Nexus 21 Computer Hardware 1066MT s Interposer User Manual

NEX-DDR3INTR-THIN  
DDR3 800/1066MT/s Interposer  
For use with the TLA7BB4 Logic Analyzer  
Modules  
Including these Software Support packages:  
B_DDR3D_2D (Single/Dual/Quad Rank, single slot with Selective Clocking)  
*B_DDR3D_2G (2 or 3 DIMM slots, two Rank @ 800MT/s)  
*B_DDR3D_3A (2 DIMM slots, two Rank @ 1066MT/s)  
* Optional Software  
Copyright © 2007 Nexus Technology, Inc. All rights reserved.  
Contents of this publication may not be reproduced in any form without  
the written permission of Nexus Technology, Inc.  
Brand and product names used throughout this manual are the trademarks  
of their respective holders.  
DDR3THIN-MN-XXX  
1
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
License Agreement  
In return for payment for this product, Nexus Technology grants the Customer a SINGLE user  
LICENSE in the software subject to the following:  
Use of the Software:  
- Customer may use the software on only one Tektronix mainframe logic analysis system at  
any given time  
- Customer may make copies or adaptations of the software (see Copies and Adaptations below  
for more information)  
- Customer may NOT reverse assemble or decompile the software  
Copies and Adaptations:  
- Are allowed for archival purpose only  
- When copying for adaptation is an essential step in the use of the software with the logic  
analyzer and/or logic analysis mainframe so long as the copies and adaptations are used in no  
other manner. Customer has no right to copy software unless it acquires an appropriate  
license to reproduce from Nexus Technology.  
- Customer agrees that it does not have any title or ownership of the software, other than the  
physical media.  
Ownership:  
- Customer acknowledges and agrees that the software is copyrighted and protected under the  
copyright laws.  
- Transfer of the right of ownership shall only be done with the consent of Nexus Technology.  
Sublicensing and Distribution:  
- Customer may not sublicense the software or distribute copies of the software to the public in  
physical media or by electronic means or any other means without the prior written consent  
of Nexus Technology.  
Compliance with WEEE and RoHS Directives  
This product is subject to European Union regulations on Waste Electrical and Electronics  
Equipment. Return to Nexus Technology for recycle at end of life. Costs associated with the  
return to Nexus Technology are the responsibility of the sender.  
DDR3THIN-MN-XXX  
3
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TABLE OF CONTENTS  
DDR3THIN-MN-XXX  
4
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
DDR3THIN-MN-XXX  
5
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TABLE OF FIGURES  
Figure 4 - Read Data Latency = CAS Latency + CAS Additive Latency + RDIMM (5+0+1) = 6  
DDR3THIN-MN-XXX  
6
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
DDR3THIN-MN-XXX  
8
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1.0 OVERVIEW  
1.1 General Information  
The DDR3 Interposer Products are designed for ease of use. Interposers extra signal trace  
length, also an extra connector that might affect the quality of the system operation in some  
systems.  
This Product is designed for capture of 1066MT/s or slower, and may only be used with  
the Tektronix TLA7BB4 acquisition modules.  
This product requires the use of the new NEX-PRB1X-T / PRB2X-T Low Profile Distributed  
probes available from Nexus. Tektronix P68xx or P69xx probes can not be used.  
This Interposer has been designed to provide a quick and easy connection to interface to a  
Tektronix TLA7BB4 Logic Analyzer acquisition cards to a 240-pin DDR3 (Double Data Rate 3)  
bus. Contact NEXUS Technology for other available DDR3 Products. The Nexus Technology  
web site (www.NexusTechnology.com) contains information on the latest software release.  
1.2 Software Package description  
The NEX-DDR3INTR-THIN support includes the following software packages:  
B_DDR3D_2D allows the user to acquire Read AND Write data from a single, dual or  
quad rank DDR3 DIMM running 1066MT/s or less. This support requires 1ea. NEX-  
PRB1X-T and 3ea. NEX-PRB2X-T Low Profile Distributed probes, and two merged  
Tektronix TLA7BB4 acquisition cards. This support can use selective clocking to reduce  
the number of Idle states acquired by the logic analyzer.  
Optional software available for the NEX-DDR3INTR-THIN support includes the following  
software packages:  
B_DDR3D_2G allows the user to acquire Read AND Write data from a memory  
channel made up of two or three DIMM slots with one or two rank DDR3 DIMMs  
running 800MT/s or less. This is total disassembly for the 3 DIMM memory channel.  
This support requires 2ea. NEX-PRB1X-T and 3ea. NEX-PRB2X-T Low Profile  
Distributed probes, and two merged Tektronix TLA7BB4 acquisition cards. This support  
also requires the NEX-PRBCOAX product. This support can be used with Single Rank  
and Dual Rank DIMMs (will also support a single quad rank DIMM). Reads for the three  
DIMMs must have a common data eye (over lap) of 330ps. No selective clocking  
B_DDR3D_3A allows the user to acquire Read AND Write data from a memory channel  
made up of two DIMM slots with single or dual rank DDR3 DIMMs running 1066MT/s  
or less. This is total disassembly for the 2 DIMM memory channel. This support  
requires 5ea. NEX-PRB1X-T and 3ea. NEX-PRB2X-T Low Profile Distributed probes,  
and three merged Tektronix TLA7BB4 acquisition cards. This support also requires two  
DDR3THIN-MN-XXX  
9
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
NEX-DDR3INTR-THIN Interposer products. This support can be used with Single  
Rank and Dual Rank DIMMs.  
Note that this manual uses some terms generically. For instance, references to the TLA700/7000  
apply to all suitable TLA700/7000 Logic Analyzers, or PCs being used to control the TLA.  
NEX-DDR3INTR-THIN refers to the B_DDR3D_2D/2G/3A software support packages.  
Appendix G has a silk-screened print of the NEX-DDR3INTR-THIN Logic Analyzer Interposer  
board. Referring to this drawing while reading the manual is suggested.  
This manual assumes that the user is familiar with the DDR3 SDRAM Specification and the  
Tektronix TLA Logic Analyzers. It is also expected that the user is familiar with the Windows  
environment used with the TLA.  
DDR3THIN-MN-XXX  
10  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1.3 Eye size required  
The Eye size (stable data) required at the input resistor to the Nexus passive probes (NEX-  
PRB1X(-T) & NEX-PRB2X(-T)) is 330ps, and 0.2V. Capture accuracy may be affected if a  
stable eye can not meet this requirement. . The eye is a perfectly shaped diamond with each side  
equal distant from the center.  
2.0 SOFTWARE INSTALLATION  
To Install the NEX-DDR3INTR-THIN software support place the B_DDR3D_XX Install CD in  
the CD drive of the TLA or the PC being used to control the TLA. Using Windows Explorer  
select the CD, navigate to the support_software folder, select the folder of the support to be  
installed (B_DDR3D_2D, B_DDR3D_2G or B_DDR3D_3A) and then run the .MSI file within  
the folder. The selected software will be installed on the TLA’s hard disk.  
To load the support into the TLA, first select the desired Logic Analyzer module (different  
supports require different module counts) in the Setup window, select Load Support Package  
from the File pull-down, then choose the software package name you are want to load and click  
on Okay. Note that this support requires two or more merged modules and that the TLA  
acquisition cards must be configured properly for the software to load.  
