Texas Instruments Network Router SM320F2812 HT User Manual

SM320F2812-HT  
Digital Signal Processor  
Data Manual  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Literature Number: SGUS062A  
June 2009Revised April 2010  
Download from Www.Somanuals.com. All Manuals Search And Download.  
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
4
Peripherals ....................................................................................................................... 52  
4.1  
32-Bit CPU-Timers 0/1/2 ................................................................................................. 52  
Event Manager Modules (EVA, EVB) ................................................................................... 55  
4.2  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.2.6  
4.2.7  
4.2.8  
4.2.9  
General-Purpose (GP) Timers ................................................................................ 58  
Full-Compare Units ............................................................................................. 58  
Programmable Deadband Generator ........................................................................ 58  
PWM Waveform Generation .................................................................................. 58  
Double Update PWM Mode ................................................................................... 58  
PWM Characteristics ........................................................................................... 59  
Capture Unit ..................................................................................................... 59  
Quadrature-Encoder Pulse (QEP) Circuit ................................................................... 59  
External ADC Start-of-Conversion ........................................................................... 59  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
Enhanced Analog-to-Digital Converter (ADC) Module ............................................................... 60  
Enhanced Controller Area Network (eCAN) Module .................................................................. 65  
Multichannel Buffered Serial Port (McBSP) Module .................................................................. 69  
Serial Communications Interface (SCI) Module ....................................................................... 73  
Serial Peripheral Interface (SPI) Module ............................................................................... 76  
GPIO MUX ................................................................................................................. 79  
5
6
Development Support ........................................................................................................ 82  
5.1  
Device and Development Support Tool Nomenclature ............................................................... 82  
Documentation Support ................................................................................................... 83  
5.2  
Electrical Specifications ..................................................................................................... 85  
6.1  
Absolute Maximum Ratings .............................................................................................. 85  
Recommended Operating Conditions .................................................................................. 86  
6.2  
6.3  
6.4  
Electrical Characteristics ................................................................................................. 86  
Current Consumption by Power-Supply Pins Over Recommended Operating Conditions During  
Low-Power Modes at 150-MHz SYSCLKOUT ......................................................................... 88  
6.5  
6.6  
6.7  
6.8  
6.9  
Current Consumption Graphs ............................................................................................ 89  
Reducing Current Consumption ......................................................................................... 90  
Power Sequencing Requirements ....................................................................................... 90  
Signal Transition Levels .................................................................................................. 91  
Timing Parameter Symbology ........................................................................................... 92  
6.10 General Notes on Timing Parameters .................................................................................. 93  
6.11 Test Load Circuit .......................................................................................................... 93  
6.12 Device Clock Table ........................................................................................................ 94  
6.13 Clock Requirements and Characteristics ............................................................................... 94  
6.13.1 Input Clock Requirements ..................................................................................... 94  
6.13.2 Output Clock Characteristics .................................................................................. 95  
6.14 Reset Timing ............................................................................................................... 96  
6.15 Low-Power Mode Wakeup Timing ..................................................................................... 100  
6.16 Event Manager Interface ................................................................................................ 104  
6.16.1 PWM Timing ................................................................................................... 104  
6.16.2 Interrupt Timing ................................................................................................ 106  
6.17 General-Purpose Input/Output (GPIO) – Output Timing ............................................................ 107  
6.18 General-Purpose Input/Output (GPIO) – Input Timing .............................................................. 108  
6.19 SPI Master Mode Timing ................................................................................................ 109  
Copyright © 2009–2010, Texas Instruments Incorporated  
Contents  
3
Download from Www.Somanuals.com. All Manuals Search And Download.  
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
6.20 SPI Slave Mode Timing ................................................................................................. 113  
6.21 External Interface (XINTF) Timing ..................................................................................... 117  
6.22 XINTF Signal Alignment to XCLKOUT ................................................................................ 121  
6.23 External Interface Read Timing ........................................................................................ 122  
6.24 External Interface Write Timing ........................................................................................ 123  
6.25 External Interface Ready-on-Read Timing With One External Wait State ....................................... 125  
6.26 External Interface Ready-on-Write Timing With One External Wait State ........................................ 128  
6.27 XHOLD and XHOLDA ................................................................................................... 131  
6.28 XHOLD/XHOLDA Timing ............................................................................................... 132  
6.29 On-Chip Analog-to-Digital Converter .................................................................................. 134  
6.29.1 ADC Absolute Maximum Ratings ........................................................................... 134  
6.29.2 ADC Electrical Characteristics Over Recommended Operating Conditions ........................... 135  
6.29.3 Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK) ...................... 136  
6.29.4 ADC Power-Up Control Bit Timing .......................................................................... 137  
6.29.5 Detailed Description .......................................................................................... 138  
6.29.5.1 Reference Voltage ................................................................................ 138  
6.29.5.2 Analog Inputs ..................................................................................... 138  
6.29.5.3 Converter .......................................................................................... 138  
6.29.5.4 Conversion Modes ............................................................................... 138  
6.29.6 Sequential Sampling Mode (Single Channel) (SMODE = 0) ............................................ 138  
6.29.7 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1) .......................................... 140  
6.29.8 Definitions of Specifications and Terminology ............................................................. 141  
6.29.8.1 Integral Nonlinearity .............................................................................. 141  
6.29.8.2 Differential Nonlinearity .......................................................................... 141  
6.29.8.3 Zero Offset ........................................................................................ 141  
6.29.8.4 Gain Error ......................................................................................... 141  
6.29.8.5 Signal-to-Noise Ratio + Distortion (SINAD) ................................................... 141  
6.29.8.6 Effective Number of Bits (ENOB) ............................................................... 141  
6.29.8.7 Total Harmonic Distortion (THD) ............................................................... 141  
6.29.8.8 Spurious Free Dynamic Range (SFDR) ....................................................... 141  
6.30 Multichannel Buffered Serial Port (McBSP) Timing ................................................................. 142  
6.30.1 McBSP Transmit and Receive Timing ...................................................................... 142  
6.30.2 McBSP as SPI Master or Slave Timing .................................................................... 145  
6.31 Flash Timing .............................................................................................................. 149  
6.31.1 Recommended Operating Conditions ...................................................................... 149  
Mechanical Data .............................................................................................................. 151  
7
4
Contents  
Copyright © 2009–2010, Texas Instruments Incorporated  
Download from Www.Somanuals.com. All Manuals Search And Download.  
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
List of Figures  
2-1  
SM320F2812 Die Layout........................................................................................................ 15  
SM320F2812 172-Pin HFG CQFP (Top View)............................................................................... 16  
Functional Block Diagram ....................................................................................................... 28  
F2812 Memory Map (See Notes A. Through G.) ............................................................................ 28  
External Interface Block Diagram .............................................................................................. 40  
Interrupt Sources ................................................................................................................. 42  
Multiplexing of Interrupts Using the PIE Block ............................................................................... 43  
Clock and Reset Domains ...................................................................................................... 46  
OSC and PLL Block.............................................................................................................. 48  
Recommended Crystal/Clock Connection .................................................................................... 49  
Watchdog Module ................................................................................................................ 50  
CPU-Timers ....................................................................................................................... 52  
CPU-Timer Interrupts Signals and Output Signal (See Notes A. and B.)................................................. 53  
Event Manager A Functional Block Diagram (See Note A.)................................................................ 58  
Block Diagram of the F2812 ADC Module .................................................................................... 61  
ADC Pin Connections With Internal Reference (See Notes A and B)..................................................... 62  
ADC Pin Connections With External Reference ............................................................................. 63  
eCAN Block Diagram and Interface Circuit ................................................................................... 66  
eCAN Memory Map .............................................................................................................. 67  
McBSP Module With FIFO ...................................................................................................... 70  
Serial Communications Interface (SCI) Module Block Diagram............................................................ 75  
Serial Peripheral Interface Module Block Diagram (Slave Mode).......................................................... 78  
GPIO/Peripheral Pin Multiplexing .............................................................................................. 81  
28x Device Nomenclature....................................................................................................... 83  
SM320F2812-HT Life Expectancy Curve ..................................................................................... 87  
Typical Current Consumption Over Frequency............................................................................... 89  
Typical Power Consumption Over Frequency................................................................................ 90  
F2812 Typical Power-Up and Power-Down Sequence – Option 2 ........................................................ 91  
Output Levels ..................................................................................................................... 92  
Input Levels ....................................................................................................................... 92  
3.3-V Test Load Circuit .......................................................................................................... 93  
Clock Timing ...................................................................................................................... 96  
Power-on Reset in Microcomputer Mode (XMP/MC = 0) (See Note A)................................................... 98  
Power-on Reset in Microprocessor Mode (XMP/MC = 1)................................................................... 99  
Warm Reset in Microcomputer Mode.......................................................................................... 99  
Effect of Writing Into PLLCR Register ......................................................................................... 99  
IDLE Entry and Exit Timing.................................................................................................... 100  
STANDBY Entry and Exit Timing ............................................................................................. 102  
HALT Wakeup Using XNMI ................................................................................................... 104  
PWM Output Timing............................................................................................................ 105  
TDIRx Timing.................................................................................................................... 106  
EVASOC Timing ................................................................................................................ 106  
EVBSOC Timing ................................................................................................................ 106  
External Interrupt Timing....................................................................................................... 107  
General-Purpose Output Timing .............................................................................................. 108  
GPIO Input Qualifier – Example Diagram for QUALPRD = 1............................................................. 108  
2-2  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
3-9  
4-1  
4-2  
4-3  
4-4  
4-5  
4-6  
4-7  
4-8  
4-9  
4-10  
4-11  
4-12  
5-1  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
6-8  
6-9  
6-10  
6-11  
6-12  
6-13  
6-14  
6-15  
6-16  
6-17  
6-18  
6-19  
6-20  
6-21  
6-22  
Copyright © 2009–2010, Texas Instruments Incorporated  
List of Figures  
5
Download from Www.Somanuals.com. All Manuals Search And Download.  
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
6-23  
6-24  
6-25  
6-26  
6-27  
6-28  
6-29  
6-30  
6-31  
6-32  
6-33  
6-34  
6-35  
6-36  
6-37  
6-38  
6-39  
6-40  
6-41  
6-42  
6-43  
6-44  
6-45  
6-46  
General-Purpose Input Timing ................................................................................................ 109  
SPI Master Mode External Timing (Clock Phase = 0) ..................................................................... 110  
SPI Master External Timing (Clock Phase = 1)............................................................................. 112  
SPI Slave Mode External Timing (Clock Phase = 0)....................................................................... 114  
SPI Slave Mode External Timing (Clock Phase = 1)....................................................................... 116  
Relationship Between XTIMCLK and SYSCLKOUT ....................................................................... 120  
Example Read Access ......................................................................................................... 122  
Example Write Access ......................................................................................................... 124  
Example Read With Synchronous XREADY Access ...................................................................... 126  
Example Read With Asynchronous XREADY Access ..................................................................... 127  
Write With Synchronous XREADY Access.................................................................................. 129  
Write With Asynchronous XREADY Access ................................................................................ 130  
External Interface Hold Waveform............................................................................................ 132  
XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK).................................................. 133  
ADC Analog Input Impedance Model ........................................................................................ 137  
ADC Power-Up Control Bit Timing ........................................................................................... 137  
Sequential Sampling Mode (Single-Channel) Timing ...................................................................... 139  
Simultaneous Sampling Mode Timing ....................................................................................... 140  
McBSP Receive Timing........................................................................................................ 144  
McBSP Transmit Timing ....................................................................................................... 144  
McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0................................................... 145  
McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0................................................... 146  
McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1................................................... 147  
McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1................................................... 148  
6
List of Figures  
Copyright © 2009–2010, Texas Instruments Incorporated  
Download from Www.Somanuals.com. All Manuals Search And Download.  
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
List of Tables  
2-1  
Hardware Features............................................................................................................... 14  
Bare Die Information ............................................................................................................. 15  
Signal Descriptions .............................................................................................................. 17  
Addresses of Flash Sectors in F2812 ......................................................................................... 29  
Wait States ........................................................................................................................ 30  
Boot Mode Selection............................................................................................................. 33  
Peripheral Frame 0 Registers .................................................................................................. 37  
Peripheral Frame 1 Registers .................................................................................................. 37  
Peripheral Frame 2 Registers .................................................................................................. 38  
Device Emulation Registers..................................................................................................... 39  
XINTF Configuration and Control Register Mappings ....................................................................... 41  
XREVISION Register Bit Definitions........................................................................................... 41  
PIE Peripheral Interrupts ....................................................................................................... 43  
PIE Configuration and Control Registers ..................................................................................... 44  
External Interrupts Registers ................................................................................................... 45  
PLL, Clocking, Watchdog, and Low-Power Mode Registers .............................................................. 47  
PLLCR Register Bit Definitions................................................................................................. 48  
Possible PLL Configuration Modes ............................................................................................ 49  
F2812 Low-Power Modes ....................................................................................................... 51  
CPU-Timers 0, 1, 2 Configuration and Control Registers................................................................... 54  
Module and Signal Names for EVA and EVB ................................................................................ 55  
EVA Registers ................................................................................................................... 56  
ADC Registers ................................................................................................................... 64  
3.3-V eCAN Transceivers for the SM320F2812 DSP ....................................................................... 66  
CAN Registers Map ............................................................................................................. 68  
McBSP Register Summary...................................................................................................... 71  
SCI-A Registers .................................................................................................................. 74  
SCI-B Registers .................................................................................................................. 74  
SPI Registers .................................................................................................................... 77  
GPIO Mux Registers ............................................................................................................ 79  
GPIO Data Registers ............................................................................................................ 80  
Typical Current Consumption by Various Peripherals (at 150 MHz) ..................................................... 90  
Recommended Low-Dropout Regulators ..................................................................................... 91  
Clock Table and Nomenclature................................................................................................. 94  
Input Clock Frequency .......................................................................................................... 94  
XCLKIN Timing Requirements – PLL Bypassed or Enabled .............................................................. 95  
XCLKIN Timing Requirements – PLL Disabled .............................................................................. 95  
Possible PLL Configuration Modes ........................................................................................... 95  
XCLKOUT Switching Characteristics (PLL Bypassed or Enabled) ....................................................... 95  
Reset (XRS) Timing Requirements ........................................................................................... 96  
IDLE Mode Switching Characteristics ....................................................................................... 100  
STANDBY Mode Switching Characteristics ................................................................................ 101  
HALT Mode Switching Characteristics ...................................................................................... 103  
PWM Switching Characteristics .............................................................................................. 105  
Timer and Capture Unit Timing Requirements ............................................................................. 105  
External ADC Start-of-Conversion – EVA – Switching Characteristics ................................................. 106  
2-2  
2-3  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
3-9  
3-10  
3-11  
3-12  
3-13  
3-14  
3-15  
3-16  
4-1  
4-2  
4-3  
4-4  
4-5  
4-6  
4-7  
4-8  
4-9  
4-10  
4-11  
4-12  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
6-8  
6-9  
6-10  
6-11  
6-12  
6-13  
6-14  
6-15  
Copyright © 2009–2010, Texas Instruments Incorporated  
List of Tables  
7
Download from Www.Somanuals.com. All Manuals Search And Download.  
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
6-16  
6-17  
6-18  
6-19  
6-20  
6-21  
6-22  
6-23  
6-24  
6-25  
6-26  
6-27  
6-28  
6-29  
6-30  
6-31  
6-32  
6-33  
6-34  
6-35  
6-36  
6-37  
6-38  
6-39  
6-40  
6-41  
6-42  
6-43  
6-44  
6-45  
6-46  
6-47  
6-48  
6-49  
6-50  
6-51  
6-52  
6-53  
6-54  
6-55  
6-56  
6-57  
6-58  
6-59  
6-60  
6-61  
6-62  
6-63  
External ADC Start-of-Conversion – EVB – Switching Characteristics ................................................. 106  
Interrupt Switching Characteristics ........................................................................................... 106  
Interrupt Timing Requirements................................................................................................ 107  
General-Purpose Output Switching Characteristics........................................................................ 107  
General-Purpose Input Timing Requirements .............................................................................. 108  
SPI Master Mode External Timing (Clock Phase = 0) .................................................................... 109  
SPI Master Mode External Timing (Clock Phase = 1) .................................................................... 111  
SPI Slave Mode External Timing (Clock Phase = 0) ...................................................................... 113  
SPI Slave Mode External Timing (Clock Phase = 1) ...................................................................... 115  
Relationship Between Parameters Configured in XTIMING and Duration of Pulse ................................... 117  
XTIMING Register Configuration Restrictions .............................................................................. 117  
Valid and Invalid Timing ....................................................................................................... 117  
XTIMING Register Configuration Restrictions .............................................................................. 118  
Valid and Invalid Timing when using Synchronous XREADY ............................................................ 118  
XTIMING Register Configuration Restrictions .............................................................................. 118  
XTIMING Register Configuration Restrictions .............................................................................. 119  
Asynchronous XREADY ...................................................................................................... 119  
XINTF Clock Configurations................................................................................................... 119  
External Memory Interface Read Switching Characteristics ............................................................. 122  
External Memory Interface Read Timing Requirements .................................................................. 122  
External Memory Interface Write Switching Characteristics .............................................................. 123  
External Memory Interface Read Switching Characteristics (Ready-on-Read, 1 Wait State) ....................... 125  
External Memory Interface Read Timing Requirements (Ready-on-Read, 1 Wait State) ............................ 125  
Synchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State) ....................................... 125  
Asynchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State) ...................................... 125  
External Memory Interface Write Switching Characteristics (Ready-on-Write, 1 Wait State) ........................ 128  
Synchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State) ....................................... 128  
Asynchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State) ...................................... 128  
XHOLD/XHOLDA Timing Requirements (XCLKOUT = XTIMCLK) ...................................................... 132  
XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK) ................................................. 133  
DC Specifications .............................................................................................................. 135  
AC Specifications .............................................................................................................. 136  
Current Consumption .......................................................................................................... 136  
ADC Power-Up Delays ........................................................................................................ 137  
Sequential Sampling Mode Timing .......................................................................................... 139  
Simultaneous Sampling Mode Timing ....................................................................................... 140  
McBSP Timing Requirements ................................................................................................ 142  
McBSP Switching Characteristics ........................................................................................... 143  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0) ............................... 145  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0) ........................... 145  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0) ............................... 146  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0) ........................... 146  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1) ............................... 147  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1) ........................... 147  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1) ............................... 148  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1) ........................... 148  
Flash Parameters at 150-MHz SYSCLKOUT .............................................................................. 149  
Flash/OTP Access Timing .................................................................................................... 149  
8
List of Tables  
Copyright © 2009–2010, Texas Instruments Incorporated  
Download from Www.Somanuals.com. All Manuals Search And Download.  
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
6-64  
Minimum Required Wait-States at Different Frequencies ................................................................ 149  
Copyright © 2009–2010, Texas Instruments Incorporated  
List of Tables  
9
Download from Www.Somanuals.com. All Manuals Search And Download.  
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
10  
List of Tables  
Copyright © 2009–2010, Texas Instruments Incorporated  
Download from Www.Somanuals.com. All Manuals Search And Download.  
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Digital Signal Processor  
Check for Samples: SM320F2812-HT  
1
Features  
12  
• High-Performance Static CMOS Technology  
– 150 MHz (6.67 ns Cycle Time)  
• 128 Bit Security Key/Lock  
– Protects Flash/ROM/OTP and L0/L1 SARAM  
– Prevents Firmware Reverse Engineering  
• Three 32 Bit CPU Timers  
– Low Power (1.8 V Core at 135 MHz, 1.9 V,  
Core at 150 MHz, 3.3 V I/O) Design  
– 3.3 V Flash Voltage  
• Motor Control Peripherals  
• JTAG Boundary Scan Support(1)  
• High-Performance 32 Bit CPU (TMS320C28x)  
– 16 × 16 and 32 x 32 MAC Operations  
– 16 × 16 Dual MAC  
– Two Event Managers (EVA, EVB)  
– Compatible to 240xA Devices  
• Serial Port Peripherals  
– Serial Peripheral Interface (SPI)  
– Harvard Bus Architecture  
– Atomic Operations  
– Two Serial Communications Interfaces  
(SCIs), Standard UART  
– Fast Interrupt Response and Processing  
– Unified Memory Programming Model  
– 4M Linear Program Address Reach  
– 4M Linear Data Address Reach  
– Code-Efficient (in C/C++ and Assembly)  
– Enhanced Controller Area Network (eCAN)  
– Multichannel Buffered Serial Port (McBSP)  
With SPI Mode  
• 12 Bit ADC, 16 Channels  
– 2 × 8 Channel Input Multiplexer  
– Two Sample-and-Hold  
– Single/Simultaneous Conversions  
– Fast Conversion Rate: 80 ns/12.5 MSPS  
– TMS320F24x/LF240x Processor Source Code  
Compatible  
• On-Chip Memory  
– Flash Devices: Up to 128K × 16 Flash (Four  
8K × 16 and Six 16K × 16 Sectors)  
– ROM Devices: Up to 128K × 16 ROM  
– 1K × 16 OTP ROM  
– L0 and L1: 2 Blocks of 4K × 16 Each  
Single-Access RAM (SARAM)  
– H0: 1 Block of 8K × 16 SARAM  
• Up to 56 Individually Programmable,  
Multiplexed General-Purpose Input / Output  
(GPIO) Pins  
• Advanced Emulation Features  
– Analysis and Breakpoint Functions  
– Real-Time Debug via Hardware  
• Development Tools Include  
– M0 and M1: 2 Blocks of 1K × 16 Each  
SARAM  
• Boot ROM (4K × 16)  
– With Software Boot Modes  
– Standard Math Tables  
• External Interface  
– ANSI C/C++ Compiler/Assembler/Linker  
– Supports TMS320C24x™/240x Instructions  
– Code Composer Studio™ IDE  
– DSP/BIOS™  
– JTAG Scan Controllers [Texas Instruments  
(TI) or Third-Party]  
– Up to 1M Total Memory  
– Evaluation Modules  
– Programmable Wait States  
– Programmable Read/Write Strobe Timing  
– Three Individual Chip Selects  
• Clock and System Control  
– Dynamic PLL Ratio Changes Supported  
– On-Chip Oscillator  
– Watchdog Timer Module  
• Three External Interrupts  
• Peripheral Interrupt Expansion (PIE) Block That  
Supports 45 Peripheral Interrupts  
– Broad Third-Party Digital Motor Control  
Support  
• Low-Power Modes and Power Savings  
– IDLE, STANDBY, HALT Modes Supported  
– Disable Individual Peripheral Clocks  
xxx  
xxx  
xxx  
xxx  
xxx  
(1) IEEE Standard 1149.1-1990, IEEE Standard Test-Access Port  
1
TMS320C24x, Code Composer Studio, DSP/BIOS, C28x, TMS320C2000, TMS320C54x, TMS320C55x, TMS320C28x are trademarks of  
Texas Instruments.  
eZdsp is a trademark of Spectrum Digital Incorporated.  
2
Copyright © 2009–2010, Texas Instruments Incorporated  
Features  
11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
xxx  
1.1 SUPPORTS EXTREME TEMPERATURE APPLICATIONS  
Controlled Baseline  
One Assembly/Test Site  
One Fabrication Site  
Available in Extreme (–55°C/220°C) Temperature Range(2)  
Extended Product Life Cycle  
Extended Product-Change Notification  
Product Traceability  
Texas Instruments high temperature products utilize highly optimized silicon (die) solutions with  
design and process enhancements to maximize performance over extended temperatures.  
(2) Custom temperature ranges available  
12  
Features  
Copyright © 2009–2010, Texas Instruments Incorporated  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
2
Introduction  
This section provides a summary of the device features, lists the pin assignments, and describes the  
function of each pin. This document also provides detailed descriptions of peripherals, electrical  
specifications, parameter measurement information, and mechanical data about the available packaging.  
3
2.1 Description  
The SM320F2812 device, member of the C28xE DSP generation, is a highly integrated, high-performance  
solution for demanding control applications. The functional blocks and the memory maps are described in  
Section 3, Functional Overview.  
Throughout this document SM320F2812 is abbreviated as F2812.  
3
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
2.2 Device Summary  
Table 2-1 provides a summary of the device features.  
Table 2-1. Hardware Features  
FEATURE  
F2812  
6.67 ns  
18K  
128K  
Instruction Cycle (at 150 MHz)  
Single-Access RAM (SARAM) (16 bit word)  
3.3 V On-Chip Flash (16 bit word)  
On-Chip ROM (16-bit word)  
Code Security for On-Chip Flash/SARAM/OTP/ROM  
Boot ROM  
Yes  
Yes  
OTP ROM (1K × 16)  
External Memory Interface  
Event Managers A and B (EVA and EVB)  
• General-Purpose (GP) Timers  
• Compare (CMP)/PWM  
• Capture (CAP)/QEP Channels  
Watchdog Timer  
Yes  
Yes  
EVA, EVB  
4
16  
6/2  
Yes  
12 Bit ADC  
Yes  
• Channels  
16  
32 Bit CPU Timers  
SPI  
3
Yes  
SCIA, SCIB  
SCIA, SCIB  
Yes  
CAN  
McBSP  
Yes  
Digital I/O Pins (Shared)  
External Interrupts  
Supply Voltage  
56  
3
1.8-V Core, (135 MHz) 1.9-V Core  
(150 MHz), 3.3-V I/O  
Temperature Options  
S: –55°C to 220°C  
Yes  
14  
Introduction  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
2.3 Die Layout  
The SM320F2812 die layout is shown in Figure 2-1. See Table 2-3 for a description of each pad's  
function.  
Figure 2-1. SM320F2812 Die Layout  
Table 2-2. Bare Die Information  
DIE PAD  
COMPOSITI  
ON  
DIE PAD  
COORDINATES  
DIE  
THICKNESS  
BACKSIDE  
FINISH  
BACKSIDE  
POTENTIAL  
DIE SIZE  
DIE PAD SIZE  
219.4 x 207.0 (mils);  
5572.0 x 5258.0 (mm)  
Silicon with  
backgrind  
55.0 x 64.0 (mm)  
11.0 mils  
AlCu/TiN  
Ground  
Copyright © 2009–2010, Texas Instruments Incorporated  
Introduction  
15  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
2.4 Pin Assignments  
The SM320F2812 172-pin HFG ceramic quad flatpack (CQFP) pin assignments are shown in Figure 2-2.  
See Table 2-3 for a description of each pin’s function(s).  
129  
87  
130  
86  
XZCS6AND7  
TESTSEL  
XZCS2  
131  
132  
85  
84  
CANTXA  
TRST  
TCK  
EMU0  
V
SS  
XA[3]  
XWE  
133  
134  
135  
83  
82  
XA[12]  
XD[14]  
81  
80  
T4CTRIP/EVBSOC  
XHOLDA  
136  
137  
XF_XPLLDIS  
XA[13]  
79  
78  
V
DDIO  
XA[2]  
138  
139  
V
SS  
DD  
77  
T3CTRIP_PDPINTB  
V
V
140  
141  
76  
75  
SS  
X1/XCLKIN  
XA[14]  
V
DDIO  
142  
143  
74  
73  
X2  
V
EMU1  
XD[15]  
XA[15]  
DD  
XD[11]  
XD[10]  
144  
72  
71  
145  
146  
XINT1_XBIO  
XNMI_XINT13  
XINT2_ADCSOC  
XA[16]  
70  
69  
TCLKINB  
TDIRB  
147  
148  
68  
67  
V
DD3VFL  
XD[9]  
TEST1  
149  
150  
V
66  
65  
DD  
SCITXDA  
XA[17]  
151  
152  
TEST2  
XD[8]  
64  
63  
153  
154  
V
SCIRXDA  
XA[18]  
DDIO  
C6TRIP  
62  
61  
155  
156  
XHOLD  
XRS  
C5TRIP  
60  
59  
C4TRIP  
CAP6_QEPI2  
CAP5_QEP4  
157  
158  
XREADY  
V
DD1  
SS1  
58  
57  
V
159  
160  
V
SS  
CAP4_QEP3  
ADCBGREFIN  
V
56  
55  
161  
162  
V
SSA2  
DDA2  
DD  
T4PWM_T4CMP  
V
54  
53  
163  
164  
ADCINA7  
ADCINA6  
ADCINA5  
XD[7]  
T3PWM_T3CMP  
52  
165  
166  
V
51  
50  
SS  
XR/W  
PWM12  
ADCINA4  
ADCINA3  
167  
168  
49  
48  
ADCINA2  
ADCINA1  
PWM11  
PWM10  
169  
47  
46  
45  
170  
171  
ADCINA0  
ADCLO  
PWM9  
PWM8  
PWM7  
V
SSAIO  
172  
44  
43  
1
Figure 2-2. SM320F2812 172-Pin HFG CQFP (Top View)  
16  
Introduction  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
2.5 Signal Descriptions  
Table 2-3 specifies the signals on the F2812 device. All digital inputs are TTL-compatible. All outputs are  
3.3 V with CMOS levels. Inputs are not 5 V tolerant. A 100 mA (or 20 mA) pullup/pulldown is used.  
Table 2-3. Signal Descriptions(1)  
PIN NO.  
DIE PAD  
X-CENTER  
(mm)  
DIE PAD  
Y-CENTER  
(mm)  
DIE PAD  
NO.  
NAME  
I/O/Z(2) PU/PD(3)  
DESCRIPTION  
172-PIN  
HFG  
XINTF SIGNALS  
XA[18]  
154  
152  
149  
145  
141  
138  
135  
129  
127  
122  
118  
116  
109  
106  
101  
83  
173  
171  
167  
163  
157  
154  
151  
145  
143  
138  
134  
131  
124  
121  
116  
96  
42.6  
42.6  
2281.5  
2485.3  
2819.6  
3182.9  
3774.9  
4029.4  
4401.3  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
4471.5  
3927.2  
42.6  
O/Z  
O/Z  
XA[17]  
XA[16]  
XA[15]  
XA[14]  
XA[13]  
XA[12]  
XA[11]  
XA[10]  
XA[9]  
42.6  
O/Z  
42.6  
O/Z  
42.6  
O/Z  
42.6  
O/Z  
42.6  
O/Z  
255.7  
474.4  
996.5  
1492.4  
1825.2  
2566.0  
2937.9  
3518.7  
5361.5  
5361.5  
5024.5  
2403.5  
42.6  
O/Z  
O/Z  
O/Z  
19-bit XINTF Address Bus  
XA[8]  
O/Z  
XA[7]  
O/Z  
XA[6]  
O/Z  
XA[5]  
O/Z  
XA[4]  
O/Z  
XA[3]  
O/Z  
XA[2]  
78  
91  
O/Z  
XA[1]  
42  
49  
O/Z  
XA[0]  
18  
24  
42.6  
O/Z  
XD[15]  
XD[14]  
XD[13]  
XD[12]  
XD[11]  
XD[10]  
XD[9]  
XD[8]  
XD[7]  
XD[6]  
XD[5]  
XD[4]  
XD[3]  
XD[2]  
XD[1]  
XD[0]  
144  
136  
95  
162  
152  
110  
109  
85  
3306.9  
4277.3  
5057.5  
5057.5  
3382.2  
3258.3  
2608.4  
2312.1  
1045.9  
42.6  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
42.6  
4194.1  
4318.1  
5361.5  
5361.5  
5361.5  
5361.5  
5361.5  
4586.0  
4281.2  
3966.6  
3652.0  
3337.5  
3022.9  
2708.3  
94  
72  
71  
84  
67  
77  
64  
74  
16-bit XINTF Data Bus  
53  
60  
38  
45  
35  
42  
42.6  
32  
39  
42.6  
29  
36  
42.6  
26  
33  
42.6  
23  
30  
42.6  
20  
27  
42.6  
(1) Typical drive strength of the output buffer for all pins is 4 mA except for TDO, XCLKOUT, XF, XINTF, EMU0, and EMU1 pins, which are  
8 mA.  
(2) I = Input, O = Output, Z = High impedance  
(3) PU = pin has internal pullup; PD = pin has internal pulldown  
Copyright © 2009–2010, Texas Instruments Incorporated  
Introduction  
17  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
(1)  
Table 2-3. Signal Descriptions  
(continued)  
PIN NO.  
DIE PAD  
X-CENTER  
(mm)  
DIE PAD  
Y-CENTER  
(mm)  
DIE PAD  
NO.  
NAME  
I/O/Z(2) PU/PD(3)  
DESCRIPTION  
172-PIN  
HFG  
Microprocessor/Microcomputer Mode  
Select. Switches between microprocessor  
and microcomputer mode. When high,  
Zone 7 is enabled on the external interface.  
When low, Zone 7 is disabled from the  
external interface and on-chip boot ROM  
may be accessed instead. This signal is  
latched into the XINTCNF2 register on a  
reset and the user can modify this bit in  
software. The state of the XMP/MC pin is  
ignored after reset.  
XMP/MC  
17  
23  
2308.2  
42.6  
I
PD  
External Hold Request. XHOLD, when  
active (low), requests the XINTF to release  
the external bus and place all buses and  
strobes into a high-impedance state. The  
XINTF releases the bus when any current  
access is complete and there are no  
pending accesses on the XINTF.  
XHOLD  
155  
174  
42.6  
2157.6  
4137.4  
I
PU  
External Hold Acknowledge. XHOLDA is  
driven active (low) when the XINTF has  
granted a XHOLD request. All XINTF buses  
and strobe signals are in a high-impedance  
state. XHOLDA is released when the  
XHOLD signal is released. External devices  
should only drive the external bus when  
XHOLDA is active (low).  
XHOLDA  
80  
93  
5361.5  
O/Z  
XINTF Zone 0 and Zone 1 Chip Select.  
XZCS0AND1 is active (low) when an  
access to the XINTF Zone 0 or Zone 1 is  
performed.  
XZCS0AND1  
XZCS2  
43  
86  
50  
5148.5  
5361.5  
42.6  
42.6  
O/Z  
O/Z  
O/Z  
XINTF Zone 2 Chip Select. XZCS2 is active  
(low) when an access to the XINTF Zone 2  
is performed.  
100  
146  
4844.2  
4888.6  
XINTF Zone 6 and Zone 7 Chip Select.  
XZCS6AND7 is active (low) when an  
access to the XINTF Zone 6 or Zone 7 is  
performed.  
XZCS6AND7  
130  
Write Enable. Active-low write strobe. The  
write strobe waveform is specified, per zone  
basis, by the Lead, Active, and Trail periods  
in the XTIMINGx registers.  
XWE  
XRD  
82  
41  
95  
48  
5361.5  
4900.6  
4347.5  
42.6  
O/Z  
O/Z  
Read Enable. Active-low read strobe. The  
read strobe waveform is specified, per zone  
basis, by the Lead, Active, and Trail periods  
in the XTIMINGx registers.  
NOTE: The XRD and XWE signals are  
mutually exclusive.  
Read Not Write Strobe. Normally held high.  
When low, XR/W indicates write cycle is  
active; when high, XR/W indicates read  
cycle is active.  
XR/W  
50  
57  
5361.5  
42.6  
755.0  
O/Z  
Ready Signal. Indicates peripheral is ready  
to complete the access when asserted to 1.  
XREADY can be configured to be a  
XREADY  
157  
176  
1972.4  
I
PU  
synchronous or an asynchronous input.  
See the timing diagrams for more details.  
18  
Introduction  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
www.ti.com  
NAME  
SGUS062AJUNE 2009REVISED APRIL 2010  
(1)  
Table 2-3. Signal Descriptions  
(continued)  
PIN NO.  
DIE PAD  
X-CENTER  
(mm)  
DIE PAD  
Y-CENTER  
(mm)  
DIE PAD  
NO.  
I/O/Z(2) PU/PD(3)  
DESCRIPTION  
172-PIN  
HFG  
JTAG AND MISCELLANEOUS SIGNALS  
Oscillator Input – input to the internal  
oscillator. This pin is also used to feed an  
external clock. The 28× can be operated  
with an external clock source, provided that  
the proper voltage levels be driven on the  
X1/XCLKIN pin. It should be noted that the  
X1/XCLKIN pin is referenced to the 1.8-V  
(or 1.9-V) core digital power supply (VDD),  
rather than the 3.3-V I/O supply (VDDIO). A  
clamping diode may be used to clamp a  
buffered clock signal to ensure that the  
logic-high level does not exceed VDD  
(1.8 V or 1.9 V) or a 1.8-V oscillator may be  
used.  
X1/XCLKIN  
75  
88  
5361.5  
3668.7  
I
X2  
74  
87  
5361.5  
1701.2  
3582.6  
5057.5  
O
O
Oscillator Output  
Output clock derived from SYSCLKOUT to  
be used for external wait-state generation  
and as a general-purpose clock source.  
XCLKOUT is either the same frequency,  
1/2 the frequency, or 1/4 the frequency of  
SYSCLKOUT. At reset, XCLKOUT =  
SYSCLKOUT/4. The XCLKOUT signal can  
be turned off by setting bit 3 (CLKOFF) of  
the XINTCNF2 register to 1.  
XCLKOUT  
117  
132  
Test Pin. Reserved for TI. Must be  
connected to ground.  
TESTSEL  
131  
147  
42.6  
4764.6  
I
PD  
Device Reset (in) and Watchdog Reset  
(out).  
Device reset. XRS causes the device to  
terminate execution. The PC points to the  
address contained at the location  
0x3FFFC0. When XRS is brought to a high  
level, execution begins at the location  
pointed to by the PC. This pin is driven low  
by the DSP when a watchdog reset occurs.  
During watchdog reset, the XRS pin is  
driven low for the watchdog reset duration  
of 512 XCLKIN cycles.  
XRS  
156  
175  
42.6  
2077.8  
I/O  
PU  
The output buffer of this pin is an  
open-drain with an internal pullup (100 mA,  
typical). It is recommended that this pin be  
driven by an open-drain device.  
Test Pin. Reserved for TI. On F281x  
devices, TEST1 must be left unconnected.  
TEST1  
TEST2  
66  
65  
76  
75  
5361.5  
5361.5  
2522.3  
2436.1  
I/O  
I/O  
Test Pin. Reserved for TI. On F281x  
devices, TEST2 must be left unconnected.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Introduction  
19  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
(1)  
Table 2-3. Signal Descriptions  
(continued)  
PIN NO.  
