected so that its ON voltage drop is less than the forward drop  
of the original freewheeling rectifier, thus increasing conversion efficiency. A  
very important design issue when using a synchronous buck converter is  
preventing cross-conduction of the two power MOSFETs, i.e., preventing both  
MOSFETs from being on simultaneously. A small amount of deadtime is  
necessary.  
Figure 1 shows a simplified schematic of a synchronous buck converter. The  
TPS56xx senses the output voltage and then drives Q1 and Q2 depending on  
thesensedvoltage. TheTPS56xxsensesthevoltageatthejunctionofQ1, Q2,  
and L1 and uses it to actively prevent simultaneous conduction of Q1 and Q2.  
Figure 1–1. Simplified Synchronous Buck Converter Schematic  
V
I
+
Q1  
Q2  
L1  
TPS56xx  
V
O
+
C
1-2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Hysteretic Control Operation  
1.2 Hysteretic Control Operation  
Hysteretic control, also called bang-bang control or ripple regulator control,  
maintains the output voltage within the hysteresis band centered about the  
internal reference voltage. Figure 1–2 shows a simplified example of a  
hysteretic controlled output voltage using the TPS5625 with a reference  
voltage of 2.500 V and a hysteresis band of 50 mV. If the output voltage is at  
or below the level of the reference minus one-half of the hysteresis band  
(V = 2.475 V), the TPS5625 turns off the low-side MOSFET (Q2 in Figure  
Lo  
1–1) and turns on the high-side MOSFET (Q1 in Figure 1–1) of the  
synchronous buck converter power stage. This is the power stage on-state,  
and it causes the output voltage to increase. When the output voltage reaches  
or exceeds the reference plus one-half of the hysteresis band (V = 2.525 V),  
Hi  
the TPS5625 turns off the high-side MOSFET and turns on the low-side  
MOSFET. This is the power stage off-state, and it causes the output voltage  
to decrease. This hysteretic method of control keeps the output voltage within  
the hysteresis band around the reference voltage. If output-load current steps  
or input-voltage transients force the output voltage out of the hysteresis band,  
the TPS5625 sets the power-stage MOSFETs in the continuous on or off state  
as required to return the output voltage to the hysteresis band. Thus, the  
output voltage is corrected as quickly as the output filter allows. There are no  
error amplifier sensing and adjusting delays, as is the case with either voltage-  
or current-mode controllers. Other advantages of hysteretic control include no  
loop compensation design and no input filter interaction problems.  
Figure 1–2. Simplified Hysteretic Controlled Output Voltage Waveform  
Output  
Voltage  
V
Hi  
2.525 V  
2.500 V  
2.475 V  
Hysteresis  
V
Lo  
Time  
On Time  
Off Time  
T
s
Introduction  
1-3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Design Strategy  
1.3 Design Strategy  
The SLVP111–114 evaluation modules (EVMs) are optimized for 5-V main  
input voltage and 6-A output current. The EVMs need an additional low current  
12-V (30 mA max) input voltage for the controller. TI’s application report,  
Providing a DSP Power Solution from 5 V or 3.3 V Only Systems, TI literature  
number SPRA525 describes how one can implement a simple boost circuit for  
5-V only input voltage applications. These EVMs are pin to pin compatible with  
SLVP104/105/106/115 evaluation boards with 8 A output current, which  
combine surface mount and through hole components. This surface mount  
version has the same length, 2, and width, 0.75, but the height is significantly  
lower, 0.375versus 0.6for through hole version.  
The TI SLVP111–114 evaluation modules (EVM) provide synchronous buck  
converter circuits for evaluating the capabilities of the TPS56xx family of ripple  
regulator controllers. The EVM converters can provide proven, demonstrated  
reference designs to aid in the rapid development of application-specific  
synchronous buck converters. Output capacities of the EVM converters are  
optimized for the Siliconix Si4410 power MOSFET device.  
The 6-ampere output current level is a reasonable selection criteria for  
powering circuit cards with multiple DSPs, and for providing the regulated  
voltage to other hardware on the circuit card. Component size can be reduced  
for designs requiring lower power levels.  
The TPS56xx controllers each provide one of four popular output voltage  
levels. The last two digits of the part number correlate to the set-point voltage  
level: TPS5633 is the 3.3-V controller, TPS5625 is the 2.5-V controller,  
TPS5618 is the 1.8-V controller, and TPS5615 is the 1.5-V controller. Many  
digital devices, memories, and DSP I/O circuits use the 3.3-V level. The core  
oftheTMS320C6201requires2.5-V. AlloftheotherDSPsintheTMS320C62x  
and the TMS320C67x family need 1.8 V. The GTL bus, as well as various  
processors and future DSPs, may require the 1.5-V controller. An external  
resistor divider can be used to fine tune the output voltages of these controllers  
for other applications including output voltages up to approximately  
V
– 0.5 V.  
IN  
Table 1–1 summarizes the four EVM converter modules.  
Table 1–1.Summary of EVM Converter Modules  
EVM Part Number  
EVM Board  
Controller  
Output  
Voltage  
Max. Output  
Current  
Number  
SLVP111  
SLVP112  
SLVP113  
SLVP114  
TPS5633EVM–111  
TPS5625EVM–112  
TPS5618EVM–113  
TPS5615EVM–114  
TPS5633  
TPS5625  
TPS5618  
TPS5615  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
6 A  
6 A  
6 A  
6 A  
Output current is limited by the temperature rise of the power MOSFETs chosen. Higher or  
lower current designs are possible.  
1-4  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Design Specification Summary  
1.4 Design Specification Summary  
This section summarizes the design requirements of the EVM converters.  
Although every attempt was made to accurately describe the performance of  
the EVM converters and the TPS56xx controllers, in case of conflicts, the  
TPS56xx data sheet takes precedence over this document.  
The TPS56xx family of controllers provides the necessary regulation  
functions. In addition to a reference voltage accuracy of ±1% over the full  
operating temperature range, the controller has remote sense inputs to  
provide a precisely regulated output voltage. The controller also provides  
undervoltage lock-out, overload protection, overvoltage protection, and  
overtemperature protection. The controller has a logic level INHIBIT input to  
control the converter turn-on and turn-off and a power good output to indicate  
output voltage status. Undervoltage lock-out prevents operation of the power  
supply when the 12 Vdc input voltage is not sufficient for proper operation.  
Overload protection protects the power supply from accidental overloads or  
short circuits. Overvoltage protection prevents damage to the load in the event  
of an internal power supply failure or presence of high voltages on the output  
from an external condition. Both overvoltage and overcurrent cause a latched  
shutdown. Both power MOSFETs are driven to an OFF state. Recovery from  
shutdown requires removal of the 12 V control input supply for reset. Table 1–2  
lists the operating specifications of the EVM converters.  
Table 1–2.EVM Converter Operating Specifications  
Specification  
Min  
Typ  
Max  
6
Units  
Power input voltage range  
Control input voltage range  
4.5  
V
V
10.8  
13.2  
Static voltage tolerance  
SLVP111 (3.3 V)  
SLVP112 (2.5 V)  
SLVP113 (1.8 V)  
SLVP114 (1.5 V)  
3.27  
2.47  
1.78  
1.48  
3.30  
2.50  
1.80  
1.50  
3.33  
2.53  
1.82  
1.52  
V
V
V
Line regulation  
± 0.05%  
± 0.1%  
§
Load regulation  
± 0.2%  
± 0.4%  
Transient response  
± 100  
mV pk  
µsec  
50  
#
Output current range  
0
6
A
A
#
Current limit  
10  
k
Operating frequency  
SLVP111 (3.3 V)  
SLVP112 (2.5 V)  
SLVP113 (1.8 V)  
SLVP114 (1.8 V)  
135  
225  
295  
360  
kHz  
kHz  
kHz  
kHz  
Introduction  
1-5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Design Specification Summary  
Table 1–2.EVM Converter Operating Specifications (Continued)  
Specification  
Min  
Typ  
Max  
Units  
||  
Output ripple  
SLVP111 (3.3 V)  
SLVP112 (2.5 V)  
SLVP113 (1.8 V)  
SLVP114 (1.5 V)  
66  
50  
36  
30  
mV p–p  
mV p–p  
mV p–p  
mV p–p  
Efficiency, 6 A load  
SLVP111 (3.3 V)  
SLVP112 (2.5 V)  
SLVP113 (1.8 V)  
SLVP114 (1.5 V)  
90%  
86.4%  
83.2%  
79.8%  
Efficiency, 4 A load  
SLVP111 (3.3 V)  
SLVP112 (2.5 V)  
SLVP113 (1.8 V)  
SLVP114 (1.5 V)  
91.6%  
88.6%  
85.1%  
81.9%  
Vi = 5 V, Io = 6 A  
Io = 6 A, Vi = 5 V ±10%  
Vi = 5 V  
Vi = 5 V, Io stepped repetitively from 0 A to 6.5 A  
Output current rating is limited by thermal considerations. Load currents above this rating may  
cause damage to the power supply.  
§
#
||  
k
Unless otherwise specified, all test conditions are T = 25_C, Vi = 5 V, Io = 6 A, Vo = nominal.  
Vi = 5 V, Io = 6 A, Vo = nominal  
A
1-6  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Schematic  
1.5 Schematic  
Figure 1–3 shows the EVM converter schematic diagram. The schematic  
diagrams for the other EVM converters are identical except for the controller  
IC used.  
Figure 1–3. SLVP111–114 EVM Converter Schematic Diagram  
+
+
+
V C C  
B O O T  
H U G H D R V G D N R D  
V
D R  
1 5  
1 6  
1 7  
1 8  
1 9  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
1 4  
L O W D R  
1 3  
1 2  
B O O T L O L O H I B  
1 1  
H I S E V N S E L O D R  
1 0  
L O S E N S E  
B I A S  
9
F µ 0 . 1  
I O U T L O  
S L O W S T  
C 6  
8
7
6
5
I N H I B I T  
A N A G N D  
N C  
N C  
N C  
N C  
N C  
V S E N S E  
V R E F B  
V H Y S T  
4
O C P  
3
A G N D 2  
2
P W R G D  
I O U T  
1
T P S 5 6 3 3 ( S e e N o t e )  
U 1  
Introduction  
1-7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Bill of Materials  
1.6 Bill of Materials  
Table 1–3 lists materials required for the SLVP111–114 EVMs.  
