Teledyne Marine Sanitation System HFC E 202 User Manual

TELEDYNE  
HASTINGS  
INSTRUMENTS  
INSTRUCTION MANUAL  
HFM-E-200/HFC-E-202 SERIES  
FLOWMETERS/CONTROLLERS  
I S O 9 0 0 1  
C E R T I F I E D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table of Contents  
1.  
INSTALLATION AND OPERATION............................................................................................................................. 4  
1.1.  
FEATURES .................................................................................................................................................................... 4  
SPECIFICATIONS........................................................................................................................................................... 5  
OPTIONAL 4-20 MA CURRENT OUTPUT ....................................................................................................................... 6  
OTHER ACCESSORIES................................................................................................................................................... 6  
1.2.  
1.3.  
1.4.  
1.4.1. Hastings Model 40, THPS-100 and THPS-400 Power Supplies .............................Error! Bookmark not defined.  
2.  
INSTALLATION AND OPERATION............................................................................................................................. 7  
2.1.  
RECEIVING INSPECTION ............................................................................................................................................... 7  
POWER REQUIREMENTS ............................................................................................................................................... 7  
OUTPUT SIGNAL........................................................................................................................................................... 7  
MECHANICAL CONNECTIONS....................................................................................................................................... 7  
ELECTRICAL CONNECTIONS......................................................................................................................................... 8  
OPERATION.................................................................................................................................................................. 9  
2.2.  
2.3.  
2.4.  
2.5.  
2.6.  
2.6.1. Operating Conditions............................................................................................................................................. 9  
2.6.2. Zero Check ............................................................................................................................................................. 9  
2.6.3. High Pressure Operation ..................................................................................................................................... 10  
2.6.4. Blending of Gases................................................................................................................................................. 10  
2.7.  
OPERATION WITH EXTERNAL DEVICES ...................................................................................................................... 10  
2.7.1. Operation with a Hastings power supply. ............................................................................................................ 10  
2.7.2. Operation with a power supply other than a Hastings......................................................................................... 10  
2.7.3. Operation with an external sensor. (Fig. 2.2) .................................................................................................... 11  
2.7.4. Soft Start............................................................................................................................................................... 11  
2.8.  
RANGE CHANGING:.................................................................................................................................................... 11  
3.  
4.  
THEORY OF OPERATION ........................................................................................................................................... 12  
3.1.  
OVERALL FUNCTIONAL DESCRIPTION: ...................................................................................................................... 12  
SENSOR:..................................................................................................................................................................... 12  
ELECTRONICS: ........................................................................................................................................................... 12  
SHUNT: ...................................................................................................................................................................... 13  
VALVE:...................................................................................................................................................................... 14  
3.2.  
3.3.  
3.4.  
3.5.  
MAINTENANCE.............................................................................................................................................................. 15  
4.1.  
4.2.  
4.3.  
AUTHORIZED MAINTENANCE..................................................................................................................................... 15  
TROUBLESHOOTING ................................................................................................................................................... 15  
ADJUSTMENTS ...................................................................................................................................................... 16  
4.3.1. Calibration Procedure: (Figure 4.1).................................................................................................................... 16  
4.3.2. Miscellaneous adjustments................................................................................................................................... 17  
4.4.  
INLET REMOVAL:....................................................................................................................................................... 17  
PRINTED CIRCUIT BOARD REPLACEMENT.................................................................................................................. 17  
SENSOR REPLACEMENT: ............................................................................................................................................ 17  
ORIFICE CHANGES: .................................................................................................................................................... 17  
4.5.  
4.6.  
4.7.  
4.7.1. HFC-E-202 Orifice............................................................................................................................................... 18  
4.8.  
REPLACEMENT PARTS ........................................................................................................................................ 19  
CONVERSION FACTOR TABLE................................................................................................................................. 20  
WARRANTY .................................................................................................................................................................... 24  
5.  
6.  
6.1.  
6.2.  
WARRANTY REPAIR POLICY ...................................................................................................................................... 24  
NON-WARRANTY REPAIR POLICY ............................................................................................................................. 24  
7.  
DRAWINGS...................................................................................................................................................................... 25  
7.1. NOTES:....................................................................................................................................................................... 25  
HFM-E-200/HFC-E-202  
Page 3 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1. Installation and Operation  
The Hastings HFM-E-200 mass Flow-meter and HFC-E-202 Flow-controller are designed to accurately  
measure and control mass flow over the range of 10 sccm to 30 slm, without corrections or  
compensations for gas pressure and temperature with an accuracy of better than ±1% FS. Hastings mass  
flow instruments do not require any periodic maintenance under normal operating conditions with clean  
gases. No damage will occur from the use of moderate overpressures (~500 psi/3.45MPa) or overflows.  
Instruments are normally calibrated with the appropriate standard calibration gas (nitrogen) then a  
correction factor is used to adjust the output for the intended gas  
1.1. Features  
LINEAR BY DESIGN. The HFM-E-200/HFC-E-202 series is inherently linear (no linearization circuitry is  
employed). Should recalibration in the field be desired (a calibration standard is required), the  
customer needs to simply set the zero and span points. There will be no appreciable linearity  
change of the instrument when the flowing gas is changed.  
MODULAR SENSOR. The HFM-E-200/HFC-E-202 series incorporates a removable/replaceable sensor  
module. Field repairs to units can be achieved with a minimum of production line downtime.  
LOW TEMPERATURE DRIFT. The temperature coefficient of span for the HFM-E-200/HFC-E-202  
series is typically less than 0.05% of full scale/°C from 10-50°C. The temperature coefficient of zero  
is typically less than 0.1 % of reading/°C from 10-50°C.  
CURRENT LOOP. The 4-20 mA option gives the user the advantages of a current loop  
minimize environmental noise pickup.  
output to  
HFM-E-200/HFC-E-202  
Page 4 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1.2. Specifications  
Accuracy..............................................................................................................±1% full scale (F.S.)  
Repeatability.............................................. <±0.125% of F.S.or ±0.075% of rdg. +0.05% F.S. (max)  
Maximum operational pressure .............................................................................500 psi [3.45 MPa]  
...................................................................................................(Option-P- up to 1000 psi [6.9 MPa]  
Pressure coefficient ..............................................................................<0.0067% of reading/psi (N2)  
...............................................................................................See pressure section for pressure errors.  
Normal operating temperature ............................................10-50°C in non-condensing environment  
Operating temperature limits ......................................................................... 0-60°C non-condensing  
Temperature coefficient (zero) ........................................ maximum ±0.085%/°C (from 10 to 50oC)  
Temperature coefficient (span) ......................................... maximum ±0.05%/°C (from 10 to 50oC)  
Leak integrity .......................................................................................................... <1x10-9 std. cc/s.  
Standard flow ranges .....................................................................5, 10, 20, 50, 100, 200, 500, sccm.  
.............................................................................................1, 2, 5, 10, 20, 30* slpm (N2 equivalent)  
Standard output.......................................................................................... 0-5 VDC (load 2k Ohms)  
Optional output ..................................4 -20 mA (load < 600 Ohms when loop return is @ common)  
........................................................................(600-1200 Ohm load when loop return is @ -15VDC)  
Power requirements..............................+(14 to 16) VDC @ 45 mA, -(14 to 16) VDC @ 185 mA  
Wetted materials.........................................................................302 & 316 stainless steel, nickel 200,  
........................................................Viton (optional), 82/18 Au-Ni braze, Kalrez, silver solder (trace)  
Attitude sensitivity of zero .................................................. < ±0.25% F.S. for 90° without re-zeroing  
................................................................................................................{N2 at 44.7 psia (308 KPa)}  
Controller weight..............................................................................................1.6 lb (0.6 kg) approx.  
Meter weight.....................................................................................................1.6 lb (0.6 kg) approx.  
Electrical connector ......................................................................................15 pin subminiature “D”  
Standard fittings ................................................... 1/4” Swagelok®, 1/8” Swagelok®, VCR®, VCO®  
* (Specifications may vary for instruments with ranges greater than 10 slpm)  
HFM-E-200/HFC-E-202  
Page 5 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1.3. Optional 4-20 mA Current Output  
An option to the standard 0-5 VDC output is the 4-20 mA current output that is proportional to flow. The  
4 - 20 mA signal is produced from the 0 - 5 VDC output of the Flowmeter. The current loop output is  
useful for remote applications where pickup noise could substantially affect the stability of the voltage  
output.  
The current loop signal replaces the voltage output on pin 3 of the “Edge” connector. The current loop  
may be returned to either the power supply ground or the -15 VDC connections on the power supply. If  
the current loop is returned to the power supply ground, the load must be between 0 and 600 ohm. If it  
is returned to the -15VDC, the load must be between 600 and 1200 ohm. Failure to meet these  
conditions will cause failure of the loop transmitter.  
The 4-20 mA I/O option can accept a current input. The 0-5 VDC command signal on pin A can be  
replaced by a 4-20mA command signal. The loop presets an impedance of 75 ohms and is returned to  
the power supply through the valve common.  