DDR3THIN-MN-XXX  
11  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
3.0 CONNECTING to the NEX-DDR3INTR-THIN INTERPOSER  
3.1 General  
Care should be taken to support the weight of the acquisition probes so that the Logic Analyzer  
Interposer board and/or target socket are not damaged.  
3.2 B_DDR3D_2D Support  
To acquire DDR3 Read and Write data at speeds up to 1066MT/s requires two merged  
TLA7BB4 136-channel, with 1.4G state option, acquisition cards and the use of the  
B_DDR3D_2D support software. The Master card will be in the lower numbered of the two  
cards. Slave card #1 is in the adjacent high-numbered slots. The logic analyzer modules should  
be connected to the DDR3 DIMM Interposer as follows using (1) NEX-PPRB1X-T probes and  
three (3) NEX-PRB2X-T probes:  
TLA Master  
Connect the NEX-PRB1X-T “C” probe head to DDR3 Interposer’s LEASH (soldered-on  
coax cable) that is attached to “M_C” position on the Interposer.  
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH  
that is attached to “M_ A3/2 A1/0” position on the Interposer.  
Match the label on the end of the NEX-PRB1X-T/2X-T probes with the labels on the  
front of the Tektronix Logic Analyzer Master module and connect.  
TLA Slave  
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH  
that is attached to “S_ A3/2 A1/0” position on the Interposer.  
Connect the NEX-PRB2X-T “C3/2” & “E3/2” probe head to DDR3 Interposer’s LEASH  
that is attached to “S_C3/2 E3/2” position on the Interposer.  
See Figure 1 for connections. Table 1 shows the Channel Grouping / Wiring for use with the  
B_DDR3D_2D support.  
3.3 B_DDR3D_2G Support  
To acquire DDR3 Read and Write data from two or three DIMM slots, for total memory channel  
disassembly, at speeds up to 800MT/s requires two merged TLA7BB4 136-channel, with 1.4G  
state option, acquisition cards and the use of the B_DDR3D_2G optional support software. The  
Master card will be in the lower numbered, of the two cards. Slave card #1 will be in the  
adjacent high-numbered slots. This support requires an additional NEX-PRB1X-T (for a total of  
2), and the NEX-PRBCOAX product. The logic analyzer modules should be connected to the  
DDR3 DIMM Interposer as follows using (1) NEX-PPRB1X-T probes and three (3) NEX-  
PRB2X-T probes, with the additional NEX-PRB1X-T connected to the NEX-PRBCOAX:  
DDR3THIN-MN-XXX  
12  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
TLA Master  
Connect the NEX-PRB1X-T “C” probe head to DDR3 Interposer’s LEASH (soldered-on  
coax cable) that is attached to “M_C” position on the Interposer.  
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH  
that is attached to “M_ A3/2 A1/0” position on the Interposer.  
Connect the NEX-PRB1X-T “E” probe head to the NEX-PRBCOAX.  
Note the leads 9- 12 of the NEX-PRBCOAX must be connected to the second slots Chip  
Select lines (CS) near the second and third DIMM socket, usually on the back of the  
mother board.  
Match the label on the end of the NEX-PRB1X-T/2X-T probes with the labels on the  
front of the Tektronix Logic Analyzer Master module and connect.  
TLA Slave  
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH  
that is attached to “S_ A3/2 A1/0” position on the Interposer.  
Connect the NEX-PRB2X-T “C3/2” & “E3/2” probe head to DDR3 Interposer’s LEASH  
that is attached to “S_C3/2 E3/2” position on the Interposer.  
See Figure 1 for connections. Table 2 shows the Channel Grouping / Wiring for use with the  
B_DDR3D_2G support.  
3.4 B_DDR3D_3A Support  
To acquire DDR3 Read and Write data from a two DIMM slots, for total memory channel  
disassembly, at speeds up to 1066MT/s requires three merged TLA7BB4 136-channel, with  
1.4G state option, acquisition cards and the use of the B_DDR3D_3A optional support software.  
The Master card will be in the lower numbered, of the three cards. Slave card #1 will be in the  
adjacent high-numbered slots. Slave card #2 will be in the adjacent low-numbered slots. This  
support also requires two NEX-DDR3INTR-THIN Interposer products. The logic analyzer  
modules should be connected to the DDR3 DIMM Interposer as follows using (5) NEX-  
PPRB1X-T probes and three (3) NEX-PRB2X-T probes:  
TLA Master  
Connect the NEX-PRB1X-T “C” probe head to DDR3 Interposer’s LEASH (soldered-on  
coax cable) that is attached to “M_C” position on the Interposer.  
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH  
that is attached to “M_ A3/2 A1/0” position on the Interposer.  
Match the label on the end of the NEX-PRB1X-T/2X-T probes with the labels on the  
front of the Tektronix Logic Analyzer Master module and connect.  
DDR3THIN-MN-XXX  
13  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
TLA Slave1  
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH  
that is attached to “S_ A3/2 A1/0” position on the Interposer.  
Connect the NEX-PRB2X-T “C3/2” & “E3/2” probe head to DDR3 Interposer’s LEASH  
that is attached to “S_C3/2 E3/2” position on the Interposer.  
TLA Slave2  
Connect the NEX-PRB1X-T A3/2 D3/2 probe head to DDR3 Interposer’s LEASH that is  
attached to “M_A3/2 A1/0” position on the second Interposer.  
Connect the NEX-PRB1X-T A1/0 D1/0 probe head to DDR3 Interposer’s LEASH that is  
attached to “S_A3/2 A1/0” position on the second Interposer.  
Connect the NEX-PRB1X-T “C” probe head to DDR3 Interposer’s LEASH that is  
attached to “M_C3/2 C1/0” position on the second Interposer.  
Connect the NEX-PRB1X-T “E” probe head to DDR3 Interposer’s LEASH that is  
attached to “S_C3/2 E3/2” position on the second Interposer.  
See Figure 1 for connections. Table 3 shows the Channel Grouping / Wiring for use with the  
B_DDR3D_3A support.  
DDR3THIN-MN-XXX  
14  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.5 Short “LEASH” probes  
The standard product includes 4 “LEASH” probes connected to this Interposer product. These  
short probes are soldered directly onto the interposer and interface the Interposer to the Passive  
probes that connect to the logic analyzer. These “LEASH” probes are to allow the user to easily  
install and remove the Interposer product in their system with out the added weight of the  
passive probe attached. There may be other probing options in the future. Contact Nexus for any  
updates.  
Figure 1 below shows the location on the Interposer of the LEASH probe connections.  
Location of HCD connectors, right under metal compression plate, and probe tip board:  
S_C3/2  
M_A3/2 A1/0  
M_  
S_A3/2 A1/0  
PRB2  
PRB2  
PRB1  
PRB2  
Figure 1 – Drawing of Interposer with probes attached  
The four (4) each, 1 foot long, “LEASH” probes that are soldered onto the Interposer are in turn  
connected to either a NEX-PRB1X-T or NEX-PRB2X-T probe. The NEX-PRB1X-T or NEX-  
PRB2X-T probe in turn connects to the input of the logic analyzer modules. The connection  
between the LEASH Probes and the logic Analyzer is a Samtec connector with a pin out as  
shown below on the LEASH probe. Refer to 3.2 to determine if a NEX-PRB1X-T or NEX-  
PRB2X-T connects to each LEASH probe.  
DDR3THIN-MN-XXX  
15  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
The strain relief on the LEASH to NEXPRB1X/2X interface, while designed for bench handling,  
can be damaged by twisting the coax cables. Bends of over 45 degrees in this area should be  
avoided. The coax connection points, under any circumstances, are not to be bent.  