DIE PAD  
X-CENTER  
(mm)  
DIE PAD  
Y-CENTER  
(mm)  
DIE PAD  
NO.  
NAME  
I/O/Z(2) PU/PD(3)  
DESCRIPTION  
172-PIN  
HFG  
JTAG test reset with internal pulldown.  
TRST, when driven high, gives the scan  
system control of the operations of the  
device. If this signal is not connected or  
driven low, the device operates in its  
functional mode, and the test reset signals  
are ignored.  
NOTE: Do not use pullup resistors on  
TRST; it has an internal pulldown device. In  
a low-noise environment, TRST can be left  
floating. In a high-noise environment, an  
additional pulldown resistor may be  
TRST  
132  
148  
42.6  
4684.8  
I
PD  
needed. The value of this resistor should be  
based on drive strength of the debugger  
pods applicable to the design. A 2.2-k  
resistor generally offers adequate  
protection. Since this is application specific,  
it is recommended that each target board is  
validated for proper operation of the  
debugger and the application.  
TCK  
TMS  
133  
123  
149  
139  
42.6  
4605.1  
5057.5  
I
I
PU  
PU  
JTAG test clock with internal pullup  
JTAG test-mode select (TMS) with internal  
pullup. This serial control input is clocked  
into the TAP controller on the rising edge of  
TCK.  
872.5  
JTAG test data input (TDI) with internal  
pullup. TDI is clocked into the selected  
register (instruction or data) on a rising  
edge of TCK.  
TDI  
128  
124  
133  
143  
144  
140  
150  
161  
350.4  
777.9  
42.6  
5057.5  
5057.5  
4525.3  
3430.9  
I
PU  
JTAG scan out, test data output (TDO). The  
contents of the selected register (instruction  
or data) is shifted out of TDO on the falling  
edge of TCK.  
TDO  
EMU0  
EMU1  
O/Z  
Emulator pin 0. When TRST is driven high,  
this pin is used as an interrupt to or from  
the emulator system and is defined as  
input/output through the JTAG scan.  
I/O/Z  
I/O/Z  
PU  
PU  
Emulator pin 1. When TRST is driven high,  
this pin is used as an interrupt to or from  
the emulator system and is defined as  
input/output through the JTAG scan.  
42.6  
20  
Introduction  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
www.ti.com  
NAME  
SGUS062AJUNE 2009REVISED APRIL 2010  
(1)  
Table 2-3. Signal Descriptions  
(continued)  
PIN NO.  
DIE PAD  
X-CENTER  
(mm)  
DIE PAD  
Y-CENTER  
(mm)  
DIE PAD  
NO.  
I/O/Z(2) PU/PD(3)  
DESCRIPTION  
172-PIN  
HFG  
ADC ANALOG INPUT SIGNALS  
ADCINA7  
ADCINA6  
ADCINA5  
ADCINA4  
ADCINA3  
ADCINA2  
ADCINA1  
ADCINA0  
ADCINB7  
ADCINB6  
ADCINB5  
ADCINB4  
ADCINB3  
ADCINB2  
ADCINB1  
ADCINB0  
163  
164  
165  
166  
167  
168  
169  
170  
9
186  
188  
190  
192  
194  
196  
197  
198  
13  
11  
10  
8
42.6  
42.6  
1253.9  
1094.3  
954.0  
794.4  
654.1  
513.9  
434.1  
354.3  
42.6  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
42.6  
Eight-channel analog inputs for  
42.6  
Sample-and-Hold A. The ADC pins should  
not be driven before VDDA1, VDDA2, and  
VDDAIO pins have been fully powered up.  
42.6  
42.6  
42.6  
42.6  
1355.2  
1164.6  
1069.2  
878.6  
688.0  
497.4  
402.1  
306.8  
8
42.6  
7
42.6  
Eight-channel analog inputs for  
6
42.6  
Sample-and-Hold B. The ADC pins should  
not be driven before the VDDA1, VDDA2, and  
VDDAIO pins have been fully powered up.  
5
6
42.6  
4
4
42.6  
3
3
42.6  
2
2
42.6  
ADC Voltage Reference Output (2 V).  
Requires a low ESR (50 m– 1.5 )  
ceramic bypass capacitor of 10 mF to  
analog ground. (Can accept external  
reference input  
ADCREFP  
11  
15  
1545.8  
42.6  
O
(2 V) if the software bit is enabled for this  
mode. 1-mF to 10-mF low ESR capacitor  
can be used in the external reference  
mode.)  
ADC Voltage Reference Output (1 V).  
Requires a low ESR (50 m– 1.5 )  
ceramic bypass capacitor of 10 mF to  
analog ground. (Can accept external  
reference input  
ADCREFM  
10  
14  
1450.5  
42.6  
O
(1 V) if the software bit is enabled for this  
mode. 1-mF to 10-mF low ESR capacitor  
can be used in the external reference  
mode.)  
ADC External Current Bias Resistor  
(24.9 k±5%)  
ADCRESEXT  
ADCBGREFIN  
16  
22  
2212.9  
42.6  
42.63  
O
I
Test Pin. Reserved for TI. Must be left  
unconnected.  
160  
180  
1680.9  
AVSSREFBG  
AVDDREFBG  
12  
13  
17  
18  
1831.7  
1736.4  
42.6  
42.6  
I
I
ADC Analog GND  
ADC Analog Power (3.3 V)  
Common Low Side Analog Input. Connect  
to analog ground.  
ADCLO  
171  
199  
42.6  
274.5  
I
VSSA1  
VSSA2  
VDDA1  
VDDA2  
VSS1  
15  
161  
14  
21  
182  
19  
2117.6  
42.6  
42.6  
1550.7  
42.6  
I
I
I
I
I
I
ADC Analog GND  
ADC Analog GND  
1927.0  
42.6  
ADC Analog 3.3-V Supply  
ADC Analog 3.3-V Supply  
ADC Digital GND  
162  
159  
158  
1
184  
178  
177  
1
1394.2  
1830.8  
1901.0  
42.6  
42.6  
VDD1  
42.6  
ADC Digital 1.8-V (or 1.9-V) Supply  
3.3-V Analog I/O Power Pin  
Analog I/O Ground Pin  
VDDAIO  
VSSAIO  
211.5  
42.6  
172  
200  
204.3  
Copyright © 2009–2010, Texas Instruments Incorporated  
Introduction  
21  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
(1)  
Table 2-3. Signal Descriptions  
(continued)  
PIN NO.  
DIE PAD  
X-CENTER  
(mm)  
DIE PAD  
Y-CENTER  
(mm)  
DIE PAD  
NO.  
NAME  
I/O/Z(2) PU/PD(3)  
DESCRIPTION  
172-PIN  
HFG  
POWER SIGNALS  
42.6  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
22  
36  
55  
73  
-
29  
43  
2927.6  
4395.4  
5361.5  
5361.5  
5361.5  
3861.3  
2451.9  
663.7  
42.6  
62  
1256.0  
3496.4  
4671.835  
5057.5  
5057.5  
5057.5  
3845.1  
2635.3  
42.6  
86  
1.8-V or 1.9-V Core Digital Power Pins. See  
Section 6.2, Recommended Operating  
Conditions, for voltage requirements.  
98  
98  
110  
125  
140  
150  
-
113  
125  
141  
156  
169  
25  
42.6  
42.6  
2517.7  
3871.3  
4490.7  
5361.5  
5361.5  
5361.5  
5361.5  
5361.5  
3956.0  
3280.5  
2357.2  
1587.1  
569.0  
31  
37  
51  
57  
-
38  
42.6  
44  
42.6  
58  
869.2  
65  
1514.6  
2818.6  
3754.9  
4585.7  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
3915.2  
3580.8  
2705.4  
42.6  
79  
76  
84  
97  
103  
111  
-
89  
97  
Core and Digital I/O Ground Pins  
112  
118  
126  
133  
142  
155  
159  
168  
37  
126  
139  
-
42.6  
42.6  
-
42.6  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
30  
63  
79  
-
3776.0  
5361.5  
5361.5  
4784.7  
2262.5  
42.6  
73  
2226.0  
4051.2  
5057.5  
5057.5  
3510.7  
92  
3.3–V I/O Digital Power Pins  
105  
127  
160  
112  
142  
3.3–V Flash Core Power Pin. This pin  
should be connected to 3.3 V at all times  
after power-up sequence requirements  
have been met. This pin is used as VDDIO  
in ROM parts and must be connected to  
3.3 V in ROM parts as well.  
VDD3VFL  
68  
78  
5361.5  
2732.4  
22  
Introduction  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
www.ti.com  
GPIO  
SGUS062AJUNE 2009REVISED APRIL 2010  
Signal Descriptions (Continued)(1)  
PIN NO.  
PERIPHERAL  
SIGNAL  
DIE PAD  
DIE PAD  
DIE PAD NO.  
I/O/Z(2) PU/PD(3)  
DESCRIPTION  
172-PIN  
HFG  
X-CENTER Y-CENTER  
GPIO OR PERIPHERAL SIGNALS  
GPIOA OR EVA SIGNALS  
GPIO or PWM  
Output Pin #1  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
GPIOA4  
GPIOA5  
GPIOA6  
GPIOA7  
GPIOA8  
GPIOA9  
PWM1 (O)  
90  
91  
104  
106  
107  
108  
111  
114  
115  
117  
119  
120  
122  
129  
130  
135  
136  
137  
4908.6  
4690.0  
4566.0  
4442.1  
4070.1  
3766.6  
3642.7  
3394.7  
3185.9  
3061.9  
2814.0  
2073.2  
1949.2  
1368.4  
1244.5  
1120.5  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
5057.5  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
GPIO or PWM  
Output Pin #2  
PWM2 (O)  
GPIO or PWM  
Output Pin #3  
PWM3 (O)  
92  
GPIO or PWM  
Output Pin #4  
PWM4 (O)  
93  
GPIO or PWM  
Output Pin #5  
PWM5 (O)  
96  
GPIO or PWM  
Output Pin #6  
PWM6 (O)  
99  
GPIO or Timer 1  
Output  
T1PWM_T1CMP (I)  
T2PWM_T2CMP (I)  
CAP1_QEP1 (I)  
CAP2_QEP2 (I)  
100  
102  
104  
105  
107  
114  
115  
119  
120  
121  
GPIO or Timer 2  
Output  
GPIO or Capture  
Input #1  
GPIO or Capture  
Input #2  
GPIO or Capture  
Input #3  
GPIOA10 CAP3_QEPI1 (I)  
GPIOA11 TDIRA (I)  
GPIO or Timer  
Direction  
GPIO or Timer Clock  
Input  
GPIOA12 TCLKINA (I)  
GPIOA13 C1TRIP (I)  
GPIOA14 C2TRIP (I)  
GPIOA15 C3TRIP (I)  
GPIO or Compare 1  
Output Trip  
GPIO or Compare 2  
Output Trip  
GPIO or Compare 3  
Output Trip  
GPIOB OR EVB SIGNALS  
GPIO or PWM  
Output Pin #7  
GPIOB0  
GPIOB1  
GPIOB2  
GPIOB3  
GPIOB4  
GPIOB5  
GPIOB6  
GPIOB7  
PWM7 (O)  
44  
45  
46  
47  
48  
49  
52  
54  
51  
52  
53  
54  
55  
56  
59  
61  
5361.5  
5361.5  
5361.5  
5361.5  
5361.5  
5361.5  
5361.5  
5361.5  
211.5  
302.1  
392.7  
483.2  
573.8  
664.4  
955.3  
1169.9  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
GPIO or PWM  
Output Pin #8  
PWM8 (O)  
GPIO or PWM  
Output Pin #9  
PWM9 (O)  
GPIO or PWM  
Output Pin #10  
PWM10 (O)  
GPIO or PWM  
Output Pin #11  
PWM11 (O)  
GPIO or PWM  
Output Pin #12  
PWM12 (O)  
GPIO or Timer 3  
Output  
T3PWM_T3CMP (I)  
T4PWM_T4CMP (I)  
GPIO or Timer 4  
Output  
(1) Typical drive strength of the output buffer for all pins [except TDO, XCLKOUT, XF, XINTF, EMU0, and EMU1 pins] is 4 mA typical.  
(2) I = Input, O = Output, Z = High impedance  
(3) PU = pin has internal pullup; PD = pin has internal pulldown  
Copyright © 2009–2010, Texas Instruments Incorporated  
Introduction  
23  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
(1)  
Signal Descriptions (Continued)  
(continued)  
PIN NO.  
PERIPHERAL  
SIGNAL  
DIE PAD  
X-CENTER Y-CENTER  
DIE PAD  
GPIO  
DIE PAD NO.  
I/O/Z(2) PU/PD(3)  
DESCRIPTION  
172-PIN  
HFG  
GPIO or Capture  
Input #4  
GPIOB8  
GPIOB9  
CAP4_QEP3 (I)  
CAP5_QEP4 (I)  
56  
58  
59  
69  
70  
60  
61  
62  
64  
66  
67  
81  
82  
69  
71  
72  
5361.5  
5361.5  
5361.5  
5361.5  
5361.5  
5361.5  
5361.5  
5361.5  
1428.4  
1600.7  
1691.3  
2990.9  
3081.5  
1868.1  
2044.8  
2135.4  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
GPIO or Capture  
Input #5  
GPIO or Capture  
Input #6  
GPIOB10 CAP6_QEPI2 (I)  
GPIOB11 TDIRB (I)  
GPIO or Timer  
Direction  
GPIO or Timer Clock  
Input  
GPIOB12 TCLKINB (I)  
GPIOB13 C4TRIP (I)  
GPIOB14 C5TRIP (I)  
GPIOB15 C6TRIP (I)  
GPIO or Compare 4  
Output Trip  
GPIO or Compare 5  
Output Trip  
GPIO or Compare 6  
Output Trip  
GPIOD OR EVA SIGNALS  
Timer 1 Compare  
Output Trip  
GPIOD0  
GPIOD1  
T1CTRIP_PDPINTA (I)  
108  
113  
123  
128  
2690.0  
2167.8  
5057.5  
5057.5  
I/O/Z  
I/O/Z  
PU  
PU  
Timer 2 Compare  
Output Trip or  
External ADC  
Start-of-Conversion  
EV-A  
T2CTRIP/EVASOC (I)  
GPIOD OR EVB SIGNALS  
Timer 3 Compare  
Output Trip  
GPIOD5  
GPIOD6  
T3CTRIP_PDPINTB (I)  
T4CTRIP/EVBSOC (I)  
77  
81  
90  
5361.5  
3841.1  
4261.4  
I/O/Z  
I/O/Z  
PU  
PU  
Timer 4 Compare  
Output Trip or  
External ADC  
Start-of-Conversion  
EV-B  
94  
5361.5  
GPIOE OR INTERRUPT SIGNALS  
GPIO or XINT1 or  
XBIO input  
GPIOE0  
GPIOE1  
GPIOE2  
XINT1_XBIO (I)  
146  
148  
147  
164  
166  
165  
42.6  
42.6  
42.6  
3059.0  
2899.4  
2979.2  
I/O/Z  
I/O/Z  
I/O/Z  
GPIO or XINT2 or  
ADC start of  
conversion  
XINT2_ADCSOC (I)  
XNMI_XINT13 (I)  
GPIO or XNMI or  
XINT13  
PU  
GPIOF OR SPI SIGNALS  
GPIO or SPI slave  
in, master out  
GPIOF0  
SPISIMOA (O)  
39  
46  
4709.9  
42.6  
I/O/Z  
GPIO or SPI slave  
out, master in  
GPIOF1  
GPIOF2  
GPIOF3  
SPISOMIA (I)  
SPICLKA (I/O)  
SPISTEA (I/O)  
40  
33  
34  
47  
40  
41  
4805.3  
4090.6  
4185.9  
42.6  
42.6  
42.6  
I/O/Z  
I/O/Z  
I/O/Z  
–-  
GPIO or SPI clock  
GPIO or SPI slave  
transmit enable  
GPIOF OR SCI-A SIGNALS  
GPIO or SCI  
GPIOF4  
GPIOF5  
SCITXDA (O)  
SCIRXDA (I)  
151  
153  
170  
172  
42.6  
42.6  
2565.1  
2361.3  
I/O/Z  
I/O/Z  
PU  
PU  
asynchronous serial  
port TX data  
GPIO or SCI  
asynchronous serial  
port RX data  
24  
Introduction  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
(1)  
Signal Descriptions (Continued)  
(continued)  
PIN NO.  
DIE PAD  
PERIPHERAL  
SIGNAL  
DIE PAD  
GPIO  
DIE PAD NO.  
172-PIN  
I/O/Z(2) PU/PD(3)  
DESCRIPTION  
X-CENTER Y-CENTER  
HFG  
GPIOF OR CAN SIGNALS  
GPIO or eCAN  
transmit data  
GPIOF6  
GPIOF7  
CANTXA (O)  
85  
87  
99  
5361.5  
5192.7  
4758.0  
5057.5  
I/O/Z  
I/O/Z  
PU  
PU  
GPIO or eCAN  
receive data  
CANRXA (I)  
101  
GPIOF OR McBSP SIGNALS  
GPIO or transmit  
clock  
GPIOF8  
MCLKXA (I/O)  
MCLKRA (I/O)  
MFSXA (I/O)  
MFSRA (I/O)  
MDXA (O)  
27  
24  
25  
28  
21  
19  
34  
31  
32  
35  
28  
26  
3461.4  
3146.8  
3242.2  
3556.7  
2832.3  
2613.0  
42.6  
42.6  
42.6  
42.6  
42.6  
42.6  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
PU  
PU  
PU  
PU  
GPIO or receive  
clock  
GPIOF9  
GPIO or transmit  
frame synch  
GPIOF10  
GPIOF11  
GPIOF12  
GPIOF13  
GPIO or receive  
frame synch  
GPIO or transmitted  
serial data  
GPIO or received  
serial data  
MDRA (I)  
PU  
GPIOF OR XF CPU OUTPUT SIGNAL  
This pin has three  
functions:  
1. XF –  
General-purpose  
output pin.  
2. XPLLDIS – This  
pin is sampled  
during reset to check  
if the PLL needs to  
be disabled. The  
PLL will be disabled  
if this pin is sensed  
low. HALT and  
GPIOF14  
XF_XPLLDIS (O)  
137  
153  
42.6  
4153.3  
I/O/Z  
PU  
STANDBY modes  
cannot be used  
when the PLL is  
disabled.  
3. GPIO – GPIO  
function  
Copyright © 2009–2010, Texas Instruments Incorporated  
Introduction  
25  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
(1)  
Signal Descriptions (Continued)  
(continued)  
PIN NO.  
PERIPHERAL  
SIGNAL  
DIE PAD  
X-CENTER Y-CENTER  
DIE PAD  
GPIO  
DIE PAD NO.  
I/O/Z(2) PU/PD(3)  
DESCRIPTION  
172-PIN  
HFG  
GPIOG OR SCI-B SIGNALS  
GPIO or SCI  
GPIOG4  
GPIOG5  
SCITXDB (O)  
88  
89  
102  
103  
5098.0  
5003.3  
5057.5  
5057.5  
I/O/Z  
I/O/Z  
asynchronous serial  
port transmit data  
GPIO or SCI  
asynchronous serial  
port receive data  
SCIRXDB (I)  
NOTE  
Other than the power supply pins, no pin should be driven before the 3.3-V rail has reached  
recommended operating conditions.  
26  
Introduction  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
3
Functional Overview  
Memory Bus  
TINT0  
CPU-Timer 0  
CPU-Timer 1  
CPU-Timer 2  
Real-Time JTAG  
TINT2  
INT14  
Control  
External  
PIE  
(96 interrupts)  
Interface  
(XINTF)  
Address(19)  
Data(16)  
INT[12:1]  
TINT1  
M0 SARAM  
1K x 16  
INT13  
NMI  
XINT13  
External Interrupt  
Control  
(XINT1/2/13, XNMI)  
M1 SARAM  
1K x 16  
XNMI  
G
P
I
SCIA/SCIB  
SPI  
FIFO  
FIFO  
FIFO  
L0 SARAM  
4K x 16  
O
GPIO Pins  
L1 SARAM  
4K x 16  
McBSP  
C28x CPU  
M
U
X
eCAN  
Flash  
EVA/EVB  
128K x 16  
12-Bit ADC  
16 Channels  
OTP  
System Control  
XRS  
X1/XCLKIN  
X2  
1K x 16  
RS  
(Oscillator and PLL  
+
Peripheral Clocking  
CLKIN  
+
H0 SARAM  
8K 16  
XF_XPLLDIS  
Low-Power  
Modes  
+
Memory Bus  
Boot ROM  
4K 16  
WatchDog)  
Peripheral Bus  
45 of the possible 96 interrupts are used on the device.  
Protected by the code-security module.  
Figure 3-1. Functional Block Diagram  
Copyright © 2009–2010, Texas Instruments Incorporated  
Functional Overview  
27  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
3.1 Memory Map  
Block  
Start Address  
On-Chip Memory  
External Memory XINTF  
Data Space  
Prog Space  
Data Space  
Prog Space  
0x00 0000  
M0 Vector − RAM (32 × 32)  
(Enabled if VMAP = 0)  
0x00 0040  
0x00 0400  
M0 SARAM (1K × 16)  
M1 SARAM (1K × 16)  
0x00 0800  
0x00 0D00  
Peripheral Frame 0  
Reserved  
(2K × 16)  
PIE Vector - RAM  
(256 × 16)  
Reserved  
(Enabled if VMAP  
= 1, ENPIE = 1)  
0x00 0E00  
0x00 2000  
Reserved  
0x00 2000  
0x00 4000  
XINTF Zone 0 (8K × 16, XZCS0AND1)  
XINTF Zone 1 (8K × 16, XZCS0AND1) (Protected)  
Reserved  
0x00 6000  
0x00 7000  
Peripheral Frame 1  
(4K × 16, Protected)  
Reserved  
Peripheral Frame 2  
(4K × 16, Protected)  
Reserved  
0x00 8000  
0x00 9000  
0x00 A000  
L0 SARAM (4K × 16, Secure Block)  
L1 SARAM (4K × 16, Secure Block)  
0x08 0000  
0x10 0000  
0x18 0000  
XINTF Zone 2 (0.5M × 16, XZCS2)  
XINTF Zone 6 (0.5M × 16, XZCS6AND7)  
Reserved  
0x3D 7800  
OTP (or ROM) (1K × 16, Secure Block)  
0x3D 7C00  
0x3D 8000  
0x3F 7FF8  
Reserved (1K)  
Reserved  
Flash (or ROM) (128K × 16, Secure Block)  
128-Bit Password  
0x3F 8000  
0x3F A000  
H0 SARAM (8K × 16)  
Reserved  
0x3F C000  
0x3F F000  
0x3F FFC0  
XINTF Zone 7 (16K × 16, XZCS6AND7)  
Boot ROM (4K × 16)  
(Enabled if MP/MC = 1)  
(Enabled if MP/MC = 0)  
XINTF Vector - RAM (32 × 32)  
(Enabled if VMAP = 1, MP/MC = 1, ENPIE = 0)  
BROM Vector - ROM (32 × 32)  
(Enabled if VMAP = 1, MP/MC = 0, ENPIE = 0)  
LEGEND:  
Only one of these vector maps—M0 vector, PIE vector, BROM vector, XINTF vector—should be enabled at a time.  
A. Memory blocks are not to scale.  
B. Reserved locations are reserved for future expansion. Application should not access these areas.  
C. Boot ROM and Zone 7 memory maps are active either in on-chip or XINTF zone depending on MP/MC, not in both.  
D. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only.  
User program cannot access these memory maps in program space.  
E. Protected means the order of Write followed by Read operations is preserved rather than the pipeline order.  
F. Certain memory ranges are EALLOW protected against spurious writes after configuration.  
G. Zones 0 and 1 and Zones 6 and 7 share the same chip select; hence, these memory blocks have mirrored locations.  
Figure 3-2. F2812 Memory Map (See Notes A. Through G.)  
28  
Functional Overview  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Table 3-1. Addresses of Flash Sectors in F2812  
ADDRESS RANGE  
PROGRAM AND DATA SPACE  
0x3D 8000  
0x3D 9FFF  
Sector J, 8K × 16  
Sector I, 8K × 16  
0x3D A000  
0x3D BFFF  
0x3D C000  
0x3D FFFF  
Sector H, 16K × 16  
Sector G, 16K × 16  
Sector F, 16K × 16  
Sector E, 16K × 16  
Sector D, 16K × 16  
Sector C, 16K × 16  
0x3E 0000  
0x3E 3FFF  
0x3E 4000  
0x3E 7FFF  
0x3E 8000  
0x3E BFFF  
0x3E C000  
0x3E FFFF  
0x3F 0000  
0x3F 3FFF  
0x3F 4000  
0x3F 5FFF  
Sector B, 8K × 16  
Sector A, 8K × 16  
0x3F 6000  
0x3F 7F80  
0x3F 7FF5  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7FF6  
0x3F 7FF7  
Boot-to-Flash (or ROM) Entry Point  
(program branch instruction here)  
0x3F 7FF8  
0x3F 7FFF  
Security Password (128-Bit)  
(Do not program to all zeros)  
The Low 64K of the memory address range maps into the data space of the 240x. The High 64K of the  
memory address range maps into the program space of the 24x/240x. 24x/240x-compatible code only  
executes from the High 64K memory area. Hence, the top 32K of Flash/ROM and H0 SARAM block can  
be used to run 24x/240x-compatible code (if MP/MC mode is low) or, on the F2812, code can be executed  
from XINTF Zone 7 (if MP/MC mode is high).  
The XINTF consists of five independent zones. One zone has its own chip select and the remaining four  
zones share two chip selects. Each zone can be programmed with its own timing (wait states) and to  
either sample or ignore external ready signal. This makes interfacing to external peripherals easy and  
glueless.  
NOTE  
The chip selects of XINTF Zone 0 and Zone 1 are merged together into a single chip select  
(XZCS0AND1); and the chip selects of XINTF Zone 6 and Zone 7 are merged together into a  
single chip select (XZCS6AND7). See Section 3.5, External Interface, XINTF (2812 only), for  
details.  
Peripheral Frame 1, Peripheral Frame 2, and XINTF Zone 1 are grouped together so as to enable these  
blocks to be write/read peripheral block protected. The protected mode ensures that all accesses to these  
blocks happen as written. Because of the C28x pipeline, a write immediately followed by a read, to  
different memory locations, appears in reverse order on the memory bus of the CPU. This can cause  
problems in certain peripheral applications where the user expected the write to occur first (as written).  
The C28x CPU supports a block protection mode where a region of memory can be protected so as to  
make sure that operations occur as written (the penalty is extra cycles are added to align the operations).  
This mode is programmable and by default, it protects the selected zones.  
On the F2812, at reset, XINTF Zone 7 is accessed if the XMP/MC pin is pulled high. This signal selects  
microprocessor or microcomputer mode of operation. In microprocessor mode, Zone 7 is mapped to high  
Copyright © 2009–2010, Texas Instruments Incorporated  
Functional Overview  
29  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
memory such that the vector table is fetched externally. The Boot ROM is disabled in this mode. In  
microcomputer mode, Zone 7 is disabled such that the vectors are fetched from Boot ROM. This allows  
the user to either boot from on-chip memory or from off-chip memory. The state of the XMP/MC signal on  
reset is stored in an MP/MC mode bit in the XINTCNF2 register. The user can change this mode in  
software and hence control the mapping of Boot ROM and XINTF Zone 7. No other memory blocks are  
affected by XMP/MC.  
I/O space is not supported on the F2812 XINTF.  
The wait states for the various spaces in the memory map area are listed in Table 3-2.  
Table 3-2. Wait States  
AREA  
WAIT-STATES  
0-wait  
COMMENTS  
M0 and M1 SARAMs  
Peripheral Frame 0  
Fixed  
Fixed  
0-wait  
0-wait (writes)  
2-wait (reads)  
Peripheral Frame 1  
Fixed  
Fixed  
0-wait (writes)  
2-wait (reads)  
Peripheral Frame 2  
L0 and L1 SARAMs  
OTP (or ROM)  
0-wait  
Programmable,  
1-wait minimum  
Programmed via the Flash registers. 1-wait-state operation is possible at a reduced  
CPU frequency. See Section 3.2.6, Flash (F281x Only), for more information.  
Programmed via the Flash registers. 0-wait-state operation is possible at reduced  
CPU frequency. The CSM password locations are hardwired for 16 wait-states.  
See Section 3.2.6, Flash (F281x Only), for more information.  
Programmable,  
0-wait minimum  
Flash (or ROM)  
H0 SARAM  
Boot-ROM  
0-wait  
1-wait  
Fixed  
Fixed  
Programmed via the XINTF registers.  
Cycles can be extended by external memory or peripheral.  
0-wait operation is not possible.  
Programmable,  
1-wait minimum  
XINTF  
30  
Functional Overview  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
3.2 Brief Descriptions  
3.2.1 C28x CPU  
The C28x™ DSP generation is the newest member of the TMS320C2000™ DSP platform. The C28x is  
source code compatible to the 24x/240x DSP devices, hence existing 240x users can leverage their  
significant software investment. Additionally, the C28x is a very efficient C/C++ engine, hence enabling  
users to develop not only their system control software in a high-level language, but also enables math  
algorithms to be developed using C/C++. The C28x is as efficient in DSP math tasks as it is in system  
control tasks that typically are handled by microcontroller devices. This efficiency removes the need for a  
second processor in many systems. The 32 × 32-bit MAC capabilities of the C28x and its 64-bit  
processing capabilities, enable the C28x to efficiently handle higher numerical resolution problems that  
would otherwise demand a more expensive floating-point processor solution. Add to this the fast interrupt  
response with automatic context save of critical registers, resulting in a device that is capable of servicing  
many asynchronous events with minimal latency. The C28x has an 8-level-deep protected pipeline with  
pipelined memory accesses. This pipelining enables the C28x to execute at high speeds without resorting  
to expensive high-speed memories. Special branch-look-ahead hardware minimizes the latency for  
conditional discontinuities. Special store conditional operations further improve performance.  
3.2.2 Memory Bus (Harvard Bus Architecture)  
As with many DSP type devices, multiple busses are used to move data between the memories and  
peripherals and the CPU. The C28x memory bus architecture contains a program read bus, data read bus  
and data write bus. The program read bus consists of 22 address lines and 32 data lines. The data read  
and write busses consist of 32 address lines and 32 data lines each. The 32-bit-wide data busses enable  
single cycle 32-bit operations. The multiple bus architecture, commonly termed Harvard Bus, enables the  
C28x to fetch an instruction, read a data value and write a data value in a single cycle. All peripherals and  
memories attached to the memory bus prioritizes memory accesses. Generally, the priority of Memory Bus  
accesses can be summarized as follows:  
Highest:  
Data Writes(1)  
Program Writes  
Data Reads  
Program Reads(2)  
Lowest:  
Fetches  
3.2.3 Peripheral Bus  
To enable migration of peripherals between various Texas Instruments (TI) DSP families, the F2812  
adopts a peripheral bus standard for peripheral interconnect. The peripheral bus bridge multiplexes the  
various busses that make up the processor Memory Bus into a single bus consisting of 16 address lines  
and 16 or 32 data lines and associated control signals. Two versions of the peripheral bus are supported  
on the F2812. One version only supports 16-bit accesses (called peripheral frame 2) and this retains  
compatibility with C240x-compatible peripherals. The other version supports both 16- and 32-bit accesses  
(called peripheral frame 1).  
3.2.4 Real-Time JTAG and Analysis  
The F2812 implement the standard IEEE 1149.1 JTAG interface. Additionally, the F2812 supports  
real-time mode of operation whereby the contents of memory, peripheral and register locations can be  
modified while the processor is running and executing code and servicing interrupts. The user can also  
(1) Simultaneous Data and Program writes cannot occur on the Memory Bus.  
(2) Simultaneous Program Reads and Fetches cannot occur on the Memory Bus.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Functional Overview  
31  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
single step through non-time critical code while enabling time-critical interrupts to be serviced without  
interference. The F2812 implements the real-time mode in hardware within the CPU. This is a unique  
feature to the F2812, no software monitor is required. Additionally, special analysis hardware is provided  
which allows the user to set hardware breakpoint or data/address watch-points and generate various user  
selectable break events when a match occurs.  
3.2.5 External Interface (XINTF)  
This asynchronous interface consists of 19 address lines, 16 data lines, and three chip-select lines. The  
chip-select lines are mapped to five external zones, Zones 0, 1, 2, 6, and 7. Zones 0 and 1 share a single  
chip-select; Zones 6 and 7 also share a single chip-select. Each of the five zones can be programmed  
with a different number of wait states, strobe signal setup and hold timing and each zone can be  
programmed for extending wait states externally or not. The programmable wait-state, chip-select, and  
programmable strobe timing enables glueless interface to external memories and peripherals.  
3.2.6 Flash  
The F2812 contains 128K × 16 of embedded flash memory, segregated into four 8K × 16 sectors, and six  
16K × 16 sectors. The F2810 has 64K × 16 of embedded flash, segregated into two 8K × 16 sectors, and  
three 16K × 16 sectors. The device also contains a single 1K × 16 of OTP memory at address range 0x3D  
7800 - 0x3D 7BFF. The user can individually erase, program, and validate a flash sector while leaving  
other sectors untouched. However, it is not possible to use one sector of the flash or the OTP to execute  
flash algorithms that erase/program other sectors. Special memory pipelining is provided to enable the  
flash module to achieve higher performance. The flash/OTP is mapped to both program and data space;  
therefore, it can be used to execute code or store data information.  
NOTE  
The F2812 Flash and OTP wait states can be configured by the application. This allows  
applications running at slower frequencies to configure the flash to use fewer wait states.  
Flash effective performance can be improved by enabling the flash pipeline mode in the  
Flash options register. With this mode enabled, effective performance of linear code  
execution is much faster than the raw performance indicated by the wait state configuration  
alone. The exact performance gain when using the Flash pipeline mode is  
application-dependent. The pipeline mode is not available for the OTP block.  
For more information on the Flash options, Flash wait-state, and OTP wait-state registers,  
see the TMS320x281x System Control and Interrupts Reference Guide (SPRU078).  
3.2.7 L0, L1, H0 SARAMs  
The F2812 contains an additional 16K × 16 of single-access RAM, divided into three blocks (4K + 4K +  
8K). Each block can be independently accessed hence minimizing pipeline stalls. Each block is mapped to  
both program and data space.  
3.2.8 Boot ROM  
The Boot ROM is factory-programmed with boot-loading software. The Boot ROM program executes after  
device reset and checks several GPIO pins to determine which boot mode to enter. For example, the user  
can select to execute code already present in the internal Flash or download new software to internal  
RAM through one of several serial ports. Other boot modes exist as well. The Boot ROM also contains  
standard tables, such as SIN/COS waveforms, for use in math-related algorithms. Table 3-3 shows the  
details of how various boot modes may be invoked. See the TMS320x281x DSP Boot ROM Reference  
Guide (SPRS095), for more information.  
32  
Functional Overview  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Table 3-3. Boot Mode Selection  
GPIOF4  
(SCITXDA)  
GPIOF12  
(MDXA)  
GPIOF3  
(SPISTEA)  
GPIOF2  
BOOT MODE SELECTED(1)  
(SPICLK)(2)  
GPIO PU status(3)  
PU  
No PU  
No PU  
No PU  
Jump to Flash/ROM address 0x3F 7FF6  
A branch instruction must have been programmed here prior to  
reset to redirect code execution as desired.  
1
x
x
x
Call SPI_Boot to load from an external serial SPI EEPROM  
Call SCI_Boot to load from SCI-A  
0
0
0
0
0
1
0
0
0
0
x
1
1
0
0
x
1
0
1
0
Jump to H0 SARAM address 0x3F 8000  
Jump to OTP address 0x3D 7800  
Call Parallel_Boot to load from GPIO Port B  
(1) If the boot mode selected is Flash, H0, or OTP, then no external code is loaded by the bootloader.  
(2) Extra care must be taken due to any effect toggling SPICLK to select a boot mode may have on external logic.  
(3) PU = pin has an internal pullup. No PU = pin does not have an internal pullup  
3.2.9 Security  
The F2812 supports high levels of security to protect the user firmware from being reversed engineered.  
The security features a 128–bit password (hardcoded for 16 wait states), which the user programs into the  
flash. One code security module (CSM) is used to protect the flash/ROM/OTP and the L0/L1 SARAM  
blocks. The security feature prevents unauthorized users from examining the memory contents via the  
JTAG port, executing code from external memory or trying to boot–load some undesirable software that  
would export the secure memory contents. To enable access to the secure blocks, the user must write the  
correct 128–bit KEY value, which matches the value stored in the password locations within the  
Flash/ROM.  
NOTE  
For code security operation, all addresses between 0x3F7F80 and 0x3F7FF5 cannot be  
used as program code or data, but must be programmed to 0x0000 when the Code Security  
Passwords are programmed. If security is not a concern, then these addresses may be used  
for code or data.  
The 128-bit password (at 0x3F 7FF8 – 0x3F 7FFF) must not be programmed to zeros. Doing  
so would permanently lock the device.  
Code Security Module Disclaimer  
The Code Security Module (CSM) included on this device was designed to password  
protect the data stored in the associated memory (either ROM or Flash) and is warranted  
by Texas Instruments (TI), in accordance with its standard terms and conditions, to  
conform to TI’s published specifications for the warranty period applicable for this device.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT  
BE COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE  
ASSOCIATED MEMORY CANNOT BE ACCESSED THROUGH OTHER MEANS.  
MOREOVER, EXCEPT AS SET FORTH ABOVE, TI MAKES NO WARRANTIES OR  
REPRESENTATIONS CONCERNING THE CSM OR OPERATION OF THIS DEVICE,  
INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR  
A PARTICULAR PURPOSE.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Functional Overview  
33  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL,  
INDIRECT, INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING  
IN ANY WAY OUT OF YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR  
NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  
EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO LOSS OF DATA, LOSS  
OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR OTHER  
ECONOMIC LOSS.  