1.4. Other Accessories  
1.4.1. Hastings Power supplies  
Hastings Power Pod power supply/display units are available in one and four channel versions. They  
convert 100, 115 or 230VAC to the ±15 VDC required to operate the flow meter and provide a digital  
indication of the flow rate. Interface terminals for the retransmission of the flow meter analog output  
signal are located on the rear of the panel.  
The Power Pod 100 and 400 models are built with controllers in mind but will work with meters as well.  
The Model 40 is for flow meters only. Throughout this manual, when reference is made to a power  
supply, it is assumed the customer is using a Hastings power supply. Hastings PowerPod-100 and  
PowerPod-400 power supplies are CE marked, but the Model 40 does not meet CE standards at this time.  
The Model 40 and PowerPod-100 are not compatible with 4–20 mA analog signals. With the PowerPod  
400, individual channels’ input signals, as well as their commands, become 4–20 mA compatible when  
selected. The PowerPod-400 also sports a Totalizer feature. More information about the Power Pods can  
1.4.2. Interconnecting Cables  
Cables are available from Hastings, in various lengths, to connect from the 15 pin "D" connector on the  
back of the Power Pod directly to any of the 200 series and 300 series flow instruments (including digital  
versions). More information about the available cables can be found in the Power Pod 400 bulletin on  
HFM-E-200/HFC-E-202  
Page 6 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
2. Installation and Operation  
This section contains the necessary steps to assist in getting a new Flowmeter/Controller into operation  
as quickly and easily as possible. Please read the following thoroughly before attempting to install the  
instrument.  
2.1. Receiving Inspection  
Carefully unpack the Hastings HFM-E-200/HFC-E-202 series instrument and any accessories that have also  
been ordered. Inspect for any obvious signs of damage to the shipment. Immediately advise the carrier  
who delivered the shipment if any damage is suspected. Check each component shipped with the  
packing list. Insure that all parts are present (i.e., Flowmeter, power supply, cables, etc.). Optional  
equipment or accessories will be listed separately on the packing list. There may also be one or more  
OPT-options on the packing list. These normally refer to special ranges or special gas calibrations. They  
may also refer to special helium leak tests, or high pressure tests. In most cases, these are not separate  
parts, but special options or modifications built into the Flowmeter.  
2.2. Power Requirements  
The HFM-E-200/HFC-E-202 series requires ±15 VDC @ ±50 mA (HFM-E-200) +50 mA, -200 mA (HFC-E-202)  
for proper operation. The supply voltage should be sufficiently regulated to no more than 50 mV ripple.  
The supply voltage can vary from 14.0 to 16.0 VDC. Surge suppressors are recommended to prevent  
power spikes reaching the instrument. The Hastings power supply described in Section 1.4.2 satisfies  
these power requirements.  
2.3. Output Signal  
The standard output of the Flowmeter is a 0-5 VDC signal proportional to the flow rate. In the Hastings  
power supply the output is routed to the display, and is also available at the terminals on the rear panel.  
If a Hastings supply is not used, the output is available on pin 3 of the “Edge” connector and is  
referenced to pin 2. It is recommended that the load resistance be no less that 2kW. If the optional 4-  
20 mA output is used, the load impedance must be selected in accordance with Section 1.3.  
2.4. Mechanical Connections  
The Flowmeter may be mounted in any position as long as the direction of gas flow through the  
instrument follows the arrow marked on the bottom of the Flowmeter case label. The preferred  
orientation is with the inlet and outlet fittings in a horizontal plane (if operating with a dense gas or at  
high pressures the instrument must be installed horizontally). When mounted in a different orientation  
the instrument should be re-zeroed at zero flow with the system pressurized to the expected operating  
pressure.  
The smallest of the internal passageways in the HFM-E-200/HFC-E-202 series is the diameter of the  
sensor tube, which is 0.0125” (0.31 mm), so the instrument requires adequate filtering of the gas supply  
to prevent blockage or clogging of the tube.  
The pressure regulator and the plumbing upstream must be of sufficient size to minimize changes in the  
upstream pressure. When switching from full flow to zero flow, the inlet pressure of instrument should  
rise to no more that 30% above the inlet pressure at full flow. In general, high capacity regulators and  
large internal diameter plumbing help to make the system more stable. The pressure drop between the  
regulator and the instrument due to line resistance should be minimized. The differential pressure  
across the unit should be less than 6” of H2O at maximum flow.  
There are two 8-32 threaded holes, located on the bottom of the base that can be used to secure it to a  
mounting bracket, if desired (screws provided).  
The standard inlet and outlet fittings for the 200/202 are 0.25” and 0.125” Swagelok (optional VCR or  
VCO fittings). The O-rings for the end cap and the sensor are Viton (optional Kalrez or Neoprene). It is  
HFM-E-200/HFC-E-202  
Page 7 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
suggested that all connections be checked for leaks after installation. This can be done by pressurizing  
the instrument (do not exceed 500 psig unless the Flowmeter is specifically rated for higher pressures)  
and applying a diluted soap solution to the flow connections rated for higher pressures) and applying a  
diluted soap solution to the flow connections.  
2.5. Electrical Connections  
If a power supply from Hastings Instruments is used, installation consists of connecting the HFM-E-  
200/HFC-E-202 series cable from the “D” connector on the rear of the power supply to the “Edge”  
connector on the top of the Flowmeter. If a different power supply is used, follow the instructions  
below when connecting the flow meter.  
This HFM-E-200/HFC-E-202 series requires Hastings cable #65-854. Use of any other cable can severely  
damage the instrument and void the warranty. Figure 2.1 shows the schematic layout for connecting the  
instrument to an appropriate power supply.  
The power supply used must be capable of supplying +15VDC at 50mA and -15VDC at -200mA for each  
controller. These voltages must be referenced to a circuit Common terminal. Connect -15VDC to pin F  
and +15VDC to pin 4.  
Pins 2, B and C are all Commons and they are connected together internally with solder jumpers to  
ensure compatibility with legacy flow controllers. At least one of these Common pins must be connected  
to the Common pin on the power supply. However for new designs and for installations with long cable  
runs between the transducer and the power supply it is recommended that pin C be isolated from the  
other Common pins of the transducer and provided a separate wire to connect it to the power supply  
Common.  
Figure 2.1  
This pin carries the valve current and under conditions when the impedance of the wire connecting the  
transducer Common to the power supply Common is high, tying these Commons together at the  
transducer can create cross-talk that may result in flow instabilities or errors in the Command signal or  
the Flow Output signal. In order to isolate pin C, solder jumpers JP8 and JP10 must be unsoldered while  
JP7 remains soldered. This will be performed at assembly time in the factory if there is an indication at  
the time of order that this is desired or it can be performed in the field. The Common pins can be  
reconfigured to put the valve return current on different pins. Consult factory if it is necessary to match  
previously installed wiring.  
HFM-E-200/HFC-E-202  
Page 8 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Pin 1 is the case ground. It should be connected to the cable shield if available and to the AC ground at  
the power supply.  
Pin 3 is the output signal from the flow controller. This output will be 0-5VDC, 5VDC being 100% of rated  
or full flow. Pin A is the command input. This should be a 0-5VDC signal and must be free of spikes or  
other electrical noise, as these will generate false flow commands that the controller would attempt to  
flow.  
If a valve override switch is not desired, the unit is ready for use at this time. If the override switch is  
desired, connect the center pin of a single pole, three-position switch with the center off position to pin  
J. Connect +15VDC to one end of the switch, and -15VDC to the other end. This will result in the valve  
being full open when +15VDC is supplied to pin J, off when -15VDC is supplied and auto-control when  
there is no connection to pin J (OPEN-AUTO-CLOSE). This setup will be adequate for most purposes, but  
there will be a small delay for capacitors to charge between switch operation and control override.  
2.6. Operation  
The standard instrument output is a 0 - 5 VDC out and the signal is proportional to the flow i.e., 0 volts  
= zero flow and 5 volts = 100% of rated flow. The 4 - 20 mA option is also proportional to flow, 4 mA =  
zero flow and 20 mA = 100% of rated flow. It is suggested that all connections be checked for leaks after  
installation. This can be done by pressurizing the instrument (do not exceed 500 psig unless the  
instrument is specifically rated for higher pressures) and applying a diluted soap solution to the  
connections.  
2.6.1. Operating Conditions  
For proper operation, the combination of ambient temperature and gas temperature must be such that  
the Flowmeter temperature remains between 10 and 50°C. (Most accurate measurement of flow will be  
obtained if the Flowmeter is zeroed at operating temperature as temperature shifts result in some zero  
offset.) The HFM-E-201/HFC-E-203 series is intended for use in non-condensing environments only.  
Condensate or any other liquids which enter the Flowmeter may destroy its electronic components.  