Table 1–3.SLVP111–114 EVMs Bill of Materials  
Ref Des  
C1  
Part Number  
Description  
MFG  
10TPA33M  
Capacitor, POSCAP, 33 µF, 10 V, 20%  
Capacitor, POSCAP, 150 µF, 6.3 V, 20%  
Capacitor, POSCAP, 150 µF, 6.3 V, 20%  
Capacitor, POSCAP, 150 µF, 6.3 V, 20%  
Capacitor, Ceramic, 0.1 µF, 16 V, 10%, X7R  
Capacitor, Ceramic, 0.1 µF, 16 V, 10%, X7R  
Capacitor, Ceramic, 1.0 µF, 16 V, +80%–20%  
Capacitor, Ceramic, 1.0 µF, 16V, +80%–20%  
Capacitor, Ceramic, 2.2 µF, 16V, Y5V  
Capacitor, POSCAP, 150 µF, 4 V, 20%  
Capacitor, POSCAP, 150 µF, 4 V, 20%  
Capacitor, POSCAP, 150 µF, 4 V, 20%  
Capacitor, POSCAP, 150 µF, 4 V, 20%  
Capacitor, Ceramic, 10 µF, 16 V, Y5V  
Capacitor, Ceramic, 0.01 µF, 25 V, +80%–20%, Y5V  
Capacitor, Ceramic, 1.0 µF, 16 V, +80%–20%  
Capacitor, Ceramic, 0.1 µF, 16 V, 10%, X7R  
Capacitor, Ceramic, 0.1 µF, 16 V, 10%, X7R  
Capacitor, Ceramic, 0.01 µF, 25 V, 10%, X7R  
Capacitor, Ceramic, 1000 pF, 50 V, 10%, X7R  
Capacitor, Ceramic, 0.1 µF, 16 V, 10%, X7R  
Capacitor, Ceramic, 1.0 µF, 16 V, +80%–20%  
Header, RA, 18-pin, 0.23 Posts x 0.20 Tails  
Inductor, 2.2 µH, 7.4 A  
Sanyo  
C2  
6TPB150M  
Sanyo  
C3  
6TPB150M  
Sanyo  
C4  
6TPB150M  
Sanyo  
C5  
GRM39X7R104K016A  
GRM39X7R104K016A  
GRM42–6Y5V105Z016A  
GRM42–6Y5V105Z016A  
GRM42–6Y5V225Z016A  
4TPC150M  
muRata  
muRata  
muRata  
muRata  
muRata  
Sanyo  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
J1  
4TPC150M  
Sanyo  
4TPC150M  
Sanyo  
4TPC150M  
Sanyo  
GRM235Y5V106Z016A  
GRM42-6Y5V103Z025A  
GRM42–6Y5V105Z016A  
GRM39X7R104K016A  
GRM39X7R104K016A  
GRM39X7R103K025A  
GRM39X7R102K050A  
GRM39X7R104K016A  
GRM42–6Y5V105Z016A  
S1122–18–ND  
DO3316P–222HC  
DO3316P–152HC  
Si4410DY  
muRata  
muRata  
muRata  
muRata  
muRata  
muRata  
muRata  
muRata  
muRata  
Sullins  
L1  
Coilcraft  
Coilcraft  
Siliconix  
Siliconix  
L2  
Inductor, 1.5 µH, 9 A  
Q1  
FET, N-ch, 30-V, 10-A, 13-mΩ  
Q2  
Si4410DY  
FET, N-ch, 30-V, 10-A, 13-mΩ  
R1  
Std  
Resistor, Chip, 1 k, 1/16W, 5%  
R2  
Std  
Resistor, Chip, 10 k, 1/16W, 5%  
R3  
Std  
Resistor, Chip, 10 , 1/10W, 5%  
R4  
Std  
Resistor, Chip, 10 , 1/10W, 5%  
R5  
Std  
Resistor, Chip, 2.7 , 1/4W, 5%  
R6  
Std  
Resistor, Chip, 4.7 , 1/16W, 5%  
1-8  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Bill of Materials  
Table 1–3.SLVP111–114 EVMs Bill of Materials (Continued)  
Ref Des  
R7  
Part Number  
Description  
MFG  
Std  
Resistor, Chip, 1 k, 1/16W, 5%  
Resistor, Chip, 100 , 1/16W, 1%  
Resistor, Chip, 11 k, 1/16W, 5%  
Resistor, Chip, 100 , 1/16W, 1%  
Resistor, Chip, 20 k, 1/16W, 1%  
Resistor, Chip, 4.7 , 1/16W, 5%  
Resistor, Chip, 750 , 1/16W, 5%  
Resistor, Chip, 20 k, 1/16W, 1%  
Resistor, Chip, 1 M, 1/16W, 5%  
R8  
Std  
R9  
Std  
R10  
R11  
R12  
R13  
R14  
R15  
U1a  
U1b  
U1c  
U1d  
Std  
Std  
Std  
Std  
Std  
Std  
TPS5633PWP  
TPS5625PWP  
TPS5618PWP  
TPS5615PWP  
IC, PWM Ripple Controller, Fixed 3.3-V (SLVP111 only)  
TI  
IC, PWM Ripple Controller, Fixed 2.5-V (SLVP112 only) TI  
IC, PWM Ripple Controller, Fixed 1.8-V (SLVP113 only) TI  
IC, PWM Ripple Controller, Fixed 1.5-V (SLVP114 only) TI  
Introduction  
1-9  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Board Layout  
1.7 Board Layout  
Figures 1–4 through 1–7 show the board layouts for the SLVP111–114  
evaluation modules.  
Figure 1–4. Top Assembly  
Top Assembly  
Bottom Assembly (Top View)  
Top Layer  
Figure 1–5. Bottom Assembly (Top View)  
Figure 1–6. Top Layer  
1-10  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Board Layout  
Figure 1–7. Bottom Layer (Top VIew)  
Bottom Layer (Top View)  
Introduction  
1-11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1-12  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chapter 2  
Design Procedure  
The SLVP111–114 are dc-dc synchronous buck converter evaluation modules  
(EVMs) that provide a regulated output voltage at up to 6 A with a power input  
voltage range of 4.5 V to 6 V. A low power 12-V, 20-mA source is also required  
to power the TPS56xx controller. The controller operates at a nominal  
frequencyof135kHzfor5Vinputand3.3Voutput. Toprovidethehighestlevel  
of performance, the EVM converters use hysteretic, or ripple, control.  
Hysteretic-controlled synchronous buck converters have several advantages  
over conventional PWM-controlled power supplies:  
- Correction of output voltage variations caused by output-load or input-  
voltage transients is extremely fast.  
- The user controls output ripple by adjusting the operational parameters of  
the converter, instead of relying on brute force methods requiring the  
choice of an output filter.  
- Hysteretic control sets the operational frequency of the converter. For a  
given set of external components, the lower the permissible ripple setting,  
the higher the operational frequency.  
- There is no control loop to design.  
Topic  
Page  
2.1 TPS56xx Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2  
2.2 External Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14  
2-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TPS56xx Functions  
2.1 TPS56xx Functions  
The functional block diagram of the TPS56xx family of controllers is given in  
Figure 2–1. The controller has the following main features:  
-
±1% reference over 0°C to125°C junction temperature range.  
- Synchronous-buck gate drivers with adaptive deadtime control  
- High-side MOSFET driver voltage rating of 30 V  
- MOSFET driver peak current rating of 2 A  
- Hysteretic comparator: 250-ns propagation delay to gate driver outputs,  
2.5-mV offset voltage, symmetrical hysteresis, hysteresis setting is a  
percentage of Vref.  
- Lossless output current sensing circuit  
- Slowstart circuit; slowstart time independent of VID setting  
- Internal 8-V drive regulator for reduced gate charge power losses  
- POWERGOOD comparator, 93% of Vref trip  
- UVLO, Vcc undervoltage lockout, 10-V start, 2-V hysteresis  
- INHIBIT comparator that can also monitor UVLO of the system logic  
supply, 2.1-V start, 100-mV hysteresis.  
- Latched overcurrent shutdown circuit  
- Latched overvoltage shutdown circuit  
- LODRV pin that activates the low-side MOSFETs as a crowbar to protect  
against a short across the high-side MOSFETs.  
2-2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TPS56xx Functions  
Figure 2–1. TPS56xx Functional Block Diagram  
15  
CC  
7
28  
20  
19  
21  
ANAGND PWRGD LOSENSE IOUTLO HISENSE  
V
V
CC  
2 V  
+
_
22  
1
INHIBIT  
IOUT  
2X  
UVLO  
Shutdown  
10 V  
Q
S
R
V
CC  
Fault  
Rising  
Edge  
Delay  
3
_
Deglitch  
Deglitch  
OCP  
+
HIGHDR  
100mV  
HIGHIN  
VPGD  
0.93 VREF  
V
CC  
Analog  
Bias  
VOVP  
1.15 VREF  
VSENSE  
PREREG  
Analog  
Bias  
VREFB  
9
BIAS  
I
Slowstart  
Comparator  
8
14  
DRV REG  
SLOWST  
5
DRV  
+
_
Shutdown  
16  
BOOT  
17  
HIGHDR  
_
Shutdown  
CM Filters  
18  
BOOTLO  
+
Bandgap  
VREF  
_
+
_
Hysteresis  
Comparator  
13  
LOWDR  
+
12  
DRVGND  
Hysteresis  
Setting  
I
VREFB  
2
5
4
6
11  
LOHIB  
10  
LODRV  
AGND2  
VREFB  
VHYST VSENSE  
This section describes the functions governed by the TPS556xx. A procedure  
is given to determine the values of components used in the example design  
given in Figure 1–3. Example calculations for the 3.3-V output version accom-  
pany the design equations. There are many possible ways to proceed when  
designing power supplies and some iteration may be necessary when actual  
performance differs from design predictions. Reference designators refer to  
the circuit in Figure 1–3.  