3.2.10 Peripheral Interrupt Expansion (PIE) Block  
The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The  
PIE block can support up to 96 peripheral interrupts. On the F2812, 45 of the possible 96 interrupts are  
used by peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of 12  
CPU interrupt lines (INT1 to INT12). Each of the 96 interrupts is, supported by its own vector stored in a  
dedicated RAM block that can be overwritten by the user. The vector is, automatically fetched by the CPU  
on servicing the interrupt. It takes 8 CPU clock cycles to fetch the vector and save critical CPU registers.  
Hence the CPU can quickly respond to interrupt events. Prioritization of interrupts is controlled in  
hardware and software. Each individual interrupt can be enabled/disabled within the PIE block.  
3.2.11 External Interrupts (XINT1, XINT2, XINT13, XNMI)  
The F2812 supports three masked external interrupts (XINT1, 2, 13). XINT13 is combined with one  
non-masked external interrupt (XNMI). The combined signal name is XNMI_XINT13. Each of the interrupts  
can be selected for negative or positive edge triggering and can also be enabled/disabled (including the  
XNMI). The masked interrupts also contain a 16-bit free running up counter, which is reset to zero when a  
valid interrupt edge is detected. This counter can be used to accurately time stamp the interrupt.  
3.2.12 Oscillator and PLL  
The F2812 can be clocked by an external oscillator or by a crystal attached to the on-chip oscillator circuit.  
A PLL is provided supporting up to 10-input clock-scaling ratios. The PLL ratios can be changed on-the-fly  
in software, enabling the user to scale back on operating frequency if lower power operation is desired.  
Refer to the Electrical Specification section for timing details. The PLL block can be set in bypass mode.  
3.2.13 Watchdog  
The F2812 supports a watchdog timer. The user software must regularly reset the watchdog counter  
within a certain time frame; otherwise, the watchdog generates a reset to the processor. The watchdog  
can be disabled if necessary.  
3.2.14 Peripheral Clocking  
The clocks to each individual peripheral can be enabled/disabled so as to reduce power consumption  
when a peripheral is not in use. Additionally, the system clock to the serial ports (except eCAN) and the  
event managers, CAP and QEP blocks can be scaled relative to the CPU clock. This enables the timing of  
peripherals to be decoupled from increasing CPU clock speeds.  
3.2.15 Low-Power Modes  
The F2812 device is a full-static CMOS device. Three low-power modes are provided:  
IDLE:  
Place CPU into low-power mode. Peripheral clocks may be turned off selectively  
and only those peripherals that need to function during IDLE are left operating. An  
enabled interrupt from an active peripheral wakes the processor from IDLE mode.  
STANDBY: Turn off clock to CPU and peripherals. This mode leaves the oscillator and PLL  
functional. An external interrupt event wakes the processor and the peripherals.  
Execution begins on the next valid cycle after detection of the interrupt event.  
34  
Functional Overview  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
HALT:  
Turn off oscillator. This mode basically shuts down the device and places it in the  
lowest possible power consumption mode. Only a reset or XNMI wakes the  
device from this mode.  
3.2.16 Peripheral Frames 0, 1, 2 (PFn)  
The F2812 segregates peripherals into three sections. The mapping of peripherals is as follows:  
PF0:  
XINTF:  
PIE:  
External Interface Configuration Registers (2812 only)  
PIE Interrupt Enable and Control Registers Plus PIE Vector Table  
Flash Control, Programming, Erase, Verify Registers  
CPU-Timers 0, 1, 2 Registers  
Flash:  
Timers:  
CSM:  
eCAN:  
SYS:  
Code Security Module KEY Registers  
PF1:  
PF2:  
eCAN Mailbox and Control Registers  
System Control Registers  
GPIO:  
EV:  
GPIO Mux Configuration and Control Registers  
Event Manager (EVA/EVB) Control Registers  
McBSP Control and TX/RX Registers  
McBSP:  
SCI:  
Serial Communications Interface (SCI) Control and RX/TX Registers  
Serial Peripheral Interface (SPI) Control and RX/TX Registers  
12-Bit ADC Registers  
SPI:  
ADC:  
3.2.17 General-Purpose Input/Output (GPIO) Multiplexer  
Most of the peripheral signals are multiplexed with general-purpose I/O (GPIO) signals. This enables the  
user to use a pin as GPIO if the peripheral signal or function is not used. On reset, all GPIO pins are  
configured as inputs. The user can then individually program each pin for GPIO mode or Peripheral Signal  
mode. For specific inputs, the user can also select the number of input qualification cycles. This is to filter  
unwanted noise glitches.  
3.2.18 32-Bit CPU Timers (0, 1, 2)  
CPU Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock  
prescaling. The timers have a 32-bit count down register, which generates an interrupt when the counter  
reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting.  
When the counter reaches zero, it is automatically reloaded with a 32-bit period value. CPU Timer 2 is  
reserved for Real-Time OS (RTOS)/BIOS applications. CPU Timer 1 is also reserved for TI system  
functions. CPU Timer 2 is connected to INT14 of the CPU. CPU Timer 1 can be connected to INT13 of the  
CPU. CPU Timer 0 is for general use and is connected to the PIE block.  
3.2.19 Control Peripherals  
The F2812 supports the following peripherals which are used for embedded control and communication:  
EV:  
The event manager module includes general-purpose timers, full-compare/PWM units,  
capture inputs (CAP) and quadrature-encoder pulse (QEP) circuits. Two such event  
managers are provided which enable two three-phase motors to be driven or four  
two-phase motors. The event managers on the F2812 is compatible to the event  
managers on the 240x devices (with some minor enhancements).  
ADC:  
The ADC block is a 12-bit converter, single ended, 16-channels. It contains two  
sample-and-hold units for simultaneous sampling.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Functional Overview  
35  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
3.2.20 Serial Port Peripherals  
The F2812 supports the following serial communication peripherals:  
eCAN: This is the enhanced version of the CAN peripheral. It supports 32 mailboxes, time  
stamping of messages, and is CAN 2.0B-compliant.  
McBSP This is the multichannel buffered serial port that is used to connect to E1/T1 lines,  
:
phone-quality codecs for modem applications or high-quality stereo-quality Audio DAC  
devices. The McBSP receive and transmit registers are supported by a 16-level FIFO.  
This significantly reduces the overhead for servicing this peripheral.  
SPI:  
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of  
programmed length (one to sixteen bits) to be shifted into and out of the device at a  
programmable bit-transfer rate. Normally, the SPI is used for communications between  
the DSP controller and external peripherals or another processor. Typical applications  
include external I/O or peripheral expansion through devices such as shift registers,  
display drivers, and ADCs. Multi-device communications are supported by the  
master/slave operation of the SPI. On the F2812, the port supports a 16-level receive  
and transmit FIFO for reducing servicing overhead.  
SCI:  
The serial communications interface is a two-wire asynchronous serial port, commonly  
known as UART. On the F2812, the port supports a 16-level receive and transmit FIFO  
for reducing servicing overhead.  
3.3 Register Map  
The F2812 device contains three peripheral register spaces. The spaces are categorized as follows:  
Peripheral Frame 0: These are peripherals that are mapped directly to the CPU memory bus. See  
Peripheral Frame 1: These are peripherals that are mapped to the 32-bit peripheral bus. See  
Peripheral Frame 2: These are peripherals that are mapped to the 16-bit peripheral bus. See  
36  
Functional Overview  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Table 3-4. Peripheral Frame 0 Registers(1)  
NAME  
ADDRESS RANGE  
SIZE (×16)  
ACCESS TYPE(2)  
0x00 0880  
0x00 09FF  
Device Emulation Registers  
reserved  
384  
EALLOW protected  
0x00 0A00  
0x00 0A7F  
128  
96  
0x00 0A80  
0x00 0ADF  
EALLOW protected  
CSM Protected  
FLASH Registers(3)  
Code Security Module Registers  
reserved  
0x00 0AE0  
0x00 0AEF  
16  
EALLOW protected  
0x00 0AF0  
0x00 0B1F  
48  
0x00 0B20  
0x00 0B3F  
XINTF Registers  
reserved  
32  
Not EALLOW protected  
Not EALLOW protected  
0x00 0B40  
0x00 0BFF  
192  
64  
0x00 0C00  
0x00 0C3F  
CPU-TIMER0/1/2 Registers  
reserved  
0x00 0C40  
0x00 0CDF  
160  
32  
0x00 0CE0  
0x00 0CFF  
PIE Registers  
Not EALLOW protected  
EALLOW protected  
0x00 0D00  
0x00 0DFF  
PIE Vector Table  
Reserved  
256  
512  
0x00 0E00  
0x00 0FFF  
(1) Registers in Frame 0 support 16-bit and 32-bit accesses.  
(2) If registers are EALLOW protected, then writes cannot be performed until the user executes the EALLOW instruction. The EDIS  
instruction disables writes. This prevents stray code or pointers from corrupting register contents.  
(3) The Flash Registers are also protected by the Code Security Module (CSM).  
Table 3-5. Peripheral Frame 1 Registers(1)  
NAME  
ADDRESS RANGE  
SIZE (×16)  
ACCESS TYPE  
0x00 6000  
0x00 60FF  
256  
(128 × 32)  
Some eCAN control registers (and selected bits in  
other eCAN control registers) are EALLOW-protected.  
eCAN Registers  
0x00 6100  
0x00 61FF  
256  
(128 × 32)  
eCAN Mailbox RAM  
reserved  
Not EALLOW-protected  
0x00 6200  
0x00 6FFF  
3584  
(1) The eCAN control registers only support 32-bit read/write operations. All 32-bit accesses are aligned to even address boundaries.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Functional Overview  
37  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
Table 3-6. Peripheral Frame 2 Registers(1)  
NAME  
ADDRESS RANGE  
SIZE (×16)  
ACCESS TYPE  
0x00 7000  
0x00 700F  
reserved  
16  
0x00 7010  
0x00 702F  
System Control Registers  
reserved  
32  
16  
EALLOW Protected  
0x00 7030  
0x00 703F  
0x00 7040  
0x00 704F  
SPI-A Registers  
SCI-A Registers  
reserved  
16  
Not EALLOW Protected  
Not EALLOW Protected  
0x00 7050  
0x00 705F  
16  
0x00 7060  
0x00 706F  
16  
0x00 7070  
0x00 707F  
External Interrupt Registers  
reserved  
16  
Not EALLOW Protected  
0x00 7080  
0x00 70BF  
64  
0x00 70C0  
0x00 70DF  
GPIO Mux Registers  
GPIO Data Registers  
ADC Registers  
reserved  
32  
EALLOW Protected  
0x00 70E0  
0x00 70FF  
32  
Not EALLOW Protected  
Not EALLOW Protected  
0x00 7100  
0x00 711F  
32  
0x00 7120  
0x00 73FF  
736  
64  
0x00 7400  
0x00 743F  
EV-A Registers  
reserved  
Not EALLOW Protected  
Not EALLOW Protected  
Not EALLOW Protected  
Not EALLOW Protected  
0x00 7440  
0x00 74FF  
192  
64  
0x00 7500  
0x00 753F  
EV-B Registers  
reserved  
0x00 7540  
0x00 774F  
528  
16  
0x00 7750  
0x00 775F  
SCI-B Registers  
reserved  
0x00 7760  
0x00 77FF  
160  
64  
0x00 7800  
0x00 783F  
McBSP Registers  
reserved  
0x00 7840  
0x00 7FFF  
1984  
(1) Peripheral Frame 2 only allows 16-bit accesses. All 32-bit accesses are ignored (invalid data may be returned or written).  
38  
Functional Overview  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
3.4 Device Emulation Registers  
These registers are used to control the protection mode of the C28x CPU and to monitor some critical  
device signals. The registers are defined in Table 3-7.  
Table 3-7. Device Emulation Registers  
NAME  
DEVICECNF  
reserved  
ADDRESS RANGE  
SIZE (×16)  
DESCRIPTION  
Device Configuration Register  
0x00 0880  
0x00 0881  
2
1
0x00 0882  
Not supported on Revision C and later silicon  
Device ID Register (0x0003 – Silicon – Rev. C and D)  
Device ID Register (0x0004 – Reserved)  
DEVICEID  
0x00 0883  
1
Device ID Register (0x0005 – Silicon – Rev. E)  
PROTSTART  
PROTRANGE  
0x00 0884  
0x00 0885  
1
1
Block Protection Start Address Register  
Block Protection Range Address Register  
0x00 0886  
0x00 09FF  
reserved  
378  
3.5 External Interface, XINTF  
This section gives a top-level view of the external interface (XINTF) that is implemented on the F2812  
device.  
The external interface is a non-multiplexed asynchronous bus, similar to the C240x external interface. The  
external interface on the F2812 is mapped into five fixed zones shown in Figure 3-3.  
Figure 3-3 shows the F2812 XINTF signals.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Functional Overview  
39  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
Data Space  
Prog Space  
0x00 0000  
XD(15:0)  
XA(18:0)  
0x00 2000  
0x00 4000  
XINTF Zone 0  
XZCS0  
XZCS1  
(8K × 16)  
XZCS0AND1  
XINTF Zone 1  
(8K × 16)  
0x00 6000  
0x08 0000  
XINTF Zone 2  
(512K × 16)  
XZCS2  
0x10 0000  
XINTF Zone 6  
(512K × 16)  
XZCS6  
XZCS7  
XZCS6AND7  
0x18 0000  
0x3F C000  
XINTF Zone 7  
(16K × 16)  
(mapped here if MP/MC = 1)  
0x40 0000  
XWE  
XRD  
XR/W  
XREADY  
XMP/MC  
XHOLD  
XHOLDA  
XCLKOUT  
A. The mapping of XINTF Zone 7 is dependent on the XMP/MC device input signal and the MP/MC mode bit (bit 8 of  
XINTCNF2 register). Zones 0, 1, 2, and 6 are always enabled.  
B. Each zone can be programmed with different wait states, setup and hold timing, and is supported by zone chip  
selects (XZCS0AND1, XZCS2, XZCS6AND7), which toggle when an access to a particular zone is performed. These  
features enable glueless connection to many external memories and peripherals.  
C. The chip selects for Zone 0 and 1 are ANDed internally together to form one chip select (XZCS0AND1). Any external  
memory that is connected to XZCS0AND1 is dually mapped to both Zones 0 and Zone 1.  
D. The chip selects for Zone 6 and 7 are ANDed internally together to form one chip select (XZCS6AND7). Any external  
memory that is connected to XZCS6AND7 is dually mapped to both Zones 6 and Zone 7. This means that if Zone 7 is  
disabled (via the MP/MC mode) then any external memory is still accessible via Zone 6 address space.  
Figure 3-3. External Interface Block Diagram  
40  
Functional Overview  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
The operation and timing of the external interface, can be controlled by the registers listed in Table 3-8.  
Table 3-8. XINTF Configuration and Control Register Mappings  
NAME  
ADDRESS  
SIZE (×16)  
DESCRIPTION  
XINTF Timing Register, Zone 0 can access as two 16-bit registers or one 32-bit  
register  
XTIMING0  
0x00 0B20  
2
XINTF Timing Register, Zone 1 can access as two 16-bit registers or one 32-bit  
register  
XTIMING1  
XTIMING2  
XTIMING6  
XTIMING7  
XINTCNF2  
0x00 0B22  
0x00 0B24  
0x00 0B2C  
0x00 0B2E  
0x00 0B34  
2
2
2
2
2
XINTF Timing Register, Zone 2 can access as two 16-bit registers or one 32-bit  
register  
XINTF Timing Register, Zone 6 can access as two 16-bit registers or one 32-bit  
register  
XINTF Timing Register, Zone 7 can access as two 16-bit registers or one 32-bit  
register  
XINTF Configuration Register can access as two 16-bit registers or one 32-bit  
register  
XBANK  
0x00 0B38  
0x00 0B3A  
1
1
XINTF Bank Control Register  
XINTF Revision Register  
XREVISION  
3.5.1 Timing Registers  
XINTF signal timing can be tuned to match specific external device requirements such as setup and hold  
times to strobe signals for contention avoidance and maximizing bus efficiency. The timing parameters  
can be configured individually for each zone. This allows the programmer to maximize the efficiency of the  
bus, based on the type of memory or peripheral that the user needs to access. All XINTF timing values  
are with respect to XTIMCLK, which is equal to or one-half of the SYSCLKOUT rate, as shown in Figure  
6-27.  
For detailed information on the XINTF timing and configuration register bit fields, see the TMS320x281x  
DSP External Interface (XINTF) Reference Guide (SPRU067).  
3.5.2 XREVISION Register  
The XREVISION register contains a unique number to identify the particular version of XINTF used in the  
product. For the F2812, this register is configured as described in Table 3-9.  
Table 3-9. XREVISION Register Bit Definitions  
BIT(S)  
NAME  
TYPE  
RESET  
DESCRIPTION  
Current XINTF Revision. For internal use/reference. Test purposes only.  
Subject to change.  
15-0  
REVISION  
R
0x0004  
Copyright © 2009–2010, Texas Instruments Incorporated  
Functional Overview  
41  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
3.6 Interrupts  
Figure 3-4 shows how the various interrupt sources are multiplexed within the F2812 device.  
Peripherals (SPI, SCI, McBSP, CAN, EV, ADC)  
(41 Interrupts)  
WDINT  
Watchdog  
WAKEINT  
LPMINT  
Low-Power Modes  
XINT1  
Interrupt Control  
PIE  
XINT1CR(15:0)  
XINT1CTR(15:0)  
INT1 to INT12  
XINT2  
Interrupt Control  
XINT2CR(15:0)  
XINT2CTR(15:0)  
C28x CPU  
GPIO  
MUX  
TINT0  
TIMER 0  
TINT2  
TINT1  
TIMER 2 (for RTOS)  
TIMER 1 (for RTOS)  
INT14  
INT13  
select  
enable  
NMI  
XNMI_XINT13  
Interrupt Control  
XNMICR(15:0)  
XNMICTR(15:0)  
Out of a possible 96 interrupts, 45 are currently used by peripherals.  
Figure 3-4. Interrupt Sources  
Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8  
interrupts per group equals 96 possible interrupts. On the F2812, 45 of these are used by peripherals as  
shown in Table 3-10.  
42  
Functional Overview  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
IFR(12:1)  
IER(12:1)  
INTM  
INT1  
INT2  
1
CPU  
MUX  
0
INT11  
INT12  
Global  
Enable  
(Flag)  
(Enable)  
INTx.1  
INTx.2  
INTx.3  
INTx.4  
INTx.5  
From  
Peripherals or  
External  
INTx  
MUX  
INTx.6  
INTx.7  
INTx.8  
Interrupts  
PIEACKx  
(Enable)  
(Flag)  
(Enable/Flag)  
PIEIERx(8:1)  
PIEIFRx(8:1)  
Figure 3-5. Multiplexing of Interrupts Using the PIE Block  
Table 3-10. PIE Peripheral Interrupts(1)  
PIE INTERRUPTS  
CPU  
INTERRUPTS  
INTx.8  
INTx.7  
INTx.6  
INTx.5  
INTx.4  
INTx.3  
INTx.2  
INTx.1  
WAKEINT  
(LPM/WD)  
TINT0  
(TIMER 0)  
ADCINT  
(ADC)  
PDPINTB  
(EV-B)  
PDPINTA  
(EV-A)  
INT1  
INT2  
INT3  
INT4  
INT5  
INT6  
XINT2  
XINT1  
reserved  
T1OFINT  
(EV-A)  
T1UFINT  
(EV-A)  
T1CINT  
(EV-A)  
T1PINT  
(EV-A)  
CMP3INT  
(EV-A)  
CMP2INT  
(EV-A)  
CMP1INT  
(EV-A)  
reserved  
reserved  
reserved  
reserved  
reserved  
CAPINT3  
(EV-A)  
CAPINT2  
(EV-A)  
CAPINT1  
(EV-A)  
T2OFINT  
(EV-A)  
T2UFINT  
(EV-A)  
T2CINT  
(EV-A)  
T2PINT  
(EV-A)  
T3OFINT  
(EV-B)  
T3UFINT  
(EV-B)  
T3CINT  
(EV-B)  
T3PINT  
(EV-B)  
CMP6INT  
(EV-B)  
CMP5INT  
(EV-B)  
CMP4INT  
(EV-B)  
CAPINT6  
(EV-B)  
CAPINT5  
(EV-B)  
CAPINT4  
(EV-B)  
T4OFINT  
(EV-B)  
T4UFINT  
(EV-B)  
T4CINT  
(EV-B)  
T4PINT  
(EV-B)  
MXINT  
(McBSP)  
MRINT  
(McBSP)  
SPITXINTA  
(SPI)  
SPIRXINTA  
(SPI)  
reserved  
reserved  
reserved  
INT7  
INT8  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
ECAN1INT  
(CAN)  
ECAN0INT  
(CAN)  
SCITXINTB  
(SCI-B)  
SCIRXINTB  
(SCI-B)  
SCITXINTA  
(SCI-A)  
SCIRXINTA  
(SCI-A)  
INT9  
reserved  
reserved  
INT10  
INT11  
INT12  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
(1) Out of the 96 possible interrupts, 45 interrupts are currently used. the remaining interrupts are reserved for future devices. However,  
these interrupts can be used as software interrupts if they are enabled at the PIEIFRx level.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Functional Overview  
43  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
Table 3-11. PIE Configuration and Control Registers(1)  
NAME  
PIECTRL  
ADDRESS  
0x0000-0CE0  
0x0000-0CE1  
0x0000-0CE2  
0x0000-0CE3  
0x0000-0CE4  
0x0000-0CE5  
0x0000-0CE6  
0x0000-0CE7  
0x0000-0CE8  
0x0000-0CE9  
0x0000-0CEA  
0x0000-0CEB  
0x0000-0CEC  
0x0000-0CED  
0x0000-0CEE  
0x0000-0CEF  
0x0000-0CF0  
0x0000-0CF1  
0x0000-0CF2  
0x0000-0CF3  
0x0000-0CF4  
0x0000-0CF5  
0x0000-0CF6  
0x0000-0CF7  
0x0000-0CF8  
0x0000-0CF9  
SIZE (×16)  
DESCRIPTION  
PIE, Control Register  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PIEACK  
PIEIER1  
PIEIFR1  
PIEIER2  
PIEIFR2  
PIEIER3  
PIEIFR3  
PIEIER4  
PIEIFR4  
PIEIER5  
PIEIFR5  
PIEIER6  
PIEIFR6  
PIEIER7  
PIEIFR7  
PIEIER8  
PIEIFR8  
PIEIER9  
PIEIFR9  
PIEIER10  
PIEIFR10  
PIEIER11  
PIEIFR11  
PIEIER12  
PIEIFR12  
PIE, Acknowledge Register  
PIE, INT1 Group Enable Register  
PIE, INT1 Group Flag Register  
PIE, INT2 Group Enable Register  
PIE, INT2 Group Flag Register  
PIE, INT3 Group Enable Register  
PIE, INT3 Group Flag Register  
PIE, INT4 Group Enable Register  
PIE, INT4 Group Flag Register  
PIE, INT5 Group Enable Register  
PIE, INT5 Group Flag Register  
PIE, INT6 Group Enable Register  
PIE, INT6 Group Flag Register  
PIE, INT7 Group Enable Register  
PIE, INT7 Group Flag Register  
PIE, INT8 Group Enable Register  
PIE, INT8 Group Flag Register  
PIE, INT9 Group Enable Register  
PIE, INT9 Group Flag Register  
PIE, INT10 Group Enable Register  
PIE, INT10 Group Flag Register  
PIE, INT11 Group Enable Register  
PIE, INT11 Group Flag Register  
PIE, INT12 Group Enable Register  
PIE, INT12 Group Flag Register  
0x0000-0CFA  
0x0000-0CFF  
Reserved  
6
Reserved  
(1) The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector table is protected.  
44  
Functional Overview  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
3.6.1 External Interrupts  
Table 3-12. External Interrupts Registers  
NAME  
XINT1CR  
ADDRESS  
SIZE (×16)  
DESCRIPTION  
XINT1 control register  
0x00 7070  
0x00 7071  
1
1
XINT2CR  
XINT2 control register  
0x00 7072  
0x00 7076  
reserved  
5
XNMICR  
0x00 7077  
0x00 7078  
0x00 7079  
1
1
1
XNMI control register  
XINT1 counter register  
XINT2 counter register  
XINT1CTR  
XINT2CTR  
0x00 707A  
0x00 707E  
reserved  
5
1
XNMICTR  
0x00 707F  
XNMI counter register  
Each external interrupt can be enabled/disabled or qualified using positive or negative going edge. For  
more information, see the TMS320x281x System Control and Interrupts Reference Guide (SPRU078).  
Copyright © 2009–2010, Texas Instruments Incorporated  
Functional Overview  
45  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
3.7 System Control  
This section describes the F2812 oscillator, PLL and clocking mechanisms, the watchdog function and the  
low power modes. Figure 3-6 shows the various clock and reset domains in the F2812 device that are  
discussed.  
See Note A  
A. CLKIN is the clock input to the CPU. SYSCLKOUT is the output clock of the CPU. They are of the same frequency.  
Figure 3-6. Clock and Reset Domains  
46  
Functional Overview  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
The PLL, clocking, watchdog, and low-power modes are controlled by the registers listed in Table 3-13.  
Table 3-13. PLL, Clocking, Watchdog, and Low-Power Mode Registers(1)  
NAME  
reserved  
ADDRESS  
SIZE (×16)  
DESCRIPTION  
0x00 7010  
0x00 7017  
8
reserved  
reserved  
HISPCP  
LOSPCP  
PCLKCR  
reserved  
LPMCR0  
LPMCR1  
reserved  
PLLCR  
0x00 7018  
0x00 7019  
0x00 701A  
0x00 701B  
0x00 701C  
0x00 701D  
0x00 701E  
0x00 701F  
0x00 7020  
0x00 7021  
0x00 7022  
0x00 7023  
0x00 7024  
0x00 7025  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
High-Speed Peripheral Clock Prescaler Register for HSPCLK clock  
Low-Speed Peripheral Clock Prescaler Register for LSPCLK clock  
Peripheral Clock Control Register  
Low Power Mode Control Register 0  
Low Power Mode Control Register 1  
PLL Control Register(2)  
SCSR  
System Control & Status Register  
Watchdog Counter Register  
WDCNTR  
reserved  
WDKEY  
Watchdog Reset Key Register  
Watchdog Control Register  
0x00 7026  
0x00 7028  
reserved  
WDCR  
3
1
6
0x00 7029  
0x00 702A  
0x00 702F  
reserved  
(1) All of the above registers can only be accessed by executing the EALLOW instruction.  
(2) The PLL control register (PLLCR) is reset to a known state by the XRS signal only. Emulation reset (through Code Composer Studio)  
does not reset PLLCR.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Functional Overview  
47  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
3.8 OSC and PLL Block  
Figure 3-7 shows the OSC and PLL block on the F2812.  
XPLLDIS  
Latch  
XRS  
XF_XPLLDIS  
OSCCLK (PLL Disabled)  
X1/XCLKIN  
XCLKIN  
0
1
CLKIN  
CPU  
SYSCLKOUT  
On-Chip  
Oscillator  
(OSC)  
PLL  
Bypass  
/2  
4-Bit PLL Select  
X2  
PLL  
4-Bit PLL Select  
PLL Block  
Figure 3-7. OSC and PLL Block  
The on-chip oscillator circuit enables a crystal to be attached to the F2812 device using the X1/XCLKIN  
and X2 pins. If a crystal is not used, then an external oscillator can be directly connected to the  
X1/XCLKIN pin and the X2 pin is left unconnected. The logic-high level in this case should not exceed  
VDD. The PLLCR bits [3:0] set the clocking ratio.  
Table 3-14. PLLCR Register Bit Definitions  
BIT(S)  
NAME  
TYPE  
XRS RESET(1)  
DESCRIPTION  
15:04  
reserved  
R = 0  
0:00  
SYSCLKOUT = (XCLKIN x n)/2, where n is the PLL multiplication factor.  
Bit Value  
n
SYSCLKOUT  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
PLL Bypassed XCLKIN/2  
1
2
XCLKIN/2  
XCLKIN  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
XCLKIN × 1.5  
XCLKIN × 2  
XCLKIN × 2.5  
XCLKIN × 3  
XCLKIN × 3.5  
XCLKIN × 4  
XCLKIN × 4.5  
XCLKIN × 5  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
3:00  
DIV  
R/W  
0,0,0,0  
(1) The PLLCR register is reset to a known state by the XRS reset line. If a reset is issued by the debugger, the PLL clocking ratio is not  
changed.  
48  
Functional Overview  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
3.8.1 Loss of Input Clock  
In PLL enabled mode, if the input clock XCLKIN or the oscillator clock is removed or absent, the PLL still  
issues a limp-mode clock. The limp-mode clock continues to clock the CPU and peripherals at a typical  
frequency of 1 MHz to 4 MHz. The PLLCR register should have been written to with a non-zero value for  
this feature to work.  
Normally, when the input clocks are present, the watchdog counter decrements to initiate a watchdog  
reset or WDINT interrupt. However, when the external input clock fails, the watchdog counter stops  
decrementing (i.e., the watchdog counter does not change with the limp-mode clock). This condition could  
be used by the application firmware to detect the input clock failure and initiate necessary shut-down  
procedure for the system.  
3.9 PLL-Based Clock Module  
The F2812 has an on-chip, PLL-based clock module. This module provides all the necessary clocking  
signals for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio control to  
select different CPU clock rates. The watchdog module should be disabled before writing to the PLLCR  
register. It can be re-enabled (if need be) after the PLL module has stabilized, which takes 131 072  
XCLKIN cycles.  
The PLL-based clock module provides two modes of operation:  
Crystal operation  
This mode allows the use of an external crystal/resonator to provide the time base to the device.  
External clock source operation  
This mode allows the internal oscillator to be bypassed. The device clocks are generated from an  
external clock source input on the X1/XCLKIN pin.  
X1/XCLKIN  
X2  
X1/XCLKIN  
X2  
External Clock Signal  
C
b1  
C
b2  
(Toggling 0V  
)
DD  
(see Note A)  
Crystal  
(a)  
(see Note A)  
NC  
(b)  
A. TI recommends that customers have the resonator/crystal vendor characterize the operation of their device with the  
DSP chip. The resonator/crystal vendor has the equipment and expertise to tune the tank circuit. The vendor can also  
advise the customer regarding the proper tank component values that ensures start-up and stability over the entire  
operating range.  
Figure 3-8. Recommended Crystal/Clock Connection  
Table 3-15. Possible PLL Configuration Modes  
PLL MODE  
REMARKS  
SYSCLKOUT  
Invoked by tying XPLLDIS pin low upon reset. PLL block is completely disabled. Clock input  
to the CPU (CLKIN) is directly derived from the clock signal present at the X1/XCLKIN pin.  
PLL Disabled  
XCLKIN  
Default PLL configuration upon power-up, if PLL is not disabled. The PLL itself is bypassed.  
However, the /2 module in the PLL block divides the clock input at the X1/XCLKIN pin by  
two before feeding it to the CPU.  
PLL Bypassed  
PLL Enabled  
XCLKIN/2  
Achieved by writing a non-zero value n into PLLCR register. The /2 module in the PLL block  
now divides the output of the PLL by two before feeding it to the CPU.  
(XCLKIN × n) / 2  
3.10 External Reference Oscillator Clock Option  
The typical specifications for the external quartz crystal for a frequency of 30 MHz are listed below:  
Fundamental mode, parallel resonant  
CL (load capacitance) = 12 pF  
Copyright © 2009–2010, Texas Instruments Incorporated  
Functional Overview  
49  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
CL1 = CL2 = 24 pF  
Cshunt = 6 pF  
ESR range = 25 to 40  
3.11 Watchdog Block  
The watchdog block on the F2812 is identical to the one used on the 240x devices. The watchdog module  
generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit watchdog up counter  
has reached its maximum value. To prevent this, the user disables the counter or the software must  
periodically write a 0x55 + 0xAA sequence into the watchdog key register which resets the watchdog  
counter. Figure 3-9 shows the various functional blocks within the watchdog module.  
WDCR (WDPS(2:0))  
WDCR (WDDIS)  
WDCNTR(7:0)  
OSCCLK  
WDCLK  
8-Bit  
Watchdog  
Counter  
CLR  
Watchdog  
Prescaler  
/512  
Clear Counter  
Internal  
Pullup  
WDKEY(7:0)  
WDRST  
WDINT  
Generate  
Output Pulse  
(512 OSCCLKs)  
Bad Key  
Watchdog  
55 + AA  
Key Detector  
Good Key  
XRS  
Bad  
WDCHK  
Key  
Core-reset  
SCSR (WDENINT)  
WDCR (WDCHK(2:0))  
1
0
1
WDRST  
(See Note A)  
A. The WDRST signal is driven low for 512 OSCCLK cycles.  
Figure 3-9. Watchdog Module  
The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode timer.  
In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains  
functional is the watchdog. The WATCHDOG module runs off the PLL clock or the oscillator clock. The  
WDINT signal is fed to the LPM block so that it can wake the device from STANDBY (if enabled). See  
Section 3.12, Low-Power Modes Block, for more details.  
In IDLE mode, the WDINT signal can generate an interrupt to the CPU, via the PIE, to take the CPU out of  
IDLE mode.  
In HALT mode, this feature cannot be used because the oscillator (and PLL) are turned off and hence so  
is the WATCHDOG.  
50  
Functional Overview  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
3.12 Low-Power Modes Block  
The low-power modes on the F2812 are similar to the 240x devices. Table 3-16 summarizes the various  
modes.  
Table 3-16. F2812 Low-Power Modes  
MODE  
LPM(1:0)  
OSCCLK  
CLKIN  
SYSCLKOUT  
EXIT(1)  
Normal  
X,X  
on  
on  
on  
XRS,  
WDINT,  
IDLE  
0,0  
on  
on  
on(2)  
Any Enabled Interrupt,  
XNMI  
Debugger(3)  
XRS,  
WDINT,  
XINT1,  
XNMI,  
on  
T1/2/3/4CTRIP,  
C1/2/3/4/5/6TRIP,  
SCIRXDA,  
SCIRXDB,  
CANRX,  
STANDBY  
0,1  
1,X  
off  
off  
off  
off  
(watchdog still running)  
Debugger(3)  
off  
XRS,  
XNMI,  
HALT  
(oscillator and PLL turned off,  
watchdog not functional)  
Debugger(4)  
(1) The Exit column lists which signals or under what conditions the low power mode is exited. A low signal, on any of the signals, exits the  
low power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise, the IDLE  
mode is not exited and the device goes back into the indicated low power mode.  
(2) The IDLE mode on the C28x behaves differently than on the 24x/240x. On the C28x, the clock output from the core (SYSCLKOUT) is  
still functional while on the 24x/240x the clock is turned off.  
(3) On the C28x, the JTAG port can still function even if the core clock (CLKIN) is turned off.  
(4) On the C28x, the JTAG port can still function even if the core clock (CLKIN) is turned off.  
The various low-power modes operate as follows:  
IDLE Mode:  
This mode is exited by any enabled interrupt or an XNMI that is recognized  
by the processor. The LPM block performs no tasks during this mode as long  
as the LPMCR0(LPM) bits are set to 0,0.  
STANDBY Mode: All other signals (including XNMI) wake the device from STANDBY mode if  
selected by the LPMCR1 register. The user needs to select which signal(s)  
wakes the device. The selected signal(s) are also qualified by the OSCCLK  
before waking the device. The number of OSCCLKs is specified in the  
LPMCR0 register.  
HALT Mode:  
Only the XRS and XNMI external signals can wake the device from HALT  
mode. The XNMI input to the core has an enable/disable bit. Hence, it is safe  
to use the XNMI signal for this function.  
NOTE  
The low-power modes do not affect the state of the output pins (PWM pins included). They  
are in whatever state the code left them in when the IDLE instruction was executed.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Functional Overview  
51  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
4
Peripherals  
The integrated peripherals of the F2812 are described in the following subsections:  
Three 32-bit CPU-Timers  
Two event-manager modules (EVA, EVB)  
Enhanced analog-to-digital converter (ADC) module  
Enhanced controller area network (eCAN) module  
Multichannel buffered serial port (McBSP) module  
Serial communications interface modules (SCI-A, SCI-B)  
Serial peripheral interface (SPI) module  
Digital I/O and shared pin functions  
4.1 32-Bit CPU-Timers 0/1/2  
There are three 32-bit CPU-timers on the F2812 devices (CPU-TIMER0/1/2).  
CPU-Timers 1 and 2 are reserved for the real-time OS (such as DSP/BIOS). CPU-Timer 0 can be used in  
user applications. These timers are different from the general-purpose (GP) timers that are present in the  
Event Manager modules (EVA, EVB).  
NOTE  
If the application is not using DSP/BIOS, then CPU-Timers 1 and 2 can be used in the  
application.  
Reset  
Timer Reload  
16-Bit Timer Divide-Down  
32-Bit Timer Period  
TDDRH:TDDR  
PRDH:PRD  
16-Bit Prescale Counter  
SYSCLKOUT  
PSCH:PSC  
TCR.4  
32-Bit Counter  
TIMH:TIM  
(Timer Start Status)  
Borrow  
Borrow  
TINT  
Figure 4-1. CPU-Timers  
52  
Peripherals  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
In the F2812 device, the timer interrupt signals (TINT0, TINT1, TINT2) are connected as shown in  
INT1  
to  
TINT0  
PIE  
CPU-TIMER 0  
INT12  
C28x  
CPU-TIMER 1  
(Reserved for TI  
system functions)  
TINT1  
INT13  
INT14  
XINT13  
CPU-TIMER 2  
(Reserved for TI  
system functions)  
TINT2  
A. The timer registers are connected to the Memory Bus of the C28x processor.  
B. The timing of the timers is synchronized to SYSCLKOUT of the processor clock.  
Figure 4-2. CPU-Timer Interrupts Signals and Output Signal (See Notes A. and B.)  
The general operation of the timer is as follows: The 32-bit counter register TIMH:TIM is loaded with the  
value in the period register PRDH:PRD. The counter register, decrements at the SYSCLKOUT rate of the  
C28x. When the counter reaches 0, a timer interrupt output signal generates an interrupt pulse. The  
registers listed in Table 4-1 are used to configure the timers. For more information, see the TMS320x281x  
System Control and Interrupts Reference Guide (literature number SPRU078).  