3.5.1 Samtec connector on the LEASH probe pins  
Figure 2 – Samtec connector on the LEASH probe  
The LEASH probe connects to the NEX-PRB1X-T or NEX-PRB2X-T probe using two plastic  
nuts and screws, with a plastic spacer between the two boards. These parts are supplied.  
DDR3THIN-MN-XXX  
16  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
3.5.2 LEASH probe to NEX-PRB1X/2X connection  
Probe tip on the NEX-PRB1X-T or  
NEX-PRB2X-T  
Two each plastic  
Spacers  
Screws  
&
Nuts  
Hold each probe  
together  
Interposer  
here  
Transition board on the “LEASH”  
Cable end  
Figure 3 – LEASH probe to NEX-PRB1X/2X connection  
3.5.3 Alternate use of NEX-PRB1X or NEX-PRB2X probes  
The NEX-PRB1X or NEX-PRB2X can be used in place of the “-T” probes but will have to be  
secured for long term connection by tie-wraps.  
DDR3THIN-MN-XXX  
17  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
3.6 Slot Numbering  
The Interposer must be installed in the furthest slot from the memory controller. For 1066MT/s  
support only the two furthest slots may be used. Slots are named as shown below:  
Slot naming for a three slot system  
Memory controller  
Slot C Slot B Slot A  
cS0-1#  
bS0-1#  
S0-3#  
cCLKE0-1 bCLKE0-1 CLKE0-  
(from NEX- (from NEX-  
PRBCOAX) PRBCOAX)  
If only one slot is used it must be the furthest slot from the memory controller.  
If two slots are used they must be the furthest slots from the memory controller.  
Quad rank is only supported in the single slot configuration  
Interposer in any two or three slot configuration must be in the furthest slot.  
1066MT/s full channel support (B_DDR3D_3A) requires two interposers in the two  
furthest slots from the memory controller.  
DDR3THIN-MN-XXX  
18  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Group  
Name  
RdA_DatHi  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
234  
233  
228  
227  
115  
114  
109  
108  
225  
224  
219  
218  
106  
105  
100  
99  
216  
215  
210  
209  
97  
96  
91  
90  
TLA  
Input  
Group  
Name  
RdA_DatLo  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
156  
155  
150  
149  
37  
36  
31  
30  
147  
146  
141  
140  
28  
27  
22  
21  
138  
137  
132  
131  
19  
18  
13  
12  
129  
128  
123  
122  
10  
9
4
3
TLA  
Input  
RD_A_DQ63  
RD_A_DQ62  
RD_A_DQ61  
RD_A_DQ60  
RD_A_DQ59  
RD_A_DQ58  
RD_A_DQ57  
RD_A_DQ56  
RD_A_DQ55  
RD_A_DQ54  
RD_A_DQ53  
RD_A_DQ52  
RD_A_DQ51  
RD_A_DQ50  
RD_A_DQ49  
RD_A_DQ48  
RD_A_DQ47  
RD_A_DQ46  
RD_A_DQ45  
RD_A_DQ44  
RD_A_DQ43  
RD_A_DQ42  
RD_A_DQ41  
RD_A_DQ40  
RD_A_DQ39  
RD_A_DQ38  
RD_A_DQ37  
RD_A_DQ36  
RD_A_DQ35  
RD_A_DQ34  
RD_A_DQ33  
RD_A_DQ32  
S_A2:0  
S_A2:1  
S_A2:5  
S_CK0  
S_A2:2  
S_A2:3  
S_A2:7  
S_A3:0  
S_A3:2  
S_A3:3  
S_A3:7  
S_A1:5  
S_A3:1  
S_A3:4  
S_A1:7  
S_A1:6  
S_A1:4  
S_A1:1  
S_A0:7  
S_A0:6  
S_A1:3  
S_A1:2  
S_A0:5  
S_A0:4  
S_A0:3  
S_A0:2  
M_C2:1  
M_C2:4  
S_A0:1  
S_A0:0  
M_C2:6  
M_C2:7  
RD_A_DQ31  
RD_A_DQ30  
RD_A_DQ29  
RD_A_DQ28  
RD_A_DQ27  
RD_A_DQ26  
RD_A_DQ25  
RD_A_DQ24  
RD_A_DQ23  
RD_A_DQ22  
RD_A_DQ21  
RD_A_DQ20  
RD_A_DQ19  
RD_A_DQ18  
RD_A_DQ17  
RD_A_DQ16  
RD_A_DQ15  
RD_A_DQ14  
RD_A_DQ13  
RD_A_DQ12  
RD_A_DQ11  
RD_A_DQ10  
RD_A_DQ9  
RD_A_DQ8  
RD_A_DQ7  
RD_A_DQ6  
RD_A_DQ5  
RD_A_DQ4  
RD_A_DQ3  
RD_A_DQ2  
RD_A_DQ1  
RD_A_DQ0  
M_A0:6  
M_A0:3  
S_C2:0  
S_C2:1  
M_A0:4  
M_A0:1  
S_C2:2  
S_C2:3  
S_C2:4  
S_C2:5  
S_C3:2  
S_C3:3  
S_C2:6  
S_C2:7  
S_C3:1  
S_C3:4  
S_C3:6  
S_C3:7  
S_E3:4  
S_E3:1  
S_C3:5  
S_E3:7  
S_E3:3  
S_E3:2  
S_E3:0  
S_E2:7  
S_E2:3  
S_E2:2  
S_Q3  
207  
206  
201  
200  
88  
87  
83  
81  
S_E2:5  
S_E2:1  
S_E2:0  
Table 1 - B_DDR3D_2D (<=1066MT/s Read and Write) TLA Channel Grouping  
Notes:  
1. All signals on this page are required for accurate post-processing of acquired data  
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair  
DDR3THIN-MN-XXX  
19  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Group  
Name  
Signal  
Name  
DDR3  
Pin#  
TLA  
Input  
Group  
Name  
Signal  
Name  
DDR3  
Pin#  
TLA  
Input  
RdB_DatHi  
(Hex)  
RD_B_DQ63  
RD_B_DQ62  
RD_B_DQ61  
RD_B_DQ60  
RD_B_DQ59  
RD_B_DQ58  
RD_B_DQ57  
RD_B_DQ56  
RD_B_DQ55  
RD_B_DQ54  
RD_B_DQ53  
RD_B_DQ52  
RD_B_DQ51  
RD_B_DQ50  
RD_B_DQ49  
RD_B_DQ48  
RD_B_DQ47  
RD_B_DQ46  
RD_B_DQ45  
RD_B_DQ44  
RD_B_DQ43  
RD_B_DQ42  
RD_B_DQ41  
RD_B_DQ40  
RD_B_DQ39  
RD_B_DQ38  
RD_B_DQ37  
RD_B_DQ36  
RD_B_DQ35  
RD_B_DQ34  
RD_B_DQ33  
RD_B_DQ32  
234  
233  
228  
227  
115  
114  
109  
108  
225  
224  
219  
218  
106  
105  
100  
99  
216  
215  
210  
209  
97  
96  
91  
90  
S_A2:0^1  
S_A2:1^1  
S_A2:5^1  
S_CK0^1  
S_A2:2^1  
S_A2:3^1  
S_A2:7^1  
S_A3:0^1  
S_A3:2^1  
S_A3:3^1  
S_A3:7^1  
S_A1:5^1  
S_A3:1^1  