2.1.1 V  
Undervoltage Lockout  
CC  
TheV undervoltagelockoutcircuitdisablesthecontrollerwhileV isbelow  
CC  
CC  
the 10-V start threshold during power up. While the controller is disabled, the  
outputdriverswillbelowandtheslowstartcapacitorwillbeshorted.WhenV  
CC  
exceeds the start threshold, the short across the slowstart capacitor is  
released and normal converter operation begins. There is a 2-V hysteresis in  
the undervoltage lockout circuit for noise immunity.  
Design Procedure  
2-3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TPS56xx Functions  
2.1.2 Inhibit  
The inhibit circuit is a comparator with a 2.1-V start voltage and a 100-mV  
hysteresis. When inhibit is low, the output drivers are low and the slowstart  
capacitor is discharged. When inhibit is above the start threshold, the short  
across the slowstart capacitor is released and normal operation begins.  
When the system logic supply is connected to the inhibit pin, the inhibit pin also  
controls power sequencing by locking out controller operation until the system  
logic supply exceeds the input threshold voltage of the inhibit circuit; thus, the  
12-V supply and the system logic supply must be above UVLO thresholds  
before the controller is allowed to start up.  
2.1.3 Slowstart Design  
Slowstart or soft-start is added to reduce power-up transients. Without  
slowstart, when input power is first applied, the TPS56xx attempts to raise the  
output voltage (initially zero) to its normal operating level by turning on the top  
MOSFET until the voltage is approximately Vref. This can cause high transient  
currents to flow in the output inductor and output capacitor. Although this form  
of startup usually does not cause component failures, it does apply stresses  
much greater than those typically encountered in normal operation. It is good  
design practice to include slowstart circuitry to avoid these unnecessary  
stresses.  
The slowstart circuit in the TPS56xx controls the rate at which the output  
voltagepowersup. Acapacitor, C21, connectedbetweenSLOWST(pin8)and  
ANAGND (pin 7), is charged by an internal current source. This current source  
is proportional to the reference voltage and is adjustable by an external  
resistance selected by the user. The output voltage follows the voltage on the  
slowstart capacitor during startup. Since the charging current is proportional  
to the reference voltage, the slowstart time is independent of the reference  
voltage for a given resistor value.  
Choices of the slowstart time and the slowstart capacitor value are largely  
arbitrary as long as system start-up time requirements are met. For this  
example design, a slowstart time of 10 ms is chosen, and the slowstart  
capacitor is chosen to be 0.1 µF. Therefore, to charge 0.1 µF from zero volts  
to 3.3 V in 10 ms, the following equation holds:  
DV  
c
3.3 V  
10 ms  
I
+ C  
 
+ 0.1 mF   
+ 33 mA  
SLOWSTART  
SLOWSTART  
Dt  
ss  
The slowstart charging current is determined by the following equation:  
(
)
I VREFB  
I
+
SLOWSTART  
5
where I(VREFB) = the current out of VREFB (pin 5).  
For an I  
(
current equal to 33 µA, I(VREFB) should be set to:  
SLOWSTART  
)
I VREFB + 5   I  
+ 5   33 mA + 165 mA  
SLOWSTART  
The voltage on VREFB (pin 5) is a buffered reference voltage. The resistance  
from the VREFB pin to ANAGND can be calculated as:  
2-4  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TPS56xx Functions  
3.3 V  
165 mA  
R
+
+ 20 kW  
VREFB  
This value is used to determine the values of R10 and R14 that set the  
hysteresis level.  
The equations above can be used to derive a simplified relationship for the  
slowstart time as shown:  
t
+ 5   C  
  R  
SLOWSTART  
SLOWSTART  
VREFB  
V
start-up waveforms for different reference voltage settings are given in  
O
Figures 3–7, 3–8, 3–9, 3–16, 3–17, 3–18, 3–25, 3–26, 3–27, 3–34, 3–35, and  
3–36 in the test results section, showing that slowstart time is independent of  
the reference voltage.  
2.1.4 Hysteresis Setting  
The next step in this design is choosing the desired output voltage ripple. As  
a first approximation, the output voltage ripple is simply the differencebetween  
the two levels (V  
and V ) shown in Figure 1–2. The hysteresis setting of  
LO  
Hi  
the hysteresis comparator of the TPS56xx sets these two levels. The  
hysteresis is set by two external resistors and is centered around VREF (pin  
5). The hysteretic comparator is designed with low input offset voltage  
(±2.5 mV max) low propagation delays (250ns max to gate driver outputs with  
10mV overdrive) and accurate hysteresis setting (±3.5 mV max). The  
hysteresis is proportional to the reference voltage; setting Vref to a new value  
automatically adjusts the hysteresis to be the same percentage of Vref.  
The total output ripple is greater than the ripple set by the hysteresis compara-  
tor. To accurately choose the output voltage ripple, all of the propagation de-  
lays must be considered. The first step is to calculate the amount of ripple ex-  
pected due to the delays, in addition to the ripple set by the hysteresis compa-  
rator. Using the terminology of Section 2.2.4.1, this additional ripple is equal  
to V  
– Hyst and will be referred to V for ease of reference. Or:  
del  
p-p  
V
+ Hyst ) V  
p-p  
del  
Where:  
V
=the total output ripple,  
p-p  
Hyst = the hysteresis setting of the hysteretic comparator, and  
V
= the output ripple exceeding Hyst and due to all propagation  
delays.  
del  
Assuming the output ripple during the delay time is primarily caused by the  
inductor ripple current flowing through the output capacitors’ ESR, the  
additional ripple, V , can be estimated as:  
del  
V –V  
V
V   t  
I
O
O
I
del  
+ ƪ ƫ ƪ ƫ  
V
  t  
  ESR )  
  t  
  ESR +  
del  
del  
del  
L
L
L
Where L is the value of the output inductor.  
Design Procedure  
2-5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TPS56xx Functions  
Note that V is independent of the output voltage.  
del  
To calculate V for this example design, use the component measurements  
del  
given in Section 2.2.4.2. They are repeated here for convenience:  
L = 1.5 µH  
ESR = 10 mΩ  
T
= 400 ns  
del  
Now calculate V  
:
del  
5
9  
3  
V
+
  400   10   10   10 + 13.3 mV  
del  
6  
1.5   10  
Since V does not depend on the output voltage setting, V is a larger por-  
del  
del  
tion of the total output voltage ripple for lower output voltages. So, the hystere-  
sis (which is proportional to the output voltage setting) should be set so that  
the desired output ripple voltage is obtained for the lowest output voltage. The  
total output voltage ripple requirement per Table 1–2 for an output voltage of  
1.5 V is 30 mV, the hysteresis is set as:  
V
+ 30 mV * V  
+ 30 mV * 13.3 mV + 16.7 mV  
Hysteresis  
del  
For convenience, and allowing a little margin, the hysteresis will be designed  
for 15 mV.  
To set the hysteresis, connect two external resistors to form a resistor divider  
fromVREFB(pin5)toANAGND(pin7)withthecenterofthedividerconnected  
to VHYST (pin 4). The hysteresis of the comparator is equal to twice the  
voltage that is between the VREFB (pin 5) and VHYST (pin 4) pins. Or,  
(
)
V
+ 2   VREFB–VHYST  
Hysteresis  
For this design, 15 mV of hysteresis was chosen for a 1.5 V output voltage.  
(
)
V
+ 15 mV + 2   1.5 V–VHYST  
Hysteresis  
Solving for VHYST:  
V
Hysteresis  
2
15 mV  
2
VHYST + VREFB–  
+ 1.5–  
+ 1.4925 V  
Referring to the schematic, Figure 1–3, the two external resistors are R10 and  
R14. From the previous section, the total resistance required is 20 k. Since  
R10 is very small compared to R14, for simplicity set R14 = 20 k. To calculate  
the value of R13:  
R14  
R14 ) R10  
VHYST + VREFB   
Solving for R10:  
(
) (  
1.4925 V  
)
1.5 V 20 kW  
VREFB   R14  
R10 +  
–R14 +  
20 kW + 100 W  
VHYST  
The controller hysteresis is now set to 15 mV. This, in addition to the 13.3 mV  
due to propagation delays, results in a total ripple voltage of less than the  
design goal of 30 mV for an output voltage of 1.5 V.  
2-6  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TPS56xx Functions  
2.1.5 Noise Suppression  
Hysteretic regulators, by nature, have a fast response time to V transients  
O
and are thus inherently noise sensitive due to the very high bandwidth of the  
controller. Noise suppression circuits were added to the TPS56xx to improve  
thenoiseimmunity, asshowninFigure2–2. Internallow-passfilterswithapole  
frequency of 5 MHz were added to the inputs of the hysteretic comparator.  
These low-pass filters are referenced to the same analog ground as the  
hysteretic comparator. There is a common-mode filter with a 4-MHz pole  
between VREFB and VHYST to filter out noise between these pins. A double  
pulse suppression circuit prohibits spurious pulses from propagating to the  
gate drivers. The double pulse suppression circuit becomes active when the  
comparator has toggled or when the LOHIB pin (which is connected to the  
power MOSFETs) has transitioned, providing additional noise immunity from  
internally and externally generated noise. The suppression circuit is active for  
150 ns.  
A low-pass filter is recommended between V and the VSENSE pin (R1 and  
O
C3inFigure2–2);recommendedvaluesare100ohmsand1nF. Thislow-pass  
filter is included in the evaluation design of Figure 1–3 (R8, R11, and C20).  