Copyright © 2009–2010, Texas Instruments Incorporated  
Peripherals  
53  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
Table 4-1. CPU-Timers 0, 1, 2 Configuration and Control Registers  
NAME  
ADDRESS  
0x00 0C00  
0x00 0C01  
0x00 0C02  
0x00 0C03  
0x00 0C04  
0x00 0C05  
0x00 0C06  
0x00 0C07  
0x00 0C08  
0x00 0C09  
0x00 0C0A  
0x00 0C0B  
0x00 0C0C  
0x00 0C0D  
0x00 0C0E  
0x00 0C0F  
0x00 0C10  
0x00 0C11  
0x00 0C12  
0x00 0C13  
0x00 0C14  
0x00 0C15  
0x00 0C16  
0x00 0C17  
SIZE (×16)  
DESCRIPTION  
TIMER0TIM  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CPU-Timer 0, Counter Register  
TIMER0TIMH  
TIMER0PRD  
TIMER0PRDH  
TIMER0TCR  
reserved  
CPU-Timer 0, Counter Register High  
CPU-Timer 0, Period Register  
CPU-Timer 0, Period Register High  
CPU-Timer 0, Control Register  
TIMER0TPR  
TIMER0TPRH  
TIMER1TIM  
TIMER1TIMH  
TIMER1PRD  
TIMER1PRDH  
TIMER1TCR  
reserved  
CPU-Timer 0, Prescale Register  
CPU-Timer 0, Prescale Register High  
CPU-Timer 1, Counter Register  
CPU-Timer 1, Counter Register High  
CPU-Timer 1, Period Register  
CPU-Timer 1, Period Register High  
CPU-Timer 1, Control Register  
TIMER1TPR  
TIMER1TPRH  
TIMER2TIM  
TIMER2TIMH  
TIMER2PRD  
TIMER2PRDH  
TIMER2TCR  
reserved  
CPU-Timer 1, Prescale Register  
CPU-Timer 1, Prescale Register High  
CPU-Timer 2, Counter Register  
CPU-Timer 2, Counter Register High  
CPU-Timer 2, Period Register  
CPU-Timer 2, Period Register High  
CPU-Timer 2, Control Register  
TIMER2TPR  
TIMER2TPRH  
CPU-Timer 2, Prescale Register  
CPU-Timer 2, Prescale Register High  
0x00 0C18  
0x00 0C3F  
reserved  
40  
54  
Peripherals  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
4.2 Event Manager Modules (EVA, EVB)  
The event-manager modules include general-purpose (GP) timers, full-compare/PWM units, capture units,  
and quadrature-encoder pulse (QEP) circuits. EVA and EVB timers, compare units, and capture units  
function identically. However, timer/unit names differ for EVA and EVB. Table 4-2 shows the module and  
signal names used. Table 4-2 shows the features and functionality available for the event-manager  
modules and highlights EVA nomenclature.  
Event managers A and B have identical peripheral register sets with EVA starting at 7400h and EVB  
starting at 7500h. The paragraphs in this section describe the function of GP timers, compare units,  
capture units, and QEPs using EVA nomenclature. These paragraphs are applicable to EVB with regard to  
function—however, module/signal names would differ. Table 4-3 lists the EVA registers. For more  
information, see the TMS320x281x DSP Event Manager (EV) Reference Guide (literature number  
SPRU065).  
Table 4-2. Module and Signal Names for EVA and EVB  
EVA  
EVB  
EVENT MANAGER MODULES  
GP Timers  
MODULE  
SIGNAL  
MODULE  
SIGNAL  
GP Timer 1  
GP Timer 2  
T1PWM/T1CMP  
T2PWM/T2CMP  
GP Timer 3  
GP Timer 4  
T3PWM/T3CMP  
T4PWM/T4CMP  
Compare 1  
Compare 2  
Compare 3  
PWM1/2  
PWM3/4  
PWM5/6  
Compare 4  
Compare 5  
Compare 6  
PWM7/8  
PWM9/10  
PWM11/12  
Compare Units  
Capture Units  
Capture 1  
Capture 2  
Capture 3  
CAP1  
CAP2  
CAP3  
Capture 4  
Capture 5  
Capture 6  
CAP4  
CAP5  
CAP6  
QEP1  
QEP2  
QEPI1  
QEP3  
QEP4  
QEPI2  
QEP1  
QEP2  
QEP3  
QEP4  
QEP Channels  
Direction  
External Clock  
TDIRA  
TCLKINA  
Direction  
External Clock  
TDIRB  
TCLKINB  
External Clock Inputs  
External Trip Inputs  
C1TRIP  
C2TRIP  
C3TRIP  
C4TRIP  
C5TRIP  
C6TRIP  
Compare  
Compare  
T1CTRIP_PDPINTA  
(1)  
T3CTRIP_PDPINTB  
T4CTRIP/EVBSOC  
(1)  
External Trip Inputs  
T2CTRIP/EVASOC  
(1) In the 24x/240x-compatible mode, the T1CTRIP_PDPINTA pin functions as PDPINTA and the T3CTRIP_PDPINTB pin functions as  
PDPINTB.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Peripherals  
55  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
Table 4-3. EVA Registers(1)  
NAME  
GPTCONA  
T1CNT  
ADDRESS  
0x00 7400  
SIZE (×16)  
DESCRIPTION  
GP Timer Control Register A  
GP Timer 1 Counter Register  
GP Timer 1 Compare Register  
GP Timer 1 Period Register  
GP Timer 1 Control Register  
GP Timer 2 Counter Register  
GP Timer 2 Compare Register  
GP Timer 2 Period Register  
GP Timer 2 Control Register  
GP Extension Control Register A  
Compare Control Register A  
Compare Action Control Register A  
Dead–Band Timer Control Register A  
Compare Register 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0x00 7401  
0x00 7402  
0x00 7403  
0x00 7404  
0x00 7405  
0x00 7406  
0x00 7407  
0x00 7408  
0x00 7409  
0x00 7411  
0x00 7413  
0x00 7415  
0x00 7417  
0x00 7418  
0x00 7419  
0x00 7420  
0x00 7422  
0x00 7423  
0x00 7424  
0x00 7425  
0x00 7427  
0x00 7428  
0x00 7429  
0x00 742C  
0x00 742D  
0x00 742E  
0x00 742F  
0x00 7430  
0x00 7431  
T1CMPR  
T1PR  
T1CON  
T2CNT  
T2CMPR  
T2PR  
T2CON  
EXTCONA(2)  
COMCONA  
ACTRA  
DBTCONA  
CMPR1  
CMPR2  
Compare Register 2  
CMPR3  
Compare Register 3  
CAPCONA  
CAPFIFOA  
CAP1FIFO  
CAP2FIFO  
CAP3FIFO  
CAP1FBOT  
CAP2FBOT  
CAP3FBOT  
EVAIMRA  
EVAIMRB  
EVAIMRC  
EVAIFRA  
EVAIFRB  
EVAIFRC  
Capture Control Register A  
Capture FIFO Status Register A  
Two-Level Deep Capture FIFO Stack 1  
Two-Level Deep Capture FIFO Stack 2  
Two–Level Deep Capture FIFO Stack 3  
Bottom Register Of Capture FIFO Stack 1  
Bottom Register Of Capture FIFO Stack 2  
Bottom Register Of Capture FIFO Stack 3  
Interrupt Mask Register A  
Interrupt Mask Register B  
Interrupt Mask Register C  
Interrupt Flag Register A  
Interrupt Flag Register B  
Interrupt Flag Register C  
(1) The EV-B register set is identical except the address range is from 0x00–7500 to 0x00–753F. The above registers are mapped to Zone  
2. This space allows only 16-bit accesses. 32-bit accesses produce undefined results.  
(2) New register compared to 24x/240x  
56  
Peripherals  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
GPTCONA(12:4), CAPCONA(8), EXTCONA[0]  
Control Logic  
EVAENCLK  
EVATO ADC (Internal)  
T1CTRIP/PDPINTA, T2CTRIP, C1TRIP, C2TRIP, C3TRIP  
EVASOC ADC (External)  
Output  
T1PWM_T1CMP  
Logic  
Timer 1 Compare  
T1CON(1)  
T1CON(5,4)  
GPTCONA(1,0)  
Prescaler  
TCLKINA  
HSPCLK  
clock  
dir  
GP Timer 1  
T1CON(10:8)  
TDIRA  
T1CON(15:11,6,3,2)  
PWM1  
PWM2  
PWM3  
Full Compare 1  
Full Compare 2  
Full Compare 3  
SVPWM  
State  
Output  
Logic  
Dead  
-
Band  
Logic  
PWM4  
PWM5  
PWM6  
Machine  
DBTCONA(15:0)  
COMCONA(15:5,2:0)  
ACTRA(15:12),  
COMCONA(12),  
T1CON(13:11)  
ACTRA(11:0)  
Output  
Logic  
Timer 2 Compare  
T2CON(1)  
T2PWM_T2CMP  
T2CON(5,4)  
GPTCONA(3,2)  
TCLKINA  
HSPCLK  
clock  
dir  
Prescaler  
GP Timer 2  
QEPCLK  
QEPDIR  
reset  
T2CON(10:8)  
T2CON(15:11,7,6,3,2,0)  
QEP  
Logic  
CAPCONA(10,9)  
TDIRA  
CAP1_QEP1  
CAP2_QEP2  
Capture Units  
CAP3_QEPI1  
Index Qual  
CAPCONA(15:12,7:0)  
EXTCONA(1:2)  
A. The EVB module is similar to the EVA module.  
Figure 4-3. Event Manager A Functional Block Diagram (See Note A.)  
Copyright © 2009–2010, Texas Instruments Incorporated  
Peripherals  
57  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
4.2.1 General-Purpose (GP) Timers  
There are two GP timers. The GP timer x (x = 1 or 2 for EVA; x = 3 or 4 for EVB) includes:  
A 16-bit timer, up-/down-counter, TxCNT, for reads or writes  
A 16-bit timer-compare register, TxCMPR (double-buffered with shadow register), for reads or writes  
A 16-bit timer-period register, TxPR (double-buffered with shadow register), for reads or writes  
A 16-bit timer-control register, TxCON, for reads or writes  
Selectable internal or external input clocks  
A programmable prescaler for internal or external clock inputs  
Control and interrupt logic, for four maskable interrupts: underflow, overflow, timer compare, and period  
interrupts  
A selectable direction input pin (TDIRx) (to count up or down when directional up- / down-count mode  
is selected)  
The GP timers can be operated independently or synchronized with each other. The compare register  
associated with each GP timer can be used for compare function and PWM-waveform generation. There  
are three continuous modes of operations for each GP timer in up- or up / down-counting operations.  
Internal or external input clocks with programmable prescaler are used for each GP timer. GP timers also  
provide the time base for the other event-manager submodules: GP timer 1 for all the compares and PWM  
circuits, GP timer 2/1 for the capture units and the quadrature-pulse counting operations. Double-buffering  
of the period and compare registers allows programmable change of the timer (PWM) period and the  
compare/PWM pulse width as needed.  
4.2.2 Full-Compare Units  
There are three full-compare units on each event manager. These compare units use GP timer1 as the  
time base and generate six outputs for compare and PWM-waveform generation using programmable  
deadband circuit. The state of each of the six outputs is configured independently. The compare registers  
of the compare units are double-buffered, allowing programmable change of the compare/PWM pulse  
widths as needed.  
4.2.3 Programmable Deadband Generator  
Deadband generation can be enabled/disabled for each compare unit output individually. The  
deadband-generator circuit produces two outputs (with or without deadband zone) for each compare unit  
output signal. The output states of the deadband generator are configurable and changeable as needed  
by way of the double-buffered ACTRx register.  
4.2.4 PWM Waveform Generation  
Up to eight PWM waveforms (outputs) can be generated simultaneously by each event manager: three  
independent pairs (six outputs) by the three full-compare units with programmable deadbands, and two  
independent PWMs by the GP-timer compares.  
4.2.5 Double Update PWM Mode  
The F2812 Event Manager supports Double Update PWM Mode. This mode refers to a PWM operation  
mode in which the position of the leading edge and the position of the trailing edge of a PWM pulse are  
independently modifiable in each PWM period. To support this mode, the compare register that  
determines the position of the edges of a PWM pulse must allow (buffered) compare value update once at  
the beginning of a PWM period and another time in the middle of a PWM period. The compare registers in  
F2812 Event Managers are all buffered and support three compare value reload/update (value in buffer  
becoming active) modes. These modes have earlier been documented as compare value reload  
conditions. The reload condition that supports double update PWM mode is reloaded on Underflow  
(beginning of PWM period) OR Period (middle of PWM period). Double update PWM mode can be  
achieved by using this condition for compare value reload.  
58  
Peripherals  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
4.2.6 PWM Characteristics  
Characteristics of the PWMs are as follows:  
16-bit registers  
Wide range of programmable deadband for the PWM output pairs  
Change of the PWM carrier frequency for PWM frequency wobbling as needed  
Change of the PWM pulse widths within and after each PWM period as needed  
External-maskable power and drive-protection interrupts  
Pulse-pattern-generator circuit, for programmable generation of asymmetric, symmetric, and  
four-space vector PWM waveforms  
Minimized CPU overhead using auto-reload of the compare and period registers  
The PWM pins are driven to a high-impedance state when the PDPINTx pin is driven low and after  
PDPINTx signal qualification. The PDPINTx pin (after qualification) is reflected in bit 8 of the  
COMCONx register.  
PDPINTA pin status is reflected in bit 8 of COMCONA register.  
PDPINTB pin status is reflected in bit 8 of COMCONB register.  
EXTCON register bits provide options to individually trip control for each PWM pair of signals  
4.2.7 Capture Unit  
The capture unit provides a logging function for different events or transitions. The values of the selected  
GP timer counter are captured and stored in the two-level-deep FIFO stacks when selected transitions are  
detected on capture input pins, CAPx (x = 1, 2, or 3 for EVA; and x = 4, 5, or 6 for EVB). The capture unit  
consists of three capture circuits.  
Capture units include the following features:  
One 16-bit capture control register, CAPCONx (R/W)  
One 16-bit capture FIFO status register, CAPFIFOx  
Selection of GP timer 1/2 (for EVA) or 3/4 (for EVB) as the time base  
Three 16-bit 2-level-deep FIFO stacks, one for each capture unit  
Three capture input pins (CAP1/2/3 for EVA, CAP4/5/6 for EVB)—one input pin per capture unit.  
[All inputs are synchronized with the device (CPU) clock. In order for a transition to be captured, the  
input must hold at its current level to meet the input qualification circuitry requirements. The input  
pins CAP1/2 and CAP4/5 can also be used as QEP inputs to the QEP circuit.]  
User-specified transition (rising edge, falling edge, or both edges) detection  
Three maskable interrupt flags, one for each capture unit  
The capture pins can also be used as general-purpose interrupt pins, if they are not used for the  
capture function.  
4.2.8 Quadrature-Encoder Pulse (QEP) Circuit  
Two capture inputs (CAP1 and CAP2 for EVA; CAP4 and CAP5 for EVB) can be used to interface the  
on-chip QEP circuit with a quadrature encoder pulse. Full synchronization of these inputs is performed  
on-chip. Direction or leading-quadrature pulse sequence is detected, and GP timer 2/4 is incremented or  
decremented by the rising and falling edges of the two input signals (four times the frequency of either  
input pulse).  
With EXTCONA register bits, the EVA QEP circuit can use CAP3 as a capture index pin as well. Similarly,  
with EXTCONB register bits, the EVB QEP circuit can use CAP6 as a capture index pin.  
4.2.9 External ADC Start-of-Conversion  
EVA/EVB start-of-conversion (SOC) can be sent to an external pin (EVASOC/EVBSOC) for external ADC  
interface. EVASOC and EVBSOC are MUXed with T2CTRIP and T4CTRIP, respectively.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Peripherals  
59  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
4.3 Enhanced Analog-to-Digital Converter (ADC) Module  
A simplified functional block diagram of the ADC module is shown in Figure 4-4. The ADC module  
consists of a 12-bit ADC with a built-in sample-and-hold (S / H) circuit. Functions of the ADC module  
include:  
12-bit ADC core with built-in S/H  
Analog input: 0.0 V to 3.0 V (Voltages above 3.0 V produce full-scale conversion results.)  
Fast conversion rate: 80 ns at 25-MHz ADC clock, 12.5 MSPS  
16-channel, MUXed inputs  
Autosequencing capability provides up to 16 autoconversions in a single session. Each conversion can  
be programmed to select any 1 of 16 input channels  
Sequencer can be operated as two independent 8-state sequencers or as one large 16-state  
sequencer (i.e., two cascaded 8-state sequencers)  
Sixteen result registers (individually addressable) to store conversion values  
The digital value of the input analog voltage is derived by:  
Digital Value = 0,  
when input 0 V  
Digital Value =  
when 0 v < input < 3 V  
Input Analog Voltage - ADCLO  
4096 ´  
,
3
Digital Value = 4095,  
when input 3 V  
Multiple triggers as sources for the start-of-conversion (SOC) sequence  
S/W - software immediate start  
EVA - Event manager A (multiple event sources within EVA)  
EVB - Event manager B (multiple event sources within EVB)  
Flexible interrupt control allows interrupt request on every end-of-sequence (EOS) or every other EOS  
Sequencer can operate in start/stop mode, allowing multiple time-sequenced triggers to synchronize  
conversions  
EVA and EVB triggers can operate independently in dual-sequencer mode  
Sample-and-hold (S/H) acquisition time window has separate prescale control  
The ADC module in the F2812 has been enhanced to provide flexible interface to event managers A and  
B. The ADC interface is built around a fast, 12-bit ADC module with a fast conversion rate of 80 ns at  
25-MHz ADC clock. The ADC module has 16 channels, configurable as two independent 8-channel  
modules to service event managers A and B. The two independent 8-channel modules can be cascaded  
to form a 16-channel module. Although there are multiple input channels and two sequencers, there is  
only one converter in the ADC module. Figure 4-4 shows the block diagram of the F2812 ADC module.  
The two 8-channel modules have the capability to autosequence a series of conversions, each module  
has the choice of selecting any one of the respective eight channels available through an analog MUX. In  
the cascaded mode, the autosequencer functions as a single 16-channel sequencer. On each sequencer,  
once the conversion is complete, the selected channel value is stored in its respective RESULT register.  
Autosequencing allows the system to convert the same channel multiple times, allowing the user to  
perform oversampling algorithms. This gives increased resolution over traditional single-sampled  
conversion results.  
60  
Peripherals  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
SYSCLKOUT  
C28x  
System  
Control Block  
High-Speed  
Prescaler  
ADCENCLK  
HSPCLK  
Analog  
MUX  
Result Registers  
70A8h  
Result Reg 0  
Result Reg 1  
ADCINA0  
S/H  
ADCINA7  
ADCINB0  
ADCINB7  
12-Bit  
ADC  
Module  
Result Reg 7  
Result Reg 8  
70AFh  
70B0h  
S/H  
Result Reg 15  
70B7h  
ADC Control Registers  
S/W  
EVA  
ADCSOC  
S/W  
EVB  
SOC  
SOC  
Sequencer 2  
Sequencer 1  
Figure 4-4. Block Diagram of the F2812 ADC Module  
To obtain the specified accuracy of the ADC, proper board layout is very critical. To the best extent  
possible, traces leading to the ADCIN pins should not run in close proximity to the digital signal paths.  
This is to minimize switching noise on the digital lines from getting coupled to the ADC inputs.  
Furthermore, proper isolation techniques must be used to isolate the ADC module power pins  
( VDDA1/VDDA2 , AVDDREFBG) from the digital supply. Figure 4-5 shows the ADC pin connections for the  
F2812 device.  
NOTE  
1. The ADC registers are accessed at the SYSCLKOUT rate. The internal timing of the  
ADC module is controlled by the high-speed peripheral clock (HSPCLK).  
2. The behavior of the ADC module based on the state of the ADCENCLK and HALT  
signals is as follows:  
ADCENCLK: On reset, this signal is low. While reset is active-low (XRS), the clock to the  
register still functions. This is necessary to make sure all registers and modes go into  
their default reset state. The analog module is in a low-power inactive state. As soon as  
reset goes high, then the clock to the registers is disabled. When the user sets the  
ADCENCLK signal high, then the clocks to the registers is enabled and the analog  
module is enabled. There is a certain time delay (ms range) before the ADC is stable and  
can be used.  
HALT: This signal only affects the analog module. It does not affect the registers. If low,  
the ADC module is powered. If high, the ADC module goes into low-power mode. The  
HALT mode stops the clock to the CPU, which stops the HSPCLK. Therefore the ADC  
register logic is turned off indirectly.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Peripherals  
61  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
Figure 4-5 shows the ADC pin-biasing for internal reference and Figure 4-6 shows the ADC pin-biasing for  
external reference.  
ADCINA[7:0]  
ADCINB[7:0]  
ADCLO  
ADC 16-Channel Analog Inputs  
Test Pin  
Analog input 0−3 V with respect to ADCLO  
Connect to Analog Ground  
ADCBGREFIN  
24.9 kW/20 kW (See Note C)  
ADC External Current Bias Resistor ADCRESEXT  
10 mF  
ADC Reference Positive Output  
ADC Reference Medium Output  
ADCREFP  
ADCREFM  
ADCREFP and ADCREFM should not  
be loaded by external circuitry  
10 mF  
V
V
V
Analog 3.3 V  
Analog 3.3 V  
DDA1  
DDA2  
ADC Analog Power  
SSA1  
SSA2  
V
AVDDREFBG  
AVSSREFBG  
Analog 3.3 V  
ADC Reference Power  
ADC Analog I/O Power  
ADC Digital Power  
V
DDAIO  
Analog 3.3 V  
Analog Ground  
V
SSAIO  
V
DD1  
1.8 V  
can use the same 1.8 V (or 1.9 V) supply as the  
digital core but separate the two with a ferrite  
bead or a filter  
V
SS1  
Digital Ground  
Provide access to this pin in PCB layouts. Intended for test purposes only.  
TAIYO YUDEN EMK325F106ZH, EMK325BJ106MD, or equivalent  
NOTES: A. External decoupling capacitors are recommended on all power pins.  
B. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.  
C. Use 24.9 kfor ADC clock range 1 − 18.75 MHz; use 20 kfor ADC clock range 18.75 − 25 MHz.  
Figure 4-5. ADC Pin Connections With Internal Reference (See Notes A and B)  
NOTE  
The temperature rating of any recommended component must match the rating of the end  
product.  
62  
Peripherals  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
ADCINA[7:0]  
ADCINB[7:0]  
ADCLO  
ADC 16-Channel Analog Inputs  
Test Pin  
Analog Input 0−3 V With Respect to ADCLO  
Connect to Analog Ground  
ADCBGREFIN  
24.9 k /20 kW (See Note C)  
W
ADC External Current Bias Resistor  
ADC Reference Positive Input  
ADC Reference Medium Input  
ADCRESEXT  
ADCREFP  
(See  
Note D)  
2 V  
1 V  
ADCREFM  
1
m
F
1
0
m
F
1
m
F
1
0
m
F
V
V
V
V
Analog 3.3 V  
Analog 3.3 V  
DDA1  
DDA2  
ADC Analog Power  
SSA1  
SSA2  
AVDDREFBG  
AVSSREFBG  
Analog 3.3 V  
ADC Reference Power  
ADC Analog I/O Power  
ADC Digital Power  
V
DDAIO  
Analog 3.3 V  
Analog Ground  
V
SSAIO  
V
DD1  
1.8 V Can use the same 1.8-V (or 1.9-V)  
Digital Ground  
V
SS1  
supply as the digital core but separate the  
two with a ferrite bead or a filter  
NOTES: A. External decoupling capacitors are recommended on all power pins.  
B. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.  
C. Use 24.9 kfor ADC clock range 1 − 18.75 MHz; use 20 kfor ADC clock range 18.75 − 25 MHz.  
D. It is recommended that buffered external references be provided with a voltage difference of (ADCREFP−ADCREFM)  
= 1 V $ 0.1% or better.  
External reference is enabled using bit 8 in the ADCTRL3 Register at ADC power up. In this mode, the accuracy of  
external reference is critical for overall gain. The voltage ADCREFP−ADCREFM determines the overall accuracy. Do  
not enable internal references when external references are connected to ADCREFP and ADCREFM. See the  
TMS320x281x DSP Analog-to-Digital Converter (ADC) Reference Guide (literature number SPRU060) for more  
information.  
Figure 4-6. ADC Pin Connections With External Reference  
Copyright © 2009–2010, Texas Instruments Incorporated  
Peripherals  
63  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
The ADC operation is configured, controlled, and monitored by the registers listed in Table 4-4.  
Table 4-4. ADC Registers(1)  
NAME  
ADDRESS  
0x00 7100  
0x00 7101  
0x00 7102  
0x00 7103  
0x00 7104  
0x00 7105  
0x00 7106  
0x00 7107  
0x00 7108  
0x00 7109  
0x00 710A  
0x00 710B  
0x00 710C  
0x00 710D  
0x00 710E  
0x00 710F  
0x00 7110  
0x00 7111  
0x00 7112  
0x00 7113  
0x00 7114  
0x00 7115  
0x00 7116  
0x00 7117  
0x00 7118  
0x00 7119  
SIZE (×16)  
DESCRIPTION  
ADC Control Register 1  
ADCTRL1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ADCTRL2  
ADC Control Register 2  
ADCMAXCONV  
ADCCHSELSEQ1  
ADCCHSELSEQ2  
ADCCHSELSEQ3  
ADCCHSELSEQ4  
ADCASEQSR  
ADCRESULT0  
ADCRESULT1  
ADCRESULT2  
ADCRESULT3  
ADCRESULT4  
ADCRESULT5  
ADCRESULT6  
ADCRESULT7  
ADCRESULT8  
ADCRESULT9  
ADCRESULT10  
ADCRESULT11  
ADCRESULT12  
ADCRESULT13  
ADCRESULT14  
ADCRESULT15  
ADCTRL3  
ADC Maximum Conversion Channels Register  
ADC Channel Select Sequencing Control Register 1  
ADC Channel Select Sequencing Control Register 2  
ADC Channel Select Sequencing Control Register 3  
ADC Channel Select Sequencing Control Register 4  
ADC Auto–Sequence Status Register  
ADC Conversion Result Buffer Register 0  
ADC Conversion Result Buffer Register 1  
ADC Conversion Result Buffer Register 2  
ADC Conversion Result Buffer Register 3  
ADC Conversion Result Buffer Register 4  
ADC Conversion Result Buffer Register 5  
ADC Conversion Result Buffer Register 6  
ADC Conversion Result Buffer Register 7  
ADC Conversion Result Buffer Register 8  
ADC Conversion Result Buffer Register 9  
ADC Conversion Result Buffer Register 10  
ADC Conversion Result Buffer Register 11  
ADC Conversion Result Buffer Register 12  
ADC Conversion Result Buffer Register 13  
ADC Conversion Result Buffer Register 14  
ADC Conversion Result Buffer Register 15  
ADC Control Register 3  
ADCST  
ADC Status Register  
0x00 711C  
0x00 711F  
reserved  
4
(1) The above registers are Peripheral Frame 2 Registers.  
64  
Peripherals  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
4.4 Enhanced Controller Area Network (eCAN) Module  
The CAN module has the following features:  
Fully compliant with CAN protocol, version 2.0B  
Supports data rates up to 1 Mbps  
Thirty-two mailboxes, each with the following properties:  
Configurable as receive or transmit  
Configurable with standard or extended identifier  
Has a programmable receive mask  
Supports data and remote frame  
Composed of 0 to 8 bytes of data  
Uses a 32-bit time stamp on receive and transmit message  
Protects against reception of new message  
Holds the dynamically programmable priority of transmit message  
Employs a programmable interrupt scheme with two interrupt levels  
Employs a programmable alarm on transmission or reception time-out  
Low-power mode  
Programmable wake-up on bus activity  
Automatic reply to a remote request message  
Automatic retransmission of a frame in case of loss of arbitration or error  
32-bit local network time counter synchronized by a specific message (communication in conjunction  
with mailbox 16)  
Self-test mode  
Operates in a loopback mode receiving its own message. A dummy acknowledge is provided,  
thereby eliminating the need for another node to provide the acknowledge bit.  
NOTE  
For a SYSCLKOUT of 150 MHz, the smallest bit rate possible is 23.4 kbps.  
The 28x CAN has passed the conformance test per ISO/DIS 16845. Contact TI for further details.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Peripherals  
65  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
Address  
Controls  
Data  
32  
eCAN0INT  
eCAN1INT  
Enhanced CAN Controller  
Message Controller  
Mailbox RAM  
(512 Bytes)  
Memory Management  
Unit  
eCAN Memory  
(512 Bytes)  
Registers and Message  
Objects Control  
CPU Interface,  
Receive Control Unit,  
Timer Management Unit  
32-Message Mailbox  
of 4 × 32-Bit Words  
32  
32  
32  
eCAN Protocol Kernel  
Receive Buffer  
Transmit Buffer  
Control Buffer  
Status Buffer  
SN65HVD23x  
3.3-V CAN Transceiver  
CAN Bus  
Figure 4-7. eCAN Block Diagram and Interface Circuit  
Table 4-5. 3.3-V eCAN Transceivers for the SM320F2812 DSP  
SUPPLY  
VOLTAGE  
LOW-POWER  
MODE  
SLOPE  
CONTROL  
PART NUMBER  
VREF  
OTHER  
TA  
–40°C to 85°C  
SN65HVD230  
SN65HVD230Q  
SN65HVD231  
SN65HVD231Q  
SN65HVD232  
SN65HVD232Q  
SN65HVD233  
SN65HVD234  
SN65HVD235  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
Standby  
Standby  
Sleep  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
None  
Yes  
Yes  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
Yes  
Sleep  
Yes  
None  
None  
None  
None  
None  
None  
None  
None  
Standby  
Standby & Sleep  
Standby  
Adjustable  
Adjustable  
Adjustable  
Diagnostic Loopback  
Autobaud Loopback  
66  
Peripherals  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
eCAN Control and Status Registers  
Mailbox Enable − CANME  
Mailbox Direction − CANMD  
Transmission Request Set − CANTRS  
Transmission Request Reset − CANTRR  
Transmission Acknowledge − CANTA  
Abort Acknowledge − CANAA  
eCAN Memory (512 Bytes)  
Received Message Pending − CANRMP  
Received Message Lost − CANRML  
Remote Frame Pending − CANRFP  
Global Acceptance Mask − CANGAM  
Master Control − CANMC  
6000h  
603Fh  
6040h  
607Fh  
6080h  
60BFh  
60C0h  
60FFh  
Control and Status Registers  
Local Acceptance Masks (LAM)  
(32 × 32-Bit RAM)  
Message Object Time Stamps (MOTS)  
Bit-Timing Configuration − CANBTC  
Error and Status − CANES  
(32 × 32-Bit RAM)  
Message Object Time-Out (MOTO)  
Transmit Error Counter − CANTEC  
Receive Error Counter − CANREC  
Global Interrupt Flag 0 − CANGIF0  
Global Interrupt Mask − CANGIM  
Global Interrupt Flag 1 − CANGIF1  
Mailbox Interrupt Mask − CANMIM  
Mailbox Interrupt Level − CANMIL  
Overwrite Protection Control − CANOPC  
TX I/O Control − CANTIOC  
(32 × 32-Bit RAM)  
eCAN Memory RAM (512 Bytes)  
Mailbox 0  
Mailbox 1  
Mailbox 2  
Mailbox 3  
Mailbox 4  
6100h−6107h  
6108h−610Fh  
6110h−6117h  
6118h−611Fh  
6120h−6127h  
RX I/O Control − CANRIOC  
Time Stamp Counter − CANTSC  
Time-Out Control − CANTOC  
Time-Out Status − CANTOS  
Mailbox 28  
Mailbox 29  
Mailbox 30  
Mailbox 31  
61E0h−61E7h  
61E8h−61EFh  
61F0h−61F7h  
61F8h−61FFh  
Reserved  
Message Mailbox (16 Bytes)  
Message Identifier − MSGID  
Message Control − MSGCTRL  
Message Data Low − MDL  
Message Data High − MDH  
61E8h−61E9h  
61EAh−61EBh  
61ECh−61EDh  
61EEh−61EFh  
Figure 4-8. eCAN Memory Map  
Copyright © 2009–2010, Texas Instruments Incorporated  
Peripherals  
67  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
The CAN registers listed in Table 4-6 are used by the CPU to configure and control the CAN controller  
and the message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM  
can be accessed as 16 bits or 32 bits. 32-bit accesses are aligned to an even boundary.  
Table 4-6. CAN Registers Map(1)  
REGISTER NAME  
CANME  
ADDRESS  
0x00 6000  
0x00 6002  
0x00 6004  
0x00 6006  
0x00 6008  
0x00 600A  
0x00 600C  
0x00 600E  
0x00 6010  
0x00 6012  
0x00 6014  
0x00 6016  
0x00 6018  
0x00 601A  
0x00 601C  
0x00 601E  
0x00 6020  
0x00 6022  
0x00 6024  
0x00 6026  
0x00 6028  
0x00 602A  
0x00 602C  
0x00 602E  
0x00 6030  
0x00 6032  
SIZE (×32)  
DESCRIPTION  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Mailbox enable  
CANMD  
Mailbox direction  
CANTRS  
CANTRR  
CANTA  
Transmit request set  
Transmit request reset  
Transmission acknowledge  
Abort acknowledge  
CANAA  
CANRMP  
CANRML  
CANRFP  
CANGAM  
CANMC  
Receive message pending  
Receive message lost  
Remote frame pending  
Global acceptance mask  
Master control  
CANBTC  
CANES  
Bit-timing configuration  
Error and status  
CANTEC  
CANREC  
CANGIF0  
CANGIM  
CANGIF1  
CANMIM  
CANMIL  
Transmit error counter  
Receive error counter  
Global interrupt flag 0  
Global interrupt mask  
Global interrupt flag 1  
Mailbox interrupt mask  
Mailbox interrupt level  
Overwrite protection control  
TX I/O control  
CANOPC  
CANTIOC  
CANRIOC  
CANTSC  
CANTOC  
CANTOS  
RX I/O control  
Time stamp counter (Reserved in SCC mode)  
Time-out control (Reserved in SCC mode)  
Time-out status (Reserved in SCC mode)  
(1) These registers are mapped to Peripheral Frame 1.  
68  
Peripherals  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
4.5 Multichannel Buffered Serial Port (McBSP) Module  
The McBSP module has the following features:  
Compatible to McBSP in TMS320C54x™/ TMS320C55x™ DSP devices, except the DMA features  
Full-duplex communication  
Double-buffered data registers which allow a continuous data stream  
Independent framing and clocking for receive and transmit  
External shift clock generation or an internal programmable frequency shift clock  
A wide selection of data sizes including 8/12/16/20/24 or 32-bits  
8-bit data transfers with LSB or MSB first  
Programmable polarity for both frame synchronization and data clocks  
Highly programmable internal clock and frame generation  
Support A-bis mode  
Direct interface to industry-standard CODECs, Analog Interface Chips (AICs), and other serially  
connected A/D and D/A devices  
Works with SPI-compatible devices  
Two 16 x 16-level FIFO for Transmit channel  
Two 16 x 16-level FIFO for Receive channel  
The following application interfaces can be supported on the McBSP:  
T1/E1 framers  
MVIP switching-compatible and ST-BUS-compliant devices including:  
MVIP framers  
H.100 framers  
SCSA framers  
IOM-2 compliant devices  
AC97-compliant devices (the necessary multiphase frame synchronization capability is provided.)  
IIS-compliant devices  
CLKSRG  
McBSP clock rate = CLKG =  
,
1+ CLKGDIV  
where CLKSRG source could be LSPCLK, CLKX, or CLKR.(2)  
(2) Serial port performance is limited by I/O buffer switching speed. Internal prescalers must be adjusted such that the peripheral speed is  
less than the I/O buffer speed limit—20-MHz maximum.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Peripherals  
69  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
Figure 4-9 shows the block diagram of the McBSP module with FIFO, interfaced to the F2812 version of  
Peripheral Frame 2.  
Peripheral Write Bus  
TX FIFO  
Interrupt  
TX FIFO _15  
TX FIFO _15  
MXINT  
TX Interrupt Logic  
To CPU  
TX FIFO _1  
TX FIFO _0  
TX FIFO _1  
TX FIFO _0  
McBSP Transmit  
Interrupt Select Logic  
TX FIFO Registers  
16  
16  
DXR2 Transmit Buffer DXR1 Transmit Buffer  
LSPCLK  
FSX  
McBSP Registers  
and Control Logic  
16  
16  
CLKX  
Compand Logic  
XSR2  
XSR1  
DX  
DR  
RSR1  
16  
RSR2  
16  
CLKR  
Expand Logic  
FSR  
RBR2 Register  
16  
RBR1 Register  
16  
McBSP  
DRR2 Receive Buffer  
16  
DRR1 Receive Buffer  
16  
McBSP Receive  
Interrupt Select Logic  
RX FIFO _15  
RX FIFO _15  
RX FIFO  
Interrupt  
RX FIFO _1  
RX FIFO _0  
RX FIFO _1  
RX FIFO _0  
RX Interrupt Logic  
MRINT  
To CPU  
RX FIFO Registers  
Peripheral Read Bus  
Figure 4-9. McBSP Module With FIFO  
70  
Peripherals  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Table 4-7 provides a summary of the McBSP registers.  