S_A3:4^1  
S_A1:7^1  
S_A1:6^1  
S_A1:4^1  
S_A1:1^1  
S_A0:7^1  
S_A0:6^1  
S_A1:3^1  
S_A1:2^1  
S_A0:5^1  
S_A0:4^1  
S_A0:3^1  
S_A0:2^1  
M_C2:1^1  
M_C2:4^1  
S_A0:1^1  
S_A0:0^1  
M_C2:6^1  
M_C2:7^1  
RdB_DatLo  
(Hex)  
RD_B_DQ31  
RD_B_DQ30  
RD_B_DQ29  
RD_B_DQ28  
RD_B_DQ27  
RD_B_DQ26  
RD_B_DQ25  
RD_B_DQ24  
RD_B_DQ23  
RD_B_DQ22  
RD_B_DQ21  
RD_B_DQ20  
RD_B_DQ19  
RD_B_DQ18  
RD_B_DQ17  
RD_B_DQ16  
RD_B_DQ15  
RD_B_DQ14  
RD_B_DQ13  
RD_B_DQ12  
RD_B_DQ11  
RD_B_DQ10  
RD_B_DQ9  
RD_B_DQ8  
RD_B_DQ7  
RD_B_DQ6  
RD_B_DQ5  
RD_B_DQ4  
RD_B_DQ3  
RD_B_DQ2  
RD_B_DQ1  
RD_B_DQ0  
156  
155  
150  
149  
37  
36  
31  
30  
147  
146  
141  
140  
28  
27  
22  
21  
138  
137  
132  
131  
19  
18  
13  
12  
129  
128  
123  
122  
10  
9
4
3
M_A0:6^1  
M_A0:3^1  
S_C2:0^1  
S_C2:1^1  
M_A0:4^1  
M_A0:1^1  
S_C2:2^1  
S_C2:3^1  
S_C2:4^1  
S_C2:5^1  
S_C3:2^1  
S_C3:3^1  
S_C2:6^1  
S_C2:7^1  
S_C3:1^1  
S_C3:4^1  
S_C3:6^1  
S_C3:7^1  
S_E3:4^1  
S_E3:1^1  
S_C3:5^1  
S_E3:7^1  
S_E3:3^1  
S_E3:2^1  
S_E3:0^1  
S_E2:7^1  
S_E2:3^1  
S_E2:2^1  
S_Q3^1  
207  
206  
201  
200  
88  
87  
83  
81  
S_E2:5^1  
S_E2:1^1  
S_E2:0^1  
Table 1 – B_DDR3D_2D (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. All signals on this page are required for accurate post-processing of acquired data  
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair  
3. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a  
MagniVu display value  
DDR3THIN-MN-XXX  
20  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
WrA_DatHi  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
234  
233  
228  
227  
115  
114  
109  
108  
225  
224  
219  
218  
106  
105  
100  
99  
216  
215  
210  
209  
97  
96  
91  
90  
TLA  
Input  
S_D2:0  
S_D2:1  
S_D2:5  
S_Q1  
Group  
Name  
WrA_DatLo  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
156  
155  
150  
149  
37  
36  
31  
30  
147  
146  
141  
140  
28  
27  
22  
21  
138  
137  
132  
131  
19  
18  
13  
12  
129  
128  
123  
122  
10  
9
4
3
TLA  
Input  
WR_A_DQ63  
WR_A_DQ62  
WR_A_DQ61  
WR_A_DQ60  
WR_A_DQ59  
WR_A_DQ58  
WR_A_DQ57  
WR_A_DQ56  
WR_A_DQ55  
WR_A_DQ54  
WR_A_DQ53  
WR_A_DQ52  
WR_A_DQ51  
WR_A_DQ50  
WR_A_DQ49  
WR_A_DQ48  
WR_A_DQ47  
WR_A_DQ46  
WR_A_DQ45  
WR_A_DQ44  
WR_A_DQ43  
WR_A_DQ42  
WR_A_DQ41  
WR_A_DQ40  
WR_A_DQ39  
WR_A_DQ38  
WR_A_DQ37  
WR_A_DQ36  
WR_A_DQ35  
WR_A_DQ34  
WR_A_DQ33  
WR_A_DQ32  
WR_A_DQ31  
WR_A_DQ30  
WR_A_DQ29  
WR_A_DQ28  
WR_A_DQ27  
WR_A_DQ26  
WR_A_DQ25  
WR_A_DQ24  
WR_A_DQ23  
WR_A_DQ22  
WR_A_DQ21  
WR_A_DQ20  
WR_A_DQ19  
WR_A_DQ18  
WR_A_DQ17  
WR_A_DQ16  
WR_A_DQ15  
WR_A_DQ14  
WR_A_DQ13  
WR_A_DQ12  
WR_A_DQ11  
WR_A_DQ10  
WR_A_DQ9  
WR_A_DQ8  
WR_A_DQ7  
WR_A_DQ6  
WR_A_DQ5  
WR_A_DQ4  
WR_A_DQ3  
WR_A_DQ2  
WR_A_DQ1  
WR_A_DQ0  
M_D0:6  
M_D0:3  
S_C0:0  
S_C0:1  
M_D0:4  
M_D0:1  
S_C0:2  
S_C0:3  
S_C0:4  
S_C0:5  
S_C1:2  
S_C1:3  
S_C0:6  
S_C0:7  
S_C1:1  
S_C1:4  
S_C1:6  
S_C1:7  
S_E1:4  
S_E1:1  
S_C1:5  
S_E1:7  
S_E1:3  
S_E1:2  
S_E1:0  
S_E0:7  
S_E0:3  
S_E0:2  
S_CK2  
S_E0:5  
S_E0:1  
S_E0:0  
S_D2:2  
S_D2:3  
S_D2:7  
S_D3:0  
S_D3:2  
S_D3:3  
S_D3:7  
S_D1:5  
S_D3:1  
S_D3:4  
S_D1:7  
S_D1:6  
S_D1:4  
S_D1:1  
S_D0:7  
S_D0:6  
S_D1:3  
S_D1:2  
S_D0:5  
S_D0:4  
S_D0:3  
S_D0:2  
M_C0:1  
M_C0:4  
S_D0:1  
S_D0:0  
M_C0:6  
M_C0:7  
207  
206  
201  
200  
88  
87  
83  
81  
Table 1 – B_DDR3D_2D (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. All signals on this page are required for accurate post-processing of acquired data  
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair  
DDR3THIN-MN-XXX  
21  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
WrB_DatHi  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
234  
233  
228  
227  
115  
114  
109  
108  
225  
224  
219  
218  
106  
105  
100  
99  
216  
215  
210  
209  
97  
96  
91  
90  
TLA  
Input  
S_D2:0^1  
S_D2:1^1  
S_D2:5^1  
S_Q1^1  
Group  
Name  
WrB_DatLo  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
156  
155  
150  
149  
37  
36  
31  
30  
147  
146  
141  
140  
28  
27  
22  
21  
138  
137  
132  
131  
19  
18  
13  
12  
129  
128  
123  
122  
10  
9
4
3
TLA  
Input  
WR_B_DQ63  
WR_B_DQ62  
WR_B_DQ61  
WR_B_DQ60  
WR_B_DQ59  
WR_B_DQ58  
WR_B_DQ57  
WR_B_DQ56  
WR_B_DQ55  
WR_B_DQ54  
WR_B_DQ53  
WR_B_DQ52  
WR_B_DQ51  
WR_B_DQ50  
WR_B_DQ49  
WR_B_DQ48  
WR_B_DQ47  
WR_B_DQ46  
WR_B_DQ45  
WR_B_DQ44  
WR_B_DQ43  
WR_B_DQ42  
WR_B_DQ41  
WR_B_DQ40  
WR_B_DQ39  
WR_B_DQ38  
WR_B_DQ37  
WR_B_DQ36  
WR_B_DQ35  
WR_B_DQ34  
WR_B_DQ32  
WR_B_DQ33  
WR_B_DQ31  
WR_B_DQ30  
WR_B_DQ29  
WR_B_DQ28  
WR_B_DQ27  
WR_B_DQ26  
WR_B_DQ25  
WR_B_DQ24  
WR_B_DQ23  
WR_B_DQ22  
WR_B_DQ21  
WR_B_DQ20  
WR_B_DQ19  
WR_B_DQ18  