2.6.2. Zero Check  
Turn the power supply on if not already energized. Allow for a 1 hour warm-up. Stop all flow through  
the instrument and wait 2 minutes. Caution: Do not assume that all metering valves completely shut  
off the flow. Even a slight leakage will cause an indication on the meter and an apparent zero shift. For  
the standard 0-5 VDC output, adjust the zero potentiometer located on the lower outlet side of the  
Flowmeter until the meter indicates zero. For the optional 4-20 mA output, adjust the zero  
potentiometer so that the meter indicates slightly more than 4 mA, i.e. 4.03 to 4.05 mA. This slight  
positive adjustment ensures that the 4-20 mA current loop transmitter is not in the cut-off region. The  
error induced by this adjustment is approximately 0.3% of full scale. This zero should be checked  
HFM-E-200/HFC-E-202  
Page 9 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
periodically during normal operation. Zero adjustment is required if there is a change in ambient  
temperature, or vertical orientation of the Flowmeter/controller.  
2.6.3. High Pressure Operation  
When operating at high pressure, the increased density of gas will cause natural convection to flow  
through the sensor tube if the instrument is not mounted in a level position. This natural convection  
flow will be proportional to the system pressure. This will be seen as a shift in the zero flow output that  
is directly proportional to the system pressure.  
2.6.4. Blending of Gases  
In the blending of two gases, it is possible to maintain a fixed ratio of one gas to another. In this case,  
the output of one flow controller is used as the reference voltage for the set point potentiometer of a  
second flow controller. The set point potentiometer then provides a control signal that is proportional  
to the output signal of the first flow controller, and hence controls the flow rate of the second gas as a  
percentage of the flow rate of the first gas.  
EXAMPLE: Flow controller A has 0-10 slpm range with a 5.00 volt output at full scale. Flow controller B  
has 0-1 slpm range with a 5.00 volt output at full scale. If flow controller A is set at 8 slpm, its output  
voltage would be 4.00 volts (8 slpm/10 slpm x 5.00 volts = 4.00 volts). If the output signal from flow  
controller A is connected to the command potentiometer of flow controller B, it then becomes a variable  
reference voltage for flow controller B proportional to the flow rate of flow controller A.  
If the set point potentiometer of flow controller B is set at 50% of full scale, and the reference voltage  
from flow controller A is 4.00, then the command signal going to flow controller B would be 2.00 volts  
(4.00 volts x 50.0% = 2.00 volts). The flow of gas through flow controller B is then controlled at 0.4 slpm  
(2.00 volts/5.00 volts x 1 slpm = 0.4 slpm).  
The ratio of the two gases is 20:1 (8 slpm/0.4 slpm). The % mixture of gas A is 95.2 (8slpm/84slpm and  
the % mixture of gas B is 4.8% (0.4 slpm/8.4 slpm).  
Should the flow of flow controller A drop to 7.8 slpm, flow controller B would drop to 0.39 slpm, hence  
maintaining the same ratio of the mixture. (7.8 slpm/10 slpm x 5v = 3.90v x 50% = 1.95v; 1.95v/5.00v x 1  
slpm = 3.9 slpm; 7.8 slpm: 0.39 slpm = 20:1)  
2.7. Operation with External Devices  
2.7.1. Operation with a Hastings power supply.  
There are two controls for each flow controller connected to a Hastings power supply. A switch labeled  
“OPEN; AUTO; CLOSED” (valve over ride THPS 400 only) and a potentiometer labeled “COMMAND”. For  
normal operation, the valve over ride switch will be in the “AUTO” position. The “CLOSE” position  
removes all power from the valve, shutting off flow regardless of the command pot setting. The “OPEN”  
position applies full available valve voltage to the valve, causing it to open, regardless of the command  
pot setting. The “OPEN” position is useful for purging systems. It is recommended that the valve over  
ride switch not be left in this position for extended periods of time, with no flow through the controller,  
as a small positive zero shift may be observed.  
The “COMMAND” pot adjusts the Analog command signal sent to the flow controller. The setting for  
each controller connected to the power supply can be observed. (Depending on how the power supply  
was set up, the display could indicate in flow units or percent of full scale).  
2.7.2. Operation with a power supply other than a Hastings.  
The flow controller must be connected to the power source as specified in section 2.6. In general, a 0-5  
VDC command signal proportional to the intended flow (0 volts = zero flow; 5 volts = 100% of rated flow)  
must be applied to pin A of the “Edge” connector. A 0-5 VDC signal proportional to the flow rate  
through the instrument will be present on pin 3 of the “Edge” connector. The control mode is selected  
via pin J of the “Edge” connector. Apply +15 volts for full open, -15 volts for closed and allow pin J to  
float for flow proportional to the command voltage. Refer to your power supply manual for the specifics  
of implementing these parameters.  
HFM-E-200/HFC-E-202  
Page 10 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
2.7.3. Operation with an external sensor. (Fig. 2.2)  
In some instances, it might be desirable to use an external sensor to provide process information to the  
control circuitry in the flow controller. For example, you might want to control the pressure in a  
vacuum system by adjusting the rate at which the system is backfilled with a gas. The new, enhanced  
HFC series of flow controllers have provision for accepting a 0-5VDC output from an external sensor at  
pin 8 of the “Edge” connector. To activate this feature, the cover of the HFC must be removed to gain  
access to PC-888 and move a jumper on JP3. JP3 is a three pin jumper block located just below the  
“Edge” connector. In the normal operating mode, the jumper covers the bottom two pins. To select  
“External Sensor”, move the jumper to the upper two pins. This swaps the flow input to the controller  
circuit from the Flowmeter output to pin 8 of the “Edge” connector.  
2.7.4. Soft Start  
The response of the control circuit to sudden changes in the Command signal is set at the factory for  
fast, stable response and minimal overshoot. If any overshoot is a problem in a particular system, it is  
possible to slow down the controller response to sudden Command changes. Remove the outer cover  
from the instrument and remove pin jumper JP6 this will insert an R-C filter with a two second time  
constant into the command circuit. This will slow down the reaction of the controller to step changes in  
the Command signal and will ensure that there is no overshoot or undershoot in actual gas flow.  
2.8. Range Changing:  
The range of the flow controller can be changed in the field if recalibration facilities are available. The  
flow controller may require a different orifice and different laminar Flowmeter element (shunt), which  
can be purchased separately from the factory. A listing of the orifices and shunts are available and their  
flow rates can be found in Section 4.8.  
The range of the small tube shunts can be changes by changing the front disk, consult factory for more  
information on disk options.  
Figure 2.1  
HFM-E-200/HFC-E-202  
Page 11 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3. Theory of Operation  
This section contains an overall functional description of HFC Flow Controllers. Detailed schematics and  
parts lists can be found at the end of the manual in Section 6.0. In this section and other sections  
throughout this manual, when a power supply is mentioned, it is assumed that the customer has a  
Hastings Power Supply. These sections are not applicable if another type of power supply is used.  
3.1. Overall Functional Description:  
The HFC Flow Controller consists of a sensor, electronic  
circuitry, a shunt and a valve. The sensor measures the  
flow rate from 0 to 10 sccm of the gas to be metered. The  
shunt divides the flow such that the flow through the  
sensor is a precise percentage of the flow through the  
shunt. The flow through the sensor and the shunt is  
always laminar. The circuit board amplifies the sensor  
output and uses this output to control the valve position.  
The valve is an automatic metering solenoid type; its  
height off the seat is controlled by the voltage in its coil.  
All of these components working together result in a fast,  
stable flow controller.  
Figure 3.1  
3.2. Sensor:  
The Hastings HFM-E-200/HFC-E-202 series operates on a unique thermal electric principle whereby a  
metallic capillary tube is heated uniformly by a resistance winding attached to the midpoint of the  
capillary (see Figure 3.1). Thermocouples TC-1 and TC-2 are welded at equal distances from the  
midpoint and develop equal outputs at zero flow.  
When flow occurs through the tubing, heats is transferred from the tube to the gas on the inlet side, and  
from the gas back to the tube on the outlet side creating an asymmetrical temperature distribution (see  
Figure 3.2). The thermocouples sense this decrease and increase in the capillary tube temperature and  
produce a millivolt output signal proportional to that change.  
For a constant power input, the differential thermocouple output is a function of the mass flow rate and  
the heat capacity of the gas. Since the heat capacity of many gases is relatively constant over wide  
ranges of temperature and pressure, the Flowmeter may be calibrated directly in mass units for those  
gases. Changes in gas composition usually only require application of a simple multiplier to the air  
calibration to account for the difference in heat capacity and thus the Flowmeter is capable of  
measuring a wide variety of gases. The HFM sensor measures approximately 10 sccm. Full scale flow.  
3.3. Electronics:  
The Hastings HFM-E-200/HFC-E-202 series uses a thermal flow sensor to measure through a capillary  
tube, which is a fixed percentage of the total flow through the instrument. This sensor develops an  
output signal proportional to flow which is approximately 1 mv full scale magnitude. This signal is  
amplified by the meter circuitry until is 0-5.00 VDC. This 5 volt output is sent back to the power supply  
and to the Flowmeter circuitry, if applicable. At the power supply the 5 volt output is sent to the  
terminals on the back and to the decoding circuitry in the display which converts it to a 3-digit output.  