Table 4-7. McBSP Register Summary  
ADDRESS  
0x00 78xxh  
TYPE  
(R/W)  
RESET VALUE  
(HEX)  
NAME  
DESCRIPTION  
DATA REGISTERS, RECEIVE, TRANSMIT(1)  
0x0000  
0x0000  
0x0000  
McBSP Receive Buffer Register  
McBSP Receive Shift Register  
McBSP Transmit Shift Register  
McBSP Data Receive Register 2  
–Read First if the word size is greater than 16 bits, else ignore DRR2  
DRR2  
DRR1  
DXR2  
DXR1  
0
R
0x0000  
0x0000  
0x0000  
0x0000  
McBSP Data Receive Register 1  
–Read Second if the word size is greater than 16 bits, else read DRR1  
only  
01  
02  
03  
R
McBSP Data Transmit Register 2  
–Write First if the word size is greater than 16 bits, else ignore DXR2  
W
W
McBSP Data Transmit Register 1  
–Write Second if the word size is greater than 16 bits, else write to DXR1  
only  
McBSP CONTROL REGISTERS  
SPCR2  
SPCR1  
RCR2  
04  
05  
06  
07  
08  
09  
0A  
0B  
R/W  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
McBSP Serial Port Control Register 2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
McBSP Serial Port Control Register 1  
McBSP Receive Control Register 2  
McBSP Receive Control Register 1  
McBSP Transmit Control Register 2  
McBSP Transmit Control Register 1  
McBSP Sample Rate Generator Register 2  
McBSP Sample Rate Generator Register 1  
RCR1  
XCR2  
XCR1  
SRGR2  
SRGR1  
MULTICHANNEL CONTROL REGISTERS  
MCR2  
MCR1  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
McBSP Multichannel Register 2  
McBSP Multichannel Register 1  
RCERA  
RCERB  
XCERA  
XCERB  
PCR  
McBSP Receive Channel Enable Register Partition A  
McBSP Receive Channel Enable Register Partition B  
McBSP Transmit Channel Enable Register Partition A  
McBSP Transmit Channel Enable Register Partition B  
McBSP Pin Control Register  
RCERC  
RCERD  
XCERC  
XCERD  
RCERE  
RCERF  
XCERE  
XCERF  
RCERG  
RCERH  
XCERG  
XCERH  
McBSP Receive Channel Enable Register Partition C  
McBSP Receive Channel Enable Register Partition D  
McBSP Transmit Channel Enable Register Partition C  
McBSP Transmit Channel Enable Register Partition D  
McBSP Receive Channel Enable Register Partition E  
McBSP Receive Channel Enable Register Partition F  
McBSP Transmit Channel Enable Register Partition E  
McBSP Transmit Channel Enable Register Partition F  
McBSP Receive Channel Enable Register Partition G  
McBSP Receive Channel Enable Register Partition H  
McBSP Transmit Channel Enable Register Partition G  
McBSP Transmit Channel Enable Register Partition H  
(1) DRR2/DRR1 and DXR2/DXR1 share the same addresses of receive and transmit FIFO registers in FIFO mode.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Peripherals  
71  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
Table 4-7. McBSP Register Summary (continued)  
ADDRESS  
0x00 78xxh  
TYPE  
(R/W)  
RESET VALUE  
(HEX)  
NAME  
DESCRIPTION  
FIFO MODE REGISTERS (applicable only in FIFO mode)  
FIFO Data Registers(1)  
McBSP Data Receive Register 2 – Top of receive FIFO  
–Read First FIFO pointers does not advance  
DRR2  
00  
01  
02  
03  
R
0x0000  
0x0000  
0x0000  
0x0000  
McBSP Data Receive Register 1 – Top of receive FIFO  
–Read Second for FIFO pointers to advance  
DRR1  
DXR2  
DXR1  
R
W
W
McBSP Data Transmit Register 2 – Top of transmit FIFO  
–Write First FIFO pointers does not advance  
McBSP Data Transmit Register 1 – Top of transmit FIFO  
–Write Second for FIFO pointers to advance  
FIFO Control Registers  
MFFTX  
MFFRX  
MFFCT  
MFFINT  
MFFST  
20  
21  
22  
23  
24  
R/W  
R/W  
R/W  
R/W  
R/W  
0xA000  
0x201F  
0x0000  
0x0000  
0x0000  
McBSP Transmit FIFO Register  
McBSP Receive FIFO Register  
McBSP FIFO Control Register  
McBSP FIFO Interrupt Register  
McBSP FIFO Status Register  
(1) FIFO pointers advancing is based on order of access to DRR2/DRR1 and DXR2/DXR1 registers.  
72  
Peripherals  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
4.6 Serial Communications Interface (SCI) Module  
The F2812 device include two serial communications interface (SCI) modules. The SCI modules support  
digital communications between the CPU and other asynchronous peripherals that use the standard  
non-return-to-zero (NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its  
own separate enable and interrupt bits. Both can be operated independently or simultaneously in the  
full-duplex mode. To ensure data integrity, the SCI checks received data for break detection, parity,  
overrun, and framing errors. The bit rate is programmable to over 65 000 different speeds through a 16-bit  
baud-select register.  
Features of each SCI module include:  
Two external pins:  
SCITXD: SCI transmit-output pin  
SCIRXD: SCI receive-input pin  
NOTE  
Both pins can be used as GPIO if not used for SCI.  
Baud rate programmable to 64K different rates  
– Baud rate  
LSPCLK  
when BRR 0  
,
=
(BRR + 1) · 8  
LSPCLK  
,
16  
=
when BRR = 0  
Data-word format  
One start bit  
Data-word length programmable from one to eight bits  
Optional even/odd/no parity bit  
One or two stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms  
with status flags.  
Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) andTX  
EMPTY flag (transmitter-shift register is empty)  
Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag  
(break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
150MHz  
6
= 9.375 ´10 b/ s  
2´ 8  
Max bit rate =  
NRZ (non-return-to-zero) format  
Ten SCI module control registers located in the control register frame beginning at address 7050h  
Copyright © 2009–2010, Texas Instruments Incorporated  
Peripherals  
73  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
NOTE  
All registers in this module are 8-bit registers that are connected to Peripheral Frame 2.  
When a register is accessed, the register data is in the lower byte (7–0), and the upper byte  
(15–8) is read as zeros. Writing to the upper byte has no effect.  
Enhanced features:  
Auto baud-detect hardware logic  
16-level transmit/receive FIFO  
The SCI port operation is configured and controlled by the registers listed in Table 4-8 and Table 4-9.  
Table 4-8. SCI-A Registers(1)  
NAME  
ADDRESS  
0x00 7050  
0x00 7051  
0x00 7052  
0x00 7053  
0x00 7054  
0x00 7055  
0x00 7056  
0x00 7057  
0x00 7059  
0x00 705A  
0x00 705B  
0x00 705C  
0x00 705F  
SIZE (×16)  
DESCRIPTION  
SCI-A Communications Control Register  
SCI-A Control Register 1  
SCICCRA  
1
1
1
1
1
1
1
1
1
1
1
1
1
SCICTL1A  
SCIHBAUDA  
SCILBAUDA  
SCICTL2A  
SCIRXSTA  
SCIRXEMUA  
SCIRXBUFA  
SCITXBUFA  
SCIFFTXA  
SCIFFRXA  
SCIFFCTA  
SCIPRIA  
SCI-A Baud Register, High Bits  
SCI-A Baud Register, Low Bits  
SCI-A Control Register 2  
SCI-A Receive Status Register  
SCI-A Receive Emulation Data Buffer Register  
SCI-A Receive Data Buffer Register  
SCI-A Transmit Data Buffer Register  
SCI-A FIFO Transmit Register  
SCI-A FIFO Receive Register  
SCI-A FIFO Control Register  
SCI-A Priority Control Register  
(1) Shaded registers are new registers for the FIFO mode.  
Table 4-9. SCI-B Registers(1) (2)  
NAME  
ADDRESS  
SIZE (×16)  
DESCRIPTION  
SCI-B Communications Control Register  
SCI-B Control Register 1  
SCICCRB  
0x00 7750  
0x00 7751  
0x00 7752  
0x00 7753  
0x00 7754  
0x00 7755  
0x00 7756  
0x00 7757  
0x00 7759  
0x00 775A  
0x00 775B  
0x00 775C  
0x00 775F  
1
1
1
1
1
1
1
1
1
1
1
1
1
SCICTL1B  
SCIHBAUDB  
SCILBAUDB  
SCICTL2B  
SCIRXSTB  
SCIRXEMUB  
SCIRXBUFB  
SCITXBUFB  
SCIFFTXB  
SCIFFRXB  
SCIFFCTB  
SCIPRIB  
SCI-B Baud Register, High Bits  
SCI-B Baud Register, Low Bits  
SCI-B Control Register 2  
SCI-B Receive Status Register  
SCI-B Receive Emulation Data Buffer Register  
SCI-B Receive Data Buffer Register  
SCI-B Transmit Data Buffer Register  
SCI-B FIFO Transmit Register  
SCI-B FIFO Receive Register  
SCI-B FIFO Control Register  
SCI-B Priority Control Register  
(1) Shaded registers are new registers for the FIFO mode.  
(2) Registers in this table are mapped to peripheral bus 16 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
74  
Peripherals  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Figure 4-10 shows the SCI module block diagram.  
SCICTL1.1  
SCITXD  
Frame Format and Mode  
SCITXD  
TXSHF  
TXENA  
Register  
Parity  
Even/Odd Enable  
TX EMPTY  
SCICTL2.6  
8
SCICCR.6 SCICCR.5  
TXRDY  
TX INT ENA  
Transmitter−Data  
Buffer Register  
SCICTL2.7  
TXWAKE  
SCICTL1.3  
1
SCICTL2.0  
8
TX FIFO  
Interrupts  
TXINT  
TX FIFO _0  
TX Interrupt  
Logic  
TX FIFO _1  
−−−−−  
SCITXBUF.7−0  
To CPU  
TX FIFO _15  
SCI TX Interrupt select logic  
WUT  
TX FIFO registers  
SCIFFENA  
AutoBaud Detect logic  
SCIFFTX.14  
SCIHBAUD. 15 − 8  
SCIRXD  
RXSHF  
Register  
Baud Rate  
MSbyte  
Register  
SCIRXD  
RXWAKE  
LSPCLK  
SCIRXST.1  
SCILBAUD. 7 − 0  
RXENA  
SCICTL1.0  
8
Baud Rate  
LSbyte  
Register  
SCICTL2.1  
Receive Data  
Buffer register  
SCIRXBUF.7−0  
RXRDY  
RX/BK INT ENA  
SCIRXST.6  
8
BRKDT  
RX FIFO _15  
SCIRXST.5  
−−−−−  
RX FIFO _0  
RX FIFO  
Interrupts  
RX FIFO_1  
RXINT  
RX Interrupt  
Logic  
SCIRXBUF.7−0  
RX FIFO registers  
To CPU  
RXFFOVF  
SCIRXST.7 SCIRXST.4 − 2  
SCIFFRX.15  
RX Error  
FE OE PE  
RX Error  
RX ERR INT ENA  
SCI RX Interrupt select logic  
SCICTL1.6  
Figure 4-10. Serial Communications Interface (SCI) Module Block Diagram  
Copyright © 2009–2010, Texas Instruments Incorporated  
Peripherals  
75  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
4.7 Serial Peripheral Interface (SPI) Module  
The F2812 device includes the four-pin serial peripheral interface (SPI) module. The SPI is a high-speed,  
synchronous serial I/O port that allows a serial bit stream of programmed length (one to sixteen bits) to be  
shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for  
communications between the DSP controller and external peripherals or another processor. Typical  
applications include external I/O or peripheral expansion through devices such as shift registers, display  
drivers, and ADCs. Multidevice communications are supported by the master/slave operation of the SPI.  
The SPI module features include:  
Four external pins:  
SPISOMI: SPI slave-output/master-input pin  
SPISIMO: SPI slave-input/master-output pin  
SPISTE: SPI slave transmit-enable pin  
SPICLK: SPI serial-clock pin  
NOTE  
All four pins can be used as GPIO, if the SPI module is not used.  
Two operational modes: master and slave  
Baud rate: 125 different programmable rates  
– Baud rate  
LSPCLK  
when BRR 0  
,
=
(SPIBRR + 1)  
LSPCLK  
,
=
when BRR = 0, 1, 2, 3  
4
Serial port performance is limited by I/O buffer switching speed. Internal prescalers must be adjusted  
such that the peripheral speed is less than the I/O buffer speed limit—20 MHz maximum.  
Data word length: one to sixteen data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the  
falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the  
falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled  
algorithms.  
Nine SPI module control registers: Located in control register frame beginning at address 7040h.  
NOTE  
All registers in this module are 16-bit registers that are connected to Peripheral Frame 2.  
When a register is accessed, the register data is in the lower byte (7–0), and the upper byte  
(15–8) is read as zeros. Writing to the upper byte has no effect.  
76  
Peripherals  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Enhanced feature:  
16-level transmit/receive FIFO  
Delayed transmit control  
The SPI port operation is configured and controlled by the registers listed in Table 4-10.  
Table 4-10. SPI Registers(1)  
NAME  
SPICCR  
SPICTL  
ADDRESS  
0x00 7040  
0x00 7041  
0x00 7042  
0x00 7044  
0x00 7046  
0x00 7047  
0x00 7048  
0x00 7049  
0x00 704A  
0x00 704B  
0x00 704C  
0x00 704F  
SIZE (×16)  
DESCRIPTION  
SPI Configuration Control Register  
SPI Operation Control Register  
SPI Status Register  
1
1
1
1
1
1
1
1
1
1
1
1
SPISTS  
SPIBRR  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI Baud Rate Register  
SPI Receive Emulation Buffer Register  
SPI Serial Input Buffer Register  
SPI Serial Output Buffer Register  
SPI Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI FIFO Transmit Register  
SPI FIFO Receive Register  
SPI FIFO Control Register  
SPI Priority Control Register  
(1) The above registers are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Peripherals  
77  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
Figure 4-11 is a block diagram of the SPI in slave mode.  
SPIFFENA  
Overrun  
INT ENA  
Receiver  
Overrun Flag  
SPIFFTX.14  
RX FIFO registers  
SPISTS.7  
SPICTL.4  
SPIRXBUF  
RX FIFO _0  
RX FIFO _1  
SPIINT/SPIRXINT  
RX FIFO Interrupt  
−−−−−  
RX Interrupt  
Logic  
RX FIFO _15  
16  
SPIRXBUF  
Buffer Register  
SPIFFOVF FLAG  
SPIFFRX.15  
To CPU  
TX FIFO registers  
SPITXBUF  
TX FIFO _15  
TX Interrupt  
Logic  
TX FIFO Interrupt  
−−−−−  
TX FIFO _1  
SPITXINT  
TX FIFO _0  
16  
SPI INT  
ENA  
SPI INT FLAG  
SPITXBUF  
Buffer Register  
SPISTS.6  
SPICTL.0  
16  
16  
M
S
M
SPIDAT  
Data Register  
S
SW1  
SW2  
SPISIMO  
M
S
M
SPIDAT.15 − 0  
S
SPISOMI  
Talk  
SPICTL.1  
SPISTE  
State Control  
Master/Slave  
SPICTL.2  
SPI Char  
SPICCR.3 − 0  
S
3
2
1
0
SW3  
Clock  
Polarity  
Clock  
Phase  
M
S
SPI Bit Rate  
LSPCLK  
SPICCR.6  
SPICTL.3  
SPICLK  
SPIBRR.6 − 0  
M
6
5
4
3
2
1
0
SPISTE is driven low by the master for a slave device.  
Figure 4-11. Serial Peripheral Interface Module Block Diagram (Slave Mode)  
78  
Peripherals  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
4.8 GPIO MUX  
The GPIO Mux registers are used to select the operation of shared pins on the F2812 device. The pins  
can be individually selected to operate as Digital I/O or connected to Peripheral I/O signals (via the  
GPxMUX registers). If selected for Digital I/O mode, registers are provided to configure the pin direction  
(via the GPxDIR registers) and to qualify the input signal to remove unwanted noise (via the GPxQUAL)  
registers). Table 4-11 lists the GPIO Mux Registers.  
Table 4-11. GPIO Mux Registers(1) (2) (3)  
NAME  
GPAMUX  
GPADIR  
GPAQUAL  
reserved  
GPBMUX  
GPBDIR  
GPBQUAL  
reserved  
reserved  
reserved  
reserved  
reserved  
GPDMUX  
GPDDIR  
GPDQUAL  
reserved  
GPEMUX  
GPEDIR  
GPEQUAL  
reserved  
GPFMUX  
GPFDIR  
reserved  
reserved  
GPGMUX  
GPGDIR  
reserved  
reserved  
ADDRESS  
0x00 70C0  
0x00 70C1  
0x00 70C2  
0x00 70C3  
0x00 70C4  
0x00 70C5  
0x00 70C6  
0x00 70C7  
0x00 70C8  
0x00 70C9  
0x00 70CA  
0x00 70CB  
0x00 70CC  
0x00 70CD  
0x00 70CE  
0x00 70CF  
0x00 70D0  
0x00 70D1  
0x00 70D2  
0x00 70D3  
0x00 70D4  
0x00 70D5  
0x00 70D6  
0x00 70D7  
0x00 70D8  
0x00 70D9  
0x00 70DA  
0x00 70DB  
SIZE (×16)  
REGISTER DESCRIPTION  
GPIO A Mux Control Register  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
GPIO A Direction Control Register  
GPIO A Input Qualification Control Register  
GPIO B Mux Control Register  
GPIO B Direction Control Register  
GPIO B Input Qualification Control Register  
GPIO D Mux Control Register  
GPIO D Direction Control Register  
GPIO D Input Qualification Control Register  
GPIO E Mux Control Register  
GPIO E Direction Control Register  
GPIO E Input Qualification Control Register  
GPIO F Mux Control Register  
GPIO F Direction Control Register  
GPIO G Mux Control Register  
GPIO G Direction Control Register  
0x00 70DC  
0x00 70DF  
reserved  
4
(1) Reserved locations returns undefined values and writes is ignored.  
(2) Not all inputs support input signal qualification.  
(3) These registers are EALLOW protected. This prevents spurious writes from overwriting the contents and corrupting the system.  
If configured for Digital I/O mode, additional registers are provided for setting individual I/O signals (via the  
GPxSET registers), for clearing individual I/O signals (via the GPxCLEAR registers), for toggling individual  
I/O signals (via the GPxTOGGLE registers), or for reading/writing to the individual I/O signals (via the  
GPxDAT registers). Table 4-12 lists the GPIO Data Registers. For more information, see the  
TMS320x281x System Control and Interrupts Reference Guide (literature number SPRU078).  
Copyright © 2009–2010, Texas Instruments Incorporated  
Peripherals  
79  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
Table 4-12. GPIO Data Registers(1) (2)  
NAME  
GPADAT  
ADDRESS  
0x00 70E0  
0x00 70E1  
0x00 70E2  
0x00 70E3  
0x00 70E4  
0x00 70E5  
0x00 70E6  
0x00 70E7  
0x00 70E8  
0x00 70E9  
0x00 70EA  
0x00 70EB  
0x00 70EC  
0x00 70ED  
0x00 70EE  
0x00 70EF  
0x00 70F0  
0x00 70F1  
0x00 70F2  
0x00 70F3  
0x00 70F4  
0x00 70F5  
0x00 70F6  
0x00 70F7  
0x00 70F8  
0x00 70F9  
0x00 70FA  
0x00 70FB  
SIZE (×16)  
REGISTER DESCRIPTION  
GPIO A Data Register  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
GPASET  
GPIO A Set Register  
GPIO A Clear Register  
GPIO A Toggle Register  
GPIO B Data Register  
GPIO B Set Register  
GPIO B Clear Register  
GPIO B Toggle Register  
GPACLEAR  
GPATOGGLE  
GPBDAT  
GPBSET  
GPBCLEAR  
GPBTOGGLE  
reserved  
reserved  
reserved  
reserved  
GPDDAT  
GPIO D Data Register  
GPIO D Set Register  
GPIO D Clear Register  
GPIO D Toggle Register  
GPIO E Data Register  
GPIO E Set Register  
GPIO E Clear Register  
GPIO E Toggle Register  
GPIO F Data Register  
GPIO F Set Register  
GPIO F Clear Register  
GPIO F Toggle Register  
GPIO G Data Register  
GPIO G Set Register  
GPIO G Clear Register  
GPIO G Toggle Register  
GPDSET  
GPDCLEAR  
GPDTOGGLE  
GPEDAT  
GPESET  
GPECLEAR  
GPETOGGLE  
GPFDAT  
GPFSET  
GPFCLEAR  
GPFTOGGLE  
GPGDAT  
GPGSET  
GPGCLEAR  
GPGTOGGLE  
0x00 70FC  
0x00 70FF  
reserved  
4
(1) Reserved location returns undefined values and writes are ignored.  
(2) These registers are NOT EALLOW protected. The above registers are typically accessed regularly by the user.  
80  
Peripherals  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Figure 4-12 shows how the various register bits select the various modes of operation for GPIO function.  
GPxDAT/SET/CLEAR/TOGGLE  
Digital I/O  
Peripheral I/O  
Register Bit(s)  
High-  
Impedance  
Control  
GPxQUAL  
Register  
GPxMUX  
Register Bit Register Bit  
GPxDIR  
0
1
0
1
MUX  
MUX  
SYSCLKOUT  
Input Qualification  
High-Impedance  
Enable (1)  
XRS  
Internal (Pullup or Pulldown)  
PIN  
A. In the GPIO mode, when the GPIO pin is configured for output operation, reading the GPxDAT data register only  
gives the value written, not the value at the pin. In the peripheral mode, the state of the pin can be read through the  
GPxDAT register, provided the corresponding direction bit is zero (input mode).  
B. Some selected input signals are qualified by the SYSCLKOUT. The GPxQUAL register specifies the qualification  
sampling period. The sampling window is 6 samples wide and the output is only changed when all samples are the  
same (all 0's or all 1's). This feature removes unwanted spikes from the input signal.  
Figure 4-12. GPIO/Peripheral Pin Multiplexing  
NOTE  
The input function of the GPIO pin and the input path to the peripheral are always enabled. It  
is the output function of the GPIO pin that is multiplexed with the output path of the primary  
(peripheral) function. Since the output buffer of a pin connects back to the input buffer, any  
GPIO signal present at the pin is propagated to the peripheral module as well. Therefore,  
when a pin is configured for GPIO operation, the corresponding peripheral functionality (and  
interrupt-generating capability) must be disabled. Otherwise, interrupts may be inadvertently  
triggered. This is especially critical when the PDPINTA and PDPINTB pins are used as GPIO  
pins, since a value of zero for GPDDAT.0 or GPDDAT.5 (PDPINTx) puts PWM pins in a  
high-impedance state. The CxTRIP and TxCTRIP pins also put the corresponding PWM pins  
in high impedance, if they are driven low (as GPIO pins) and bit EXTCONx.0 = 1.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Peripherals  
81  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
5
Development Support  
Texas Instruments (TI) offers an extensive line of development tools for the C28x™ generation of DSPs,  
including tools to evaluate the performance of the processors, generate code, develop algorithm  
implementations, and fully integrate and debug software and hardware modules.  
The following products support development of F2812-based applications:  
Software Development Tools  
Code Composer Studio™ Integrated Development Environment (IDE)  
C/C++ Compiler  
Code generation tools  
Assembler/Linker  
Cycle Accurate Simulator  
Application algorithms  
Sample applications code  
Hardware Development Tools  
F2812 eZdsp  
JTAG-based emulators - SPI515, XDS510PP, XDS510PP Plus, XDS510 USB  
Universal 5-V dc power supply  
Documentation and cables  
5.1 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
[TMS320] DSP devices and support tools. Each [TMS320] DSP commercial family member has one of  
three prefixes: TMX, TMP, or TMS (e.g., TMS320F2812GHH). Texas Instruments recommends two of  
three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent  
evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully  
qualified production devices/tools (TMS/TMDS).  
TMX—Experimental device that is not necessarily representative of the final device's electrical  
specifications  
TMP—Final silicon die that conforms to the device's electrical specifications but has not completed  
quality and reliability verification  
TMS/SM—Fully qualified production device  
SMJ—Fully qualified production device  
Support tool development evolutionary flow:  
TMDX—Development-support product that has not yet completed Texas Instruments internal  
qualification testing.  
TMDS—Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following  
disclaimer:  
Developmental product is intended for internal evaluation purposes.  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard  
production devices. Texas Instruments recommends that these devices not be used in any production  
system because their expected end-use failure rate still is undefined. Only qualified production devices are  
to be used. Figure 5-1 provides a legend for reading the complete device name for any TMS320x28x  
family member.  
82  
Development Support  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
SM 320  
F
2812  
HFG  
M
PREFIX  
TEMPERATURE RANGE  
S = -55°C to 220°C  
TMX = experimental device  
TMP = prototype device  
TMS = qualified device  
SM  
SMJ = MIL-PRF-38535 (QML)  
=
commercial processing  
PACKAGE TYPE†  
DEVICE FAMILY  
HFG = 172-pin CQFP  
KGD = Die  
320 = TMS320DSP Family  
DEVICE  
2810  
2811  
2812  
TECHNOLOGY  
F = Flash EEPROM (1.8-V/1.9-V Core/3.3-V I/O)  
C = ROM (1.8-V/1.9-V Core/3.3-V I/O)  
Not all combinations of processing options, temperature ranges and packages are available.  
CQFP = Ceramic Quad Flatpack  
Figure 5-1. 28x Device Nomenclature  
5.2 Documentation Support  
Extensive documentation supports all of the TMS320E DSP family generations of devices from product  
announcement through applications development. The types of documentation available include: data  
sheets and data manuals, with design specifications; and hardware and software applications. Useful  
reference documentation includes:  
TMS320C28x DSP CPU and Instruction Set Reference Guide (literature number SPRU430) describes  
the central processing unit (CPU) and the assembly language instructions of the TMS320C28x™  
fixed-point digital signal processors (DSPs). It also describes emulation features available on these DSPs.  
TMS320x281x Analog-to-Digital Converter (ADC) Reference Guide (literature number SPRU060)  
describes the ADC module. The module is a 12-bit pipelined ADC. The analog circuits of this converter,  
referred to as the core in this document, include the front-end analog multiplexers (MUXs),  
sample-and-hold (S/H) circuits, the conversion core, voltage regulators, and other analog supporting  
circuits. Digital circuits, referred to as the wrapper in this document, include programmable conversion  
sequencer, result registers, interface to analog circuits, interface to device peripheral bus, and interface to  
other on-chip modules.  
TMS320x281x Boot ROM Reference Guide (literature number SPRU095) describes the purpose and  
features of the bootloader (factory-programmed boot-loading software). It also describes other contents of  
the device on-chip boot ROM and identifies where all of the information is located within that memory.  
TMS320x281x Event Manager (EV) Reference Guide (literature number SPRU065) describes the EV  
modules that provide a broad range of functions and features that are particularly useful in motion control  
and motor control applications. The EV modules include general-purpose (GP) timers, full-compare/PWM  
units, capture units, and quadrature-encoder pulse (QEP) circuits.  
TMS320x281x External Interface (XINTF) Reference Guide (literature number SPRU067) describes the  
external interface (XINTF) of the 281x digital signal processors (DSPs).  
TMS320x281x Multi-channel Buffered Serial Ports (McBSPs) Reference Guide (literature number  
SPRU061) describes the McBSP) available on the 281x devices. The McBSPs allow direct interface  
between a DSP and other devices in a system.  
TMS320x281x System Control and Interrupts Reference Guide (literature number SPRU078)  
describes the various interrupts and system control features of the 281x digital signal processors (DSPs).  
Copyright © 2009–2010, Texas Instruments Incorporated  
Development Support  
83  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
TMS320x281x, 280x Enhanced Controller Area Network (eCAN) Reference Guide (literature number  
SPRU074) describes the eCAN that uses established protocol to communicate serially with other  
controllers in electrically noisy environments. With 32 fully configurable mailboxes and time-stamping  
feature, the eCAN module provides a versatile and robust serial communication interface. The eCAN  
module implemented in the C28x DSP is compatible with the CAN 2.0B standard (active).  
TMS320x281x, 280x Peripheral Reference Guide (literature number SPRU566) describes the peripheral  
reference guides of the 28x digital signal processors (DSPs).  
TMS320x281x, 280x Serial Communication Interface (SCI) Reference Guide (literature number  
SPRU051) describes the SCI that is a two-wire asynchronous serial port, commonly known as a UART.  
The SCI modules support digital communications between the CPU and other asynchronous peripherals  
that use the standard non-return-to-zero (NRZ) format.  
TMS320x281x, 280x Serial Peripheral Interface (SPI) Reference Guide (literature number SPRU059)  
describes the SPI – a high-speed synchronous serial input/output (I/O) port that allows a serial bit stream  
of programmed length (one to sixteen bits) to be shifted into and out of the device at a programmed  
bit-transfer rate. The SPI is used for communications between the DSP controller and external peripherals  
or another controller.  
3.3 V DSP for Digital Motor Control Application Report (literature number SPRA550). New generations  
of motor control digital signal processors (DSPs) lower their supply voltages from 5 V to 3.3 V to offer  
higher performance at lower cost. Replacing traditional 5-V digital control circuitry by 3.3-V designs  
introduce no additional system cost and no significant complication in interfacing with TTL and CMOS  
compatible components, as well as with mixed voltage ICs such as power transistor gate drivers. Just like  
5-V based designs, good engineering practice should be exercised to minimize noise and EMI effects by  
proper component layout and PCB design when 3.3-V DSP, ADC, and digital circuitry are used in a mixed  
signal environment, with high and low voltage analog and switching signals, such as a motor control  
system. In addition, software techniques such as Random PWM method can be used by special features  
of the Texas Instruments (TI) TMS320x24xx DSP controllers to significantly reduce noise effects caused  
by EMI radiation.  
This application report reviews designs of 3.3-V DSP versus 5-V DSP for low HP motor control  
applications. The application report first describes a scenario of a 3.3-V-only motor controller indicating  
that for most applications, no significant issue of interfacing between 3.3 V and 5 V exists. Cost-effective  
3.3-V – 5-V interfacing techniques are then discussed for the situations where such interfacing is needed.  
On-chip 3.3-V ADC versus 5-V ADC is also discussed. Sensitivity and noise effects in 3.3-V and 5-V ADC  
conversions are addressed. Guidelines for component layout and printed circuit board (PCB) design that  
can reduce system's noise and EMI effects are summarized in the last section.  
The TMS320C28x Instruction Set Simulator Technical Overview (literature number SPRU608)  
describes the simulator, available within the Code Composer Studio for TMS320C2000 IDE, that simulates  
the instruction set of the C28x core.  
TMS320C28x DSP/BIOS Application Programming Interface (API) Reference Guide (literature number  
SPRU625) describes development using DSP/BIOS.  
TMS320C28x Assembly Language Tools User's Guide (literature number SPRU513) describes the  
assembly language tools (assembler and other tools used to develop assembly language code),  
assembler directives, macros, common object file format, and symbolic debugging directives for the  
TMS320C28x™ device.  
TMS320C28x Optimizing C Compiler User's Guide (literature number SPRU514) describes the  
TMS320C28x™ C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and produces  
TMS320™ DSP assembly language source code for the TMS320C28x device.  
A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal  
processing research and education. The TMS320™ DSP newsletter, Details on Signal Processing, is  
published quarterly and distributed to update TMS320™ DSP customers on product information.  
84  
Development Support  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Updated information on the TMS320™ DSP controllers can be found on the worldwide web at:  
To send comments regarding this TMS320F281x/TMS320C281x data manual (literature number  
SPRS174), use the commentsatbooks.sc.ti.com email address, which is a repository for feedback. For  
questions  
and  
support,  
contact  
the  
Product  
Information  
Center  
listed  
at  
the  
6
Electrical Specifications  
This section provides the absolute maximum ratings and the recommended operating conditions for the  
SM/SMJ320F2812 DSP.  
6.1 Absolute Maximum Ratings  
Unless otherwise noted, the list of absolute maximum ratings are specified over operating temperature  
ranges. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to  
the device. These are stress ratings only, and functional operation of the device at these or any other  
conditions beyond those indicated under Section 6.2 is not implied. Exposure to absolute-maximum-rated  
conditions for extended periods may affect device reliability. All voltage values are with respect to VSS  
.
VALUE  
UNIT  
Supply voltage range, VDDIO, VDDA1, VDDA2, VDDAIO, and  
AVDDREFBG  
–0.3 to 4.6  
V
Supply voltage range, VDD, VDD1  
VDD3VFL range  
–0.5 to 2.5  
–0.3 to 4.6  
–0.3 to 4.6  
–0.3 to 4.6  
±20  
V
V
Input voltage range, VIN  
V
Output voltage range, VO  
V
(1)  
Input clamp current, IIK (VIN < 0 or VIN > VDDIO  
)
mA  
mA  
°C  
Output clamp current, IOK (VO < 0 or VO > VDDIO  
)
±20  
(2)  
Operating ambient temperature range, TA  
S Temp  
–55 to 220  
(1) Continuous clamp current per pin is ±2 mA  
(2) Long-term high-temperature storage and/or extended use at maximum temperature conditions may result in a reduction of overall device  
life.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
85  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
6.2 Recommended Operating Conditions  
(1)  
See  
MIN  
3.14  
NOM  
3.3  
MAX  
3.47  
UNIT  
VDDIO  
Device supply voltage, I/O  
Device supply voltage, CPU  
V
1.8 V (135 MHz)  
1.9 V (150 MHz)  
1.71  
1.81  
1.8  
1.9  
0
1.89  
2
VDD, VDD1  
V
VSS  
Supply ground  
V
V
VDDA1, VDDA2  
AVDDREFBG, VDDAIO  
,
ADC supply voltage  
3.14  
3.14  
3.3  
3.3  
3.47  
3.47  
Flash programming supply  
voltage  
VDD3VFL  
V
VDD = 1.9 V ± 5%  
2
150  
135  
Device clock frequency  
(system clock)  
fSYSCLKOUT  
MHz  
VDD = 1.8 V ± 5%  
2
2
All inputs except XCLKIN  
XCLKIN (at 50 mA max)  
All inputs except XCLKIN  
XCLKIN (at 50 mA max)  
All I/Os except Group 2  
VDDIO  
VDD  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
V
V
0.7VDD  
0.8  
0.3VDD  
–4  
High-level output source  
current,  
VOH = 2.4 V  
IOH  
mA  
Group 2(2)  
–8  
All I/Os except Group 2  
Group 2(2)  
4
8
Low-level output sink current,  
VOL = VOL MAX  
IOL  
TA  
mA  
°C  
Ambient temperature  
–55  
25  
220  
(1) See Section 6.7 for power sequencing of VDDIO, VDDAIO, VDD, VDDA1/VDDA2/AVDDREFBG, and VDD3VFL  
(2) Group 2 pins are as follows: XINTF pins, PDPINTA, TDO, XCLKOUT, XF, EMU0, and EMU1.  
In Revision C, EVA (GPIOA0–GPIOA15) and GPIOD0 are 4 mA drive.  
.
6.3 Electrical Characteristics  
Over recommended operating conditions (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
IOH = IOHMAX  
MIN  
TYP  
MAX  
UNIT  
V
2.4  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
VDDIO  
– 0.2  
IOH = 50 mA  
IOL = IOLMAX  
0.4  
V
All I/Os(2) (including XRS)  
except EVB  
–80  
–13  
–140  
–190  
VDDIO = 3.3 V,  
VIN = 0 V  
Input  
current  
(low level)  
With pullup  
IIL  
mA  
GPIOB/EVB  
–25  
–35  
±2  
With pulldown  
VDDIO = 3.3 V, VIN = 0 V  
VDDIO = 3.3 V, VIN = VDD  
Input  
With pullup  
±2  
current  
(high  
level)  
IIH  
mA  
VDDIO = 3.3 V,  
VIN = VDD  
With pulldown(3)  
28  
50  
80  
±2  
Output current,  
high-impedance state (off-state)  
IOZ  
VO = VDDIO or 0 V  
mA  
CI  
Input capacitance  
Output capacitance  
7
7
pF  
pF  
Co  
(1) Minimum and maximum parameters are characterized for operation at TA = 220°C unless otherwise noted, but may not be production  
tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance.  
(2) The following pins have no internal PU/PD: GPIOE0, GPIOE1, GPIOF0, GPIOF1, GPIOF2, GPIOF3, GPIOF12, GPIOG4, and GPIOG5.  
(3) The following pins have an internal pulldown: XMP/MC, TESTSEL, and TRST.  
86  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
www.ti.com  
1.00E+06  
SGUS062AJUNE 2009REVISED APRIL 2010  
1.00E+05  
1.00E+04  
1.00E+03  
1.00E+02  
70  
150  
200  
220  
Die Junction Temperature (°C)  
Figure 6-1. SM320F2812-HT Life Expectancy Curve  
Notes:  
1. See data sheet for absolute maximum and minimum recommended operating conditions.  
2. Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package  
interconnect life).  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
87  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
6.4 Current Consumption by Power-Supply Pins Over Recommended Operating  
Conditions During Low-Power Modes at 150-MHz SYSCLKOUT  
TA = –55°C to 125°C  
IDDIO IDD3VFL  
MAX(2) MAX(2)  
TYP  
TA = 220°C  
(1)  
(1)  
MODE  
TEST CONDITIONS  
IDD  
MAX(2)  
IDDA  
TYP  
IDD  
IDDIO  
IDD3VFL  
TYP MAX  
IDDA  
TYP  
TYP  
MAX(2)  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
All peripheral clocks  
are enabled. All  
PWM pins are  
toggled at 100 kHz.  
Data is continuously  
transmitted out of the  
SCIA, SCIB, and  
CAN ports. The  
hardware multiplier is  
exercised.  
Operational  
195 mA 230 mA 15 mA 30 mA 40 mA 45 mA 40 mA 50 mA 275 mA 330 mA 17 mA 30 mA 45 mA 50 mA 40 mA 52 mA  
Code is running out  
of flash with 5  
wait-states.  
–Flash is powered  
down  
–XCLKOUT is turned  
off  
IDLE  
125 mA 150 mA 5 mA  
10 mA  
2 mA  
4 mA  
1 mA  
35 mA 200 mA  
10 mA  
56 mA 100 mA 320 mA 450 mA  
–All peripheral clocks  
are on, except ADC  
–Flash is powered  
down  
–Peripheral clocks  
are turned off  
–Pins without an  
internal PU/PD are  
tied high/low  
STANDBY  
5 mA  
10 mA  
5 mA  
20 mA  
2 mA  
4 mA  
1 mA  
35 mA 27 mA 40 mA 160 mA 200 mA 56 mA 100 mA 320 mA 450 mA  
–Flash is powered  
down  
–Peripheral clocks  
are turned off  
–Pins without an  
internal PU/PD are  
tied high/low  
HALT  
70 mA  
5 mA  
20 mA  
2 mA  
4 mA  
1mA  
35 mA 9.8 mA  
160 mA 200 mA 56 mA 100 mA 320 mA 450 mA  
– Input clock is  
disabled  
(1) IDDA includes current into VDDA1, VDDA2, VDD1, AVDDREFBG , and VDDAIO pins.  