Figure 2–2. Block Diagram Showing Noise Suppression Circuits  
V
in  
L1  
V
ds  
Sensing  
C1  
5 MHz  
Filter  
HIGHDR  
LOHIB  
V
ref  
Reference  
VO  
L2  
5 MHz  
Filter  
Adaptive  
Deadtime  
Control  
Double Pulse  
Suppression  
Circuit  
V
phase  
LOWDR  
C2  
+
Hysteresis  
Setting  
4 MHz  
Filter  
TPS56xx Synchronous-Buck Controller  
R1  
VSENSE  
IOUT  
R5  
VREFB  
R3  
VHYST  
R2  
C3  
VH_SET  
R6  
R4  
2.1.6 Overcurrent Protection  
Overcurrent protection is provided by measuring the on-state voltage of the  
high-side MOSFET, conditioning the measured voltage, and comparing the  
result to a reference voltage. If the output current exceeds the current limit  
setpoint, a fault latch is set and the output drivers are turned off. Vcc (12 V)  
must be reduced to below the undervoltage lockout value to restart the  
converter.  
A sample-and-hold circuit measures the power supply output current by  
sensing the on-state drain-to-source voltage of the high-side MOSFET (Q1 in  
Design Procedure  
2-7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TPS56xx Functions  
Figure 1–3). This arrangement improves efficiency over solutions having a  
separate current sensing resistor. The drain of the high-side MOSFET is  
connected to HISENSE (pin 19). The source of the high-side MOSFET is  
connected to LOSENSE (pin 20). When the high-side MOSFET is on, a  
TPS56xx internal switch is also on and samples the source voltage of the  
high-side MOSFET. This sampled voltage is applied to IOUTLO (pin 21) and  
is held by the external 0.1-µF capacitor, C6, which is connected from IOUTLO  
(pin 21) to HISENSE (pin 19). The TPS56xx amplifies (gain=2) the  
sampled-and-held voltage on C6 and sends the output voltage to IOUT (pin  
1).  
Figure 2–3. V  
Sensing Circuit  
DS  
Cs/h  
HISENSE  
IOUTLO  
V
in  
V
Sensing Circuit  
+
ds  
Rising  
Edge  
Delay  
Shutdown  
L1  
Gain of 2  
C1  
HIGHDR  
LOSENSE  
HIGHIN  
LOWIN  
VO  
L2  
Adaptive  
Deadtime  
Control  
V
ref  
V
phase  
LOWDR  
C2  
TPS56xx Synchronous-Buck Controller  
R1  
VSENSE  
IOUT  
R2  
C3  
Figure 2–3 gives a simple block diagram of the Vds sensing circuit. The Vds  
sensing circuit measures the average voltage across the high-side MOSFET  
when the high-side MOSFET is on, and holds that value on a sample/hold  
capacitor when the high-side MOSFET is off. The voltage on the sample/hold  
capacitor is directly proportional to the load current. Sensing across the  
high-side MOSFET rather than the low-side MOSFET ensures that shorted  
loads can be detected. The RC time constant of the sample/hold network must  
be greater than the conduction-time of the high-side MOSFET, otherwise the  
sample/hold circuit will function as a peak detector circuit and will not hold the  
average Vds voltage. The differential voltage across the sample/hold  
capacitor is amplified by 2 and converted to a single-ended signal on the IOUT  
pin. TheDCCMRRoftheVdssensingamplifieris69dBminimum. Addedlogic  
ensures that sampling begins and ends while the high-side MOSFET is  
conducting. The turn-on and turn-off delays of the sample/hold switch are less  
than 100 ns. Additional logic and a rising edge delay circuit are included to  
guarantee sampling during a short-to-ground fault across the low-side  
MOSFET; the rising edge delay time is 500 ns.  
Resistors R7 and R13 in Figure 1–3 set the current limit setpoint. This  
resistor-divider network applies the IOUT output voltage to OCP (pin 3). The  
2-8  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TPS56xx Functions  
resistor-divider network is designed so that the voltage applied to OCP is  
100 mV for the desired output current limit point. If the voltage on OCP  
exceeds 100 mV, a fault latch is set and the output drivers are turned off. The  
latch remains set until VCC (pin 15) goes below the undervoltage lockout  
value.  
The following equations summarize the relationships discussed above.  
The on state drain-to-source voltage of the high-side MOSFET, Q1, is:  
ǒV  
Ǔ
–V  
+ I   R  
HISENSE IOUTLO  
O
DS(on)  
where R  
is the value obtained from the high-side MOSFET and includes  
DS(on)  
correction for elevated temperature if necessary.  
The voltage difference, V – V , is internally amplified by a fixed  
HISENSE  
IOUTLO  
gain of two to produce the IOUT (pin 1) signal.  
+ ǒV  
Ǔ
V
–V  
  2  
IOUT  
HISENSE IOUTLO  
The V  
signal is scaled for the desired current limit level and applied to the  
IOUT  
OCP pin:  
R13  
R13 ) R7  
V
+ V  
 
OCP  
IOUT  
Therefore, to set the power supply output current, first calculate the quantity  
I
× R for the value of I desired for current limit. Variations in R  
,
O
DS(on)  
O
DS(on)  
including its temperature dependence, should be considered, since this  
parameter can vary a significant amount for typical MOSFETs. Next, multiply  
this voltage by two. Finally, set the R7 and R13 voltage divider to produce 100  
mV at the desired current limit point.  
For this design, the maximum output current is 6 A. In most power supply  
designs, the exact current limit set point rarely needs to be very accurate.  
Limiting the current to a level that is not destructive is the main consideration.  
In this case, the nominal current limit is set for approximately 25% above the  
maximum, including an elevated temperature correction factor of 1.4 applied  
to a nominal R  
of 11 m. The current limit set point, I  
, is given by:  
DS(on)  
OCP  
I
+ I  
  1.25 + 6   (1.25) + 7.5 Amps  
OCP  
O(Max)  
For the above current level, V  
is given by:  
IOUT(Trip)  
(
+ ǒI  
Ǔ
)
V
  R  
  2 + 7.5 A   0.011 W   1.4   2 + 0.23 V  
IOUT(Trip)  
O
DS(on)  
Choose R13 = 750 .  
Now, calculate R7 using:  
V
IOUT(Trip)  
R7 +  
* 1   R13 + 983 W +u 1 kW  
ǒ Ǔ  
0.1 V  
In the above calculations, the nominal value for R  
of 11 mwas used.  
DS(on)  
Worst case analysis should always be performed to insure that current limit  
does not interfere with delivering maximum load.  
Design Procedure  
2-9  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TPS56xx Functions  
An alternate current sensing scheme is to insert a current sense resistor in  
series with the drain of Q1. Higher accuracy may be obtained at the expense  
of lower efficiency.  
2.1.7 Overvoltage Protection  
If V exceeds Vref by 15%, a fault latch is set and the output gate drivers are  
O
turned off. The latch remains set until VCC (pin 15) goes below the  
undervoltage lockout value.  
In addition to the standard OVP protection, the LODRV circuit protects the  
processor against overvoltages due to a short across the high-side power  
MOSFET. External components to sense an overvoltage condition are  
required to use this feature. When a shorted high-side MOSFET occurs, the  
low-side MOSFET is used as a crowbar. LODRV is pulled low and the low-side  
MOSFET is turned on, overriding all control signals inside the controller. The  
crowbar action shorts the input supply to ground through the faulted high-side  
MOSFET. A fuse in series with V must be added to disconnect the  
I
short-circuit.  
2.1.8 Power Good  
The power-good circuit monitors for an undervoltage condition on V . If V  
O
O
drops below 93% of VREF, then the PWRGD output is pulled low. PWRGD is  
an open-drain output and needs a pullup resistor.  
2.1.9 Bias  
Analog BIAS (pin 9), the output of the internal analog bias regulator, is  
designed to provide a quiet bias supply for the internal TPS56xx circuitry.  
External loads should not be driven by the bias regulator. A 1-µF capacitor,  
C22, is connected from BIAS to ANAGND.  
2.1.10 Gate Drivers  
The gate drivers drive large capacitive loads quickly and efficiently. Figure 2–4  
is a block diagram of the drivers. The output stage of the drivers consists of  
bipolar and MOS transistors in parallel. The bipolar transistors provide the  
majority of the 2-A drive current. The driver outputs get pulled to ground  
(during sinking) or to the supply rail (during sourcing) by the MOS transistors.  
If the MOS transistors were not in the design, the voltage level on the driver  
outputs could only be driven to the saturation voltage level of the bipolar  
transistors. This could be a serious limitation, especially if logic-level power  
MOSFETs are used in the power stage, resulting in shoot-through current  
through the power MOSFETs.  
2-10  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TPS56xx Functions  
Figure 2–4. Gate Driver Block Diagram  
TPS56xx Synchronous-Buck Controller  
DRV  
V
CC  
Highside Driver  
8 V Drive  
Regulator  
C3  
L1  
BOOT  
12 V  
V
in  
M1  
45 Ω  
C1  
HIGHDR  
C4  
Level  
Shifter/  
Predriver  
V
REF  
M2  
5 Ω  
L2  
LOWDR  
VO  
V
phase  
BOOTLO  
LOWDR  
Lowside Driver  
Adaptive  
Deadtime  
Control  
M3  
45 Ω  
C2  
Predriver  
M4  
5 Ω  
DRVGND  
R1  
C5  
R2  
Figure 2–5 gives an I–V sweep of the low-side driver during sinking. The  
Rds(on) of the MOS transistors for the sink stage is 5 at T = 125°C and is  
J
45 for the source stage. The Rds(on) is lower for the sink stage to provide  
alowimpedancepathforthedisplacementcurrentthatflowsthroughtheMiller  
capacitance of the power MOSFET when the drain switches. This is especially  
important for the low-side driver to keep the low-side MOSFET off when the  
high-side MOSFET is turned on.  
Design Procedure  
2-11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TPS56xx Functions  
Figure 2–5. I–V Characteristic Curve for Low-Side Gate Drivers  
Driver Output Voltage – 1 V/div  
The high-side gate driver is a bootstrap configuration with an internally  
integrated Schottky bootstrap diode. The voltage rating of the BOOT pin to  
DRVGND is 30 V. The gate drivers are biased from an internal 8-V drive  
regulator to minimize the gate drive power losses that are dissipated inside the  
TPS55xx.  
The gate drivers have also been optimized to reduce the amount of internal  
shoot-through current, which will result when either the low-side or high-side  
driver is switching states.  
The adaptive deadtime control minimizes the deadtime between conduction  
intervals of the power MOSFETs.  