The controller circuitry utilizes the Command and the Flow voltages as input signals. The  
command signal is subtracted from the 0-5VDC flow signal creating an error signal. This signal is  
amplified and causes the solenoid valve to move. The amount and direction of the movement is  
0-5VDC  
dependent upon the value and the sign of the error signal, and tends to minimize the error signal.  
HFM-E-200/HFC-E-202  
Page 12 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure 3.2  
3.4. Shunt:  
Measurement of flow rates higher than the 10 sccm full scale is achieved by dividing the flow with a  
fixed ratio shunting arrangement, as is illustrated in Figure 3.3. This is accomplished by placing the  
measuring capillary tube parallel with one or more dimensionally similar channels, called a laminar flow  
element (LFE). Therefore, the sensor only needs to heat the gas passing through the capillary tube  
resulting in low power requirements, while retaining all the mass measuring characteristics.  
The HFM-E-200/HFC-E-202 series has many different shunts. The low range shunt consists of tubes  
inserted into a cylindrical base. This shunt is adjustable for ranges from 0-10 sccm to 0-180 sccm (see  
Figure 3.4). The medium range shunts consists of a piece of stainless steel foil welded to a solid steel  
center core. The high range shunts consists of a corrugated stainless steel ribbon wound into a coil and  
fused.  
Figure 3.3  
Figure 3.4  
Figure 3.5  
HFM-E-200/HFC-E-202  
Page 13 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.5. Valve:  
The control valve is an “automatic metering solenoid” valve. While most solenoids operate in either the  
fully open or fully closed state, the automatic metering solenoid valve is designed to control flow (see  
Figure 3.6). A spring, connected to the plunger assembly, holds a magnetic plunger tightly against an  
orifice to shut off flow. The magnetic plunger is surrounded by an electrical coil, which when energized  
with electrical current lifts the plunger off the orifice and allows flow to pass between the orifice and  
the plunger seat. Controlling the current through the coil controls the distance between the orifice and  
the plunger seat, thus effectively controlling the flow through the valve. This current is controlled by a  
feedback loop that matches the transducer output with the command voltage.  
Figure 3.6  
HFM-E-200/HFC-E-202  
Page 14 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4. Maintenance  
This section contains service and calibration information. Some portions of the instrument are delicate.  
Use extreme care when servicing the flow controller. The potentiometer positions and the electrical  
components referred to in the troubleshooting section can be found in Section 6.0 on the electrical  
component layout drawing.  
4.1. Authorized Maintenance  
With proper care in installation and use, the flow controller will require little or no maintenance. If  
maintenance does become necessary, most of the instrument can be cleaned or repaired in the field.  
Some procedures may require recalibration. Do not attempt these procedures unless facilities are  
available. Entry into the sensor or tampering with the printed circuit board will void warranty. Do not  
perform repairs on these assemblies while unit is still under warranty.  
4.2. Troubleshooting  
SYMPTOM: Output reads 40% of flow with no flow. Zero pot has no effect.  
CAUSE: Power supply locked up or shorted out.  
ACTION: Turn off power supply for a few seconds, then turn back on. If this proves ineffective,  
disconnect the unit from the power supply. If power supply display does not return to zero, then a  
regulator chip in the power supply is probably burned out. Check supply voltages and replace faulty  
regulator. If display returns to zero after disconnecting the power supply from the unit there is a short  
in the unit to ground. Check capacitors C38 & C39 first.  
SYMPTOM: Command is zero, but flow remains.  
CAUSE: Orifice out of adjustment or faulty op-amp  
ACTION: Check valve voltage at connector pins C & D. If voltage is less than 3.00 VDC, then turn orifice  
clockwise until flow stops. If voltage is greater than 3.00 VDC. Replace PC Board.  
SYMPTOM: Output of unit is proportional to flow but extremely small and not correctable by span pot.  
CAUSE: Sensor is not being heated.  
ACTION: Unplug connector J2. Check the following resistance: The resistance between pins 2 & 3 of  
the sensor should be approximately 2500 ohms (see Figure 3.1 on page 8). The resistance between pins 1  
& 4 should be approximately 2.3 ohms. The resistance between pins 2 & 3 and the base of the sensor  
should be essentially infinite. If not, replace the sensor unit. If sensor reads O.K., check the voltage  
output on pins 2 & 3 of the jack in the board. If it does not read approximately 22 VDC then replace PC  
Board.  
SYMPTOM: Sensor has proper resistance readings, but little or no output with flow.  
CAUSE: Plugged sensor.  
ACTION: Shut off gas supply and power supply. Remove cover and PC board from unit. Remove sensor  
assembly and examine. If sensor has evidence of plugging, clean or replace as applicable  
HFM-E-200/HFC-E-202  
Page 15 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SYMPTOM: Flow controller oscillates.  
CAUSE: Flow controller not adjusted for the dynamics of the flow system.  
ACTION: Check upstream and downstream pressures. The gas supply regulator should not have  
excessive lockup when flow shuts off. Also ensure that there is not a large drop in pressure between the  
regulator and the instrument due to line resistance. Oscillations can also be caused if a large flow  
restriction is pneumatically close to the downstream end of the flow controller. The differential  
pressure across the unit must be between the values specifications on the original order.  
SYMPTOM: Little or no flow, even with a maximum SetPoint value.  
CAUSE: Plugged orifice.  
ACTION: Verify the presence of a pressure across the instrument. If present, shut off gas supply and  
power supply. Remove orifice per Section 4.9. Examine orifice. If plugged, clean or replace as  
applicable. Reassemble valve.  
SYMPTOM: Flowmeter reads other than 0.00 VDC with no flow, or there is a small flow when Flowmeter  
reads 0.00 VDC.  
CAUSE: ZERO potentiometer is out of adjustment.  
ACTION: Shut off all flow. Adjust ZERO potentiometer until output reads 0.00 VDC.  
SYMPTOM: Flowmeter out of calibration and nonlinear.  
CAUSE: Leaks in gas inlet or outlet fittings.  
ACTION: Check all fittings for leaks by placing soap solution on all fittings between gas supply and final  
destination of gas. Check Flowmeter for leaks. Replace “O” rings if required or recalibrate as  
necessary.  
Span  
4.3. ADJUSTMENTS  
Zero  
4.3.1. Calibration Procedure: (Figure 4.1)  
NOTE: Adjusting the SPAN pot will require the use of a  
calibration reference in Step 5.  
1. Connect power cable to Edge Connector as specified in Section  
2.7. Allow instrument to warm up for 30 minutes. Ensure that for at  
least the last 3 minutes there is a controlled flow of gas thought the  
instrument, shut off gas flow, wait 2 minutes.  
2. Set ZERO (R19) potentiometer for 0.000 VDC output.  
3. Turn on gas supply to inlet of instrument. Put Valve Override  
switch into CLOSE position. Adjust the orifice underneath controller  
to obtain zero flow. Put Valve Override switch into AUTO. Ensure that  
full range flow can still be obtained at minimum inlet pressure.  
4. Set command to 100%. Wait 2 minutes; adjust SPAN (R29) pot until the flow reference reads full  
scale flow (5.000 VDC). NOTE: Perform this step only if a calibrated reference Flowmeter is available.  
5. Record Flowmeter and flow reference outputs for flow rates of 20%, 40%, 60%, 80% and 100%.  
HFM-E-200/HFC-E-202  
Page 16 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.3.2. Miscellaneous adjustments  
Periodically, during normal operation, the ZERO should be checked and adjusted when required. If the  
instrument is not stopping the flow completely when command signal is Zero, the orifice may require  
turning approximately 1/8 turn clockwise.  
4.4. Inlet Removal:  
The fitting on the inlet side must be removed to gain access to the filter or shunt assembly. First shut off  
the supply of gas to the instrument. Disconnect the Swagelok fitting on the inlet and outlet sides of the  
transducer, and remove it from the system plumbing. Carefully remove the inlet fitting, spring (if  
present) and shunt, noting their order and proper orientation. The shunt can be severely damaged if  
dropped. Examine the filter and shunt. If either is dirty or blocked, clean or replace as applicable.  
Reassembly is the reverse of the removal procedure. Recalibration of the HFC is necessary.  
4.5. Printed Circuit Board Replacement  
In the unlikely event that the PC board fails, it is easily removed from the instrument and replaced with  
a spare to minimize instrument downtime. Replacement of the PC board will require the instrument to  
be recalibrated per Section 4.3.1.  
Unplug the power cable from the top of the transducer. Remove the two jackscrews next to the “Edge”  
connector and the two screws on the sides of the cover. Lift off the cover and unplug the four-wire  
sensor plug and the two wire valve plug, noting their orientation prior to removal.  
Remove the screw that holds the PC board to the sensor. Troubleshoot or replace as applicable.  
Installation is the reverse of the above procedure. Recalibrate if any components were changed or if any  
potentiometers were adjusted.  