(2) MAX numbers are at 125°C, and max voltage (VDD = 2.0 V; VDDIO, VDD3VFL, VDDA = 3.6 V).  
NOTE  
HALT and STANDBY modes cannot be used when the PLL is disabled.  
88  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
6.5 Current Consumption Graphs  
250  
200  
150  
100  
50  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
SYSCLKOUT (MHz)  
IDD  
IDDIO  
IDD3VFL  
IDDA  
Total 3.3−V current  
A. Test conditions are as defined in Table 6-5 for operational currents under nominal process voltage and temperature  
conditions.  
B. IDD represents the total current drawn from the 1.8-V rail (VDD). It includes a trivial amount of current (<1 mA) drawn  
by VDD1  
.
C. IDDA represents the current drawn by VDDA1 and VDDA2 rails.  
D. Total 3.3-V current is the sum of IDDIO, IDD3VFL, and IDDA. It includes a trivial amount of current (<1 mA) drawn by  
VDDAIO.  
Figure 6-2. Typical Current Consumption Over Frequency  
700  
600  
500  
400  
300  
200  
100  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
SYSCLKOUT (MHz)  
TOTAL POWER  
Figure 6-3. Typical Power Consumption Over Frequency  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
89  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
6.6 Reducing Current Consumption  
28x DSPs incorporate a unique method to reduce the device current consumption. A reduction in current  
consumption can be achieved by turning off the clock to any peripheral module which is not used in a  
given application. Table 6-1 indicates the typical reduction in current consumption achieved by turning off  
the clocks to various peripherals.  
Table 6-1. Typical Current Consumption by Various Peripherals (at 150 MHz)(1)  
(2)  
PERIPHERAL MODULE  
IDD CURRENT REDUCTION (mA)  
eCAN  
EVA  
12  
6
EVB  
6
ADC  
SCI  
8(3)  
4
SPI  
5
McBSP  
13  
(1) All peripheral clocks are disabled upon reset. Writing to/reading from peripheral registers is  
possible only after the peripheral clocks are turned on.  
(2) Not production tested.  
(3) This number represents the current drawn by the digital portion of the ADC module. Turning off the  
clock to the ADC module results in the elimination of the current drawn by the analog portion of the  
ADC (ICCA) as well.  
6.7 Power Sequencing Requirements  
SM320F2812 silicon requires dual voltages (1.8-V or 1.9-V and 3.3-V) to power up the CPU, Flash, ROM,  
ADC, and the I/Os. To ensure the correct reset state for all modules during power up, there are some  
requirements to be met while powering up/powering down the device. The current F2812 silicon reference  
schematics (Spectrum Digital Incorporated eZdsp. board) suggests two options for the power sequencing  
circuit.  
Option 1:  
In this approach, an external power sequencing circuit enables VDDIO first, then VDD and VDD1 (1.8 V or  
1.9 V). After 1.8 V (or 1.9 V) ramps, the 3.3 V for Flash (VDD3VFL) and ADC (VDDA1/VDDA2/AVDDREFBG  
)
modules are ramped up. While option 1 is still valid, TI has simplified the requirement. Option 2 is the  
recommended approach.  
Option 2:  
Enable power to all 3.3-V supply pins (VDDIO, VDD3VFL, VDDA1/VDDA2/VDDAIO/AVDDREFBG) and thenramp  
1.8 V (or 1.9 V) (VDD/VDD1) supply pins.  
1.8 V or 1.9 V (VDD/VDD1) should not reach 0.3 V until VDDIO has reached 2.5 V. This ensures the reset  
signal from the I/O pin has propagated through the I/O buffer to provide power-on reset to all the  
modules inside the device. See Figure 6-8 for power-on reset timing.  
Power-Down Sequencing:  
During power-down, the device reset should be asserted low (8 ms, minimum) before the VDD supply  
reaches 1.5 V. This helps to keep on-chip flash logic in reset prior to the VDDIO/VDD power supplies  
ramping down. It is recommended that the device reset control from Low-Dropout (LDO) regulators or  
voltage supervisors be used to meet this constraint. LDO regulators that facilitate power-sequencing  
(with the aid of additional external components) may be used to meet the power sequencing  
requirement. See www.spectrumdigital.com for F2812 eZdsp™ schematics and updates.  
90  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Table 6-2. Recommended Low-Dropout Regulators  
SUPPLIER  
PART NUMBER  
Texas Instruments  
TPS767D301  
NOTE  
The GPIO pins are undefined until VDD = 1 V and VDDIO = 2.5 V.  
See Figure 6-8,  
Figure 6-4. F2812 Typical Power-Up and Power-Down Sequence – Option 2  
6.8 Signal Transition Levels  
Note that some of the signals use different reference voltages, see the recommended operating conditions  
table. Output levels are driven to a minimum logic-high level of 2.4 V and to a maximum logic-low level of  
0.4 V.  
Figure 6-5 shows output levels.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
91  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
2.4 V (V )  
OH  
80%  
20%  
0.4 V (V  
)
OL  
Figure 6-5. Output Levels  
Output transition times are specified as follows:  
For a high-to-low transition, the level at which the output is said to be no longer high is below 80% of  
the total voltage range and lower and the level at which the output is said to be low is 20% of the total  
voltage range and lower.  
For a low-to-high transition, the level at which the output is said to be no longer low is 20% of the total  
voltage range and higher and the level at which the output is said to be high is 80% of the total voltage  
range and higher.  
Figure 6-6 shows the input levels.  
2.0 V (V )  
IH  
90%  
10%  
0.8 V (V )  
IL  
Figure 6-6. Input Levels  
Input transition times are specified as follows:  
For a high-to-low transition on an input signal, the level at which the input is said to be no longer high  
is 90% of the total voltage range and lower and the level at which the input is said to be low is 10% of  
the total voltage range and lower.  
For a low-to-high transition on an input signal, the level at which the input is said to be no longer low is  
10% of the total voltage range and higher and the level at which the input is said to be high is 90% of  
the total voltage range and higher.  
NOTE  
See the individual timing diagrams for levels used for testing timing parameters.  
6.9 Timing Parameter Symbology  
Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
Lowercase subscripts and their meanings:  
Letters and symbols and their meanings:  
a
c
d
f
access time  
cycle time (period)  
delay time  
H
L
High  
Low  
V
X
Z
Valid  
fall time  
Unknown, changing, or don’t care level  
High impedance  
h
r
hold time  
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
pulse duration (width)  
92  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
6.10 General Notes on Timing Parameters  
All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that  
all output transitions for a given half-cycle occur with a minimum of skewing relative to each other.  
The signal combinations shown in the following timing diagrams may not necessarily represent actual  
cycles. For actual cycle examples, see the appropriate cycle description section of this document.  
6.11 Test Load Circuit  
This test load circuit is used to measure all switching characteristics provided in this document.  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
Output  
Under  
Test  
42  
3.5 nH  
Transmission Line  
Z0 = 50 Ω  
(see note)  
Device Pin  
(see note)  
4.0 pF  
1.85 pF  
NOTE: The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must  
be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The  
transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data  
sheet timing.  
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.  
Figure 6-7. 3.3-V Test Load Circuit  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
93  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
6.12 Device Clock Table  
This section provides the timing requirements and switching characteristics for the various clock options  
available on the F2812 DSP. Table 6-3 lists the cycle times of various clocks.  
Table 6-3. Clock Table and Nomenclature  
MIN  
28.6  
20  
NOM  
MAX  
50  
UNIT  
ns  
tc(OSC), Cycle time  
Frequency  
On-chip oscillator clock  
XCLKIN  
35  
MHz  
ns  
tc(CI), Cycle time  
Frequency  
6.67  
4
250  
150  
500  
150  
2000  
150  
MHz  
ns  
tc(SCO), Cycle time  
Frequency  
6.67  
2
SYSCLKOUT  
XCLKOUT  
HSPCLK  
MHz  
ns  
tc(XCO), Cycle time  
Frequency  
6.67  
0.5  
6.67  
MHz  
ns  
tc(HCO), Cycle time  
Frequency  
13.3(1)  
75(1)  
26.6(1)  
37.5(1)  
150  
75  
MHz  
ns  
tc(LCO), Cycle time  
13.3  
40  
LSPCLK  
Frequency  
MHz  
ns  
tc(ADCCLK), Cycle time(2)  
Frequency  
ADC clock  
SPI clock  
25  
MHz  
ns  
tc(SPC), Cycle time  
Frequency  
50  
20  
MHz  
ns  
tc(CKG), Cycle time  
Frequency  
50  
McBSP  
20  
MHz  
ns  
tc(XTIM), Cycle time  
Frequency  
6.67  
XTIMCLK  
150  
MHz  
(1) This is the default reset value if SYSCLKOUT = 150 MHz.  
(2) The maximum value for ADCCLK frequency is 25 MHz. For SYSCLKOUT values of 25 MHz or lower, ADCCLK has to be  
SYSCLKOUT/2 or lower. ADCCLK = SYSCLKOUT is not a valid mode for any value of SYSCLKOUT.  
6.13 Clock Requirements and Characteristics  
6.13.1 Input Clock Requirements  
The clock provided at the XCLKIN pin generates the internal CPU clock cycle.  
Table 6-4. Input Clock Frequency(1)  
PARAMETER  
MIN  
20  
20  
4
TYP  
MAX  
35  
UNIT  
MHz  
MHz  
Resonator(2)  
Crystal(2)  
XCLKIN  
fx  
fl  
Input clock frequency  
35  
150  
2
Limp mode clock frequency  
(1) Not production tested.  
(2) Not guaranteed for TA > 125°C.  
94  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Table 6-5. XCLKIN Timing Requirements – PLL Bypassed or Enabled(1)  
NO.  
MIN  
MAX  
250  
6
UNIT  
C8  
tc(CI)  
tf(CI)  
Cycle time, XCLKIN  
Fall time, XCLKIN  
6.67  
ns  
Up to 30 MHz  
C9  
ns  
ns  
30 MHz to 150 MHz  
Up to 30 MHz  
2
6
C10  
tr(CI)  
Rise time, XCLKIN  
30 MHz to 150 MHz  
2
C11  
C12  
tw(CIL)  
tw(CIH)  
Pulse duration, X1/XCLKIN low as a percentage of tc(CI)  
Pulse duration, X1/XCLKIN high as a percentage of tc(CI)  
40  
40  
60  
60  
%
%
(1) Not production tested.  
Table 6-6. XCLKIN Timing Requirements – PLL Disabled(1)  
NO.  
MIN  
MAX UNIT  
C8  
tc(CI)  
tf(CI)  
Cycle time, XCLKIN  
6.67  
250  
6
ns  
Up to 30 MHz  
C9  
Fall time, XCLKIN  
ns  
30 MHz to 150 MHz  
Up to 30 MHz  
2
6
C10  
C11  
C12  
tr(CI)  
Rise time, XCLKIN  
ns  
%
%
30 MHz to 150 MHz  
XCLKIN 120 MHz  
120 < XCLKIN 150 MHz  
XCLKIN 120 MHz  
120 < XCLKIN 150 MHz  
2
40  
45  
40  
45  
60  
55  
60  
55  
tw(CIL)  
Pulse duration, X1/XCLKIN low as a percentage of tc(CI)  
Pulse duration, X1/XCLKIN high as a percentage of  
tc(CI)  
tw(CIH)  
(1) Not production tested.  
Table 6-7. Possible PLL Configuration Modes(1)  
PLL MODE  
REMARKS  
SYSCLKOUT  
Invoked by tying XPLLDIS pin low upon reset. PLL block is completely disabled. Clock input to the  
CPU (CLKIN) is directly derived from the clock signal present at the X1/XCLKIN pin.  
PLL Disabled  
XCLKIN  
Default PLL configuration upon power-up, if PLL is not disabled. The PLL itself is bypassed.  
PLL Bypassed However, the /2 module in the PLL block divides the clock input at the X1/XCLKIN pin by two before  
feeding it to the CPU.  
XCLKIN/2  
Achieved by writing a non-zero value n into PLLCR register. The /2 module in the PLL block now  
PLL Enabled  
(XCLKIN × n)/2  
divides the output of the PLL by two before feeding it to the CPU.  
(1) Not production tested.  
6.13.2 Output Clock Characteristics  
Table 6-8. XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)(1) (2)  
NO.  
C1  
PARAMETER  
Cycle time, XCLKOUT  
MIN  
6.67(3)  
TYP  
MAX  
UNIT  
ns  
tc(XCO)  
tf(XCO)  
tr(XCO)  
tw(XCOL)  
tw(XCOH)  
tp  
C3(4)  
C4(4)  
C5(4)  
C6(4)  
C7(4)  
Fall time, XCLKOUT  
2
2
ns  
Rise time, XCLKOUT  
ns  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
PLL lock time(5)  
H–2  
H–2  
H+2  
H+2  
ns  
ns  
131 072tc(CI)  
ns  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
(3) The PLL must be used for maximum frequency operation.  
(4) Not production tested..  
(5) This parameter has changed from 4096 XCLKIN cycles in the earlier revisions of the silicon.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
95  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
See Note A  
See Note B  
A. The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown in  
Figure 6-8 is intended to illustrate the timing parameters only and may differ based on configuration.  
B. XCLKOUT configured to reflect SYSCLKOUT.  
Figure 6-8. Clock Timing  
6.14 Reset Timing  
Table 6-9. Reset (XRS) Timing Requirements(1) (2)  
MIN  
8tc(CI)  
8tc(CI)  
NOM  
MAX  
UNIT  
cycles  
cycles  
tw(RSL1)  
tw(RSL2)  
Pulse duration, stable XCLKIN to XRS high  
Pulse duration, XRS low  
Warm reset  
WD-initiated reset  
512tc(CI)  
512tc(CI)  
Pulse duration, reset pulse generated by  
watchdog  
tw(WDRS)  
td(EX)  
cycles  
Delay time, address/data valid after XRS high  
Oscillator start-up time  
32tc(CI)  
10  
cycles  
ms  
(3)  
tOSCST  
1
16tc(CI)  
16tc(CI)  
tsu(XPLLDIS)  
th(XPLLDIS)  
th(XMP/MC)  
th(boot-mode)  
Setup time for XPLLDIS pin  
Hold time for XPLLDIS pin  
cycles  
cycles  
cycles  
cycles  
Hold time for XMP/MC pin  
16tc(CI)  
(4)  
Hold time for boot-mode pins  
2520tc(CI)  
(1) If external oscillator/clock source isused, reset time has to be low at least for 1 ms after VDD reaches 1.5 V.  
(2) Not production tested.  
(3) Dependent on crystal/resonator and board design.  
(4) The boot ROM reads the password locations. Therefore, this timing requirement includes the wakeup time for flash. See the  
TMS320x281x Boot ROM Reference Guide (literature number SPRU095) and TMS320x281x System Control and Interrupts Reference  
Guide (literature number SPRU078) for further information.  
96  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
V
V
, V  
DDIO DD3VFL  
2.5 V  
0.3 V  
, V  
DDAn DDAIO  
(3.3 V)  
(See Note B)  
V
, V  
DD DD1  
(1.8 V (or 1.9 V))  
XCLKIN  
X1  
XCLKIN/8 (See Note C)  
XCLKOUT  
User-Code Dependent  
t
OSCST  
t
w(RSL1)  
XRS  
Address/Data Valid. Internal Boot-ROM Code Execution Phase  
Address/Data/  
Control  
User-Code Execution Phase  
User-Code Dependent  
t
d(EX)  
t
su(XPLLDIS)  
t
h(XPLLDIS)  
XPLLDIS Sampling  
(Don’t Care)  
XF/XPLLDIS  
XMP/MC  
GPIOF14  
t
h(XMP/MC)  
(Don’t Care)  
t
h(boot-mode)  
(See Note D)  
User-Code Dependent  
Boot-Mode Pins  
See Note A  
GPIO Pins as Input  
Peripheral/GPIO Function  
Based on Boot Code  
Boot-ROM Execution Starts  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
I/O Pins  
NOTES: A. The state of the GPIO pins is undefined (i.e., they could be input or output) until the 1.8-V (or 1.9-V) supply reaches at least 1 V  
and 3.3-V supply reaches 2.5 V.  
B.  
V
DDAn  
− V  
/V  
and AV  
DDA1 DDA2 DDREFBG  
C. Upon power up, SYSCLKOUT is XCLKIN/2 if the PLL is enabled. Since both the XTIMCLK and CLKMODE bits in the XINTCNF2  
register come up with a reset state of 1, SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. This explains why  
XCLKOUT = XCLKIN/8 during this phase.  
D. After reset, the Boot ROM code executes instructions for 1260 SYSCLKOUT cycles (SYSCLKOUT = XCLKIN/2) and then  
samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot  
code function in ROM. The BOOT Mode pins should be held high/low for at least 2520 XCLKIN cycles from boot ROM execution  
time for proper selection of Boot modes.  
If Boot ROM code executes after power-on conditions (in debugger environment), the Boot code execution time is based on  
the current SYSCLKOUT speed. The SYSCLKOUT is based on user environment and could be with or without PLL enabled.  
Figure 6-9. Power-on Reset in Microcomputer Mode (XMP/MC = 0) (See Note A)  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
97  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
V
V
, V  
DDIO DD3VFL  
2.5 V  
0.3 V  
, V  
DDAn DDAIO  
(3.3 V)  
V
, V  
DD DD1  
(1.8 V (or  
1.9 V))  
XCLKIN  
X1  
t
OSCST  
XCLKOUT  
XRS  
User-Code Dependent  
XCLKIN/8 (See Note A)  
t
w(RSL)  
Address/Data/Control Valid Execution  
Begins From External Boot Address 0x3FFFC0  
t
d(EX)  
Address/Data/  
Control  
(Don’t Care)  
XPLLDIS Sampling  
(Don’t Care)  
t
h(XPLLDIS)  
XF/XPLLDIS  
XMP/MC  
GPIOF14/XF (User-Code Dependent)  
t
su(XPLLDIS)  
(Don’t Care)  
t
h(XMP/MC)  
I/O Pins  
User-Code Dependent  
See Note B  
Input Configuration (State Depends on Internal PU/PD)  
NOTES: A. Upon power up, SYSCLKOUT is XCLKIN/2 if the PLL is enabled. Since both the XTIMCLK and CLKMODE bits in the XINTCNF2  
register come up with a reset state of 1, SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. This explains why  
XCLKOUT = XCLKIN/8 during this phase.  
B. The state of the GPIO pins is undefined (i.e., they could be input or output) until the 1.8-V (or 1.9-V) supply reaches at least 1 V  
and 3.3-V supply reaches 2.5 V..  
Figure 6-10. Power-on Reset in Microprocessor Mode (XMP/MC = 1)  
98  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
XCLKIN  
X1  
XCLKIN/8  
XCLKOUT  
(XCLKIN * 5)  
User-Code Dependent  
t
w(RSL2)  
XRS  
User-Code Execution Phase  
t
d(EX)  
Address/Data/  
Control  
(Don’t Care)  
User-Code Execution  
GPIOF14/XF  
t
t
su(XPLLDIS)  
h(XPLLDIS)  
(Don’t Care)  
XF/XPLLDIS  
XMP/MC  
GPIOF14  
User-Code Dependent  
(Don’t Care)  
XPLLDIS Sampling  
t
h(XMP/MC)  
(Don’t Care)  
t
(see Note A)  
Boot-ROM Execution Starts  
GPIO Pins as Input  
h(boot-mode)  
Peripheral/GPIO Function  
User-Code Dependent  
Boot-Mode Pins  
I/O Pins  
Peripheral/GPIO Function  
User-Code Execution Starts  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
A. After reset, the Boot ROM code executes instructions for 1260 SYSCLKOUT cycles (SYSCLKOUT = XCLKIN/2) and  
then samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination  
memory or boot code function in ROM. The BOOT Mode pins should be held high/low for at least 2520 XCLKIN  
cycles from boot ROM execution time for proper selection of Boot modes. If Boot ROM code executes after power-on  
conditions (in debugger environment), the Boot code execution time is based on the current SYSCLKOUT speed. The  
SYSCLKOUT is based on user environment and could be with or without PLL enabled.  
Figure 6-11. Warm Reset in Microcomputer Mode  
X1/XCLKIN  
Write to PLLCR  
SYSCLKOUT  
XCLKIN x 2  
XCLKIN/2  
XCLKIN x 4  
(Current CPU  
Frequency)  
(CPU Frequency While PLL is Stabilizing  
With the Desired Frequency. This Period  
(Changed CPU Frequency)  
(PLL Lock-up Time, t ) is  
p
131072 XCLKIN Cycles Long.)  
Figure 6-12. Effect of Writing Into PLLCR Register  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
99  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
6.15 Low-Power Mode Wakeup Timing  
Table 6-10 is also the IDLE Mode Wake-Up Timing Requirements table.  
Table 6-10. IDLE Mode Switching Characteristics(1)  
PARAMETER  
TEST CONDITIONS  
Without input qualifier  
With input qualifier  
MIN  
2 x tc(SCO)  
1 × tc(SCO) + IQT(2)  
TYP  
MAX  
UNIT  
Cycles  
Cycles  
Pulse duration, external wake-up  
signal  
tw(WAKE-INT)  
Delay time, external wake signal  
to program execution resume(3)  
–Wake-up from Flash  
–Flash module in active state  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
8 × tc(SCO)  
8 × tc(SCO) + IQT(2)  
1050 × tc(SCO)  
Cycles  
Cycles  
Cycles  
Cycles  
– Wake-up from Flash  
–Flash module in active state  
td(WAKE-IDLE)  
–Wake-up from Flash  
–Flash module in sleep state  
–Wake-up from Flash  
–Flash module in sleep state  
1050 × tc(SCO) + IQT(2)  
–Wake-up from SARAM  
–Wake-up from SARAM  
Without input qualifier  
With input qualifier  
8 × tc(SCO)  
8 × tc(SCO) + IQT(2)  
Cycles  
Cycles  
(1) Not production tested.  
(2) Input Qualification Time (IQT) = [5 × QUALPRD × 2] × tc(SCO)  
(3) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up) signal involves additional latency.  
t
d(WAKE−IDLE)  
A0−A15  
XCLKOUT  
(see Note A)  
t
w(WAKE−INT)  
WAKE INT  
(see Note B)  
A. XCLKOUT = SYSCLKOUT  
B. WAKE INT can be any enabled interrupt, WDINT, XNMI, or XRS.  
Figure 6-13. IDLE Entry and Exit Timing  
100  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Table 6-11 is also the STANDBY Mode Wake-Up Timing Requirements table.  
Table 6-11. STANDBY Mode Switching Characteristics(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Delay time, IDLE instruction  
executed to XCLKOUT high  
td(IDLE-XCOH)  
32 × tc(SCO)  
12 × tc(CI)  
Cycles  
Without input  
qualifier  
12 × tc(CI)  
Cycles  
Cycles  
Pulse duration, external  
wake-up signal  
tw(WAKE-INT)  
With input qualifier  
(2 + QUALSTDBY)(2) × tc(CI)  
Delay time, external wake  
signal to program execution  
resume(3)  
–Wake-up from Flash  
–Flash module in active  
state  
Without input  
qualifier  
12 × tc(CI)  
12 × tc(CI) + tw(WAKE-INT)  
1125 × tc(SCO)  
Cycles  
Cycles  
Cycles  
Cycles  
–Wake-up from Flash  
–Flash module in active  
state  
With input qualifier  
td(WAKE-STBY)  
–Wake-up from Flash  
–Flash module in sleep  
state  
Without input  
qualifier  
–Wake-up from Flash  
–Flash module in sleep  
state  
With input qualifier  
1125 × tc(SCO) + tw(WAKE-INT)  
Without input  
qualifier  
–Wake-up from SARAM  
–Wake-up from SARAM  
12 x tc(CI)  
Cycles  
Cycles  
With input qualifier  
12 × tc(CI) + tw(WAKE-INT)  
(1) Not production tested.  
(2) QUALSTDBY is a 6-bit field in the LPMCR0 register.  
(3) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up) signal involves additional latency.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
101  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
A
C
E
B
D
F
Device  
Status  
STANDBY  
STANDBY  
Normal Execution  
Flushing Pipeline  
Wake−up  
Signal  
t
w(WAKE-INT)  
t
d(WAKE-STBY)  
X1/XCLKIN  
t
d(IDLE−XCOH)  
XCLKOUT  
32 SYSCLKOUT Cycles  
NOTES: A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The PLL block responds to the STANDBY signal. SYSCLKOUT is held for approximately 32 cycles before being turned  
off. This 32-cycle delay enables the CPU pipe and any other pending operations to flush properly.  
C. The device is now in STANDBY mode.  
D. The external wake-up signal is driven active (negative edge triggered shown as an example).  
E. After a latency period, the STANDBY mode is exited.  
F. Normal operation resumes. The device responds to the interrupt (if enabled).  
Figure 6-14. STANDBY Entry and Exit Timing  
102  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Table 6-12. HALT Mode Switching Characteristics(1)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Delay time, IDLE instruction executed to XCLKOUT  
high  
td(IDLE-XCOH)  
32 × tc(SCO)  
45 × tc(SCO)  
Cycles  
tw(WAKE-XNMI)  
tw(WAKE-XRS)  
tp  
Pulse duration, XNMI wakeup signal  
Pulse duration, XRS wakeup signal  
PLL lock-up time  
2 × tc(CI)  
8 × tc(CI)  
Cycles  
Cycles  
Cycles  
131 072 × tc(CI)  
Delay time, PLL lock to program execution resume  
–Wake-up from flash  
–Flash module in sleep state  
td(wake)  
1125 × tc(SCO  
)
Cycles  
Cycles  
–Wake-up from SARAM  
35 × tc(SCO)  
(1) Not production tested.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
103  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The PLL block responds to the HALT signal. SYSCLKOUT is held for another 32 cycles before the oscillator is turned  
off and the CLKIN to the core is stopped. This 32-cycle delay enables the CPU pipe and any other pending  
operations to flush perperly.  
C. Clocks to the device are turned off and the internal oscillator and PLL are shut down. The device is now in HALT  
mode and consumes absolute minimum power.  
D. When XNMI is friven active (negative edge triggered shown, as an example), the oscillator is turned on; but the PLL is  
not activiated.  
E. When XNMI is deactiveted, it initiates the PLL lock sequence, which takes 131, 072 X1/XCLKIN cycles.  
F. When CLKIN to the core is enabled, the device responds to the interrupt (if enabled), after a latency. The HALT mode  
is now exited.  
G. Normal operation resumes.  
H. XCLKOUT = SYSCLKOUT  
Figure 6-15. HALT Wakeup Using XNMI  
6.16 Event Manager Interface  
6.16.1 PWM Timing  
PWM refers to all PWM outputs on EVA and EVB.  
104  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Table 6-13. PWM Switching Characteristics(1) (2)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
ns  
(3) (4)  
tw(PWM)  
Pulse duration, PWMx output high/low  
Delay time, XCLKOUT high to PWMx output switching  
25  
td(PWM)XCO  
XCLKOUT = SYSCLKOUT/4  
10  
ns  
(1) See the GPIO output timing for fall/rise times for PWM pins.  
(2) PWM pin toggling frequency is limited by the GPIO output buffer switching frequency (20 MHz).  
(3) PWM outputs may be 100%, 0%, or increments of tc(HCO) with respect to the PWM period.  
(4) Not production tested.  
Table 6-14. Timer and Capture Unit Timing Requirements(1) (2) (3)  
MIN  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
2 × tc(SCO)  
1 × tc(SCO) + IQT(4)  
2 × tc(SCO)  
tw(TDIR)  
Pulse duration, TDIRx low/high  
cycles  
tw(CAP)  
Pulse duration, CAPx input low/high  
cycles  
1 x tc(SCO) + IQT(4)  
tw(TCLKINL)  
tw(TCLKINH)  
tc(TCLKIN)  
Pulse duration, TCLKINx low as a percentage of TCLKINx cycle time  
Pulse duration, TCLKINx high as a percentage of TCLKINx cycle time  
Cycle time, TCLKINx  
40  
60  
60  
%
%
ns  
40  
4 × tc(HCO)  
(1) The QUALPRD bit field value can range from 0 (no qualification) through 0xFF (510 SYSCLKOUT cycles). The qualification sampling  
period is 2n SYSCLKOUT cycles, where n is the value stored in the QUALPRD bit field. As an example, when QUALPRD = 1, the  
qualification sampling period is 1 × 2 = 2 SYSCLKOUT cycles (i.e., the input is sampled every 2 SYSCLKOUT cycles). Six such samples  
are taken over five sampling windows, each window being 2n SYSCLKOUT cycles. For QUALPRD = 1, the minimum width that is  
needed is 5 × 2 = 10 SYSCLKOUT cycles. However, since the external signal is driven asynchronously, a 11-SYSCLKOUT-wide pulse  
ensures reliable recognition.  
(2) Maximum input frequency to the QEP = min[HSPCLK/2, 20 MHz]  
(3) Not production tested.  
(4) Input Qualification Time (IQT) = [5 × QUALPRD × 2] × tc(SCO)  
XCLKOUT  
(see Note A)  
t
d(PWM)XCO  
t
w(PWM)  
PWMx  
A. XCLKOUT = SYSCLKOUT  
Figure 6-16. PWM Output Timing  
XCLKOUT  
(see Note A)  
t
w(TDIR)  
TDIRx  
A. XCLKOUT = SYSCLKOUT  
Figure 6-17. TDIRx Timing  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
105  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
Table 6-15. External ADC Start-of-Conversion – EVA – Switching Characteristics(1) (2)  
PARAMETER  
MIN  
MAX  
UNIT  
cycle  
ns  
td(XCOH-EVASOCL)  
tw(EVASOCL)  
Delay time, XCLKOUT high to EVASOC low  
Pulse duration, EVASOC low  
1 × tc(SCO)  
32 × tc(HCO)  
(1) XCLKOUT = SYSCLKOUT  
(2) Not production tested.  
XCLKOUT  
t
d(XCOH-EVASOCL)  
t
w(EVASOCL)  
EVASOC  
Figure 6-18. EVASOC Timing  
Table 6-16. External ADC Start-of-Conversion – EVB – Switching Characteristics(1) (2)  
PARAMETER  
MIN  
MAX UNIT  
1 × tc(SCO) cycle  
ns  
td(XCOH-EVBSOCL)  
tw(EVBSOCL)  
Delay time, XCLKOUT high to EVBSOC low  
Pulse duration, EVBSOC low  
32 × tc(HCO)  
(1) XCLKOUT = SYSCLKOUT  
(2) Not production tested.  
XCLKOUT  
t
d(XCOH-EVBSOCL)  
t
w(EVBSOCL)  
EVBSOC  
Figure 6-19. EVBSOC Timing  
6.16.2 Interrupt Timing  
Table 6-17. Interrupt Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
Without input  
qualifier  
12  
Delay time, PDPINTx low to PWM  
high-impedance state  
td(PDP-PWM)HZ  
ns  
1 × tc(SCO) + IQT +  
12(1)  
With input qualifier  
Without input  
qualifier  
3 × tc(SCO)  
Delay time, CxTRIP/TxCTRIP signals low  
to PWM high-impedance state  
(2)  
td(TRIP-PWM)HZ  
ns  
ns  
With input qualifier  
[2 × tc(SCO)] + IQT(1)  
Delay time, INT low/high to  
interrupt-vector fetch  
(2)  
td(INT)  
tqual + 12tc(XCO)  
(1) Input Qualification Time (IQT) = [5 × QUALPRD × 2] × tc(SCO)  
(2) Not production tested.  
106  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Table 6-18. Interrupt Timing Requirements  
MIN  
2 × tc(SCO)  
1 × tc(SCO) + IQT(2)  
MAX  
UNIT  
with no qualifier  
(1)  
tw(INT)  
Pulse duration, INT input low/high  
cycles  
with qualifier  
with no qualifier  
with qualifier  
2 × tc(SCO)  
tw(PDP)  
Pulse duration, PDPINTx input low  
Pulse duration, CxTRIP input low  
Pulse duration, TxCTRIP input low  
cycles  
cycles  
cycles  
1 × tc(SCO) + IQT(2)  
2 × tc(SCO)  
1 × tc(SCO) + IQT(2)  
with no qualifier  
with qualifier  
(1)  
tw(CxTRIP)  
with no qualifier  
with qualifier  
2 × tc(SCO)  
1 × tc(SCO) + IQT(2)  
(1)  
tw(TxCTRIP)  
(1) Not production tested.  
(2) Input Qualification Time (IQT) = [5 × QUALPRD × 2] × tc(SCO)  
XCLKOUT  
(see Note A)  
t
, t  
, t  
w(PDP) w(CxTRIP) w(TxCTRIP)  
TxCTRIP, CxTRIP,  
PDPINTx  
(see Note B)  
t
, t  
d(PDP-PWM)HZ d(TRIP-PWM)HZ  
PWM  
(see Note C)  
t
w(INT)  
XNMI, XINT1, XINT2  
t
d(INT)  
Interrupt Vector  
A0−A15  
A. XCLKOUT = SYSCLKOUT  
B. TxCTRIP – T1CTRIP, T2CTRIP, T3CTRIP, T4CTRIP . CxTRIP – C1TRIP, C2TRIP, C3TRIP, C4TRIP, C5TRIP, or  
C6TRIP. PDPINTx – PDPINTA or PDPINTB  
C. PWM refers to all the PWM pins in the device (i.e., PWMn and TnPWM pins or PWM pin pair relevant to each  
CxTRIP pin). The state of the PWM pins after PDPINTx is taken high depends on the state of the FCOMPOE bit.  
Figure 6-20. External Interrupt Timing  
6.17 General-Purpose Input/Output (GPIO) – Output Timing  
Table 6-19. General-Purpose Output Switching Characteristics  
PARAMETER  
Delay time, XCLKOUT high to GPIO low/high  
Rise time, GPIO switching low to high  
Fall time, GPIO switching high to low  
Toggling frequency, GPO pins  
MIN  
MAX  
UNIT  
cycle  
ns  
td(XCOH-GPO)  
All GPIOs  
All GPIOs  
All GPIOs  
1 × tc(SCO)  
(1)  
tr(GPO)  
10  
10  
20  
(1)  
tf(GPO)  
ns  
(1)  
fGPO  
MHz  
(1) Not production tested.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
107  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
XCLKOUT  
t
d(XCOH-GPO)  
GPIO  
t
r(GPO)  
t
f(GPO)  
Figure 6-21. General-Purpose Output Timing  
6.18 General-Purpose Input/Output (GPIO) – Input Timing  
See Note A  
GPIO  
Signal  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
QUALPRD  
Sampling Window  
QUALPRD = 1  
SYSCLKOUT  
(2 x SYSCLKOUT cycles) x 5  
Output From  
Qualifier  
NOTES: A. This glitch is ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00  
to 0xFF. Input qualification is not applicable when QUALPRD = 00. For any other value n, the qualification sampling period in 2n  
SYSCLKOUT cycles (i.e., at every 2n SYSCLKOUT cycle, the GPIO pin is sampled). Six consecutive samples must be of the  
same value for a given input to be recognized.  
B. For the qualifier to detect the change, the input should be stable for 10 SYSCLKOUT cycles or greater. In other words, the inputs  
should be stable for (5 x QUALPRD x 2) SYSCLKOUT cycles. This would ensure six sampling windows for detection to occur.  
Since external signals are driven asynchronously, an 11-SYSCLKOUT-wide pulse ensures reliable recognition.  
Figure 6-22. GPIO Input Qualifier – Example Diagram for QUALPRD = 1  
Table 6-20. General-Purpose Input Timing Requirements(1)  
MIN  
2 × tc(SCO)  
1 × tc(SCO) + IQT(2)  
MAX  
UNIT  
With no qualifier  
With qualifier  
tw(GPI)  
Pulse duration, GPIO low/high  
All GPIOs  
cycles  
(1) Not production tested.  
(2) Input Qualification Time (IQT) = [5 × QUALPRD × 2] × tc(SCO)  
108  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
XCLKOUT  
GPIOxn  
t
w(GPI)  
Figure 6-23. General-Purpose Input Timing  
NOTE  
The pulse width requirement for general-purpose input is applicable for the XBIO and  
ADCSOC pins as well.  
6.19 SPI Master Mode Timing  
Table 6-21. SPI Master Mode External Timing (Clock Phase = 0)(1) (2) (3)  
SPI WHEN (SPIBRR + 1)  
IS EVEN OR  
SPIBRR = 0 OR 2  
SPI WHEN (SPIBRR + 1)  
IS ODD AND  
NO.  
UNIT  
ns  
SPIBRR > 3  
MIN  
MAX  
MIN  
MAX  
1
tc(SPC)M  
Cycle time, SPICLK  
4tc(LCO)  
128tc(LCO)  
5tc(LCO)  
127tc(LCO)  
Pulse duration, SPICLK high  
(clock polarity = 0)  
tw(SPCH)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
–10  
0.5tc(SPC)M 0.5tc(SPC)M – 0.5tc(LCO) – 10  
0.5tc(SPC)M 0.5tc(SPC)M – 0.5tc(LCO) – 10  
0.5tc(SPC)M 0.5tc(SPC)M + 0.5tc(LCO) – 10  
0.5tc(SPC)M 0.5tc(SPC)M + 0.5tc(LCO) – 10  
0.5tc(SPC)M – 0.5tc(LCO)  
0.5tc(SPC)M – 0.5tc(LCO)  
0.5tc(SPC)M + 0.5tc(LCO)  
0.5tc(SPC)M + 0.5tc(LCO)  
10  
2(4)  
ns  
Pulse duration, SPICLK low  
(clock polarity = 1)  
tw(SPCL)M  
Pulse duration, SPICLK low  
(clock polarity = 0)  
tw(SPCL)M  
3(4)  
4(4)  
5(4)  
8(4)  
9(4)  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPICLK high  
(clock polarity = 1)  
tw(SPCH)M  
Delay time, SPICLK high to SPISIMO  
valid (clock polarity = 0)  
td(SPCH-SIMO)M  
td(SPCL-SIMO)M  
tv(SPCL-SIMO)M  
tv(SPCH-SIMO)M  
tsu(SOMI-SPCL)M  
tsu(SOMI-SPCH)M  
tv(SPCL-SOMI)M  
tv(SPCH-SOMI)M  
10  
10  
–10  
Delay time, SPICLK low to SPISIMO  
valid (clock polarity = 1)  
–10  
–10  
0.5tc(SPC)M + 0.5tc(LCO) – 10  
0.5tc(SPC)M + 0.5tc(LCO) – 10  
0
10  
Valid time, SPISIMO data valid after  
SPICLK low (clock polarity = 0)  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0
Valid time, SPISIMO data valid after  
SPICLK high (clock polarity = 1)  
Setup time, SPISOMI before SPICLK  
low (clock polarity = 0)  
Setup time, SPISOMI before SPICLK  
high (clock polarity = 1)  
0
0
Valid time, SPISOMI data valid after  
SPICLK low (clock polarity = 0)  
0.25tc(SPC)M – 10  
0.25tc(SPC)M – 10  
0.5tc(SPC)M – 0.5tc(LCO) – 10  
0.5tc(SPC)M – 0.5tc(LCO) – 10  
Valid time, SPISOMI data valid after  
SPICLK high (clock polarity = 1)  
(1) The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared.  