The low-side gate driver is not allowed to turn on until the Vphase voltage is  
below 2 V; the high-side gate driver is not allowed to turn on until the LOWDR  
pin falls below 2 V.  
Fast switching and short dead times improve efficiency. There is 100-mA  
current limiting within the internal 8-V voltage regulator to protect the regulator  
and IC against a short fault on one of the driver pins.  
2.1.10.1 Low-Side Driver Controls  
The TPS56xx contains two control inputs to control the low-side MOSFET  
drive for various applications. They are LODRV (pin 10) and LOHIB (pin 11).  
LODRV (pin 10) is an enable input for the low-side MOSFET driver. This pin  
is connected to the 5-V input supply for normal synchronous operation.  
For added overvoltage protection, external sensing circuitry can be included  
to drive the LODRV input low in the event of an overvoltage. Applying a logic  
low to LODRV causes the driver for the low-side MOSFET to go to a high state  
causing the low-side MOSFET to turn on and act as a crowbar for the output.  
This input has precedence over any input present at LOHIB (pin 11); i.e., a low  
input to LODRV (pin 10) overrides the inhibit function.  
2-12  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TPS56xx Functions  
LOHIB (pin 11) is an inhibit input for the low-side MOSFET driver. This input  
has to be logic low before the low-side MOSFET is allowed to be turned on,  
i.e., a logic high on LOHIB prevents the low-side MOSFET driver from turning  
on the low-side MOSFET. For normal synchronous operation, this pin is  
connected to the junction of the high and low-side MOSFETs. This prevents  
cross-conduction of the two MOSFETs by constraining the low-side MOSFET  
to be OFF unless its drain-to-source voltage is at a low level. Shoot-through  
current caused by both MOSFETs being ON simultaneously is actively  
prevented. However, if LODRV is low, the low-side MOSFET is turned ON  
regardless of the LOHIB input.  
2.1.10.2 High-Side Driver  
The driver for the high-side MOSFET can be configured either as a  
ground-referenced driver or as a floating bootstrap driver. When configured as  
a floating driver, the bias voltage to the driver is developed from the DRV  
regulator. The maximum voltage that can be applied between BOOT and  
DRVGND is 30 V. The driver can be referenced to ground by connecting  
BOOTLO to DRVGND, and connecting VCC to BOOT. A 1-µF capacitor, C7, is  
connected from BOOT (pin 16) to BOOTLO (pin 18) for bypassing.  
2.1.10.3 Grounding  
Three separate ground connections enable the user to isolate high-current  
grounds from low current logic grounds. The low-current logic ground is called  
analog ground. ANAGND (pin 7) and AGND2 (pin2) are the connections for  
analog ground. The high-current ground is called power ground and must be  
connected to DRVGND (pin 12). The maximum voltage difference between  
ANAGND and DRVGND must be limited to less than ±0.2 V.  
Refer to the Layout Guidelines section of the TPS56xx data sheet for further  
information on grounding.  
Design Procedure  
2-13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
External Component Selection  
2.2 External Component Selection  
This section shows the procedure used in designing and selecting the power  
stage components to meet the performance parameters shown in Table 1–2  
for the example circuit shown in Figure 1–3.  
2.2.1 Duty Cycle Estimate  
An estimate of the duty cycle is used frequently in the following sections. The  
duty cycle, D, is the ratio of the high-side power-switch conduction time to the  
period ofoneswitchingcycle. Thedutycycleforacontinuousmodestep-down  
converter is given by:  
V
) V  
O
DS(ON)  
I
D +  
V
Where:  
V
= An estimate of the on-voltage of the power MOSFETs.  
DS(ON)  
For an initial estimate for V  
, use 0.2 V. So, for an output voltage of 3.3 V  
DS(ON)  
and an input voltage of 5 V, the duty cycle calculates to:  
3.3 V ) 0.2 V  
D +  
+ 0.7  
5 V  
2.2.2 Input Capacitance  
The input capacitance provides a low-impedance voltage source for the power  
stage. The ESR, ESL, RMS current rating and capacitance value of the input  
capacitance are important parameters in the selection process. The most  
stringent requirement is often the RMS current that the capacitance must  
handle. An equation for the RMS current seen by the input capacitance for a  
buck converter is given by:  
2
+ ǸD   1–D   I  
(
)
I
Cin(RMS)  
O
The above equation assumes that the output ripple current is small, that there  
is an input inductor, and that its ripple current is small. For V = 5 V and  
I
I
= 6 A, we get:  
O
2
+ Ǹ0.7   (10.7)   6 + 2.7 A RMS  
I
Cin(RMS)  
The input capacitance for this design uses three 150-µF, 6.3-V Sanyo  
POSCAP type electrolytic capacitors in parallel. They are C2, C3, and C4 in  
Figure 1–3. The ripple current rating for one of these capacitors is 1.9 A RMS  
at 45°C. The total ripple current rating for the input capacitance is  
3 × 1.9 = 5.7 A RMS.  
2.2.3 Output Filter Design  
Unlike fixed-frequency PWM-controlled power supplies, the output filter  
design is driven primarily by the need to provide satisfactory output voltage  
2-14  
Download from Www.Somanuals.com. All Manuals Search And Download.  
External Component Selection  
performance in response to fast load transients encountered when supplying  
power to current- and next-generation microprocessors. A secondary  
consideration is the switching frequency resulting from the output filter  
component values. This section discusses important considerations when  
selecting/designing the output filter elements. A detailed analysis of the output  
voltage ripple characteristics is also presented, resulting in an expression for  
predicting the power supply switching frequency.  
2.2.3.1 Output Capacitance  
Normally, the output capacitor is selected to limit ripple voltage to the level  
required by the specification, but in a hysteretic regulator, such as this one, the  
TPS55xx essentially determines the output voltage ripple. The output ripple  
is previously chosen to be less than 2% of V and is relatively independent of  
O
the output capacitor characteristics. Since output voltage ripple is set by the  
comparator hysteresis band, the output capacitor is chosen to provide  
satisfactory response to fast load transients.  
To show the importance of the output capacitor characteristics, consider the  
following: This example circuit is designed for a worst case load step of no load  
(0 Amps) to full load (6 Amps) with a slew rate of 30 A/µs. For a transient of  
thisslewrate, theoutputfilteralonecontrolstheinitialoutputvoltagedeviation.  
Further examination shows that the output filter inductor current changes little  
during the load transient. Therefore, for fast load transients, the output  
capacitor characteristics dominate the output filter performance. In this  
design, the output capacitor’s ESR (equivalent series resistance) and ESL  
(equivalent series inductance) are the parameters that are most critical.  
To calculate the ESR requirement, assume that all the load transient current  
is supplied by the output capacitor. Also assume that the output voltage  
change due to the capacitor’s capacitance is much smaller than the voltage  
change due to the ESR, and that the capacitor’s ESL is negligible. In most  
practical applications, these assumptions are reasonable and they greatly  
simplify calculations. The ESR required to limit output voltage change to  
100 mV due to a 6 amp load step is:  
DV  
O
100 mV  
6 A  
ESR v  
+
+ 16.7 mW  
DI  
O
The required level of ESR requires a large amount of capacitance. For this  
design, four Sanyo POSCAP type electrolytic capacitors connected in parallel  
are selected. These capacitors are a good compromise between  
performance, cost, and board area requirements. The particular part used is  
an 150-µF, 4-V capacitor with a specified maximum ESR of 45 mΩ, giving a  
total maximum ESR of 11.25 m. These capacitors are C10, C11, C12, and  
C13 in Figure 1–3. For good design practice, C14, a 10-µF ceramic capacitor,  
is placed in parallel with C10–C13. Ceramic capacitors are very effective for  
suppressing high frequency switching spikes and reducing the effects of the  
ESL of C10–C13.  
To summarize, the output capacitance must be selected to provide a  
sufficiently low ESR. The capacitor(s) must have an adequate voltage rating  
Design Procedure  
2-15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
External Component Selection  
for the particular application. In addition, the capacitor(s) must have an ample  
ripple current rating to handle the applied ripple current. This ripple current is  
dependent on the ripple current in the output inductance that is calculated in  
the next section. The RMS current in the output capacitance is calculated as  
follows for 3.3 V output:  
Ǹ
3
6
I
+ DI   
+ DI   0.289 + 7.3 A   0.289 + 2.1 A  
CRMS  
L
L
RMS  
Where I is the peak-to-peak ripple current in the output inductor.  
L
The ripple current rating for one of these capacitors is 1.7 A RMS at 45°C. The  
total ripple current rating for the output capacitance is 4 × 1.7 = 6.8 A RMS as-  
suming that each cap shares equally. Poor layout may cause one or more of  
the caps to take an unequal share.  
2.2.3.2 Output Inductance  
The output filter inductance is the next quantity to be determined. Like the out-  
put capacitance selection, the primary consideration is providing satisfactory  
response to a fast load transient.  
The inductance affects the output voltage response to transient loads by  
governing the rate at which its current can increase (or decrease). For  
example, during a load transient where the output current increases from no  
load to full load, the output capacitor supplies all of the output current until the  
inductor current has time to increase to full load. So, a relatively small  
inductance is desired.  
On the other hand, the inductance also plays a part in the power supply  
switchingfrequency, because the inductance limits how fast the outputvoltage  
traverses through the hysteresis band. As the inductance decreases, the  
output voltage changes faster, giving rise to higher switching frequencies.  
Therefore, the inductor value is fairly critical and should be stable over the  
expected load and temperature range. Care should be exercised in the  
inductance selection because design requirements for hysteretic regulators  
are different from PWM controlled converters. Recall that for a fixed frequency  
PWM controlled buck converter, for a given operating point, the output  
inductance governs the peak-to-peak amplitude and the slope (di/dt) of the  
inductor current. In a hysteretic regulator, the ripple current is set by the output  
voltage ripple setting and the output capacitance impedance.  
Other important factors to be considered when designing or selecting the  
inductor are current capability, allowable operating frequency, and dc  
resistance.  