4.6. Sensor Replacement:  
If the sensor fails or becomes plugged it can be removed. Remove the cover and the PC board per  
Section 4.5 above. Remove the three bolts holding the sensor to the instrument base. Remove the  
sensor from the base noting the two O-rings (Parker 2-005, V884-75) between the sensor and the base. If  
the sensor is plugged it can be cleaned by running a fine wire (approximately 0.008" diameter) through  
the tube. If sensor needs replacement, obtain another from the factory and install it. Ensure that O-  
rings are clean and intact. Install O-rings on seating surface, then carefully place sensor over O-rings  
and tighten down the three screws evenly. Replacement of sensor will require recalibration per Section  
4.3.1.  
4.7. Orifice Changes:  
The orifice may require replacement if a flow range change is desired, if a large change in differential  
pressures across the valve is desired or in the event that a small orifice becomes plugged. Replacement  
orifices can be acquired from the factory. See Section 4.8 for the list of standard orifices and their flow  
rates in air.  
When using nonstandard pressures or gases that have specific gravities different than air (such as  
hydrogen or helium), the diameter of the orifice must be calculated using the following procedure:  
A) Determine the minimum expected upstream pressure (Pu) in PSI absolute and the maximum  
expected downstream pressure (Pd) in PSI absolute for full flow conditions.  
B) If Pu >2Pd, use formula 1; otherwise use formula 2.  
HFM-E-200/HFC-E-202  
Page 17 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Where:  
Formula 1:  
Formula 2:  
0.0028σQ  
0.0014Q  
D =  
D =  
P
ΔΡ • Ρd  
u
σ
D = Diameter in inches  
Q = Flow rate in standard liters per minute  
P = Pu - Pd in PSI  
Pu = Upstream pressure in PSIA  
Pd = Downstream pressure in PSIA  
σ = Specific gravity of gas  
Choose the orifice form Section 5.0 that has the closes larger diameter to the calculated diameter.  
4.7.1. HFC-E-202 Orifice  
To change the orifice in the HFC-E-202 series, turn the instrument upside-down and turn the orifice  
counterclockwise with a 9/64” Allen wrench until it stops coming out. Then grasp the exposed orifice  
end and pull it straight out. See Figure 4.2.  
Prior to reinstallation of the orifice, inspect the two O-rings mounted on it for damage. Replace if cut or  
gouged.  
Lubricate the O-rings slightly with a silicone based grease, and the threads with anti-galling compound.  
Push the orifice into its hole and screw it in until it is flush with the instrument base. Apply pressure to  
the inlet side of the instrument.  
Turn the Valve Override switch to CLOSE or unplug the instrument. Screw the orifice in a few more turns  
until the flow through the instrument stops, then turn it an additional 1/8 turn clockwise.  
PARKER O-RING  
#2-008 VITON  
ORIFICE  
(see P/L per P/#  
Fig 4.2  
HFM-E-200/HFC-E-202  
Page 18 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.8. REPLACEMENT PARTS  
The following is a list of the available replacement parts and their factory stock numbers. The HFM-E-  
200 and the HFC-E-202 shunts and sensor modules are interchangeable.  
STOCK NO.  
DESCRIPTION  
AIR RANGE  
81-270  
81-269  
81-268  
81-267  
81-266  
30L - Shunt  
24 - 36  
16 – 24  
8 – 12  
20L - Shunt  
10L - Shunt  
5L - Shunt  
4 – 6  
2L - Shunt  
1.6 - 2.4  
0.8 – 1.2  
400 – 600  
120 – 180  
60 – 132  
12 – 60  
8 – 12  
1L - Shunt  
81-265  
500sccm - Shunt  
150sccm - Shunt  
70sccm - Shunt  
20sccm - Shunt  
10sccm - Shunt  
Orifice 0.001”  
Orifice 0.002”  
Orifice 0.003”  
Orifice 0.007”  
Orifice 0.014”  
Orifice 0.032”  
Orifice 0.052”  
Orifice 0.070”  
SENSOR MODULE  
81-263  
81-262  
81-261  
81-260  
28-13-298  
28-13-299  
28-13-167  
28-13-168  
28-13-169  
28-13-171  
28-13-172  
28-13-173  
81-314  
ALL MODELS  
NOTE: Ranges listed are for Nitrogen.  
To place an order or to obtain information concerning replacement parts, contact the factory or our  
local manufacturer’s representative in you area. See below, or this manual’s last page for the address  
or phone number. When ordering, include the following information:  
Instrument model number  
Part description  
Hastings part number  
HFM-E-200/HFC-E-202  
Page 19 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
5. Conversion Factor Table  
Rec  
#
Gas  
Symbol  
GCF  
Derived  
Density  
(g/L)  
Density  
(g/L)  
Synonyms  
Gamma  
R
Z
25°C  
0°C  
(Cp/Cv)  
25  
/ 1 atm  
2.700  
4.173  
2.374  
1.678  
1.064  
1.185  
1.638  
0.696  
1.633  
3.186  
3.193  
4.789  
2.772  
6.532  
6.759  
5.351  
6.087  
2.376  
3.030  
2.293  
1.799  
3.112  
1.145  
6.287  
2.456  
2.898  
3.779  
4.601  
4.108  
4.879  
6.314  
3.210  
2.293  
2.127  
2.513  
2.293  
1.720  
0.165  
1.131  
8.576  
4.207  
3.472  
4.618  
4.129  
2.989  
3.030  
3.686  
/ 1 atm  
2.947  
4.555  
2.591  
1.832  
1.162  
1.293  
1.787  
0.760  
1.782  
3.478  
3.485  
5.228  
3.025  
7.130  
7.378  
5.841  
6.644  
2.593  
3.307  
2.503  
1.964  
3.397  
1.250  
6.863  
2.680  
3.163  
4.125  
5.022  
4.484  
5.326  
6.892  
3.504  
2.503  
2.322  
2.743  
2.503  
1.877  
0.180  
1.235  
9.361  
4.592  
3.789  
5.041  
4.506  
3.263  
3.307  
4.024  
J/gm*K  
125.88  
81.44  
1
Acetic Acid  
C2H4F2  
C4H6O3  
C3H6O  
C2H3N  
C2H2  
Air  
0.4155  
0.2580  
0.3556  
0.5178  
0.6255  
1.0015  
0.4514  
0.7807  
1.4047  
0.7592  
0.3057  
0.4421  
0.5431  
0.8007  
0.3684  
0.4644  
0.3943  
0.2622  
0.2406  
0.3056  
0.7526  
0.6160  
1.0012  
0.3333  
0.6680  
0.8451  
0.4496  
0.2614  
0.3216  
0.4192  
0.2437  
0.3080  
0.3004  
0.4924  
0.6486  
0.3562  
0.4562  
1.0003  
0.5063  
0.3590  
0.4481  
0.5322  
0.2698  
0.4716  
0.2256  
0.2235  