LSPCLK  
LSPCLK  
(SPIBRR ) 1)  
tc(SPC) + SPI clock cycle time +  
or  
+ tc(LCO) + LSPCLK cycle time  
4
(2)  
(3) Not production tested.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
109  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
NOTE  
Internal clock prescalers must be adjusted such that the SPI clock speed is not greater than  
the I/O buffer speed limit (20 MHz).  
1
SPICLK  
(clock polarity = 0)  
2
4
3
SPICLK  
(clock polarity = 1)  
5
SPISIMO  
SPISOMI  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISTE  
(see Note A)  
A. In the master mode, SPISTE goes active 0.5tc(SPC) before valid SPI clock edge. On the trailing end of the word, the  
SPISTE will go inactive 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit.  
Figure 6-24. SPI Master Mode External Timing (Clock Phase = 0)  
110  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Table 6-22. SPI Master Mode External Timing (Clock Phase = 1)(1) (2) (3)  
SPI WHEN (SPIBRR + 1)  
IS EVEN OR  
SPIBRR = 0 OR 2  
SPI WHEN (SPIBRR + 1)  
IS ODD AND  
NO.  
UNIT  
ns  
SPIBRR > 3  
MIN  
MAX  
MIN  
MAX  
1
tc(SPC)M  
Cycle time, SPICLK  
4tc(LCO)  
128tc(LCO)  
5tc(LCO)  
127tc(LCO)  
Pulse duration, SPICLK high  
(clock polarity = 0)  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M 0.5tc(SPC)M – 0.5tc (LCO) – 10  
0.5tc(SPC)M 0.5tc(SPC)M – 0.5tc (LCO) – 10  
0.5tc(SPC)M – 0.5tc(LCO)  
0.5tc(SPC)M – 0.5tc(LCO)  
0.5tc(SPC)M – 0.5tc(LCO)  
0.5tc(SPC)M – 0.5tc(LCO)  
2(4)  
ns  
Pulse duration, SPICLK low  
(clock polarity = 1)  
Pulse duration, SPICLK low  
(clock polarity = 0)  
0.5tc(SPC)M  
0.5tc(SPC)M  
0.5tc(SPC)M + 0.5tc(LCO) – 10  
0.5tc(SPC)M + 0.5tc(LCO) – 10  
3(4)  
ns  
ns  
Pulse duration, SPICLK high  
(clock polarity = 1)  
Setup time, SPISIMO data valid  
before SPICLK high (clock  
polarity = 0)  
tsu(SIMO-SPCH)M  
tsu(SIMO-SPCL)M  
tv(SPCH-SIMO)M  
tv(SPCL-SIMO)M  
tsu(SOMI-SPCH)M  
tsu(SOMI-SPCL)M  
tv(SPCH-SOMI)M  
tv(SPCL-SOMI)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0
6(4)  
Setup time, SPISIMO data valid  
before SPICLK low (clock  
polarity = 1)  
Valid time, SPISIMO data valid  
after SPICLK high (clock polarity  
= 0)  
7(4)  
ns  
ns  
ns  
Valid time, SPISIMO data valid  
after SPICLK low (clock polarity  
= 1)  
Setup time, SPISOMI before  
SPICLK high  
(clock polarity = 0)  
10(4)  
Setup time, SPISOMI before  
SPICLK low  
(clock polarity = 1)  
0
0
Valid time, SPISOMI data valid  
after SPICLK high (clock polarity  
= 0)  
0.25tc(SPC)M – 10  
0.25tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
11(4)  
Valid time, SPISOMI data valid  
after SPICLK low (clock polarity  
= 1)  
(1) The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.  
LSPCLK  
LSPCLK  
(SPIBRR ) 1)  
tc(SPC) + SPI clock cycle time +  
or  
+ tc(LCO) + LSPCLK cycle time  
4
(2)  
(3) Not production tested..  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
111  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
6
7
SPISIMO  
SPISOMI  
Master Out Data Is Valid  
10  
Data Valid  
11  
Master In Data  
Must Be Valid  
SPISTE  
(see Note A)  
A. In the master mode, SPISTE goes active 0.5tc(SPC) before valid SPI clock edge. On the trailing end of the word, the  
SPISTE will go inactive 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit.  
Figure 6-25. SPI Master External Timing (Clock Phase = 1)  
112  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
6.20 SPI Slave Mode Timing  
Table 6-23. SPI Slave Mode External Timing (Clock Phase = 0)(1) (2) (3)  
NO.  
MIN  
MAX  
UNIT  
(2)  
12  
tc(SPC)S  
Cycle time, SPICLK  
4tc(LCO)  
ns  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)S – 10  
0.5tc(SPC)S – 10  
0.5tc(SPC)S – 10  
0.5tc(SPC) – 10  
0.5tc(SPC)S  
0.5tc(SPC)S  
0.5tc(SPC)S  
0.5tc(SPC)S  
13(4)  
14(4)  
ns  
ns  
Delay time, SPICLK high to SPISOMI valid  
(clock polarity = 0)  
td(SPCH-SOMI)S  
td(SPCL-SOMI)S  
tv(SPCL-SOMI)S  
0.375tc(SPC)S – 10  
0.375tc(SPC)S – 10  
0.75tc(SPC)S  
15(4)  
ns  
Delay time, SPICLK low to SPISOMI valid (clock polarity = 1)  
Valid time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
16(4)  
19(4)  
20(4)  
ns  
ns  
ns  
Valid time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
tv(SPCH-SOMI)S  
0.75tc(SPC)S  
tsu(SIMO-SPCL)S  
tsu(SIMO-SPCH)S  
Setup time, SPISIMO before SPICLK low (clock polarity = 0)  
Setup time, SPISIMO before SPICLK high (clock polarity = 1)  
0
0
Valid time, SPISIMO data valid after SPICLK low  
(clock polarity = 0)  
tv(SPCL-SIMO)S  
tv(SPCH-SIMO)S  
0.5tc(SPC)S  
0.5tc(SPC)S  
Valid time, SPISIMO data valid after SPICLK high  
(clock polarity = 1)  
(1) The MASTER/SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
LSPCLK  
LSPCLK  
(SPIBRR ) 1)  
tc(SPC) + SPI clock cycle time +  
or  
+ tc(LCO) + LSPCLK cycle time  
4
(2)  
(3) Not production tested.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISIMO  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISTE  
(see Note A)  
A. In the slave mode, the SPISTE signal should be asserted low at least 0.5tc(SPC) before the valid SPI clock edge and  
remain low for at least 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit.  
Figure 6-26. SPI Slave Mode External Timing (Clock Phase = 0)  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
113  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
114  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Table 6-24. SPI Slave Mode External Timing (Clock Phase = 1)(1) (2) (3)  
NO.  
MIN  
8tc(LCO)  
MAX  
UNIT  
12  
tc(SPC)S  
Cycle time, SPICLK  
ns  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)S – 10  
0.5tc(SPC)S – 10  
0.5tc(SPC)S – 10  
0.5tc(SPC)S – 10  
0.5tc(SPC)S  
0.5tc(SPC)S  
0.5tc(SPC)S  
0.5tc(SPC)S  
13(4)  
14(4)  
ns  
ns  
Setup time, SPISOMI before SPICLK high (clock polarity =  
0)  
tsu(SOMI-SPCH)S  
tsu(SOMI-SPCL)S  
tv(SPCH-SOMI)S  
tv(SPCL-SOMI)S  
tsu(SIMO-SPCH)S  
tsu(SIMO-SPCL)S  
tv(SPCH-SIMO)S  
tv(SPCL-SIMO)S  
0.125tc(SPC)S  
0.125tc(SPC)S  
0.75tc(SPC)S  
0.75tc(SPC)S  
0
17(4)  
18(4)  
21(4)  
22(4)  
ns  
ns  
ns  
ns  
Setup time, SPISOMI before SPICLK low (clock polarity =  
1)  
Valid time, SPIS OMI data valid after SPICLK high  
(clock polarity = 0)  
Valid time, SPISOMI data valid after SPICLK low  
(clock polarity = 1)  
Setup time, SPISIMO before SPICLK high (clock polarity =  
0)  
Setup time, SPISIMO before SPICLK low (clock polarity =  
1)  
0
Valid time, SPISIMO data valid after SPICLK high  
(clock polarity = 0)  
0.5tc(SPC)S  
0.5tc(SPC)S  
Valid time, SPISIMO data valid after SPICLK low  
(clock polarity = 1)  
(1) The MASTER/SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is set.  
LSPCLK  
LSPCLK  
(SPIBRR ) 1)  
tc(SPC) + SPI clock cycle time +  
or  
+ tc(LCO) + LSPCLK cycle time  
4
(2)  
(3) Not production tested.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
17  
18  
SPISOMI  
SPISIMO  
SPISOMI Data Is Valid  
21  
Data Valid  
22  
SPISIMO Data  
Must Be Valid  
SPISTE  
(see Note A)  
A. In the slave mode, the SPISTE signal should be asserted low at least 0.5tc(SPC) before the valid SPI clock edge and  
remain low for at least 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit.  
Figure 6-27. SPI Slave Mode External Timing (Clock Phase = 1)  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
115  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
116  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
6.21 External Interface (XINTF) Timing  
Each XINTF access consists of three parts: Lead, Active, and Trail. The user configures the  
Lead/Active/Trail wait states in the XTIMING registers. There is one XTIMING register for each XINTF  
zone. Table 6-25 shows the relationship between the parameters configured in the XTIMING register and  
the duration of the pulse in terms of XTIMCLK cycles.  
Table 6-25. Relationship Between Parameters Configured in XTIMING and Duration of Pulse(1) (2) (3)  
DURATION (ns)  
DESCRIPTION  
X2TIMING = 0  
XRDLEAD × tc(XTIM)  
X2TIMING = 1  
LR  
Lead period, read access  
Active period, read access  
Trail period, read access  
Lead period, write access  
Active period, write access  
Trail period, write access  
(XRDLEAD × 2) × tc(XTIM)  
AR  
TR  
LW  
AW  
TW  
(XRDACTIVE + WS + 1) × tc(XTIM)  
XRDTRAIL × tc(XTIM)  
(XRDACTIVE × 2 + WS + 1) × tc(XTIM)  
(XRDTRAIL × 2) × tc(XTIM)  
XWRLEAD × tc(XTIM)  
(XWRLEAD × 2) × tc(XTIM)  
(XWRACTIVE + WS + 1) x tc(XTIM)  
XWRTRAIL × tc(XTIM)  
(XWRACTIVE × 2 + WS + 1) × tc(XTIM)  
(XWRTRAIL × 2) × tc(XTIM)  
(1) Not production tested.  
(2) tc(XTIM) – Cycle time, XTIMCLK  
(3) WS refers to the number of wait states inserted by hardware when using XREADY. If the zone is configured to ignore XREADY  
(USEREADY = 0), then WS = 0.  
Minimum wait state requirements must be met when configuring each zone's XTIMING register. These  
requirements are in addition to any timing requirements as specified by that device's data sheet. No  
internal device hardware is included to detect illegal settings.  
• If the XREADY signal is ignored (USEREADY = 0), then:  
1. Lead:  
LR tc(XTIM)  
LW tc(XTIM)  
These requirements result in the following XTIMING register configuration restrictions:  
Table 6-26. XTIMING Register Configuration Restrictions(1) (2)  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
1  
0  
0  
1  
0  
0  
0, 1  
(1) Not production tested.  
(2) No hardware to detect illegal XTIMING configurations  
Examples  
of  
valid  
and  
invalid  
timing  
when  
not  
sampling  
XREADY:  
Table 6-27. Valid and Invalid Timing(1) (2)  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
0, 1  
Invalid  
Valid  
0
1
0
0
0
0
0
1
0
0
0
0
0, 1  
(1) Not production tested.  
(2) No hardware to detect illegal XTIMING configurations  
• If the XREADY signal is sampled in the Synchronous mode (USEREADY = 1, READYMODE = 0),  
then:  
1. Lead:  
LR tc(XTIM)  
LW tc(XTIM)  
2. Active:  
AR 2 × tc(XTIM)  
AW 2 × tc(XTIM)  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
117  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
NOTE  
Restriction does not include external hardware wait states  
These requirements result in the following XTIMING register configuration restrictions:  
Table 6-28. XTIMING Register Configuration Restrictions(1) (2)  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
1  
1  
0  
1  
1  
0  
0, 1  
(1) Not production tested.  
(2) No hardware to detect illegal XTIMING configurations  
Examples of valid and invalid timing when using Synchronous XREADY:  
Table 6-29. Valid and Invalid Timing when using Synchronous XREADY(1) (2)  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
0, 1  
Invalid  
Invalid  
Valid  
0
1
1
0
0
1
0
0
0
0
1
1
0
0
1
0
0
0
0, 1  
0, 1  
(1) Not production tested.  
(2) No hardware to detect illegal XTIMING configurations  
• If the XREADY signal is sampled in the Asynchronous mode (USEREADY = 1, READYMODE = 1),  
then:  
1. Lead:  
LR tc(XTIM)  
LW tc(XTIM)  
2. Active:  
AR 2 × tc(XTIM)  
AW 2 × tc(XTIM)  
NOTE  
Restriction does not include external hardware wait states  
3. Lead + Active:  
LR + AR 4 × tc(XTIM)  
LW + AW 4 × tc(XTIM)  
NOTE  
Restriction does not include external hardware wait states  
These requirements result in the following XTIMING register configuration restrictions:  
Table 6-30. XTIMING Register Configuration Restrictions(1) (2)  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
1  
2  
0
1  
2  
0
0, 1  
(1) Not production tested.  
(2) No hardware to detect illegal XTIMING configurations  
118  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
or  
Table 6-31. XTIMING Register Configuration Restrictions(1) (2)  
XRDLEAD  
2  
(1) Not production tested.  
(2) No hardware to detect illegal XTIMING configurations  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
1  
0
2  
1  
0
0, 1  
Examples of valid and invalid timing when using Asynchronous XREADY:  
Table 6-32. Asynchronous XREADY(1) (2)  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
Invalid  
Invalid  
Invalid  
Valid  
0
1
1
1
1
2
0
0
1
1
2
1
0
0
0
0
0
0
0
1
1
1
1
2
0
0
1
1
2
1
0
0
0
0
0
0
0, 1  
0, 1  
0
1
Valid  
0, 1  
0, 1  
Valid  
(1) Not production tested.  
(2) No hardware to detect illegal XTIMING configurations  
Unless otherwise specified, all XINTF timing is applicable for the clock configurations shown in Table 6-33.  
Table 6-33. XINTF Clock Configurations  
MODE  
SYSCLKOUT  
150 MHz  
XTIMCLK  
SYSCLKOUT  
150 MHz  
XCLKOUT  
SYSCLKOUT  
150 MHz  
1
Example:  
2
SYSCLKOUT  
150 MHz  
1/2 SYSCLKOUT  
75 MHz  
Example:  
3
150 MHz  
1/2 SYSCLKOUT  
75 MHz  
1/2 SYSCLKOUT  
75 MHz  
Example:  
4
150 MHz  
1/2 SYSCLKOUT  
75 MHz  
1/4 SYSCLKOUT  
37.5 MHz  
Example:  
150 MHz  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
119  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
The relationship between SYSCLKOUT and XTIMCLK is shown in Figure 6-28.  
XTIMING0  
XTIMING1  
XTIMING2  
XTIMING6  
XTIMING7  
XBANK  
LEAD/ACTIVE/TRAIL  
SYSCLKOUT  
XCLKOUT  
C28x  
CPU  
XTIMCLK  
0
1
0
1
/2  
1
/2  
0
0
XINTCNF2  
(CLKOFF)  
XINTCNF2  
(XTIMCLK)  
XINTCNF2  
(CLKMODE)  
Default Value after reset  
Figure 6-28. Relationship Between XTIMCLK and SYSCLKOUT  
120  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
6.22 XINTF Signal Alignment to XCLKOUT  
For each XINTF access, the number of lead, active, and trail cycles is based on the internal clock  
XTIMCLK. Strobes such as XRD, XWE, and zone chip-select (XZCS) change state in relationship to the  
rising edge of XTIMCLK. The external clock, XCLKOUT, can be configured to be either equal to or  
one-half the frequency of XTIMCLK.  
For the case where XCLKOUT = XTIMCLK, all of the XINTF strobes changes state with respect to the  
rising edge of XCLKOUT. For the case where XCLKOUT = one-half XTIMCLK, some strobes change state  
either on the rising edge of XCLKOUT or the falling edge of XCLKOUT. In the XINTF timing tables, the  
notation XCOHL is used to indicate that the parameter is with respect to either case; XCLKOUT rising  
edge (high) or XCLKOUT falling edge (low). If the parameter is always with respect to the rising edge of  
XCLKOUT, the notation XCOH is used.  
For the case where XCLKOUT = one-half XTIMCLK, the XCLKOUT edge with which the change is aligned  
can be determined based on the number of XTIMCLK cycles from the start of the access to the point at  
which the signal changes. If this number of XTIMCLK cycles is even, the alignment is with respect to the  
rising edge of XCLKOUT. If this number is odd, then the signal changes with respect to the falling edge of  
XCLKOUT. Examples include the following:  
Strobes that change at the beginning of an access always align to the rising edge of XCLKOUT. This is  
because all XINTF accesses begin with respect to the rising edge of XCLKOUT.  
Examples:  
XZCSL  
Zone chip-select active low  
XR/W active low  
XRNWL  
Strobes that change at the beginning of the active period aligns to the rising edge of XCLKOUT if the  
total number of lead XTIMCLK cycles for the access is even. If the number of lead XTIMCLK cycles is  
odd, then the alignment is with respect to the falling edge of XCLKOUT.  
Examples:  
XRDL  
XWEL  
XRD active low  
XWE active low  
Strobes that change at the beginning of the trail period aligns to the rising edge of XCLKOUT if the  
total number of lead + active XTIMCLK cycles (including hardware waitstates) for the access is even. If  
the number of lead + active XTIMCLK cycles (including hardware waitstates) is odd, then the alignment  
is with respect to the falling edge of XCLKOUT.  
Examples:  
XRDH  
XWEH  
XRD inactive high  
XWE inactive high  
Strobes that change at the end of the access aligns to the rising edge of XCLKOUT if the total number  
of lead + active + trail XTIMCLK cycles (including hardware waitstates) is even. If the number of lead +  
active + trail XTIMCLK cycles (including hardware waitstates) is odd, then the alignment is with respect  
to the falling edge of XCLKOUT.  
Examples:  
XZCSH  
Zone chip-select inactive high  
XR/W inactive high  
XRNWH  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
121  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
6.23 External Interface Read Timing  
Table 6-34. External Memory Interface Read Switching Characteristics(1)  
PARAMETER  
MIN  
MAX UNIT  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
td(XCOH-XA)  
Delay time, XCLKOUT high to zone chip-select active low  
Delay time, XCLKOUT high/low to zone chip-select inactive high  
Delay time, XCLKOUT high to address valid  
1
3
2
1
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–2  
td(XCOHL-XRDL)  
td(XCOHL-XRDH  
th(XA)XZCSH  
Delay time, XCLKOUT high/low to XRD active low  
Delay time, XCLKOUT high/low to XRD inactive high  
Hold time, address valid after zone chip-select inactive high  
Hold time, address valid after XRD inactive high  
–2  
(2)  
(2)  
th(XA)XRD  
(1) Not production tested.  
(2) During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment cycles.  
Table 6-35. External Memory Interface Read Timing Requirements(1)  
MIN  
MAX  
(LR + AR) – 14(2)  
AR – 12(2)  
UNIT  
ns  
ta(A)  
Access time, read data from address valid  
ta(XRD)  
Access time, read data valid from XRD active low  
Setup time, read data valid before XRD strobe inactive high  
Hold time, read data valid after XRD inactive high  
ns  
tsu(XD)XRD  
th(XD)XRD  
12  
0
ns  
ns  
(1) Not production tested.  
(2) LR = Lead period, read access. AR = Active period, read access. See Table 6-25 .  
Trail  
Active  
Lead  
XCLKOUT=XTIMCLK  
XCLKOUT= 1/2 XTIMCLK  
t
d(XCOH-XZCSL)  
XZCS0AND1, XZCS2,  
XZCS6AND7  
t
d(XCOHL-XZCSH)  
t
d(XCOH-XA)  
XA[0:18]  
XRD  
t
d(XCOHL-XRDH)  
t
d(XCOHL-XRDL)  
t
su(XD)XRD  
XWE  
XR/W  
t
a(A)  
t
h(XD)XRD  
t
a(XRD)  
DIN  
XD[0:15]  
XREADY  
NOTES: A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an  
alignmentcycle before an access to meet this requirement.  
B. During alignment cycles, all signals transitions to their inactive state.  
C. For USEREADY = 0, the external XREADY input signal is ignored.  
D. XA[0:18] holds the last address put on the bus during inactive cycles, including alignment cycles.  
Figure 6-29. Example Read Access  
122  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
XTIMING register parameters used for this example:  
XRDLEAD XRDACTIVE XRDTRAIL USEREADY  
1 0 0  
(1) N/A = "Don't care" for this example  
X2TIMING  
XWRLEAD  
N/A(1)  
XWRACTIVE XWRTRAIL READYMODE  
0
0
N/A(1)  
N/A(1)  
N/A(1)  
6.24 External Interface Write Timing  
Table 6-36. External Memory Interface Write Switching Characteristics(1)  
PARAMETER  
MIN  
MAX  
UNIT  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
Delay time, XCLKOUT high to zone chip-select active low  
Delay time, XCLKOUT high or low to zone chip-select inactive high  
Delay time, XCLKOUT high to address valid  
Delay time, XCLKOUT high/low to XWE low  
Delay time, XCLKOUT high/low to XWE high  
Delay time, XCLKOUT high to XR/W low  
1
3
2
2
2
1
1
ns  
ns  
–2  
ns  
td(XCOH-XA)  
td(XCOHL-XWEL)  
ns  
td(XCOHL-XWEH)  
td(XCOH-XRNWL)  
td(XCOHL-XRNWH)  
ten(XD)XWEL  
ns  
ns  
Delay time, XCLKOUT high/low to XR/W high  
Enable time, data bus driven from XWE low  
Delay time, data valid after XWE active low  
Hold time, address valid after zone chip-select inactive high  
Hold time, write data valid after XWE inactive high  
Data bus disabled after XR/W inactive high  
–2  
0
ns  
ns  
td(XWEL-XD)  
4
ns  
(2)ns  
th(XA)XZCSH  
th(XD)XWE  
TW–2(3)  
4
ns  
tdis(XD)XRNW  
ns  
(1) Not production tested.  
(2) During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment cycles.  
(3) TW = Trail period, write access. See Table 6-25 .  
Active  
Lead  
Trail  
XCLKOUT=XTIMCLK  
XCLKOUT= 1/2 XTIMCLK  
t
d(XCOHL-XZCSH)  
t
d(XCOH-XZCSL)  
XZCS0AND1, XZCS2,  
XZCS6AND7  
t
d(XCOH-XA)  
XA[0:18]  
XRD  
t
t
d(XCOHL-XWEH)  
d(XCOHL-XWEL)  
XWE  
t
t
d(XCOHL-XRNWH)  
d(XCOH-XRNWL)  
XR/W  
t
t
dis(XD)XRNW  
d(XWEL-XD)  
t
t
en(XD)XWEL  
h(XD)XWEH  
DOUT  
XD[0:15]  
XREADY  
NOTES: A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment cycle  
before an access to meet this requirement.  
B. During alignment cycles, all signals transitions to their inactive state.  
C. For USEREADY = 0, the external XREADY input signal is ignored.  
D. XA[0:18] holds the last address put on the bus during inactive cycles, including alignment cycles.  
Figure 6-30. Example Write Access  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
123  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
XTIMING register parameters used for this example:  
XRDLEAD XRDACTIVE XRDTRAIL USEREADY  
N/A(1) N/A(1) N/A(1)  
(1) N/A = "Don't care" for this example  
X2TIMING  
XWRLEAD  
XWRACTIVE XWRTRAIL READYMODE  
0
0
1  
0  
0  
N/A(1)  
124  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
6.25 External Interface Ready-on-Read Timing With One External Wait State  
Table 6-37. External Memory Interface Read Switching Characteristics (Ready-on-Read, 1 Wait State)(1)  
PARAMETER  
MIN  
MAX UNIT  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
td(XCOH-XA)  
Delay time, XCLKOUT high to zone chip-select active low  
Delay time, XCLKOUT high/low to zone chip-select inactive high  
Delay time, XCLKOUT high to address valid  
1
3
2
1
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–2  
td(XCOHL-XRDL)  
td(XCOHL-XRDH  
th(XA)XZCSH  
Delay time, XCLKOUT high/low to XRD active low  
Delay time, XCLKOUT high/low to XRD inactive high  
Hold time, address valid after zone chip-select inactive high  
Hold time, address valid after XRD inactive high  
–2  
(2)  
(2)  
th(XA)XRD  
(1) Not production tested.  
(2) During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment cycles.  
Table 6-38. External Memory Interface Read Timing Requirements (Ready-on-Read, 1 Wait State)(1)  
MIN  
MAX  
(LR + AR) – 14(2)  
AR – 12(2)  
UNIT  
ns  
ta(A)  
Access time, read data from address valid  
ta(XRD)  
Access time, read data valid from XRD active low  
Setup time, read data valid before XRD strobe inactive high  
Hold time, read data valid after XRD inactive high  
ns  
tsu(XD)XRD  
th(XD)XRD  
12  
0
ns  
ns  
(1) Not production tested.  
(2) LR = Lead period, read access. AR = Active period, read access. See Table 6-25 .  
Table 6-39. Synchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State)(1) (2)  
MIN  
15  
MAX UNIT  
tsu(XRDYsynchL)XCOHL  
th(XRDYsynchL)  
Setup time, XREADY (Synch) low before XCLKOUT high/low  
Hold time, XREADY (Synch) low  
ns  
ns  
12  
te(XRDYsynchH)  
Earliest time XREADY (Synch) can go high before the sampling XCLKOUT edge  
Setup time, XREADY (Synch) high before XCLKOUT high/low  
Hold time, XREADY (Synch) held high after zone chip select high  
3
ns  
ns  
ns  
tsu(XRDYsynchH)XCOHL  
th(XRDYsynchH)XZCSH  
15  
0
(1) Not production tested.  
(2) The first XREADY (Synch) sample occurs with respect to E in Figure 6-31 :  
E = (XRDLEAD + XRDACTIVE) tc(XTIM)  
When first sampled, if XREADY (Synch) is found to be high, then the access completes. If XREADY (Synch) is found to be low, it is  
sampled again each tc(XTIM) until it is found to be high.  
For each sample (n) the setup time (D) with respect to the beginning of the access can be calculated as:  
D = (XRDLEAD + XRDACTIVE + n – 1) tc(XTIM) – tsu(XRDYsynchL)XCOHL  
where n is the sample number: n = 1, 2, 3, and so forth.  
Table 6-40. Asynchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State)(1) (2)  
MIN  
11  
8
MAX  
UNIT  
ns  
tsu(XRDYAsynchL)XCOHL  
th(XRDYAsynchL)  
Setup time, XREADY (Asynch) low before XCLKOUT high/low  
Hold time, XREADY (Asynch) low  
ns  
Earliest time XREADY (Asynch) can go high before the sampling XCLKOUT  
edge  
te(XRDYAsynchH)  
3
ns  
(1) Not production tested.  
(2) The first XREADY (Asynch) sample occurs with respect to E in Figure 6-32 :  
E = (XRDLEAD + XRDACTIVE – 2) tc(XTIM)  
When first sampled, if XREADY (Asynch) is found to be high, then the access completes. If XREADY (Asynch) is found to be low, it wis  
sampled again each tc(XTIM) until it is found to be high.  
For each sample, setup time from the beginning of the access can be calculated as:  
D = (XRDLEAD + XRDACTIVE – 3 + n) tc(XTIM) – tsu(XRDYasynchL)XCOHL  
where n is the sample number: n = 1, 2, 3, and so forth.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
125  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
(1) (2)  
Table 6-40. Asynchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State)  
(continued)  
MIN  
11  
0
MAX  
UNIT  
ns  
tsu(XRDYAsynchH)XCOHL  
th(XRDYasynchH)XZCSH  
Setup time, XREADY (Asynch) high before XCLKOUT high/low  
Hold time, XREADY (Asynch) held high after zone chip select high  
ns  
WS (Synch)  
See Notes A and B  
Active  
See Note C  
Lead  
Trail  
XCLKOUT=XTIMCLK  
XCLKOUT= 1/2 XTIMCLK  
t
t
t
d(XCOHL-XZCSH)  
d(XCOH-XZCSL)  
XZCS0AND1, XZCS2,  
XZCS6AND7  
d(XCOH-XA)  
XA[0:18]  
t
d(XCOHL-XRDH)  
t
d(XCOHL-XRDL)  
XRD  
t
su(XD)XRD  
XWE  
t
a(XRD)  
XR/W  
t
a(A)  
t
h(XD)XRD  
XD[0:15]  
DIN  
t
su(XRDYsynchL)XCOHL  
t
e(XRDYsynchH)  
t
h(XRDYsynchL)  
t
h(XRDYsynchH)XZCSH  
t
su(XRDHsynchH)XCOHL  
XREADY(Synch)  
See Note D  
See Note E  
Legend:  
= Don’t care. Signal can be high or low during this time.  
NOTES: A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment  
cycle before an access to meet this requirement.  
B. During alignment cycles, all signals transitions to their inactive state.  
C. During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment  
cycles.  
D. For each sample, setup time from the beginning of the access (D) can be calculated as:  
D = (XRDLEAD + XRDACTIVE +n − 1) t  
− t  
su(XRDYsynchL)XCOHL  
c(XTIM)  
E. Reference for the first sample is with respect to this point  
E = (XRDLEAD + XRDACTIVE) t  
c(XTIM)  
where n is the sample number: n = 1, 2, 3, and so forth.  
Figure 6-31. Example Read With Synchronous XREADY Access  
XTIMING register parameters used for this example:  
XRDLEAD XRDACTIVE XRDTRAIL USEREADY  
1 1  
(1) N/A = "Don't care" for this example  
X2TIMING  
XWRLEAD  
XWRACTIVE XWRTRAIL READYMODE  
0 = XREADY  
3
1
0
N/A(1)  
N/A(1)  
N/A(1)  
(Synch)  
126  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
WS (Asynch)  
Active  
S
e
e
N
o
t
e
s
See Note C  
Lead  
Trail  
A
a
n
d
B
XCLKOUT=XTIMCLK  
XCLKOUT= 1/2 XTIMCLK  
t
t
t
d(XCOH-XZCSL)  
d(XCOHL-XZCSH)  
XZCS0AND1, XZCS2,  
XZCS6AND7  
d(XCOH-XA)  
XA[0:18]  
t
d(XCOHL-XRDH)  
t
d(XCOHL-XRDL)  
XRD  
XWE  
XR/W  
t
su(XD)XRD  
t
a(XRD)  
t
a(A)  
t
h(XD)XRD  
DIN  
XD[0:15]  
t
su(XRDYasynchL)XCOHL  
t
e(XRDYasynchH)  
t
h(XRDYasynchH)XZCSH  
t
h(XRDYasynchL)  
t
su(XRDYasynchH)XCOHL  
XREADY(Asynch)  
See Note D  
See Note E  
Legend:  
= Don’t care. Signal can be high or low during this time.  
NOTES: A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment cycle  
before an access to meet this requirement.  
B. During alignment cycles, all signals transitions to their inactive state.  
C. During inactive cycles, the XINTF address bus always hold sthe last address put out on the bus. This includes alignment cycles.  
D. For each sample, setup time from the beginning of the access can be calculated as:  
D = (XRDLEAD + XRDACTIVE −3 +n) t  
− t  
su(XRDYasynchL)XCOHL  
c(XTIM)  
where n is the sample number: n = 1, 2, 3, and so forth.  
E. Reference for the first sample is with respect to this point:  
E = (XRDLEAD + XRDACTIVE −2) t  
c(XTIM)  
Figure 6-32. Example Read With Asynchronous XREADY Access  
XTIMING register parameters used for this example:  
XRDLEAD XRDACTIVE XRDTRAIL USEREADY  
1 1  
X2TIMING  
XWRLEAD  
XWRACTIVE XWRTRAIL READYMODE  
1 = XREADY  
3
1
0
N/A(1)  
N/A(1)  
N/A(1)  
(Asynch)  
(1) N/A = "Don't care" for this example  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
127  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
6.26 External Interface Ready-on-Write Timing With One External Wait State  
Table 6-41. External Memory Interface Write Switching Characteristics (Ready-on-Write, 1 Wait State)(1)  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
td(XCOH-XA)  
Delay time, XCLKOUT high to zone chip-select active low  
Delay time, XCLKOUT high or low to zone chip-select inactive high  
Delay time, XCLKOUT high to address valid  
Delay time, XCLKOUT high/low to XWE low  
Delay time, XCLKOUT high/low to XWE high  
Delay time, XCLKOUT high to XR/W low  
1
3
2
2
2
1
1
–2  
td(XCOHL-XWEL)  
td(XCOHL-XWEH)  
td(XCOH-XRNWL)  
td(XCOHL-XRNWH)  
ten(XD)XWEL  
Delay time, XCLKOUT high/low to XR/W high  
Enable time, data bus driven from XWE low  
Delay time, data valid after XWE active low  
Hold time, address valid after zone chip-select inactive high  
Hold time, write data valid after XWE inactive high  
Data bus disabled after XR/W inactive high  
–2  
0
td(XWEL-XD)  
4
(2)  
th(XA)XZCSH  
th(XD)XWE  
TW–2(3)  
4
tdis(XD)XRNW  
(1) Not production tested.  
(2) During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment cycles.  
(3) TW = trail period, write access (see Table 6-25 )  
Table 6-42. Synchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State)(1) (2)  
MIN  
15  
MAX  
UNIT  
ns  
tsu(XRDYsynchL)XCOHL  
th(XRDYsynchL)  
Setup time, XREADY (Synch) low before XCLKOUT high/low  
Hold time, XREADY (Synch) low  
12  
ns  
te(XRDYsynchH)  
Earliest time XREADY (Synch) can go high before the sampling XCLKOUT edge  
Setup time, XREADY (Synch) high before XCLKOUT high/low  
Hold time, XREADY (Synch) held high after zone chip select high  
3
ns  
tsu(XRDYsynchH)XCOHL  
th(XRDYsynchH)XZCSH  
15  
0
ns  
ns  
(1) Not production tested.  
(2) The first XREADY (Synch) sample occurs with respect to E in Figure 6-33 :  
E =(XWRLEAD + XWRACTIVE) tc(XTIM)  
When first sampled, if XREADY (Synch) is found to be high, then the access completes. If XREADY (Synch) is found to be low, it is  
sampled again each tc(XTIM) until it is found to be high.  
For each sample, setup time from the beginning of the access can be calculated as:  
D =(XWRLEAD + XWRACTIVE + n – 1) tc(XTIM) – tsu(XRDYsynchL)XCOHL  
where n is the sample number: n = 1, 2, 3, and so forth.  
Table 6-43. Asynchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State)(1) (2)  
MIN  
11  
8
MAX UNIT  
tsu(XRDYasynchL)XCOHL  
th(XRDYasynchL)  
Setup time, XREADY (Asynch) low before XCLKOUT high/low  
Hold time, XREADY (Asynch) low  
ns  
ns  
te(XRDYasynchH)  
Earliest time XREADY (Asynch) can go high before the sampling XCLKOUT edge  
Setup time, XREADY (Asynch) high before XCLKOUT high/low  
Hold time, XREADY (Asynch) held high after zone chip select high  
3
ns  
ns  
ns  
tsu(XRDYasynchH)XCOHL  
th(XRDYasynchH)XZCSH  
11  
0
(1) Not production tested.  
(2) The first XREADY (Synch) sample occurs with respect to E in Figure 6-33:  
E = (XWRLEAD + XWRACTIVE – 2) tc(XTIM)  
When first sampled, if XREADY (Asynch) is found to be high, then the access completes. If XREADY (Asynch) is found to be low, it is  
sampled again each tc(XTIM) until it is found to be high.  
For each sample, setup time from the beginning of the access can be calculated as:  
D = (XWRLEAD + XWRACTIVE – 3 + n) tc(XTIM) – tsu(XRDYasynchL)XCOHL  
where n is the sample number: n = 1, 2, 3, and so forth.  
128  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
WS (Synch)  
Active  
See  
See Note C  
Trail  
Notes A  
and B  
Lead 1  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
t
t
d(XCOHL-XZCSH)  
d(XCOH-XZCSL)  
XZCS0AND1, XZCS2,  
XZCS6AND7  
t
t
h(XRDYsynchH)XZCSH  
d(XCOH-XA)  
XA[0:18]  
XRD  
t
t
d(XCOHL-XWEH)  
d(XCOHL-XWEL)  
XWE  
t
t
d(XCOHL-XRNWH)  
d(XCOH-XRNWL)  
XR/W  
t
dis(XD)XRNW  
t
d(XWEL-XD  
)
t
h(XD)XWEH  
t
en(XD)XWEL  
XD[0:15]  
DOUT  
t
su(XRDYsynchL)XCOHL  
t
e(XRDYsynchH)  
t
h(XRDYsynchL)  
t
su(XRDHsynchH)XCOHL  
XREADY(Synch)  
See Note D  
See Note E  
Legend:  
= Don’t care. Signal can be high or low during this time.  