After choosing an initial inductance value, the power supply switching  
frequency must be estimated to insure that it is within the desired range. The  
switching frequency for the example design given in Figure 1–3 is nominally  
135 kHz for 5-V input and a 3.3-V output. A detailed analysis of the switching  
frequency and an equation to predict it is given later.  
To calculate the maximum inductance allowed for a given response time, load  
step, and operating point, the following simple relationship is used:  
2-16  
Download from Www.Somanuals.com. All Manuals Search And Download.  
External Component Selection  
I
V
TRAN  
Dt  
L
V + L   
å L v  
  Dt  
L
I
TRAN  
Where:  
V = the voltage applied across the output inductor,  
L
I
= the magnitude of the load step, and  
TRAN  
t = the desired response time.  
For a load step from light load to heavy load, the voltage applied across the  
inductor can be assumed to be V – V . This also assumes that the duty cycle  
I
O
is 100% as the output voltage is corrected. Alternatively, for a load step from  
heavy load to light load, the voltage across the inductor can be assumed to be  
V . This assumes that the duty cycle is 0% as the output voltage is corrected.  
O
For the example circuit described here, the condition which gives the smallest  
inductor value is a load step from light load to heavy load for a 3.3-V output.  
This is because the voltage applied to the output inductor is the lowest, i.e.,  
the input voltage minus the output voltage. For this case, allowing 5 µs for the  
inductor current to change, an inductance value is calculated as follows:  
V
53.3  
6
L
6  
L v  
  Dt +  
  5   10 + 1.4 mH  
I
TRAN  
For convenience, a 1.5-µH inductor was designed for this circuit.  
Figures 3–10, 3–19, 3–28, and 3–37 illustrate satisfactory transient load per-  
formance for the output filter values selected in this and the previous sections.  
2.2.4 Switching Frequency Analysis  
After the elements of the output filter are determined, the power supply  
switching frequency must be estimated. If the estimated switching frequency  
is too high, the switching losses in the power MOSFETs will be high, resulting  
in less than optimum efficiency. If the estimated switching frequency is too low,  
the inductor value may be too high, resulting in unsatisfactory transient  
response. A switching frequency outside the desired range should be  
corrected by changing either the output ripple setting, the output capacitance,  
or the output inductance.  
To accurately predict the switching frequency of a hysteretic regulator, the  
output voltage ripple must be investigated. This should be expected, since the  
power supply switching instants are based upon the state of the output  
voltage. Asimpleandaccuratemethodofdeterminingtheswitchingfrequency  
is described below.  
2.2.4.1 Output Ripple  
The three elements of the capacitor that contribute to ripple are ESR, ESL, and  
capacitance. Assume that all three elements are in series and there are no  
other parasitic components to consider. Figure 2–6 shows the voltage  
waveforms across each component of the output capacitor and the  
corresponding equations.  
Design Procedure  
2-17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
External Component Selection  
Figure 2–6. Output Ripple Voltage Detail  
(a)  
(b)  
Current waveform through output capacitor  
I
AC  
Voltage waveform across ideal capacitor with initial value at  
beginning of high-side MOSFET on-time  
∆Ι  
t
(a)  
(b)  
High-side MOSFET ON  
2
High-side MOSFET OFF  
V
C
2
DI   t  
DI   t  
DI   t  
DI   t  
V
+
V
+
C
C
2   Co   D   Ts 2   Co  
2   Co 2   Co   (1–D)   Ts  
t
t
V
ESR  
(c)  
Voltage waveform across ESR  
High-side MOSFET ON  
High-side MOSFET OFF  
(c)  
DI   t  
DI  
2
DI   t  
DI  
V
+ ESR   
V
+ ESR   
ESR  
D   Ts  
ESR  
V
2
(1–D)   Ts  
V
ESL  
(d)  
Voltage waveform across ESL  
t
t
(d)  
t
High-side MOSFET ON  
High-side MOSFET OFF  
V
del  
ripple  
ESL   DI  
ESL   DI  
V
+
+ –  
ESL  
D   Ts  
ESL  
(1–D)   Ts  
Vp–p  
yst  
H
(e)  
Composite output voltage ripple waveform  
t
del  
(e)  
t
V
+ V ) V  
) V  
ripple  
C
ESR  
ESL  
t
off  
on  
T
s
Figures 3–6, 3–15, 3–24, and 3–33 show the phase voltage (voltage at  
junction of high-side MOSFET with low-side MOSFET), and output voltage  
ripple waveforms for the example circuit of Figure 1–3. The output voltage  
waveform is slightly different from the theoretical waveform of Figure 2–6(e)  
due to the smoothing effect of the 10-µF ceramic capacitor in parallel with the  
electrolytic capacitors.  
2.2.4.2 Switching Frequency Equation  
Assume that the input and output voltage ripple magnitudes are relatively  
negligible compared to the dc component. Also assume that the time constant  
L/(R +R ),whereListheoutputinductance,R istheinductorresistance  
DS(on)  
L
L
and R  
is the on-state resistance of the high-side MOSFET(s), is high in  
DS(on)  
comparisonwiththeswitchingperiod. Assumethebodydiodeconductiontime  
and switching transition time are much smaller than the switching period.  
These assumptions are reasonable for low voltage ripple and high efficiency  
regulators. In such a case the output inductor current can be modeled as  
the sum of the dc component, which is equal to the output current Io, and  
the ac linear ramp component, which flows through the output capacitor  
[Figure 2–6(a)].  
The numbered equations in this section are used to derive the switching  
frequency equation.  
2-18  
Download from Www.Somanuals.com. All Manuals Search And Download.  
External Component Selection  
Peak to peak value of the inductor current I is given by the following equation:  
V – Io   ǒR  
) R Ǔ–V  
I
DS(on)  
L
L
O
(1)  
DI +  
  D   Ts  
Where:  
V =the input voltage  
I
V = the output voltage  
O
Ts = the switching period  
) Io   ǒR  
) R Ǔ  
V
O
DS(on)  
L
D +  
is the duty cycle which is defined as :  
V
I
t
ON  
Ts  
D +  
and t  
is the on time of the high-side MOSFET.  
ON  
Referring to Figure 2–6 (e), the output voltage ripple, V , is higher than the  
p-p  
hysteresis band, Hyst, because of the delays, t . Assumethatdelaysforboth  
del  
switching instants are equal for simplicity. The ideal capacitor voltage  
component has the same initial value during switching instants t  
and  
ON  
(Ts–t ) (see Figure 2–6 (b)). In this case the voltage V  
is:  
ON  
p-p  
ESL  
L
(2)  
V
+
  V ) DI   ESR  
p-p  
I
On the other hand, the hysteresis band is equal to the difference between the  
peak-peak values of the V ripple, v  
at the moments t  
– t  
del  
and  
O
ripple,  
ON  
t
– t  
OFF del  
(3)  
ǒt  
Ǔ* V ǒt  
Ǔ
Hyst + V  
* t  
* t  
ripple ON  
del  
ripple OFF  
del  
After substituting equation (1) into equations for v , v  
and v  
ESL  
C
ESR  
(Figure 2–6) and using equations (2) and (3), the following equation for the  
switching frequency, f , can be derived:  
S
  ǒV – V Ǔ ǒ  
ńCoǓ  
V
  ESR–t  
O
I
O
del  
(4)  
f +  
s
V   ǒV   ESR   t ) Hyst   L–ESL   V Ǔ  
I
I
del  
I
Equation(4)showsthattheswitchingfrequencystronglydependsonESRand  
ESL. It is important that ESL meet the following condition:  
ESL t ǒESR   t ) Hyst   L   D ń VoutǓ  
del  
If it does not, the voltage step across the ESL during switching exceeds the  
hysteresis window, and the switching frequency becomes too high and  
uncontrollable.  
The switching frequency does not depend on the load current in equation (4),  
becauseasynchronousregulatorhasthesametwostagesofoperationduring  
the switching period over the load current range, including no load condition.  
There is no discontinuous mode operation at very light loads. In reality there  
is a weak dependence of the switching frequency on the load current because  
Design Procedure  
2-19  
Download from Www.Somanuals.com. All Manuals Search And Download.  
External Component Selection  
of power losses and additional voltage drops through non-ideal components.  
Equation (4) should be sufficiently accurate for the first frequency estimate at  
the beginning of a design.  
2.2.5 Power MOSFET Selection  
The TPS56xx is designed to drive N-channel power MOSFETs in a  
synchronousrectifierconfiguration. TheMOSFETchosenforthisdesignisthe  
Siliconix Si4410DY. This device is chosen for its low r  
drain-to-source breakdown voltage rating of 30 V.  
of 13.5 mand  
DS(on)  
PowerdissipationfortheswitchingMOSFETs, whichincludesbothconduction  
and switching losses, is given by:  
2
  D ) ǒ0.5   V   I  
Ǔ
+ ǒI  
+ ǒI  
Ǔ
P
  r  
  t  
  f  
sw  
D (Q1)  
DS(on)  
i
O
r)f  
O
2
O
) ǒ0.5   V   I  
Ǔ
  1–D)Ǔ  
(
P
  r  
  t  
  f  
sw  
D (Q2)  
DS(on)  
i
O
r)f  
An example MOSFET power dissipation calculation for Q1 and Q3 is shown  
below with the following assumptions:  
The total switching time, t = 100 ns,  
r+f  
An r  
high temperature adjustment factor = 1.4,  
DS (on)  
A 60°C maximum ambient temperature,  
V = 5.0 V, V = 3.3 V, and I = 6 A then :  
I
O
O
2
9  
3
3
( )  
(
)
P
P
+ 6   0.0135   1.4   0.7 ) 0.5   5   6   100   10   135   10  
D (Q1)  
D (Q2)  
+ 0.48 ) 0.20 + 0.68 W  
2
9  
( )  
(
)
+ 6   0.0135   1.4   0.3 ) 0.5   5   6   100   10   135   10  
+ 0.20 ) 0.20 + 0.40 W  
The thermal impedance of these devices, R  
copper and a one-inch-square pattern, thus:  
= 90°C/W for FR-4 with 2-oz.  