0.2255  
4
4
4
4
4
1
4
2
1
5
4
4
4
4
4
4
4
2
4
4
1
4
4
4
4
4
5
4
4
4
4
4
4
4
5
4
4
4
5
4
4
4
4
5
4
4
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Ethanoic Acid  
1.2  
1.2  
1.2  
1.2  
1.23  
1.4  
1.2  
1.32  
1.66  
1.2  
1.2  
1.2  
1.2  
1.4  
1.2  
1.2  
1.2  
1.09  
1.2  
1.2  
1.22  
1.2  
1.4  
1.2  
1.2  
1.4  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.4  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
2.0301  
2.3384  
1.7504  
1.4462  
0.9792  
1.0930  
1.3876  
0.6409  
2.1243  
4.0839  
2.0636  
3.6531  
2.4109  
1.0000  
4.2789  
4.3990  
4.1546  
1.6896  
1.9233  
1.6700  
1.7511  
3.0744  
1.0433  
3.6196  
2.4230  
3.9995  
2.8970  
2.4954  
2.5119  
3.5284  
2.9778  
2.0756  
1.6672  
1.7626  
2.4405  
1.7091  
1.4440  
0.3102  
1.0486  
5.2998  
3.2249  
3.0592  
2.5291  
3.3176  
1.9080  
1.9215  
2.1300  
2
Acetic Acid, Anhydride  
Acetone  
Aceticanhydride  
3
2-propanone  
143.16  
202.54  
319.33  
287.00  
207.53  
488.21  
208.13  
106.67  
106.44  
70.96  
4
Acetonitryl  
Methyl Cyanide  
5
Acetylene  
Ethyne  
6
Air  
NA  
7
Allene  
C3H4  
NH3  
Propadiene  
8
Ammonia  
NA  
9
Argon  
Ar  
NA  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
Arsine  
AsH3  
C6H6  
BCl3  
NA  
Benzene  
NA  
Boron Trichloride  
Boron Triflouride  
Bromine  
NA  
BF3  
NA  
122.62  
52.03  
Br2  
NA  
Bromochlorodifluoromethane  
Bromodifluoromethane  
Bromotrifluormethane  
Butane  
CBrClF2  
CHBrF2  
CBrF3  
C4H10  
NA  
50.28  
NA  
63.51  
NA  
55.84  
NA  
143.05  
112.17  
148.19  
188.93  
109.20  
296.84  
54.05  
Butanol  
C4H10  
C4H8  
CO2  
CS2  
CO  
O
1-Butanol, Butyl Alcohol  
Butene  
1-Butene, 1-Butylene  
Carbon Dioxide  
Carbon Disulfide  
Carbon Monoxide  
Carbon Tetrachloride  
Carbonyl Sulfide  
Chlorine  
NA  
NA  
NA  
CCl4  
COS  
Cl2  
Tetrachloromethane  
Carbon Oxysulfide  
138.40  
117.26  
89.94  
NA  
Chlorine Trifluoride  
Chlorobenzene  
Chlorodifluoroethane  
Chloroform  
ClF3  
NA  
C6H5Cl  
C2H3ClF2  
CHCl3  
C2ClF5  
C3H7Cl  
C4H8  
NA  
73.87  
Ethane, 2-chloro-1,1-difluoro-  
82.74  
Trichloromethane  
69.65  
Chloropentafluoroethane  
Chloropropane  
Cisbutene  
NA  
53.83  
Propylchloride  
105.86  
148.19  
159.79  
135.26  
148.19  
197.59  
2062.13  
300.49  
39.63  
Cis-2-butene  
Cyanogen  
C2N2  
NA  
Cyanogen Chloride  
Cyclobutane  
ClCN  
NA  
C4H8  
Tetramethylene  
Cyclopropane  
Deuterium  
C3H6  
Trimethylene  
H2  
D2  
2
Diborane  
B2H6  
NA  
Dibromodifluoromethane  
Dichlorofluoromethane  
Dichloromethane  
Dichloropropane  
Dichlorosilane  
Diethyl Amine  
Diethyl Ether  
Diethyl Sulfide  
CBr2F2  
CHCl2F  
CH2Cl2  
C3H6Cl2  
H2SiCl2  
NA  
R21  
80.78  
Methylene Chloride  
1,2-dichloropropane,  
NA  
97.90  
73.59  
82.32  
C4H11  
C4H10  
C4H10  
N
O
S
NA  
113.68  
112.17  
92.19  
1,1-oxybisethane  
3-thiapentane, UN-2375  
HFM-E-200/HFC-E-202  
Page 20 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Vinylidenefluoride, G-1132A,  
Difluoroethene  
48  
49  
Difluoroethylene  
Dimethylamine  
C2H2F2  
C2H7N  
0.4492  
0.3705  
4
4
2.617  
1.843  
-
-
2.857  
2.011  
-
-
1.2  
1.2  
129.85  
184.42  
2.0457  
1.4793  
N-methylmethanamine  
Methylether; Methane,  
Oxybis-  
50  
Dimethyl Ether  
C2H6O  
0.4088  
4
1.883  
-
2.055  
-
1.2  
180.48  
1.5211  
2-thiopropane,  
51  
52  
53  
Dimethyl Sulfide  
Divinyl  
C2H6S  
C4H6  
0.3623  
0.3248  
0.4998  
4
4
2
2.540  
2.211  
1.229  
-
-
-
2.772  
2.413  
1.342  
-
-
-
Thiobismethane  
1.2  
1.2  
133.81  
153.71  
276.51  
1.8455  
1.6433  
1.1175  
1,3-butadiene  
NA  
Ethane  
C2H6  
1.19  
Ethane, 1-chloro-1,1,2,2-  
tetrafluoro-  
54  
C2HClF4  
0.2684  
4
5.578  
-
6.089  
-
Chlorotetrafluoroethane  
1.2  
60.92  
2.8629  
Ethane, 1-chloro-1,2,2,2-  
tetrafluoro-  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
C2HClF4  
C2H6O  
C4H6  
0.2719  
0.4046  
0.3256  
0.3694  
0.2001  
0.4124  
0.4212  
0.4430  
0.6062  
0.3173  
0.3475  
0.5308  
0.4790  
0.3506  
0.3654  
0.9115  
0.7912  
0.3535  
0.3712  
0.3792  
4
4
4
4
4
4
4
4
1
4
4
4
4
4
4
4
4
4
4
4
5.578  
1.883  
2.211  
1.843  
4.339  
4.454  
2.637  
1.964  
1.147  
7.679  
4.045  
1.801  
1.719  
4.045  
2.540  
1.553  
1.227  
5.615  
4.942  
4.270  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6.089  
2.055  
2.413  
2.011  
4.737  
4.862  
2.878  
2.144  
1.252  
8.382  
4.415  
1.965  
1.877  
4.415  
2.772  
1.695  
1.340  
6.129  
5.395  
4.661  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Chlorotetrafluoroethane  
Ethyl Alcohol  
1-butyne  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.21  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.4  
1.2  
1.2  
1.2  
1.2  
60.92  
180.48  
153.71  
184.42  
78.32  
2.8806  
1.5187  
1.6438  
1.4789  
2.3099  
3.1724  
2.0018  
1.5967  
1.0475  
4.1196  
2.5846  
1.5495  
1.4552  
2.5976  
1.8499  
1.5574  
1.1232  
3.4473  
3.2026  
2.8572  
Ethanol  
Ethylacetylene  
Ethyl Amine  
C2H7N  
C8H10  
Ethanamine  
Ethylbenzene  
Ethyl Bromide  
Ethyl Chloride  
Ethyl Fluoride  
Ethylene  
1-butyne  
C2H5Br  
C2H5Cl  
C2H5F  
C2H4  
NA  
75.60  
Chloroethane  
Fluoroethane, R-161  
Ethene  
128.88  
173.00  
296.38  
44.26  
Ethylene Dibromide  
Ethylene Dichloride  
Ethylene Oxide  
Ethyleneimine  
Ethylidene Dichloride  
Ethyl Mercaptan  
Fluorine  
C2H4Br2  
C2H4Cl2  
C2H4O  
C2H4N  
C2H4Cl2  
C2H6S  
F2  
1,2-dibromoethane  
1,2-dichloroethane  
Acetaldehide  
Aziridine  
84.02  
188.74  
197.71  
84.02  
1,1-dichloroethane  
Ethanethiol  
133.81  
218.82  
276.91  
60.53  
NA  
Formaldehyde  
Freon 11  
CH2O  
CCl3F  
CCl2F2  
CClF3  
NA  
Trichloro,fluoromethane  
Dichloro,difluoromethane  
Chloro, trifluoromethane  
Freon 12  
68.76  
Freon 13  
79.60  
Carb. Tetrafluoride, Meth.  