NOTES:  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment cycle before an access  
to meet this requirement.  
B. During alignment cycles, all signals transitions to their inactive state.  
C. During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment cycles.  
D. For each sample, setup time from the beginning of the access can be calculated as  
D = (XWRLEAD + XWRACTIVE + n − 1) t  
− t  
su(XRDYsynchL)XCOHL  
c(XTIM)  
where n is the sample number: n = 1, 2, 3 and so forth.  
E. Reference for the first sample is with respect to this point  
E = (XWRLEAD + XWRACTIVE) t  
c(XTIM)  
Figure 6-33. Write With Synchronous XREADY Access  
XTIMING register parameters used for this example:  
XRDLEAD XRDACTIVE XRDTRAIL USEREADY  
N/A(1) N/A(1) N/A(1)  
X2TIMING  
XWRLEAD  
XWRACTIVE XWRTRAIL READYMODE  
0 = XREADY  
1
0
1  
3
1  
(Synch)  
(1) N/A = "Don't care" for this example  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
129  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
WS (Asynch)  
Active  
S
e
e
N
o
t
e
s
S
e
e
N
o
t
e
C
Trail  
A
a
n
d
B
Lead 1  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
t
t
d(XCOH-XZCSL)  
d(XCOHL-XZCSH)  
XZCS0AND1, XZCS2,  
XZCS6AND7  
t
h(XRDYasynchH)XZCSH  
t
d(XCOH-XA)  
XA[0:18]  
XRD  
t
t
d(XCOHL-XWEH)  
d(XCOHL-XWEL)  
XWE  
t
t
d(XCOH-XRNWL)  
d(XCOHL-XRNWH)  
XR/W  
t
dis(XD)XRNW  
t
d(XWEL-XD  
)
t
h(XD)XWEH  
t
en(XD)XWEL  
XD[0:15]  
DOUT  
t
su(XRDYasynchL)XCOHL  
t
h(XRDYasynchL)  
t
e(XRDYasynchH)  
t
su(XRDYasynchH)XCOHL  
XREADY(Asynch)  
See Note D  
See Note E  
Legend:  
= Don’t care. Signal can be high or low during this time.  
NOTES: A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an  
alignmentcycle before an access to meet this requirement.  
B. During alignment cycles, all signals transitions to their inactive state.  
C. During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment  
cycles.  
D. For each sample, setup time from the beginning of the access can be calculated as:  
D = (XWRLEAD + XWRACTIVE −3 + n) t  
− t  
su(XRDYasynchL)XCOHL  
c(XTIM)  
where n is the sample number: n = 1, 2, 3 and so forth.  
E. Reference for the first sample is with respect to this point  
E = (XWRLEAD + XWRACTIVE −2) t  
c(XTIM)  
Figure 6-34. Write With Asynchronous XREADY Access  
XTIMING register parameters used for this example:  
XRDLEAD XRDACTIVE XRDTRAIL USEREADY  
N/A(1) N/A(1) N/A(1)  
X2TIMING  
XWRLEAD  
XWRACTIVE XWRTRAIL READYMODE  
1 = XREADY  
1
0
1  
3
1  
(Asynch)  
(1) N/A = "Don't care" for this example  
130  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
6.27 XHOLD and XHOLDA  
f the HOLD mode bit is set while XHOLD and XHOLDA are both low (external bus accesses granted), the  
XHOLDA signal is forced high (at the end of the current cycle) and the external interface is taken out of  
high-impedance mode.  
On a reset (XRS), the HOLD mode bit is set to 0. If the XHOLD signal is active low on a system reset, the  
bus and all signal strobes must be in high-impedance mode, and the XHOLDA signal is also driven active  
low.  
When HOLD mode is enabled and XHOLDA is active low (external bus grant active), the CPU can still  
execute code from internal memory. If an access is made to the external interface, the CPU is stalled until  
the XHOLD signal is removed.  
An external DMA request, when granted, places the following signals in a high-impedance mode:  
XA[18:0]  
XD[15:0]  
XWE, XRD  
XR/W  
XZCS0AND1  
XZCS2  
XZCS6AND7  
All other signals not listed in this group remain in their default or functional operational modes during these  
signal events. Detailed timing diagram is released in a future revision of this data sheet.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
131  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
6.28 XHOLD/XHOLDA Timing  
Table 6-44. XHOLD/XHOLDA Timing Requirements (XCLKOUT = XTIMCLK)(1) (2) (3)  
MIN  
MAX UNIT  
td(HL–HiZ)  
td(HL–HAL)  
td(HH–HAH)  
td(HH–BV)  
Delay time, XHOLD low to Hi–Z on all Address, Data, and Control  
Delay time, XHOLD low to XHOLDA low  
4tc(XTIM)  
ns  
ns  
ns  
ns  
5tc(XTIM)  
3tc(XTIM)  
4tc(XTIM)  
Delay time, XHOLD high to XHOLDA high  
Delay time, XHOLD high to Bus valid  
(1) When a low signal is detected on XHOLD, all pending XINTF accesses are completed before the bus is placed in a high-impedance  
state.  
(2) The state of XHOLD is latched on the rising edge of XTIMCLK.  
(3) Not production tested.  
XCLKOUT  
(/1 Mode)  
t
d(HL-Hiz)  
XHOLD  
t
d(HH-HAH)  
XHOLDA  
t
d(HL-HAL)  
t
d(HH-BV)  
XR/W,  
XZCS0AND1,  
XZCS2,  
High-Impedance  
XZCS6AND7  
Valid  
XA[18:0]  
XD[15:0]  
Valid  
High-Impedance  
Valid  
See Note A  
See Note B  
A. All pending XINTF accesses are completed.  
B. Normal XINTF operation resumes.  
Figure 6-35. External Interface Hold Waveform  
132  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Table 6-45. XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK)(1) (2) (3) (4)  
MIN  
MAX  
4tc(XTIM) + tc(XCO)  
4tc(XTIM) + 2tc(XCO)  
4tc(XTIM)  
UNIT  
ns  
td(HL-HiZ)  
td(HL-HAL)  
td(HH-HAH)  
td(HH-BV)  
Delay time, XHOLD low to Hi-Z on all Address, Data, and Control  
Delay time, XHOLD low to XHOLDA low  
ns  
Delay time, XHOLD high to XHOLDA high  
Delay time, XHOLD high to Bus valid  
ns  
6tc(XTIM)  
ns  
(1) When a low signal is detected on XHOLD, all pending XINTF accesses are completed before the bus is placed in a high-impedance  
state.  
(2) The state of XHOLD is latched on the rising edge of XTIMCLK.  
(3) After the XHOLD is detected low or high, all bus transitions and XHOLDA transitions occur with respect to the rising edge of XCLKOUT.  
Thus, for this mode where XCLKOUT = 1/2 XTIMCLK, the transitions can occur up to 1 XTIMCLK cycle earlier than the maximum value  
specified.  
(4) Not production tested.  
See Note B  
See Note A  
A. All pending XINTF accesses are completed.  
B. Normal XINTF operation resumes.  
Figure 6-36. XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK)  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
133  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
6.29 On-Chip Analog-to-Digital Converter  
6.29.1 ADC Absolute Maximum Ratings  
VALUE(1)  
–0.3 to 4.6  
–0.3 to 2.5  
±20  
UNIT  
V
VSSA1/VSSA2 to VDDA1/VDDA2/AVDDREFBG  
Supply voltage range  
VSS1 to VDD1  
V
Analog Input (ADCIN) Clamp Current, total (max)(2)  
mA  
(1) Unless otherwise noted, the absolute maximum ratings are specified over operating conditions. Stresses beyond those listed under  
Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Exposure to  
absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The analog inputs have an internal clamping circuit that clamps the voltage to a diode drop above VDDA or below VSS. The continuous  
clamp current per pin is ±2 mA.  
134  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
6.29.2 ADC Electrical Characteristics Over Recommended Operating Conditions  
Table 6-46. DC Specifications(1) (2)  
TA = –55°C to 220°C  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
Resolution  
ADC clock(3)  
12  
1
Bits  
kHz  
MHz  
25  
ACCURACY  
INL (Integral nonlinearity)(4)  
DNL (Differential nonlinearity)(4)  
Offset error(5)  
1–18.75 MHz ADC clock  
1–18.75 MHz ADC clock  
±1.5  
±1  
LSB  
LSB  
LSB  
–80  
80  
Overall gain error with internal  
reference(6)  
–200  
200  
50  
LSB  
LSB  
Overall gain error with external  
reference(7)  
If ADCREFP-ADCREFM = 1 V ±0.1%  
–50  
Channel-to-channel offset variation  
Channel-to-channel Gain variation  
±8  
±8  
LSB  
LSB  
ANALOG INPUT  
Analog input voltage (ADCINx to  
ADCLO)(8)  
0
3
5
V
ADCLO  
–5  
0
10  
3
mV  
pF  
Input capacitance  
Input leakage current  
±5  
mA  
INTERNAL VOLTAGE REFERENCE(6)  
Accuracy, ADCVREFP  
Accuracy, ADCVREFM  
1.9  
2
1
2.1  
V
V
0.95  
1.05  
Voltage difference, ADCREFP –  
ADCREFM  
1
V
Temperature coefficient  
Reference noise  
50  
PPM/°C  
V
100  
EXTERNAL VOLTAGE REFERENCE(7)  
Accuracy, ADCVREFP  
Accuracy, ADCVREFM  
1.9  
2
1
2.1  
V
V
0.95  
1.05  
Input voltage difference, ADCREFP –  
ADCREFM  
0.99  
1
1.01  
V
(1) Not production tested.  
(2) Tested at 12.5-MHz ADCCLK  
(3) If SYSCLKOUT 25 MHz, ADC clock SYSCLKOUT/2  
(4) The INL degrades for frequencies beyond 18.75 MHz –25 MHz. Applications that require these sampling rates should use a 20-kΩ  
resistor as bias resistor on the ADCRESEXT pin. This improves overall linearity and typical current drawn by the ADC is a few mA more  
than 24.9 kW bias.  
(5) 1 LSB has the weighted value of 3.0/4096 = 0.732 mV.  
(6) A single internal band gap reference (±5% accuracy) sources both ADCREFP and ADCREFM signals, and hence, these voltages track  
together. The ADC converter uses the difference between these two as its reference. The total gain error is the combination of the gain  
error shown here and the voltage reference accuracy (ADCREFP – ADCREFM). A software-based calibration procedure is  
recommended for better accuracy. See F2812 ADC Calibration Application Note (literature number SPRA989) and Section 5.2,  
Documentation Support, for relevant documents.  
(7) In this mode, the accuracy of external reference is critical for overall gain. The voltage difference (ADCREFP–ADCREFM) determines  
the overall accuracy.  
(8) Voltages above VDDA + 0.3 V or below VSS – 0.3 V applied to an analog input pin may temporarily affect the conversion of another pin.  
To avoid this, the analog inputs should be kept within these limits.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
135  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
Table 6-47. AC Specifications(1) (2)  
TA = –55°C to 125°C  
TA = 220°C  
PARAMETER  
UNIT  
MIN  
TYP  
62  
MAX  
MIN  
TYP  
57  
MAX  
SINAD  
SNR  
Signal-to-noise ratio + distortion  
Signal-to-noise ratio  
dB  
dB  
62  
57  
THD  
Total harmonic distortion  
Effective number of bits  
Spurious free dynamic range  
-68  
10.1  
69  
-68  
9.1  
68  
dB  
ENOB (SNR)  
SFDR  
Bits  
dB  
(1) Not production tested.  
(2) Validated at the following conditions: ADC Input Frequency = 10.71 KHz, XCLKIN = 30 MHz, PLLCR = 0xA (SYSCLK = 150 MHz),  
HSPCP = 3 (ADCCLK= 25 MHz), ADCCLKPS = 1 (ADCCLK= 12.5 MHz), CPS = 0 (ADCCLK =12.5 MHZ), ACQ_PS (SH) = 3  
6.29.3 Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK)  
Table 6-48. Current Consumption(1)  
IDDA (TYP)(2)  
IDDAIO (TYP)  
IDD1 (TYP)  
ADC OPERATING MODE/CONDITIONS(3)  
Mode A (Operational Mode):  
40 mA  
1 mA  
0.5 mA  
–BG and REF enabled  
–PWD disabled  
Mode B:  
–ADC clock enabled  
–BG and REF enabled  
–PWD enabled  
7 mA  
0
0
0
5 mA  
5 mA  
0
Mode C:  
–ADC clock enabled  
–BG and REF disabled  
–PWD enabled  
1 mA  
Mode D:  
–ADC clock disabled  
–BG and REF disabled  
–PWD enabled  
1 mA  
(1) Not production tested.  
(2) IDDA – includes current into VDDA1/ VDDA2 and AVDDREFBG  
(3) Test Conditions: SYSCLKOUT = 150 MHz  
ADC module clock = 25 MHz  
ADC performing a continuous conversion of all 16 channels in Mode A  
136  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
R
1 k  
on  
Switch  
R
s
ADCIN0  
C
10 pF  
C
h
1.25 pF  
p
Source  
Signal  
ac  
28x DSP  
Typical Values of the Input Circuit Components:  
Switch Resistance (R ):  
1 kΩ  
1.25 pF  
on  
Sampling Capacitor (C ):  
h
Parasitic Capacitance (C ): 10 pF  
p
Source Resistance (R ):  
50 Ω  
s
Figure 6-37. ADC Analog Input Impedance Model  
6.29.4 ADC Power-Up Control Bit Timing  
ADC Power Up Delay  
ADC Ready for Conversions  
PWDNBG  
PWDNREF  
t
d(BGR)  
PWDNADC  
t
d(PWD)  
Request for  
ADC  
Conversion  
Figure 6-38. ADC Power-Up Control Bit Timing  
Table 6-49. ADC Power-Up Delays(1) (2)  
MIN  
7
TYP  
8
MAX UNIT  
Delay time for band gap reference to be stable. Bits 6 and 5 of the ADCTRL3 register  
(PWDNBG and PWDNREF) are to be set to 1 before the ADCPWDN bit is enabled.  
td(BGR)  
td(PWD)  
10  
ms  
20  
50  
ms  
Delay time for power-down control to be stable. Bit 7 of the ADCTRL3 register (ADCPWDN)  
is to be set to 1 before any ADC conversions are initiated.  
1
ms  
(1) These delays are necessary and recommended to make the ADC analog reference circuit stable before conversions are initiated. If  
conversions are started without these delays, the ADC results shows a higher gain. For power down, all three bits can be cleared at the  
same time.  
(2) Not production tested.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
137  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
6.29.5 Detailed Description  
6.29.5.1 Reference Voltage  
The on-chip ADC has a built-in reference, which provides the reference voltages for the ADC. ADCVREFP  
is set to 2 V and ADCVREFM is set to 1 V.  
6.29.5.2 Analog Inputs  
The on-chip ADC consists of 16 analog inputs, which are sampled either one at a time or two channels at  
a time. These inputs are software-selectable.  
6.29.5.3 Converter  
The on-chip ADC uses a 12-bit four-stage pipeline architecture, which achieves a high sample rate with  
low power consumption.  
6.29.5.4 Conversion Modes  
The conversion can be performed in two different conversion modes:  
Sequential sampling mode (SMODE = 0)  
Simultaneous sampling mode (SMODE = 1)  
6.29.6 Sequential Sampling Mode (Single Channel) (SMODE = 0)  
In sequential sampling mode, the ADC can continuously convert input signals on any of the channels (Ax  
to Bx). The ADC can start conversions on event triggers from the Event Managers (EVA/EVB), software  
trigger, or from an external ADCSOC signal. If the SMODE bit is 0, the ADC does conversions on the  
selected channel on every Sample/Hold pulse. The conversion time and latency of the Result register  
update are explained below. The ADC interrupt flags are set a few SYSCLKOUT cycles after the Result  
register update. The selected channel is sampled at every falling edge of the Sample/Hold pulse. The  
Sample/Hold pulse width can be programmed to be one ADC clock wide (minimum) or 16 ADC clocks  
wide (maximum).  
Sample n+2  
Sample n+1  
Analog Input on  
Sample n  
Channel Ax or Bx  
ADC Clock  
Sample and Hold  
SH Pulse  
SMODE Bit  
t
d(SH)  
t
dschx_n+1  
t
dschx_n  
ADC Event Trigger from  
EV or Other Sources  
t
SH  
Figure 6-39. Sequential Sampling Mode (Single-Channel) Timing  
138  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Table 6-50. Sequential Sampling Mode Timing(1)  
AT 25–MHz ADC  
CLOCK,  
SAMPLE n  
SAMPLE n + 1  
REMARKS  
tc(ADCCLK) = 40 ns  
Delay time from event trigger to  
sampling  
td(SH)  
2.5tc(ADCCLK)  
(1 + Acqps) ×  
tc(ADCCLK)  
Acqps value = 0-15  
ADCTRL1[8:11]  
tSH  
Sample/Hold width/Acquisition width  
40 ns with Acqps = 0  
160 ns  
Delay time for first result to appear  
in the Result register  
td(schx_n)  
td(schx_n+1)  
4tc(ADCCLK)  
Delay time for successive results to  
appear in the Result register  
(2 + Acqps) ×  
tc(ADCCLK)  
80 ns  
(1) Not production tested.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
139  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
6.29.7 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1)  
In simultaneous mode, the ADC can continuously convert input signals on any one pair of channels  
(A0/B0 to A7/B7). The ADC can start conversions on event triggers from the Event Managers (EVA/EVB),  
software trigger, or from an external ADCSOC signal. If the SMODE bit is 1, the ADC does conversions on  
two selected channels on every Sample/Hold pulse. The conversion time and latency of the Result  
register update are explained below. The ADC interrupt flags are set a few SYSCLKOUT cycles after the  
Result register update. The selected channels are sampled simultaneously at the falling edge of the  
Sample/Hold pulse. The Sample/Hold pulse width can be programmed to be 1 ADC clock wide (minimum)  
or 16 ADC clocks wide (maximum).  
NOTE  
In Simultaneous mode, the ADCIN channel pair select has to be A0/B0, A1/B1, ..., A7/B7,  
and not in other combinations (such as A1/B3, etc.).  
Sample n  
Sample n+2  
Sample n+1  
Analog Input on  
Channel Ax  
Analog Input on  
Channel Bv  
ADC Clock  
Sample and Hold  
SH Pulse  
SMODE Bit  
t
d(SH)  
t
dschA0_n+1  
t
SH  
ADC Event Trigger from  
EV or Other Sources  
t
t
dschA0_n  
dschB0_n+1  
t
dschB0_n  
Figure 6-40. Simultaneous Sampling Mode Timing  
Table 6-51. Simultaneous Sampling Mode Timing(1)  
AT 25-MHz ADC  
CLOCK,  
SAMPLE n  
SAMPLE n + 1  
REMARKS  
tc(ADCCLK) = 40 ns  
Delay time from event  
trigger to sampling  
td(SH)  
tSH  
2.5tc(ADCCLK)  
Sample/Hold  
width/Acquisition Width  
(1 + Acqps) ×  
tc(ADCCLK)  
Acqps value = 0–15  
ADCTRL1[8:11]  
40 ns with Acqps = 0  
160 ns  
Delay time for first result  
to appear in Result  
register  
td(schA0_n)  
td(schB0_n)  
td(schA0_n+1)  
4tc(ADCCLK)  
Delay time for first result  
to appear in Result  
register  
5tc(ADCCLK)  
200 ns  
120 ns  
Delay time for successive  
results to appear in Result  
register  
(3 + Acqps) ×  
tc(ADCCLK)  
(1) Not production tested.  
140 Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
(1)  
Table 6-51. Simultaneous Sampling Mode Timing  
(continued)  
AT 25-MHz ADC  
SAMPLE n  
SAMPLE n + 1  
CLOCK,  
REMARKS  
tc(ADCCLK) = 40 ns  
Delay time for successive  
results to appear in Result  
register  
(3 + Acqps) ×  
tc(ADCCLK)  
td(schB0_n+1)  
120 ns  
6.29.8 Definitions of Specifications and Terminology  
6.29.8.1 Integral Nonlinearity  
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full  
scale. The point used as zero occurs 1/2 LSB before the first code transition. The full-scale point is  
defined as level 1/2 LSB beyond the last code transition. The deviation is measured from the center of  
each particular code to the true straight line between these two points.  
6.29.8.2 Differential Nonlinearity  
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal  
value. A differential nonlinearity error of less than ±1 LSB ensures no missing codes.  
6.29.8.3 Zero Offset  
The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the  
deviation of the actual transition from that point.  
6.29.8.4 Gain Error  
The first code transition should occur at an analog value 1/2 LSB above negative full scale. The last  
transition should occur at an analog value 1 1/2 LSB below the nominal full scale. Gain error is the  
deviation of the actual difference between first and last code transitions and the ideal difference between  
first and last code transitions.  
6.29.8.5 Signal-to-Noise Ratio + Distortion (SINAD)  
SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral  
components below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is  
expressed in decibels.  
6.29.8.6 Effective Number of Bits (ENOB)  
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,  
(SINAD -1.76)  
N =  
6.02  
it is possible to get a measure of performance expressed as N, the effective number of bits. Thus,  
effective number of bits for a device for sine wave inputs at a given input frequency can be calculated  
directly from its measured SINAD.  
6.29.8.7 Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first six harmonic components to the rms value of the measured  
input signal and is expressed as a percentage or in decibels.  
6.29.8.8 Spurious Free Dynamic Range (SFDR)  
SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
141  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
                 
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
6.30 Multichannel Buffered Serial Port (McBSP) Timing  
6.30.1 McBSP Transmit and Receive Timing  
Table 6-52. McBSP Timing Requirements(1) (2) (3)  
NO.  
MIN  
MAX  
20(4)  
1
UNIT  
kHz  
MHz  
ns  
1
McBSP module clock (CLKG, CLKX, CLKR) range  
McBSP module cycle time (CLKG, CLKX, CLKR) range  
50  
ms  
ns  
M11  
M12  
M13  
M14  
tc(CKRX)  
tw(CKRX)  
tr(CKRX)  
tf(CKRX)  
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
2P  
Pulse duration, CLKR/X high or CLKR/X low  
Rise time, CLKR/X  
P–7  
ns  
7
7
ns  
Fall time, CLKR/X  
ns  
18  
2
M15  
M16  
M17  
M18  
M19  
M20  
tsu(FRH-CKRL)  
th(CKRL-FRH)  
tsu(DRV-CKRL)  
th(CKRL-DRV)  
tsu(FXH-CKXL)  
th(CKXL-FXH)  
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
0
6
18  
2
0
Hold time, DR valid after CLKR low  
6
18  
2
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
CLKX ext  
CLKX int  
0
CLKX ext  
6
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the  
timing references of that signal are also inverted.  
CLKSRG  
(1 ) CLKGDV)  
CLKG +  
(2) 2P = 1/CLKG in ns. CLKG is the output of sample rate generator mux.  
CLKSRG can be LSPCLK, CLKX, CLKR as source. CLKSRG (SYSCLKOUT/2). McBSP performance is limited by I/O buffer switching  
speed.  
(3) Not production tested.  
(4) Internal clock prescalers must be adjusted such that the McBSP clock (CLKG, CLKX, CLKR) speeds are not greater than the I/O buffer  
speed limit (20 MHz).  
142  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Table 6-53. McBSP Switching Characteristics(1) (2) (3)  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
M1  
M2  
M3  
tc(CKRX)  
tw(CKRXH)  
tw(CKRXL)  
Cycle time, CLKR/X  
CLKR/X int  
CLKR/X int  
CLKR/X int  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
FSX int  
2P  
D – 5(4)  
C – 5(4)  
Pulse duration, CLKR/X high  
Pulse duration, CLKR/X low  
D + 5(4)  
C + 5(4)  
ns  
ns  
0
3
0
3
4
27  
M4  
M5  
M6  
td(CKRH-FRV)  
td(CKXH-FXV)  
tdis(CKXH-DXHZ)  
Delay time, CLKR high to internal FSR valid  
Delay time, CLKX high to internal FSX valid  
ns  
ns  
ns  
4
27  
8
Disable time, CLKX high to DX high impedance following last  
data bit  
14  
9
Delay time, CLKX high to DX valid.  
This applies to all bits except the first bit transmitted.  
28  
8
M7  
td(CKXH-DXV)  
Delay time, CLKX high to DX valid  
DXENA = 0  
DXENA = 1  
DXENA = 0  
DXENA = 1  
DXENA = 0  
DXENA = 1  
DXENA = 0  
DXENA = 1  
ns  
14  
P + 8  
P + 14  
Only applies to first bit transmitted when in Data  
Delay 1 or 2 (XDATDLY= 01b or 10b) modes  
0
6
Enable time, CLKX high to DX driven  
M8  
M9  
ten(CKXH-DX)  
ns  
ns  
ns  
P
Only applies to first bit transmitted when in Data  
Delay 1 or 2 (XDATDLY= 01b or 10b) modes  
P + 6  
8
14  
Delay time, FSX high to DX valid  
FSX ext  
td(FXH-DXV)  
FSX int  
P + 8  
P + 14  
Only applies to first bit transmitted when in Data  
Delay 0 (XDATDLY= 00b) mode.  
FSX ext  
FSX int  
0
6
Enable time, FSX high to DX driven  
FSX ext  
M10 ten(FXH-DX)  
FSX int  
P
Only applies to first bit transmitted when in Data  
Delay 0 (XDATDLY= 00b) mode  
FSX ext  
P + 6  
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
(2) 2P = 1/CLKG in ns  
(3) Not production tested.  
(4) C = CLKRX low pulse width = P  
D = CLKRX high pulse width = P  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
143  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
M1, M11  
M2, M12  
M3, M12  
M13  
CLKR  
M4  
M4  
M14  
FSR (int)  
M15  
M16  
FSR (ext)  
M18  
M17  
DR  
Bit (n−1)  
M17  
(n−2)  
(n−3)  
(n−2)  
(n−4)  
(RDATDLY= 00b)  
M18  
DR  
Bit (n−1)  
(n−3)  
(n−2)  
(RDATDLY= 01b)  
M17  
M18  
DR  
Bit (n−1)  
(RDATDLY= 10b)  
Figure 6-41. McBSP Receive Timing  
M1, M11  
M2, M12  
M13  
M14  
M3, M12  
CLKX  
FSX (int)  
FSX (ext)  
M5  
M5  
M19  
M20  
M9  
M7  
M7  
M10  
Bit 0  
DX  
Bit (n−1)  
(n−2)  
(n−3)  
(n−4)  
(n−3)  
(n−2)  
(XDATDLY= 00b)  
M8  
DX  
Bit (n−1)  
M8  
(n−2)  
M7  
Bit 0  
M6  
(XDATDLY= 01b)  
DX  
Bit 0  
Bit (n−1)  
(XDATDLY= 10b)  
Figure 6-42. McBSP Transmit Timing  
144  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
6.30.2 McBSP as SPI Master or Slave Timing  
Table 6-54. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)(1)  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
P – 10  
P – 10  
MAX  
M30  
M31  
M32  
M33  
tsu(DRV0CKXL)  
th(CKXL0DRV)  
tsu(BFXL0CKXH)  
tc(CKX)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
Setup time, FSX low before CLKX high  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
8P + 10  
16P  
2P  
(1) Not production tested.  
Table 6-55. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)(1) (2)  
MASTER  
SLAVE  
MIN MAX  
NO.  
PARAMETER  
UNIT  
MIN  
2P  
P
MAX  
M24  
M25  
th(CKXL0FXL)  
td(FXL0CKXH)  
Hold time, FSX low after CLKX low  
Delay time, FSX low to CLKX high  
ns  
ns  
Disable time, DX high impedance following last data bit from  
FSX high  
M28  
M29  
tdis(FXH0DXHZ)  
td(FXL0DXV)  
6
6
6P + 6  
4P + 6  
ns  
ns  
Delay time, FSX low to DX valid  
(1) Not production tested.  
(2) 2P = 1/CLKG  
For all SPI slave modes, CLKX has to be minimum eight CLKG cycles. Also, CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV  
= 1. With maximum LSPCLK speed of 75 MHz, CLKX maximum frequency is LSPCLK/16, that is 4.5 MHz and P = 13.3 ns.  
M33  
M32  
MSB  
LSB  
CLKX  
FSX  
M25  
M24  
M28  
M29  
DX  
DR  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
M30  
M31  
(n-2)  
Bit 0  
Bit(n-1)  
(n-3)  
(n-4)  
Figure 6-43. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
145  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
Table 6-56. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)(1)  
MASTER  
MIN  
SLAVE  
MIN  
NO.  
UNIT  
MAX  
MAX  
M39  
M40  
M41  
M42  
tsu(DRV-CKXH)  
th(CKXH-DRV)  
tsu(FXL-CKXH)  
tc(CKX)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX high  
Cycle time, CLKX  
P – 10  
8P – 10  
ns  
ns  
ns  
ns  
P – 10  
2P  
8P – 10  
16P + 10  
16P  
(1) Not production tested.  
Table 6-57. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)(1) (2)  
MASTER  
SLAVE  
MIN MAX  
NO.  
PARAMETER  
UNIT  
MIN  
P
MAX  
M34  
M35  
th(CKXL-FXL)  
td(FXL-CKXH)  
Hold time, FSX low after CLKX low  
Delay time, FSX low to CLKX high  
ns  
ns  
2P  
Disable time, DX high impedance following last data bit  
from CLKX low  
M37  
M38  
tdis(CKXL-DXHZ)  
td(FXL-DXV)  
P + 6  
6
7P + 6  
4P + 6  
ns  
ns  
Delay time, FSX low to DX valid  
(1) Not production tested.  
(2) 2P = 1/CLKG  
For all SPI slave modes, CLKX has to be minimum eight CLKG cycles. Also, CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV  
= 1. With maximum LSPCLK speed of 75 MHz, CLKX maximum frequency is LSPCLK/16 , that is 4.5 MHz and P = 13.3 ns.  
M42  
MSB  
LSB  
M41  
CLKX  
FSX  
DX  
M35  
M34  
M37  
M38  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
M39  
M40  
(n-2)  
DR  
Bit 0  
(n-3)  
(n-4)  
Figure 6-44. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
146  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
Table 6-58. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)(1)  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
P – 10  
P – 10  
MAX  
M49 tsu(DRV-CKXH)  
M50 th(CKXH-DRV)  
M51 tsu(FXL-CKXL)  
M52 tc(CKX)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX low  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
8P + 10  
16P  
2P  
(1) Not production tested.  
Table 6-59. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)(1) (2)  
MASTER  
SLAVE  
MIN MAX  
NO.  
PARAMETER  
UNIT  
MIN  
2P  
P
MAX  
M43 th(CKXH-FXL)  
M44 td(FXL-CKXL)  
Hold time, FSX low after CLKX high  
Delay time, FSX low to CLKX low  
ns  
ns  
Disable time, DX high impedance following last data bit from FSX  
high  
M47 tdis(FXH-DXHZ)  
M48 td(FXL-DXV)  
6
6
6P + 6  
4P + 6  
ns  
ns  
Delay time, FSX low to DX valid  
(1) Not production tested.  
(2) 2P = 1/CLKG  
For all SPI slave modes, CLKX has to be minimum eight CLKG cycles. Also, CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV  
= 1. With maximum LSPCLK speed of 75 MHz, CLKX maximum frequency is LSPCLK/16 , that is 4.5 MHz and P = 13.3 ns.  
M52  
M51  
MSB  
LSB  
CLKX  
FSX  
M43  
M44  
M48  
M47  
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
M50  
(n-3)  
(n-4)  
M49  
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 6-45. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
147  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
Table 6-60. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)(1)  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
P – 10  
P – 10  
MAX  
M58 tsu(DRV-CKXL)  
M59 th(CKXL-DRV)  
M60 tsu(FXL-CKXL)  
M61 tc(CKX)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
Setup time, FSX low before CLKX low  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
16P + 10  
16P  
2P  
(1) Not production tested.  
Table 6-61. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)(1) (2)  
MASTER(3)  
SLAVE  
NO.  
PARAMETER  
UNIT  
MIN  
P
MAX  
MIN  
MAX  
M53 th(CKXH-FXL)  
M54 td(FXL-CKXL)  
Hold time, FSX low after CLKX high  
Delay time, FSX low to CLKX low  
ns  
ns  
2P  
Disable time, DX high impedance following last data bit from CLKX  
high  
M56 tdis(CKXH-DXHZ)  
M57 td(FXL-DXV)  
P + 6  
6
7P + 6  
4P + 6  
ns  
ns  
Delay time, FSX low to DX valid  
(1) Not production tested.  
(2) 2P = 1/CLKG  
For all SPI slave modes, CLKX has to be minimum eight CLKG cycles. Also, CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV  
= 1. With maximum LSPCLK speed of 75 MHz, CLKX maximum frequency is LSPCLK/16, that is 4.5 MHz and P = 13.3 ns.  
(3) C = CLKX low pulse width = P  
D = CLKX high pulse width = P  
M61  
M60  
MSB  
M54  
LSB  
CLKX  
FSX  
DX  
M53  
M56  
M55  
M57  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
M58  
M59  
(n-2)  
DR  
Bit 0  
Bit(n-1)  
(n-3)  
(n-4)  
Figure 6-46. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
148  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
6.31 Flash Timing  
6.31.1 Recommended Operating Conditions(4)  
MIN  
NOM  
MAX  
UNIT  
Nf  
Flash endurance for the array (Write/erase cycles)  
0°C to 85°C  
0°C to 85°C  
100  
1000  
cycles  
Maximum One-Time Programmable (OTP) endurance for the array (Write  
cycles)  
NOTP  
1
write  
(4) Flash Timing Endurance is the minimum number of write/erase or write cycles specified over a programming temperature range of 0°C  
to 85°C. Flash may be read over the operating temperature range of the device.  
Table 6-62. Flash Parameters at 150-MHz SYSCLKOUT(1) (2)  
PARAMETER  
MIN  
TYP  
35  
MAX  
UNIT  
ms  
16-Bit Word  
8K Sector  
16K Sector  
8K Sector  
16K Sector  
Program  
Time  
170  
320  
10  
ms  
ms  
s
Erase Time  
IDD3VFLP  
11  
s
Erase  
75  
mA  
mA  
mA  
mA  
VDD3VFL current consumption during the Erase/Program cycle  
Program  
35  
IDDP  
VDD current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
140  
20  
IDDIOP  
(1) Typical parameters as seen at room temperature using flash API V1 including function call overhead.  
(2) Not production tested.  
Table 6-63. Flash/OTP Access Timing(1) (2)  
PARAMETER  
MIN  
36  
TYP  
MAX UNIT  
ta(fp)  
Paged Flash access time  
Random Flash access time  
OTP access time  
ns  
ns  
ns  
ta(fr)  
36  
ta(OTP)  
60  
(1) For 150 MHz, PAGE WS = 5 and RANDOM WS = 5  
For 135 MHz, PAGE WS = 4 and RANDOM WS = 4  
(2) Not production tested.  
Table 6-64. Minimum Required Wait-States at Different Frequencies(1)  
SYSCLKOUT (MHz)  
SYSCLKOUT (ns)  
PAGE WAIT-STATE(2)  
RANDOM WAIT STATE(2) (3)  
150  
120  
100  
75  
6.67  
8.33  
10  
5
4
3
2
1
1
0
0
5
4
3
2
1
1
1
1
13.33  
20  
50  
30  
33.33  
40  
25  
15  
66.67  
(1) Not production tested.  
(2) Formulas to compute page wait state and random wait state:  
(3) Random wait state must be greater than or equal to 1  
Copyright © 2009–2010, Texas Instruments Incorporated  
Electrical Specifications  
149  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
SGUS062AJUNE 2009REVISED APRIL 2010  
www.ti.com  
(1)  
Table 6-64. Minimum Required Wait-States at Different Frequencies  
(continued)  
SYSCLKOUT (MHz)  
SYSCLKOUT (ns)  
PAGE WAIT-STATE(2)  
RANDOM WAIT STATE(2) (3)  
4
250  
0
1
150  
Electrical Specifications  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
www.ti.com  
SGUS062AJUNE 2009REVISED APRIL 2010  
7
Mechanical Data  
The following mechanical package diagram(s) reflect the most current released mechanical data available  
for the designated device(s).  
Copyright © 2009–2010, Texas Instruments Incorporated  
Mechanical Data  
151  
Product Folder Link(s): SM320F2812-HT  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-May-2010  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
TBD  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
SM320F2812HFGS150  
SM320F2812KGDS150A  
ACTIVE  
ACTIVE  
CFP  
HFG  
KGD  
172  
0
1
AU  
N / A for Pkg Type  
N / A for Pkg Type  
Contact TI Distributor  
or Sales Office  
XCEPT  
36  
TBD  
Call TI  
Contact TI Distributor  
or Sales Office  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Amplifiers  
Data Converters  
DLP® Products  
Automotive  
Communications and  
Telecom  
DSP  
Computers and  
Peripherals  
Clocks and Timers  
Interface  
Consumer Electronics  
Energy  
Logic  
Industrial  
Power Mgmt  
Microcontrollers  
RFID  
Medical  
Security  
Space, Avionics &  
Defense  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
Video and Imaging  
Wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2010, Texas Instruments Incorporated  
Download from Www.Somanuals.com. All Manuals Search And Download.  

Toshiba Laptop A4 User Manual
Toshiba Security Camera Outdoor Megapixel IP Dome Camera User Manual
Trane Refrigerator RTAA 70 125 TON User Manual
Tricity Bendix Oven BS 615 SO User Manual
Uniden Marine Radio GPS105 User Manual
Vantec Laptop LPC 401 User Manual
ViewEra Flat Panel Television V180 Series User Manual
Viking Ventilation Hood DIL1200 User Manual
Vinotemp Refrigerator VT 36 User Manual
Vizio Laptop CT14 A0 User Manual