WR_B_DQ17  
WR_B_DQ16  
WR_B_DQ15  
WR_B_DQ14  
WR_B_DQ13  
WR_B_DQ12  
WR_B_DQ11  
WR_B_DQ10  
WR_B_DQ9  
WR_B_DQ8  
WR_B_DQ7  
WR_B_DQ6  
WR_B_DQ5  
WR_B_DQ4  
WR_B_DQ3  
WR_B_DQ2  
WR_B_DQ1  
WR_B_DQ0  
M_D0:6^1  
M_D0:3^1  
S_C0:0^1  
S_C0:1^1  
M_D0:4^1  
M_D0:1^1  
S_C0:2^1  
S_C0:3^1  
S_C0:4^1  
S_C0:5^1  
S_C1:2^1  
S_C1:3^1  
S_C0:6^1  
S_C0:7^1  
S_C1:1^1  
S_C1:4^1  
S_C1:6^1  
S_C1:7^1  
S_E1:4^1  
S_E1:1^1  
S_C1:5^1  
S_E1:7^1  
S_E1:3^1  
S_E1:2^1  
S_E1:0^1  
S_E0:7^1  
S_E0:3^1  
S_E0:2^1  
S_CK2^1  
S_E0:5^1  
S_E0:1^1  
S_E0:0^1  
S_D2:2^1  
S_D2:3^1  
S_D2:7^1  
S_D3:0^1  
S_D3:2^1  
S_D3:3^1  
S_D3:7^1  
S_D1:5^1  
S_D3:1^1  
S_D3:4^1  
S_D1:7^1  
S_D1:6^1  
S_D1:4^1  
S_D1:1^1  
S_D0:7^1  
S_D0:6^1  
S_D1:3^1  
S_D1:2^1  
S_D0:5^1  
S_D0:4^1  
S_D0:3^1  
S_D0:2^1  
M_C0:1^1  
M_C0:4^1  
S_D0:1^1  
S_D0:0^1  
M_C0:6^1  
M_C0:7^1  
207  
206  
201  
200  
88  
87  
83  
81  
Table 1 – B_DDR3D_2D (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. All signals on this page are required for accurate post-processing of acquired data  
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair  
3. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a  
MagniVu display value  
DDR3THIN-MN-XXX  
22  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
RdAChkBits  
(OFF)  
Signal  
Name  
DDR3  
Pin #  
165  
164  
159  
158  
46  
45  
40  
39  
165  
164  
159  
158  
46  
45  
40  
39  
230  
221  
212  
203  
152  
143  
134  
125  
TLA  
Input  
Group  
Name  
Signal  
Name  
DDR3  
Pin #  
165  
164  
159  
158  
46  
45  
40  
39  
165  
164  
159  
158  
46  
45  
40  
39  
230  
221  
212  
203  
152  
143  
134  
125  
TLA  
Input  
M_D1:5  
M_D1:4  
M_D1:0  
M_D0:7  
M_D1:6  
M_D1:3  
RD_A_CB7  
RD_A_CB6  
RD_A_CB5  
RD_A_CB4  
RD_A_CB3  
RD_A_CB2  
RD_A_CB1  
RD_A_CB0  
RD_B_CB7  
RD_B_CB6  
RD_B_CB5  
RD_B_CB4  
RD_B_CB3  
RD_B_CB2  
RD_B_CB1  
RD_B_CB0  
A_DM7/DQS16  
A_DM6/DQS15  
A_DM5/DQS14  
A_DM4/DQS13  
A_DM3/DQS12  
A_DM2/DQS11  
A_DM1/DQS10  
A_DM0/DQS9  
M_A1:5  
M_A1:4  
M_A1:0  
M_A0:7  
M_A1:6  
M_A1:3  
M_CK1  
M_A0:5  
WrAChkBits 4  
(OFF)  
WR_A_CB7  
WR_A_CB6  
WR_A_CB5  
WR_A_CB4  
WR_A_CB3  
WR_A_CB2  
WR_A_CB1  
WR_A_CB0  
WR_B_CB7  
WR_B_CB6  
WR_B_CB5  
WR_B_CB4  
WR_B_CB3  
WR_B_CB2  
WR_B_CB1  
WR_B_CB0  
B_DM7/DQS16  
B_DM6/DQS15  
B_DM5/DQS14  
B_DM4/DQS13  
B_DM3/DQS12  
B_DM2/DQS11  
B_DM1/DQS10  
B_DM0/DQS9  
M_Q0  
M_D0:5  
RdBChkBits 4  
(OFF)  
M_A1:5^1 WrBChkBits 4  
M_A1:4^1 (OFF)  
M_A1:0^1  
M_A0:7^1  
M_A1:6^1  
M_A1:3^1  
M_CK1^1  
M_A0:5^1  
S_A2:4  
S_A3:6  
S_A1:0  
M_C2:0  
M_A0:2  
S_CK3  
S_E3:5  
S_E2:6  
M_D1:5^1  
M_D1:4^1  
M_D1:0^1  
M_D0:7^1  
M_D1:6^1  
M_D1:3^1  
M_Q0^1  
M_D0:5^1  
S_A2:4^1  
S_A3:6^1  
S_A1:0^1  
M_C2:0^1  
M_A0:2^1  
S_CK3^1  
S_E3:5^1  
S_E2:6^1  
ADatMsks  
(BIN)  
BDatMsks 4  
(BIN)  
Table 1 – B_DDR3D_2D (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. ‘ # ‘ denotes a low-true signal  
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set  
3. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair  
4. Signals in these groups are acquired using the TLA’s demux capability and will not have  
a MagniVu display value  
DDR3THIN-MN-XXX  
23  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
Signal  
Name  
CKE1  
CKE0  
S3#  
S2#  
S1#  
S0#  
BA2  
BA1  
BA0  
A15  
A14  
DDR3  
Pin #  
169  
50  
49  
48  
76  
193  
52  
190  
71  
171  
172  
196  
174  
70  
192  
74  
73  
111  
103  
94  
85  
34  
TLA  
Input  
Group  
Name  
Signal  
Name  
BA2  
BA1  
BA0  
A15  
A14  
A13  
A12/BC#  
A11  
A10/AP  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
DDR3  
Pin #  
52  
190  
71  
171  
172  
196  
174  
55  
TLA  
Input  
Control 2  
M_A3:2  
M_A3:1  
M_C2:5  
M_C3:0  
M_C3:4  
M_C3:3  
M_A3:0  
M_C3:7  
M_C1:6  
M_CK0  
M_A2:5  
M_CK3  
M_A2:4  
M_C1:3  
M_C3:6  
M_C3:5  
M_C1:7  
S_A2:6  
S_A3:5  
S_CK1  
M_C2:3  
M_A0:1  
S_C3:0  
S_E3:6  
S_E2:4  
Address 2  
M_A3:0  
M_C3:7  
M_C1:6  
M_CK0  
M_A2:5  
M_CK3  
M_A2:4  
M_A2:6  
M_C1:3  
M_A2:1  
M_A2:0  
M_A2:3  
M_C0:3  
M_A2:2  
M_C0:5  
M_C1:0  
M_Q1  
(SYM)  
(Hex)  
70  
175  
177  
56  
178  
58  
59  
180  
61  
A13  
A12/BC#  
A10/AP  
RAS#  
CAS#  
WE#  
DQS7  
DQS6  
DQS5  
DQS4  
DQS3  
DQS2  
DQS1  
DQS0  
All DQSx#  
DDRCK1+/-  
SA1  
Strobes  
(HEX)  
A1  
A0  
181  
188  
Placeholder  
Placeholder  
184/185  
43  
M_C1:1  
M_C1:5  
Misc 2  
(OFF)  
MISC1  
MISC0  
DDRCK0+/-  
DQS8  
DM8  
ERR_OUT#³  
RESET#  
TEST  
ODT0  
ODT1  
PAR_IN  
M_C1:4  
M_A1:2  
M_A1:1  
M_A2:7  
M_A3:6  
M_A3:7  
M_C2:0  
M_C2:1  
M_C1:2  
25  
16  
7
Ungrouped  
161  
53  
168  
167  
195  
77  
Unprobed  
63/64  
237  
238  
SDA  
SA0  
117  
68  
SCL  
118  
Table 1 – B_DDR3D_2D TLA Channel Grouping (cont’d.)  