Tetrafluoride  
75  
76  
77  
Freon 14  
Freon 22  
Freon 23  
CF4  
0.4422  
0.4857  
0.5282  
4
4
4
3.597  
3.534  
2.862  
-
-
-
3.926  
3.858  
3.124  
-
-
-
1.2  
1.2  
1.2  
94.48  
96.16  
2.7242  
2.8794  
2.4487  
CHClF2  
CHF3  
Chloro, difluoromethane  
Trifluoromethane, Fluoroform  
118.76  
1,2-dichloro, 1,1,,2,2-  
tetrafluoroethane  
78  
79  
80  
81  
82  
83  
84  
85  
Freon 114  
C2Cl2F4  
C4H4O  
He  
0.2327  
0.3889  
1.4005  
0.1987  
0.1224  
0.1224  
0.1828  
0.1733  
4
4
1
4
4
4
4
4
6.986  
2.783  
0.164  
6.950  
6.597  
6.637  
3.522  
7.605  
-
-
-
-
-
-
-
-
7.626  
3.037  
0.179  
7.586  
7.201  
7.245  
3.845  
8.301  
-
-
-
-
-
-
-
-
1.2  
1.2  
48.65  
122.139  
2077.28  
48.90  
3.1174  
2.0253  
0.2304  
2.9681  
3.2710  
3.2794  
2.1062  
3.0771  
Furan  
Oxacylopentadiene  
Helium  
NA  
1.66  
1.2  
1.2  
Heptafluoropropane  
Hexamethyldisilazane  
Hexamethyldisiloxane  
Hexane  
C3HF7  
C6H19NSi2  
C6H18OSi2  
C6H14  
Freon 227, R-227ea  
HMDS  
NA  
51.52  
1.2  
1.2  
1.2  
51.20  
NA  
96.48  
Hexafluorobenzene  
C6F6  
Perfluorobenzene  
1-Hexene, 4-Methyl, 1-  
Pentene  
44.69  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
Hexene  
C6H12  
N2H4  
H2  
0.1918  
0.5506  
1.0038  
1.0028  
1.0034  
0.7772  
1.0039  
0.9996  
0.8412  
0.8420  
0.2725  
4
4
1
4
4
4
4
4
5
4
2
3.440  
1.310  
0.082  
3.307  
1.490  
1.105  
0.818  
5.228  
3.309  
1.393  
2.376  
-
-
-
-
-
-
-
-
-
-
-
3.755  
1.430  
0.090  
3.610  
1.627  
1.206  
0.893  
5.707  
3.612  
1.521  
2.593  
-
-
-
-
-
-
-
-
-
-
-
1.2  
1.2  
98.79  
259.46  
4124.51  
102.76  
228.04  
307.66  
415.59  
65.00  
2.0677  
1.1757  
0.3895  
7.6975  
1.5183  
1.0003  
0.6845  
1.0000  
5.1920  
1.3174  
1.6912  
Hydrazine  
NA  
Hydrogen  
NA  
1.38  
1.38  
1.4  
Hydrogen Bromide  
Hydrogen Chloride  
Hydrogen Cyanide  
Hydrogen Fluoride  
Hydrogen Iodide  
Hydrogen Selenide  
Hydrogen Sulfide  
Isobutane  
HBr  
HCl  
NA  
NA  
CHN  
HF  
Hydrocyanic Acid  
1.2  
NA  
1.4  
HI  
NA  
1.4  
H2Se  
H2S  
C4H10  
NA  
1.2  
102.68  
243.96  
143.05  
NA  
1.2  
2-Methylpropane  
1.2  
2-methyl-1-propanol,  
Isobutyl Alcohol  
97  
98  
Isobutanol  
Isobutene  
C4H10  
C4H8  
O
0.2391  
0.2984  
4
4
3.030  
2.293  
-
-
3.307  
2.503  
-
-
1.2  
1.2  
112.17  
148.19  
1.9228  
1.6663  
Isobutylene, Methylpropene  
HFM-E-200/HFC-E-202  
Page 21 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
99  
Isopentane  
C5H12  
C3H8O  
C3H3NO  
C2H2O  
Kr  
0.2175  
0.2931  
0.4333  
0.5732  
1.4042  
0.7787  
0.6167  
0.3083  
0.4430  
0.5360  
0.6358  
0.6639  
0.1853  
0.2692  
0.2844  
4
4
4
4
4
1
4
4
4
4
4
4
4
4
4
2.949  
2.456  
2.823  
1.718  
3.425  
0.656  
1.310  
3.028  
1.638  
1.269  
3.881  
2.064  
4.013  
2.416  
2.456  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.219  
2.681  
3.081  
1.875  
3.739  
0.716  
1.430  
3.305  
1.787  
1.386  
4.236  
2.253  
4.381  
2.637  
2.681  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2-methylbutane  
1.2  
1.2  
1.2  
1.2  
1.6  
1.31  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
115.24  
138.356  
120.39  
197.79  
99.22  
1.8975  
1.7335  
2.1501  
1.5127  
1.0000  
0.6105  
1.1818  
1.9967  
1.3847  
1.1449  
4.3841  
1.9480  
2.2334  
1.7065  
1.7285  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
Isopropyl Alcohol  
Isoxazole  
2- propanol  
1-Oxa-2-azacyclopentadiene  
Ketene  
NA  
Krypton  
NA  
Methane  
CH4  
NA  
518.28  
259.49  
112.24  
207.53  
267.72  
87.58  
Methanol  
CH4O  
C3H6O2  
C3H4  
Methyl Alcohol  
Methyl Ethanoate  
Propyne  
Methanamine  
NA  
Methyl Acetate  
Methyl Acetylene  
Methylamine  
Methyl Bromide  
Methyl Chloride  
Methylcyclohexane  
Methyl Ethyl Amine  
Methyl Ethyl Ether  
CH5N  
CH3Br  
CH3Cl  
C7H14  
C3H9N  
C3H8O  
Chloromethane  
NA  
164.77  
84.681  
140.661  
138.356  
2-propanamine  
Methoxyethane  
2-thiabutane,  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
Methyl Ethyl Sulfide  
Methyl Fluoride  
Methyl Formate  
Methyl Iodide  
Methyl Mercaptan  
Methylpentene  
Methyl Vinyl Ether  
Neon  
C3H8S  
CH3F  
C2H4O2  
CH3I  
CH4S  
C6H12  
C3H6O  
Ne  
0.2743  
0.7247  
0.3975  
0.6514  
0.5409  
0.2037  
0.3435  
1.4043  
0.9795  
1.0000  
0.7604  
0.3395  
0.5406  
0.4653  
0.6357  
0.7121  
0.2121  
0.1386  
0.9779  
0.6454  
0.7022  
0.1499  
0.2175  
0.4155  
0.1711  
0.2530  
0.1818  
0.2489  
0.4812  
0.7859  
0.4973  
0.3499  
0.3061  
0.2860  
0.4048  
0.3222  
4
4
4
4
4
4
4
4
4
1
4
4
5
4
4
1
4
4
1
4
4
5
4
4
4
4
4
4
4
5
5
1
4
4
2
4
3.113  
1.391  
2.455  
5.802  
1.966  
3.440  
2.374  
0.825  
1.226  
1.145  
1.880  
3.761  
2.902  
2.495  
2.676  
1.799  
2.949  
4.669  
1.308  
2.207  
1.962  
2.580  
2.949  
4.188  
8.176  
5.641  
7.685  
3.847  
4.043  
1.390  
3.596  
1.802  
2.456  
2.416  
1.720  
3.233  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.398  
1.518  
2.679  
6.333  
2.146  
3.755  
2.591  
0.900  
1.339  
1.250  
2.053  
4.105  
3.168  
2.723  
2.920  
1.964  
3.219  
5.096  
1.428  
2.409  
2.141  
2.816  
3.219  
4.571  
8.924  
6.158  
8.389  
4.199  
4.413  
1.517  
3.925  
1.967  
2.681  
2.637  
1.877  
3.529  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Methylthioethane  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.6  
1.4  
1.40  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.48  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.13  
1.2  
1.2  
1.2  
1.2  
109.169  
244.31  
188.74  
58.58  
1.9816  
1.2790  
1.8491  
10.2105  
1.6930  
2.0555  
1.7377  
0.6173  
1.1430  
1.0434  
1.8624  
2.4128  
2.5277  
1.9912  
2.6013  
1.7098  
1.9008  
2.6119  
1.2483  
2.0766  
1.8868  
1.9855  
1.8975  
3.0075  
3.1946  
2.8112  
3.0998  
2.2089  
3.3063  
1.2956  
2.9936  
1.4516  
1.7427  
1.7126  
1.4223  
2.1151  
Fluoromethane  
Acetic Acid  
NA  
Methanethiol  
172.83  
98.79  
NA  
NA  
143.16  
412.02  
277.09  
296.80  
180.73  
90.36  
NA  
Nitric Oxide  
NO  
Niutrogen Monoxide  
Nitrogen  
N2  
NA  
Nitrogen Dioxide  
Nitrogen Tetroxide  
Nitrogen Trifluoride  
Nitromethane  
Nitrosyl Chloride  
Nitrous Oxide  
n-Pentane  
NO2  
NA  
N2O4  
NF3  
NA  
NA  
117.10  
136.21  
127.02  
188.91  
115.24  
72.788  
259.84  
153.983  
173.23  
131.71  
115.24  
81.16  
CH3NO2  
NOCl  
N2O  
NA  
NA  
NA  
C5H12  
C8H18  
O2  
Dimethylpropane  
Octane  
NA  
Oxygen  
NA  
Oxygen Difluoride  
Ozone  
F2O  
NA  
O3  
NA  
Pentaborane  
Pentane  
B5H9  
C5H12  
ClFO3  
C4F8  
C2F6  
C3F8  
C6H6O  
COCl2  
PH3  
NA  
NA  
Perchloryl Fluoride  
Perfluorocyclobutane  
Perfluoroethane  
Perfluoropropane  
Phenol  
NA  
Octafluorocyclobutane  
R116, Hexafluoroethane  
NA  
41.57  
60.24  
44.22  
Hydroxybenzene  
Carbonyl Chloride  
NA  
88.348  
84.06  
Phosgene  
Phosphine  
244.56  
94.52  
Phosphorus Trifluoride  
Propane  
PF3  
NA  
C3H8  
C3H8O  
C3H9N  
C3H6  
C5H5N  
NA  
188.56  
138.356  
140.661  
197.59  
105.114  
Propyl Alcohol  
Propyl Amine  
Propylene  
1- propanol  
1-propanamine  
Propene  
Pyradine  
Azine, Azabenzene  
Difluoromethane, Methylene  
Fluoride  
150  
151  
R32  
CH2F2  
0.6197  
0.2583  
2
2
2.126  
6.251  
-
-
2.321  
6.823  
-
-
1.2  
1.2  
153.91  
54.37  
1.9458  
3.0368  
1,1-Dichloro-2,2,2-  
trifluoroethane  
R123  
C2HCl2F3  
HFM-E-200/HFC-E-202  
Page 22 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1,2-Dichloro-1,2,2-  