θJA  
+ T ) ǒR  
Ǔ + 60 ) 50   0.90 + 94°C  
(
)
T
T
  P  
J (Q1)  
J (Q2)  
A
qJA  
+ T ) ǒR  
DǓ + 60 ) 50   1.40 + 80°C  
(
)
  P  
A
qJA  
D
It is good design practice to check power dissipation at the extreme limits of  
input voltage to find the worst case.  
2-20  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chapter 3  
Test Results  
This chapter shows the test setups used, and the test results obtained, in  
designing the SLVP111–114 EVMS.  
Topic  
Page  
3.1 Test Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
3.2 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
3.2 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7  
3-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Summary  
3.1 Test Summary  
The detailed test results and waveforms are presented in Figures 3–2 to 3–10  
for the SLVP111, Figures 3–11 to 3–19 for the SLVP112, Figures 3–20 to 3–28  
for the SLVP113 and Figures 3–29 to 3–37 for the SLVP114. The following are  
summarized results.  
3.1.1 Static Line and Load Regulation  
The precise reference voltage regulator implemented in the TPS56XX  
controller using both positive and negative remote sense pins provides  
excellent regulation characteristics. The load regulation from no load to  
6 amps load current does not exceed 0.26%. The line regulation is less than  
0.045% for the input voltage range from 4.5 V to 5.5 V. Line and load regulation  
is shown in Figures 3–2, 3–11, 3–20, and 3–29. The set point tolerance is less  
than 0.333%. The measured results have a good margin for high volume  
production.  
3.1.2 Output Voltage Ripple  
The output voltage peak to peak ripple is less than ±1%. This is a typical value  
but it can be optimized for lower ripple applications. Measured output ripple  
waveforms are shown in Figures 3–6, 3–15, 3–24, and 3–33.  
The output filter for this EVM design is optimized for fast transient response  
due to the high slew-rate load current transitions. Therefore, the output filter  
is not optimized for low ripple and has a moderate amount of output ripple.  
3.1.3 Efficiency and Power Losses  
Efficiency and power losses for 5 V input voltage and maximum output current  
6 A are presented in the following table:  
Evaluation Board  
SLVP111, 3.3V  
SLVP112, 2.5V  
SLVP113, 1.8V  
SLVP114, 1.5V  
Efficiency, %  
Power Losses, W  
90  
2.2  
86.4  
83.2  
79.8  
2.37  
2.18  
2.27  
Efficiency graphs versus load and at different line voltages are shown in  
Figures 3–3, 3–12, 3–21, and 3–30.  
Low power loss in each component decreases their temperature rise and  
improves long term reliability. The EVMs do not require forced air cooling at  
room temperature with good margin.  
3.1.4 Output Start-Up and Overshoot  
All possible start-up combinations are tested and waveforms are presented.  
Output voltage rise time does not depend on the load current and ramps up  
3-2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Summary  
in a linear fashion. There is no discernable overshoot in the waveforms. In this  
application, output voltage rise time is set to approximately 9 mS with an  
external capacitor. Although the EVMs have been tested with a very short Vcc  
rise time, (see Figures 3–26 and 3–35) it is recommended to keep the rise time  
of Vcc longer than 3mS as shown in Figures 3–8 and 3–17.  
3.1.5 Frequency Variation  
The switching frequency for a hysteretic controller depends on the input and  
output voltages and the output filter characteristics. It has approximately the  
same frequency variation as constant OFF time controllers. The precise  
equationforswitchingfrequency, confirmedbyexperiment, ispresentedinTI’s  
application report Designing Fast Response Synchronous Buck Converters  
Using the TPS5210 and in the paper, represented at HFPC–98 A Fast,  
Efficient Synchronous-Buck Controller for Microprocessor Power Supplies  
The frequency variation over all input voltage and output current combinations  
is presented in the following table.  
Switching frequency graphs versus load at different line voltages are shown  
in Figures 3–5, 3–14, 3–23, and 3–32.  
Frequency Variation,  
Evaluation Board  
(kHz)  
SLVP111, 3.3 V  
SLVP112, 2.5 V  
SLVP113, 1.8 V  
SLVP114, 1.5 V  
97–175  
189–247  
262–312  
296–378  
3.1.6 Load Current Transient Response  
The hysteretic controller has excellent dynamic characteristics (see  
Figures 3–10, 3–19, 3–28 and 3–37) and does not require any feedback  
compensation circuitry. These figures show that the controller responds to a  
load transient within the same switching cycle as when the transient occurs.  
In addition, it is necessary to optimize the output filter to meet high slew-rate  
load current transient requirements thus saving money and board space by  
using only the fewest expensive bulk capacitors. Special attention should also  
be paid to high frequency decoupling within the output filter to control the initial  
transient voltage deviation because it does not depend on controller  
characteristics.  
3.1.7 Features  
The EVMs have all the features, which are described in detail in the datasheet  
for TPS56XX controller.  
The features include undervoltage lockout for both 12 V and 5 V input, inhibit  
signal, power good signal, overvoltage protection, slow start, remote sense,  
and overcurrent protection. Overcurrent limit is set to an 8 amp – 10 amp level.  
Test Results  
3-3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Summary  
3.1.8 Conclusion  
The test results of the SLVP111/112/113/114 EVMs demonstrate the  
advantages of TPS56xx controllers to meet stringent supply requirements to  
power supplies, especially for powering DSPs and microprocessors. The  
power system designer has a good solution to optimize system for his  
particular application. Detailed information how to design a dc-dc converter by  
using TPS56xx controller is represented in TI’s User’s Guide Synchronous  
Buck Converter Design Using TPS56xx Controllers in SLVP10x EVMs,  
Literature Number SLVU007 or Designing Fast Response Synchronous Buck  
Regulators Using the TPS5210, Literature Number SLVA044.  
3-4  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Setup  
3.2 Test Setup  
Follow these steps for initial power up of the SLVP112:  
1) Connect an electronic load from Vout to PwrGND (J1-15, -16,  
-17, -18 to J1-11, -12, -13, -14) adjusted to draw approximately  
1 A at 2.5 V. The exact current is not critical; any nominal current  
is sufficient. A fixed resistor can also be used in place of the  
electronic load. The output current drawn by the resistor is  
2.5 V  
I
+
amps where R is the value of the load resistor. The  
O
R
2
2.5  
R
  2 Watts.  
resistor power rating, P should be at least  
R
Connect the sense lines from the load to VsenseH and VsenseL  
(J1-4 and J1-2).  
2) Connect a 12-V lab power supply to the 12-V input (J1-7  
referenced to PwrGND, J1-8) of the SLVP112. A current limit set  
for 20 mA should be adequate for the controller’s power  
requirements.  
3) Connect another lab power supply to the 5 V dc input of the  
SLVP112 (J1-5, -6 referenced to Return, J1-9, -10). Verify that  
the current limit is set for at least 2 A and that it is set to 0 V.  
4) Turn on the 12-V lab supply. Turn on the 5-V power supply and  
ramp the input voltage up to 5 V. Once proper operation is  
verified, this order is not important.  
5) Verify that the SLVP112 output voltage (measured at the module  
output pins) is 2.5 V ± 0.025 V.  
6) For subsequent testing, ensure the lab supply output current  
capacity and current limit are at least 7 A so that the SLVP112  
can be operated at maximum load of 6 A.  
7) For initial power up of the other converters, replace any  
reference to 2.5 V in the above discussion with a reference to the  
appropriate output voltage.  
8) Refer to Chapter 3 for selected typical waveforms and operating  
conditions for verification of proper module operation.  
Figure 3–1 shows the SLVP112 test setup.  
Test Results  
3-5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Setup  
Figure 3–1. Test Setup  
5V Power Supply  
+
– +  
+
Load  
12-V Power Supply  
3-6  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
3.3 Test Results  
Figures 3–2 to 3–102 show test results for the SLVP111.  