Notes:  
1. ‘ # ‘ denotes a low-true signal  
2. These signals are required for accurate acquisition and post-processing of acquired data  
3. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair  
4. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair  
5. Signals in these groups are acquired using the TLA’s demux capability and will not have  
a MagniVu display value  
DDR3THIN-MN-XXX  
24  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
RdA_DatHi  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
234  
233  
228  
227  
115  
114  
109  
108  
225  
224  
219  
218  
106  
105  
100  
99  
216  
215  
210  
209  
97  
96  
91  
90  
TLA  
Input  
Group  
Name  
RdA_DatLo  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
156  
155  
150  
149  
37  
36  
31  
30  
147  
146  
141  
140  
28  
27  
22  
21  
138  
137  
132  
131  
19  
18  
13  
12  
129  
128  
123  
122  
10  
9
4
3
TLA  
Input  
RD_A_DQ63  
RD_A_DQ62  
RD_A_DQ61  
RD_A_DQ60  
RD_A_DQ59  
RD_A_DQ58  
RD_A_DQ57  
RD_A_DQ56  
RD_A_DQ55  
RD_A_DQ54  
RD_A_DQ53  
RD_A_DQ52  
RD_A_DQ51  
RD_A_DQ50  
RD_A_DQ49  
RD_A_DQ48  
RD_A_DQ47  
RD_A_DQ46  
RD_A_DQ45  
RD_A_DQ44  
RD_A_DQ43  
RD_A_DQ42  
RD_A_DQ41  
RD_A_DQ40  
RD_A_DQ39  
RD_A_DQ38  
RD_A_DQ37  
RD_A_DQ36  
RD_A_DQ35  
RD_A_DQ34  
RD_A_DQ33  
RD_A_DQ32  
S_A2:0  
S_A2:1  
S_A2:5  
S_CK0  
S_A2:2  
S_A2:3  
S_A2:7  
S_A3:0  
S_A3:2  
S_A3:3  
S_A3:7  
S_A1:5  
S_A3:1  
S_A3:4  
S_A1:7  
S_A1:6  
S_A1:4  
S_A1:1  
S_A0:7  
S_A0:6  
S_A1:3  
S_A1:2  
S_A0:5  
S_A0:4  
S_A0:3  
S_A0:2  
M_C2:1  
M_C2:4  
S_A0:1  
S_A0:0  
M_C2:6  
M_C2:7  
RD_A_DQ31  
RD_A_DQ30  
RD_A_DQ29  
RD_A_DQ28  
RD_A_DQ27  
RD_A_DQ26  
RD_A_DQ25  
RD_A_DQ24  
RD_A_DQ23  
RD_A_DQ22  
RD_A_DQ21  
RD_A_DQ20  
RD_A_DQ19  
RD_A_DQ18  
RD_A_DQ17  
RD_A_DQ16  
RD_A_DQ15  
RD_A_DQ14  
RD_A_DQ13  
RD_A_DQ12  
RD_A_DQ11  
RD_A_DQ10  
RD_A_DQ9  
RD_A_DQ8  
RD_A_DQ7  
RD_A_DQ6  
RD_A_DQ5  
RD_A_DQ4  
RD_A_DQ3  
RD_A_DQ2  
RD_A_DQ1  
RD_A_DQ0  
M_A0:6  
M_A0:3  
S_C2:0  
S_C2:1  
M_A0:4  
M_A0:1  
S_C2:2  
S_C2:3  
S_C2:4  
S_C2:5  
S_C3:2  
S_C3:3  
S_C2:6  
S_C2:7  
S_C3:1  
S_C3:4  
S_C3:6  
S_C3:7  
S_E3:4  
S_E3:1  
S_C3:5  
S_E3:7  
S_E3:3  
S_E3:2  
S_E3:0  
S_E2:7  
S_E2:3  
S_E2:2  
S_Q3  
207  
206  
201  
200  
88  
87  
83  
81  
S_E2:5  
S_E2:1  
S_E2:0  
Table 2 - B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping  
Notes:  
1. All signals on this page are required for accurate post-processing of acquired data  
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set  
DDR3THIN-MN-XXX  
25  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Group  
Name  
Signal  
Name  
DDR3  
Pin#  
TLA  
Input  
Group  
Name  
Signal  
Name  
DDR3  
Pin#  
TLA  
Input  
RdB_DatHi  
(Hex)  
RD_B_DQ63  
RD_B_DQ62  
RD_B_DQ61  
RD_B_DQ60  
RD_B_DQ59  
RD_B_DQ58  
RD_B_DQ57  
RD_B_DQ56  
RD_B_DQ55  
RD_B_DQ54  
RD_B_DQ53  
RD_B_DQ52  
RD_B_DQ51  
RD_B_DQ50  
RD_B_DQ49  
RD_B_DQ48  
RD_B_DQ47  
RD_B_DQ46  
RD_B_DQ45  
RD_B_DQ44  
RD_B_DQ43  
RD_B_DQ42  
RD_B_DQ41  
RD_B_DQ40  
RD_B_DQ39  
RD_B_DQ38  
RD_B_DQ37  
RD_B_DQ36  
RD_B_DQ35  
RD_B_DQ34  
RD_B_DQ33  
RD_B_DQ32  
234  
233  
228  
227  
115  
114  
109  
108  
225  
224  
219  
218  
106  
105  
100  
99  
216  
215  
210  
209  
97  
96  
91  
90  
S_A2:0^1  
S_A2:1^1  
S_A2:5^1  
S_CK0^1  
S_A2:2^1  
S_A2:3^1  
S_A2:7^1  
S_A3:0^1  
S_A3:2^1  
S_A3:3^1  
S_A3:7^1  
S_A1:5^1  
S_A3:1^1  
S_A3:4^1  
S_A1:7^1  
S_A1:6^1  
S_A1:4^1  
S_A1:1^1  
S_A0:7^1  
S_A0:6^1  
S_A1:3^1  
S_A1:2^1  
S_A0:5^1  
S_A0:4^1  
S_A0:3^1  
S_A0:2^1  
M_C2:1^1  
M_C2:4^1  
S_A0:1^1  
S_A0:0^1  
M_C2:6^1  
M_C2:7^1  
RdB_DatLo  
(Hex)  
RD_B_DQ31  
RD_B_DQ30  
RD_B_DQ29  
RD_B_DQ28  
RD_B_DQ27  
RD_B_DQ26  
RD_B_DQ25  
RD_B_DQ24  
RD_B_DQ23  
RD_B_DQ22  
RD_B_DQ21  
RD_B_DQ20  
RD_B_DQ19  
RD_B_DQ18  
RD_B_DQ17  
RD_B_DQ16  
RD_B_DQ15  
RD_B_DQ14  
RD_B_DQ13  
RD_B_DQ12  
RD_B_DQ11  
RD_B_DQ10  
RD_B_DQ9  
RD_B_DQ8  
RD_B_DQ7  
RD_B_DQ6  
RD_B_DQ5  
RD_B_DQ4  
RD_B_DQ3  