trifluoroethane  
152  
153  
154  
155  
156  
R123A  
R125  
C2HCl2F3  
C2HF5  
0.2699  
0.2826  
0.2996  
0.3110  
0.3451  
4
2
4
2
4
6.251  
4.906  
4.170  
4.170  
3.435  
-
-
-
-
-
6.823  
5.355  
4.552  
4.552  
3.750  
-
-
-
-
-
1.2  
1.2  
1.2  
1.2  
1.2  
54.37  
66.50  
78.42  
78.42  
95.52  
3.1065  
2.6844  
2.4595  
2.5001  
2.2693  
Pentafluoroethane  
R134  
C2H2F4  
C2H2F4  
C2H3F3  
1,1,2,2-tetrafluoroethane  
1,1,1,2-tetrafluoroethane  
1,1,2-trifluoroethane  
R134A  
R143  
1,1,1-trifluoroethane,  
Methylfluoroform  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
R143A  
C2H3F3  
C2H4F2  
C3F8  
0.3394  
0.3877  
0.1818  
0.3047  
1.4043  
0.2327  
0.6809  
0.3896  
0.6878  
0.2701  
0.3752  
0.4368  
0.5397  
0.2926  
0.3395  
0.3271  
4
4
4
4
4
4
5
5
4
1
4
4
4
4
4
4
3.435  
2.700  
7.685  
4.780  
9.074  
3.030  
1.313  
4.254  
2.619  
5.970  
4.417  
3.640  
3.273  
6.778  
4.088  
2.947  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.750  
2.947  
8.389  
5.218  
9.905  
3.307  
1.433  
4.644  
2.858  
6.516  
4.821  
3.974  
3.572  
7.399  
4.462  
3.217  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
95.52  
122.18  
44.22  
71.10  
37.45  
112.17  
258.88  
79.89  
129.78  
56.93  
76.94  
93.36  
103.85  
50.14  
83.13  
115.31  
2.2533  
1.9753  
3.0998  
2.7342  
1.0000  
1.9213  
1.1934  
2.9041  
2.7013  
3.0092  
2.9215  
2.7312  
2.8922  
3.4711  
2.5732  
1.9924  
R152A  
1,1-Difluoroethane  
R218  
Octafluoropropane  
R1416  
C2H3Cl2F  
Rn  
1,1-Dichloro-1-fluoroethane,  
Radon  
NA  
Sec-butanol  
Silane  
C4H10  
SiH4  
SiF4  
SO2  
SF6  
O
2-butanol, Sec-butyl Alcohol  
NA  
Silicone Tetrafluoride  
Sulfur Dioxide  
Sulfur Hexafluoride  
Sulfur Tetrafluoride  
Sulfur Trifluoride  
Sulfur Trioxide  
Tetrachloroethylene  
Tetrafluoroethylene  
Tetrahydrofuran  
Tetrafluorosilane  
NA  
NA  
SF4  
NA  
SF3  
NA  
SO3  
NA  
C2Cl4  
C2F4  
NA  
Tetrafluoroethene  
C4H8O  
NA  
2-methyl-2-propanol,  
Tertiarey  
173  
174  
175  
176  
177  
178  
Tert-butanol  
Thiophene  
C4H10  
C4H4S  
C7H8  
O
0.2298  
0.3538  
0.2448  
0.2053  
0.3133  
0.3423  
4
4
4
4
4
4
3.030  
2.783  
3.766  
2.293  
5.453  
6.820  
-
-
-
-
-
-
3.307  
3.037  
4.111  
2.503  
5.952  
7.444  
-
-
-
-
-
-
Butyl Alcohol  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
112.17  
122.14  
90.24  
1.9210  
1.9586  
2.1756  
1.6978  
3.0712  
3.9903  
Thiofuran  
Methylbutene  
2-butene  
NA  
Toluene  
Transbutene  
Trichloroethane  
Trichloroethylene  
C4H8  
148.19  
62.33  
C2H3Cl3  
C2HCl4  
NA  
63.28  
R113, 1,1,2-trichloro-1,2,2-  
trifluoroethane  
179  
Trichlorotrifluoroethane  
C2Cl3F3  
0.2253  
4
7.659  
-
8.360  
-
1.2  
44.374  
3.2607  
UN 1296, n,n-  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
Triethylamine  
Trimethyl Amine  
Tungsten Hexafluoride  
Uranium Hexafluoride  
Vinyl Bromide  
Vinyl Chloride  
Vinyl Flouride  
Water Vapor  
Xenon  
C6H15  
N
0.1619  
0.2822  
0.2453  
0.1859  
0.4768  
0.4956  
0.5716  
0.7992  
1.4042  
0.2036  
0.1953  
0.2028  
4
4
5
4
4
4
5
5
4
4
4
4
4.136  
2.416  
12.174  
14.389  
4.372  
2.555  
1.882  
0.742  
5.366  
4.339  
4.339  
4.339  
-
-
-
-
-
-
-
-
-
-
-
-
4.515  
2.637  
13.288  
15.706  
4.772  
2.788  
2.054  
0.810  
5.858  
4.737  
4.737  
4.737  
-
-
-
-
-
-
-
-
-
-
-
-
diethylethanamine  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.33  
1.6  
1.2  
1.2  
1.2  
82.167  
140.661  
27.92  
2.3280  
1.7109  
4.7379  
4.4681  
3.5770  
2.0988  
1.6528  
0.6715  
1.0000  
2.3103  
2.3108  
2.3102  
C3H9N  
WF6  
n,n-dimethylmethanamine  
NA  
UF6  
Uranium Fluoride  
23.62  
C2H3Br  
C2H3Cl  
C2H3F  
H2O  
NA  
77.74  
Chloroethylene  
133.04  
180.58  
461.53  
63.33  
NA  
NA  
NA  
NA  
NA  
NA  
Xe  
Xylene, m-  
C8H10  
C8H10  
C8H10  
78.32  
Xylene, o-  
78.32  
Xylene, p-  
78.32  
HFM-E-200/HFC-E-202  
Page 23 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
6. WARRANTY  
6.1. Warranty Repair Policy  
Hastings Instruments warrants this product for a period of one year from the date of shipment to be free  
from defects in material and workmanship. This warranty does not apply to defects or failures resulting  
from unauthorized modification, misuse or mishandling of the product. This warranty does not apply to  
batteries or other expendable parts, or to damage caused by leaking batteries or any similar occurrence.  
This warranty does not apply to any instrument which has had a tamper seal removed or broken.  
This warranty is in lieu of all other warranties, expressed or implied, including any implied warranty as  
to fitness for a particular use. Hastings Instruments shall not be liable for any indirect or consequential  
damages.  
Hastings Instruments, will, at its option, repair, replace or refund the selling price of the product if  
Hastings Instruments determines, in good faith, that it is defective in materials or workmanship during  
the warranty period. Defective instruments should be returned to Hastings Instruments, shipment  
prepaid, together with a written statement of the problem and a Return Material Authorization (RMA)  
number.  
Please consult the factory for your RMA number before returning any product for repair. Collect freight  
will not be accepted.  
6.2. Non-Warranty Repair Policy  
Any product returned for a non-warranty repair must be accompanied by a purchase order, RMA form  
and a written description of the problem with the instrument. If the repair cost is higher, you will be  
contacted for authorization before we proceed with any repairs. If you then choose not to have the  
product repaired, a minimum will be charged to cover the processing and inspection. Please consult the  
factory for your RMA number before returning any product repair.  
TELEDYNE HASTINGS INSTRUMENTS  
804 NEWCOMBE AVENUE  
HAMPTON, VIRGINIA 23669 U.S.A.  
ATTENTION: REPAIR DEPARTMENT  
TELEPHONE  
TOLL FREE  
FAX  
(757) 723-6531  
1-800-950-2468  
(757) 723-3925  
E MAIL  
Repair Forms may be obtained from the “Information Request” section of the Hastings Instruments web  
site.  
HFM-E-200/HFC-E-202  
Page 24 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7. Drawings  
7.1. Notes:  
1.  
Place jumper (Item 42) on pins 4 and 5 of P2 and P3 as shown.  
Place one on bottom two pins (1 and 2) of JP3.  
Place one on both pins of JP6.  
2.  
3.  
HFM-E-200/HFC-E-202  
Page 25 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
HFM-E-200/HFC-E-202  
Page 26 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
HFM-E-200/HFC-E-202  
Page 27 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
HFM-E-200/HFC-E-202  
Page 28 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
HFM-E-200/HFC-E-202  
Page 29 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
HFM-E-200/HFC-E-202  
Page 30 of 30  
Download from Www.Somanuals.com. All Manuals Search And Download.  

Thermos Gas Grill 461644604 User Manual
Toshiba All in One Printer 165 205 User Manual
Tripp Lite Power Supply SUPDM12 User Manual
Troy Bilt Trimmer TB495 User Manual
ViewSonic Computer Monitor VX2260s LED User Manual
ViewSonic Digital Photo Frame DPX802 User Manual
Viking Refrigerator DFRD144D User Manual
Wasp Bar Code Scanner WLS 8400 ER FZ Series User Manual
Watlow Electric Water Heater Firerod Immersion User Manual
Wayne Water Pump 390601 001 User Manual