Figure 3–2. SLVP111 Measured Load Regulation  
SLVP111 MEASURED LOAD REGULATION  
3.305  
3.3  
3.295  
Vin = 5 V  
Vin = 5.5 V  
3.29  
Vin = 4.5 V  
3.285  
0
1
2
3
4
5
6
I
O
– A  
Figure 3–3. SLVP111Measured Efficiency  
SLVP111 MEASURED EFFICIENCY  
94  
92  
90  
88  
86  
84  
82  
Vin = 5 V  
Vin = 4.5 V  
Vin = 5.5 V  
1
2
3
4
5
6
I
O
– A  
Test Results  
3-7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–4. SLVP111Measured Power Dissipation  
SLVP111 MEASURED POWER DISSIPATION  
2.5  
2
1.5  
1
Vin = 4.5 V  
Vin = 5 V  
Vin = 5.5 V  
0.5  
0
0
1
2
3
– A  
4
5
6
I
O
Figure 3–5. SLVP111Measured Switching Frequency  
SLVP111 MEASURED SWITCHING FREQUENCY  
200  
175  
150  
Vin = 5.5 V  
Vin = 5 V  
125  
100  
Vin = 4.5 V  
75  
50  
0
1
2
3
4
5
6
I
O
– A  
3-8  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–6. SLVP111 Measured Switching Waveforms  
C3 Pk–Pk  
50.8 mV  
C3 Frequency  
130.088 kHz  
Low Signal  
Amplitude  
V
O
20 mV/div  
V
Q2  
DS  
2 V/div  
C4 Max  
5.20 V  
C4 + Duty  
70.4%  
2.5 µs/div  
Figure 3–7. SLVP111Measured Start-Up (INHIBIT) Waveforms  
V
C3 Pk–Pk  
3.36 V  
O
2 V/div  
C3 Rise  
7.500 ms  
Low Signal  
Amplitude  
INHIBIT  
1 V/div  
C3 + Over  
2.5%  
2.5 ms/div  
Test Results  
3-9  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–8. SLVP111 Measured Start-Up (V ) Waveforms  
CC  
C3 Pk–Pk  
3.36 V  
V
O
2 V/div  
C3 Rise  
7.300 ms  
Low Signal  
Amplitude  
V
(12 V)  
CC  
5 V/div  
C3 + Over  
2.5%  
UVLO  
Threshold  
2.5 ms/div  
Figure 3–9. SLVP111Measured Start-Up (V ) Waveforms  
IN  
C3 Pk–Pk  
3.52 V  
V
O
2 V/div  
C3 Rise  
8.540 ms  
Low Signal  
Amplitude  
V
(5 V)  
IN  
1 V/div  
C3 + Over  
2.4%  
2.5 ms/div  
3-10  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–10. SLVP111 Measured Load Transient Waveforms  
V
O
100 mV/div  
C3 Pk–Pk  
208 mV  
C2 High  
6.5 V  
I
O
5 A/div  
6.5 A  
2.5 µs/div  
Figure 3–11. SLVP112 Measured Load Regulation  
SLVP112 MEASURED LOAD REGULATION  
2.51  
Vin = 5 V  
Vin = 5.5 V  
Vin = 4.5 V  
2.505  
2.5  
2.495  
0
1
2
3
4
5
6
I
O
– A  
Test Results  
3-11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–12. SLVP112 Measured Efficiency  
SLVP111 MEASURED EFFICIENCY  
90  
88  
86  
84  
82  
80  
78  
Vin = 4.5 V  
Vin = 5 V  
Vin = 5.5 V  
1
2
3
4
5
6
I
O
– A  
Figure 3–13. SLVP112 Measured Power Dissipation  
SLVP111 MEASURED POWER DISSIPATION  
2.5  
2
1.5  
1
Vin = 5.5 V  
Vin = 5 V  
Vin = 4.5 V  
0.5  
0
0
1
2
3
4
5
6
I
O
– A  
3-12  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–14. SLVP112 Measured Switching Frequency  
SLVP112 MEASURED SWITCHING FREQUENCY  
300  
275  
250  
Vin = 5.5 V  
Vin = 5 V  
225  
Vin = 4.5 V  
200  
175  
150  
0
1
2
3
4
5
6
I
O
– A  
Figure 3–15. SLVP112 Measured Switching Waveforms  
C3 Pk–Pk  
43.2 mV  
C3 Frequency  
218.800 kHz  
Low Signal  
Amplitude  
V
O
V
Q2  
DS  
2 V/div  
20 mV/div  
C4 Max  
5.72 V  
C3 + Duty  
54.2%  
2.5 µs/div  
Test Results  
3-13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–16. SLVP112 Measured Start-Up (INHIBIT) Waveforms  
V
O
1 V/div  
C3 Pk–Pk  
2.64 V  
C3 Rise  
7.885 ms  
INHIBIT  
1 V/div  
C3 + Over  
3.2%  
2.5 ms/div  
Figure 3–17. SLVP112 Measured Start-Up (V ) Waveforms  
CC  
C3 Pk–Pk  
2.56 V  
V
O
2 V/div  
C3 Rise  
7.995 ms  
V
(12 V)  
CC  
5 V/div  
C3 + Over  
3.3%  
UVLO  
Threshold  
2.5 ms/div  
3-14  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–18. SLVP112 Measured Start-Up (V ) Waveforms  
IN  
C3 Pk–Pk  
2.60 V  
V
O
1 V/div  
C3 Rise  
7.635 ms  
V
(5 V)  
IN  
1 V/div  
C3 + Over  
3.2%  
2.5 ms/div  
Figure 3–19. SLVP112 Measured Load Transient Waveforms  
V
O
100 mV/div  
C3 Pk–Pk  
200 mV  
C2 High  
7.00 V  
I
O
2 A/div  
5 A  
25 µs/div  
Test Results  
3-15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–20. SLVP113 Measured Load Regulation  
SLVP113 MEASURED LOAD REGULATION  
1.805  
Vin = 5 V  
Vin = 5.5 V  
1.8025  
Vin = 4.5 V  
1.8  
1.7975  
1.795  
0
1
2
3
4
5
6
I
O
– A  
Figure 3–21. SLVP113 Measured Efficiency  
SLVP113 MEASURED EFFICIENCY  
Vin = 4.5 V  
88  
86  
84  
82  
80  
78  
Vin = 5 V  
Vin = 5.5 V  
76  
74  
72  
1
2
3
4
5
6
I
O
– A  
3-16  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–22. SLVP113 Measured Power Dissipation  
SLVP113 MEASURED POWER DISSIPATION  
2.5  
2
1.5  
1
Vin = 5.5 V  
Vin = 4.5 V  
Vin = 5 V  
0.5  
0
0
1
2
3
4
5
6
I
O
– A  
Figure 3–23. SLVP113 Measured Switching Frequency  
SLVP113 MEASURED SWITCHING FREQUENCY  
350  
325  
300  
Vin = 5.5 V  
Vin = 5 V  
275  
Vin = 4.5 V  
250  
225  
200  
175  
150  
0
1
2
3
4
5
6
I
O
– A  
Test Results  
3-17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–24. SLVP113 Measured Switching Waveforms  
C3 Pk–Pk  
34.8 mV  
C3 Frequency  
285.52 kHz  
Low Signal  
Amplitude  
V
O
20 mV/div  
V
Q2  
DS  
2 V/div  
C5 Max  
5.80 V  
C4 + Duty  
40.4%  
1 µs/div  
Figure 3–25. SLVP113 Measured Start-Up (INHIBIT) Waveforms  
C3 Pk–Pk  
1.88 V  
V
O
1 V/div  
C3 Rise  
7.360 ms  
Low Signal  
Amplitude  
INHIBIT  
1 V/div  
C3 + Over  
2.3%  
2.5 ms/div  
3-18  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–26. SLVP113 Measured Start-Up (V ) Waveforms  
CC  
C3 Pk–Pk  
1.84 V  
V
O
2 V/div  
C3 Rise  
7.195 ms  
Low Signal  
Amplitude  
V
(12 V)  
CC  
5 V/div  
C3 + Over  
2.3%  
2.5 ms/div  
Figure 3–27. SLVP113 Measured Start-Up (V ) Waveforms  
IN  
C3 Pk–Pk  
1.88 V  
V
O
1 V/div  
C3 Rise  
8.300 ms  
Low Signal  
Amplitude  
V
(5 V)  
IN  
1 V/div  
C3 + Over  
2.2%  
2.5 ms/div  
Test Results  
3-19  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–28. SLVP113 Measured Load Transient Waveforms  
V
O
C3 Pk–Pk  
112 mV  
100 mV/div  
C2 High  
3.64 V  
I
O
5 A/div  
3.6 A  
25 µs/div  
Figure 3–29. SLVP114 Measured Load Regulation  
SLVP114 MEASURED LOAD REGULATION  
1.5  
1.499  
1.498  
1.497  
1.496  
1.495  
1.494  
1.493  
1.492  
Vin = 5 V  
Vin = 5.5 V  
Vin = 4.5 V  
1.491  
1.49  
0
1
2
3
4
5
6
I
O
– A  
3-20  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–30. SLVP114 Measured Efficiency  
SLVP114 MEASURED EFFICIENCY  
85  
Vin = 4.5 V  
Vin = 5 V  
83  
81  
79  
77  
75  
73  
71  
69  
Vin = 5.5 V  
67  
65  
1
2
3
4
5
6
I
O
– A  
Figure 3–31. SLVP114 Measured Power Dissipation  
SLVP114 MEASURED POWER DISSIPATION  
2.5  
2
Vin = 5.5 V  
1.5  
1
Vin = 5 V  
Vin = 4.5 V  
0.5  
0
0
1
2
3
4
5
6
I
O
– A  
Test Results  
3-21  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–32. SLVP114 Measured Switching Frequency  
SLVP114 MEASURED SWITCHING FREQUENCY  
400  
375  
Vin = 5.5 V  
350  
Vin = 5 V  
325  
300  
Vin = 4.5 V  
275  
250  
225  
200  
0
1
2
3
4
5
6
I
O
– A  
Figure 3–33. SLVP114 Measured Switching Waveforms  
C3 Pk–Pk  
30.8 mV  
C3 Frequency  
337.82 kHz  
Low Signal  
Amplitude  
V
O
V
Q2  
DS  
2 V/div  
20 mV/div  
C4 Max  
7.44 V  
C4 + Duty  
36.2%  
1 µs/div  
3-22  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–34. SLVP114 Measured Start-Up (INHIBIT) Waveforms  
C3 Pk–Pk  
1.56 V  
V
O
1 V/div  
C3 Rise  
6.990 ms  
Low Signal  
Amplitude  
INHIBIT  
1 V/div  
C3 + Over  
2.8%  
2.5 ms/div  
Figure 3–35. SLVP114 Measured Start-Up (V ) Waveforms  
CC  
C3 Pk–Pk  
1.56 V  
V
O
1 V/div  
C3 Rise  
7.090 ms  
Low Signal  
Amplitude  
V
(12 V)  
CC  
5 V/div  
C3 + Over  
2.8%  
2.5 ms/div  
Test Results  
3-23  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Results  
Figure 3–36. SLVP114 Measured Start-Up (V ) Waveforms  
IN  
C3 Pk–Pk  
1.56 V  
V
O
1 V/div  
C3 Rise  
7.07 ms  
Low Signal  
Amplitude  
V
(5 V)  
IN  
1 V/div  
C3 + Over  
2.7%  
2.5 ms/div  
Figure 3–37. SLVP114 Measured Load Transient Waveforms  
V
O
50 mV/div  
C3 Pk–Pk  
108 mV  
C2 High  
3.08 V  
I
O
2 A/div  
3 A  
25 µs/div  
3-24  
Download from Www.Somanuals.com. All Manuals Search And Download.  

Targus Network Card APP20US User Manual
TDK Network Card HHM Series HHM2208SB1 User Manual
Tecumseh Fan OV195EA User Manual
Tektronix Sprinkler 2236 User Manual
TOA Electronics Musical Instrument WM 4210 User Manual
Toastmaster Espresso Maker MEX6B User Manual
Toro Computer Accessories V100 User Manual
Toshiba Camcorder MK1231GAS User Manual
Toshiba CRT Television 32AF53 User Manual
Toshiba Projection Television 62HM195 User Manual