RD_B_DQ2  
RD_B_DQ1  
RD_B_DQ0  
156  
155  
150  
149  
37  
36  
31  
30  
147  
146  
141  
140  
28  
27  
22  
21  
138  
137  
132  
131  
19  
18  
13  
12  
129  
128  
123  
122  
10  
9
4
3
M_A0:6^1  
M_A0:3^1  
S_C2:0^1  
S_C2:1^1  
M_A0:4^1  
M_A0:1^1  
S_C2:2^1  
S_C2:3^1  
S_C2:4^1  
S_C2:5^1  
S_C3:2^1  
S_C3:3^1  
S_C2:6^1  
S_C2:7^1  
S_C3:1^1  
S_C3:4^1  
S_C3:6^1  
S_C3:7^1  
S_E3:4^1  
S_E3:1^1  
S_C3:5^1  
S_E3:7v  
S_E3:3^1  
S_E3:2^1  
S_E3:0^1  
S_E2:7^1  
S_E2:3^1  
S_E2:2^1  
S_Q3^1  
S_E2:5^1  
S_E2:1^1  
S_E2:0^1  
207  
206  
201  
200  
88  
87  
83  
81  
Table 2 – B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. All signals on this page are required for accurate post-processing of acquired data  
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set  
3. All signals on this page are acquired using the TLA’s demux capability and will not have  
a MagniVu display value  
DDR3THIN-MN-XXX  
26  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
WrA_DatHi  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
234  
233  
228  
227  
115  
114  
109  
108  
225  
224  
219  
218  
106  
105  
100  
99  
216  
215  
210  
209  
97  
96  
91  
90  
TLA  
Input  
S_D2:0  
S_D2:1  
S_D2:5  
S_Q1  
Group  
Name  
WrA_DatLo  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
156  
155  
150  
149  
37  
36  
31  
30  
147  
146  
141  
140  
28  
27  
22  
21  
138  
137  
132  
131  
19  
18  
13  
12  
129  
128  
123  
122  
10  
9
4
3
TLA  
Input  
WR_A_DQ63  
WR_A_DQ62  
WR_A_DQ61  
WR_A_DQ60  
WR_A_DQ59  
WR_A_DQ58  
WR_A_DQ57  
WR_A_DQ56  
WR_A_DQ55  
WR_A_DQ54  
WR_A_DQ53  
WR_A_DQ52  
WR_A_DQ51  
WR_A_DQ50  
WR_A_DQ49  
WR_A_DQ48  
WR_A_DQ47  
WR_A_DQ46  
WR_A_DQ45  
WR_A_DQ44  
WR_A_DQ43  
WR_A_DQ42  
WR_A_DQ41  
WR_A_DQ40  
WR_A_DQ39  
WR_A_DQ38  
WR_A_DQ37  
WR_A_DQ36  
WR_A_DQ35  
WR_A_DQ34  
WR_A_DQ33  
WR_A_DQ32  
WR_A_DQ31  
WR_A_DQ30  
WR_A_DQ29  
WR_A_DQ28  
WR_A_DQ27  
WR_A_DQ26  
WR_A_DQ25  
WR_A_DQ24  
WR_A_DQ23  
WR_A_DQ22  
WR_A_DQ21  
WR_A_DQ20  
WR_A_DQ19  
WR_A_DQ18  
WR_A_DQ17  
WR_A_DQ16  
WR_A_DQ15  
WR_A_DQ14  
WR_A_DQ13  
WR_A_DQ12  
WR_A_DQ11  
WR_A_DQ10  
WR_A_DQ9  
WR_A_DQ8  
WR_A_DQ7  
WR_A_DQ6  
WR_A_DQ5  
WR_A_DQ4  
WR_A_DQ3  
WR_A_DQ2  
WR_A_DQ1  
WR_A_DQ0  
M_D0:6  
M_D0:3  
S_C0:0  
S_C0:1  
M_D0:4  
M_D0:1  
S_C0:2  
S_C0:3  
S_C0:4  
S_C0:5  
S_C1:2  
S_C1:3  
S_C0:6  
S_C0:7  
S_C1:1  
S_C1:4  
S_C1:6  
S_C1:7  
S_E1:4  
S_E1:1  
S_C1:5  
S_E1:7  
S_E1:3  
S_E1:2  
S_E1:0  
S_E0:7  
S_E0:3  
S_E0:2  
S_CK2  
S_E0:5  
S_E0:1  
S_E0:0  
S_D2:2  
S_D2:3  
S_D2:7  
S_D3:0  
S_D3:2  
S_D3:3  
S_D3:7  
S_D1:5  
S_D3:1  
S_D3:4  
S_D1:7  
S_D1:6  
S_D1:4  
S_D1:1  
S_D0:7  
S_D0:6  
S_D1:3  
S_D1:2  
S_D0:5  
S_D0:4  
S_D0:3  
S_D0:2  
M_C0:1  
M_C0:4  
S_D0:1  
S_D0:0  
M_C0:6  
M_C0:7  
207  
206  
201  
200  
88  
87  
83  
81  
Table 2 – B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. All signals on this page are required for accurate post-processing of acquired data  
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set  
DDR3THIN-MN-XXX  
27  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
WrB_DatHi  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
234  
233  
228  
227  
115  
114  
109  
108  
225  
224  
219  
218  
106  
105  
100  
99  
216  
215  
210  
209  
97  
96  
91  
90  
TLA  
Input  
S_D2:0^1  
S_D2:1^1  
S_D2:5^1  
S_Q1^1  
Group  
Name  
WrB_DatLo  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
156  
155  
150  
149  
37  
36  
31  
30  
147  
146  
141  
140  
28  
27  
22  
21  
138  
137  
132  
131  
19  
18  
13  
12  
129  
128  
123  
122  
10  
9
4
3
TLA  
Input  
WR_B_DQ63  
WR_B_DQ62  
WR_B_DQ61  
WR_B_DQ60  
WR_B_DQ59  
WR_B_DQ58  
WR_B_DQ57  
WR_B_DQ56  
WR_B_DQ55  
WR_B_DQ54  
WR_B_DQ53  
WR_B_DQ52  
WR_B_DQ51  
WR_B_DQ50  
WR_B_DQ49  
WR_B_DQ48  
WR_B_DQ47  
WR_B_DQ46  
WR_B_DQ45  
WR_B_DQ44  
WR_B_DQ43  
WR_B_DQ42  
WR_B_DQ41  
WR_B_DQ40  
WR_B_DQ39  
WR_B_DQ38  
WR_B_DQ37  
WR_B_DQ36  
WR_B_DQ35  
WR_B_DQ34  
WR_B_DQ32  
WR_B_DQ33  
WR_B_DQ31  
WR_B_DQ30  
WR_B_DQ29  
WR_B_DQ28  
WR_B_DQ27  
WR_B_DQ26  
WR_B_DQ25  
WR_B_DQ24  
WR_B_DQ23  
WR_B_DQ22  
WR_B_DQ21  
WR_B_DQ20  
WR_B_DQ19  
WR_B_DQ18  
WR_B_DQ17  
WR_B_DQ16  
WR_B_DQ15  
WR_B_DQ14  
WR_B_DQ13  
WR_B_DQ12  
WR_B_DQ11  
WR_B_DQ10  
WR_B_DQ9  
WR_B_DQ8  
WR_B_DQ7  
WR_B_DQ6  
WR_B_DQ5  
WR_B_DQ4  
WR_B_DQ3  
WR_B_DQ2  
WR_B_DQ1  
WR_B_DQ0  
M_D0:6^1  
M_D0:3^1  
S_C0:0^1  
S_C0:1^1  
M_D0:4^1  
M_D0:1^1  
S_C0:2^1  
S_C0:3^1  
S_C0:4^1  
S_C0:5^1  
S_C1:2^1  
S_C1:3^1  
S_C0:6^1  
S_C0:7^1  
S_C1:1^1  
S_C1:4^1  
S_C1:6^1  
S_C1:7^1  
S_E1:4^1  
S_E1:1^1  
S_C1:5^1  
S_E1:7^1  
S_E1:3^1  
S_E1:2^1  
S_E1:0^1  
S_E0:7^1  
S_E0:3^1  
S_E0:2^1  
S_CK2^1  
S_E0:5^1  
S_E0:1^1  
S_E0:0^1  
S_D2:2^1  
S_D2:3^1  
S_D2:7^1  
S_D3:0^1  
S_D3:2^1  
S_D3:3^1  
S_D3:7^1  
S_D1:5^1  
S_D3:1^1  
S_D3:4^1  
S_D1:7^1  
S_D1:6^1  
S_D1:4^1  
S_D1:1^1  
S_D0:7^1  
S_D0:6^1  
S_D1:3^1  
S_D1:2^1  
S_D0:5^1  
S_D0:4^1  
S_D0:3^1  
S_D0:2v  
207  
206  
201  
200  
88  
87  
83  
81  
M_C0:1^1  
M_C0:4^1  
S_D0:1v  
S_D0:0^1  
M_C0:6^1  
M_C0:7^1  
Table 2 – B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. All signals on this page are required for accurate post-processing of acquired data  
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set  
3. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a  
MagniVu display value  
DDR3THIN-MN-XXX  
28  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
RdAChkBits  
(OFF)  
Signal  
Name  
DDR3  
Pin #  
165  
164  
159  
158  
46  
45  
40  
39  
165  
164  
159  
158  
46  
45  
40  
39  
230  
221  
212  
203  
152  
143  
134  
125  
TLA  
Input  
Group  
Name  
Signal  
Name  
DDR3  
Pin #  
165  
164  
159  
158  
46  
45  
40  
39  
165  
164  
159  
158  
46  
45  
40  
39  
230  
221  
212  
203  
152  
143  
134  
125  
TLA  
Input  
M_D1:5  
M_D1:4  
M_D1:0  
M_D0:7  
M_D1:6  
M_D1:3  
RD_A_CB7  
RD_A_CB6  
RD_A_CB5  
RD_A_CB4  
RD_A_CB3  
RD_A_CB2  
RD_A_CB1  
RD_A_CB0  
RD_B_CB7  
RD_B_CB6  
RD_B_CB5  
RD_B_CB4  
RD_B_CB3  
RD_B_CB2  
RD_B_CB1  
RD_B_CB0  
A_DM7/DQS16  
A_DM6/DQS15  
A_DM5/DQS14  
A_DM4/DQS13  
A_DM3/DQS12  
A_DM2/DQS11  
A_DM1/DQS10  
A_DM0/DQS9  
M_A1:5  
M_A1:4  
M_A1:0  
M_A0:7  
M_A1:6  
M_A1:3  
M_CK1  
M_A0:5  
WrAChkBits 4  
(OFF)  
WR_A_CB7  
WR_A_CB6  
WR_A_CB5  
WR_A_CB4  
WR_A_CB3  
WR_A_CB2  
WR_A_CB1  
WR_A_CB0  
WR_B_CB7  
WR_B_CB6  
WR_B_CB5  
WR_B_CB4  
WR_B_CB3  
WR_B_CB2  
WR_B_CB1  
WR_B_CB0  
B_DM7/DQS16  
B_DM6/DQS15  
B_DM5/DQS14  
B_DM4/DQS13  
B_DM3/DQS12  
B_DM2/DQS11  
B_DM1/DQS10  
B_DM0/DQS9  
M_Q0  
M_D0:5  
RdBChkBits 4  
(OFF)  
M_A1:5^1 WrBChkBits 4  
M_A1:4^1 (OFF)  
M_A1:0^1  
M_A0:7^1  
M_A1:6^1  
M_A1:3^1  
M_CK1^1  
M_A0:5^1  
S_A2:4  
S_A3:6  
S_A1:0  
M_C2:0  
M_A0:2  
S_CK3  
S_E3:5  
S_E2:6  
M_D1:5^1  
M_D1:4^1  
M_D1:0^1  
M_D0:7^1  
M_D1:6^1  
M_D1:3^1  
M_Q0^1  
M_D0:5^1  
S_A2:4^1  
S_A3:6^1  
S_A1:0^1  
M_C2:0^1  
M_A0:2^1  
S_CK3^1  
S_E3:5^1  
S_E2:6^1  
ADatMsks  
(BIN)  
BDatMsks 4  
(BIN)  
Table 2 – B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. ‘ # ‘ denotes a low-true signal  
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set  
3. The ‘M’ in front of a TLA channel denotes the Master card of the merged set  
4. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a  
MagniVu display value  
DDR3THIN-MN-XXX  
29  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
Signal  
Name  
cCKE1  
cCKE0  
bCLK1  
bCLK0  
CKE1  
CKE0  
cS1#  
cS0#  
bS1#  
bS0#  
S3#  
S2#  
S1#  
S0#  
BA2  
BA1  
BA0  
A15  
A14  
DDR3  
Pin #  
From Slot C  
From Slot C  
From Slot B  
TLA  
Input  
M_E3:5  
M_E3:4  
M_Q2  
Group  
Name  
Signal  
Name  
BA2  
BA1  
BA0  
A15  
A14  
A13  
A12/BC#  
A11  
A10/AP  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
DDR3  
Pin #  
52  
190  
71  
171  
172  
196  
174  
55  
TLA  
Input  
Control 2  
(SYM)  
Address 2  
(Hex)  
M_A3:0  
M_C3:7  
M_C1:6  
M_CK0  
M_A2:5  
M_CK3  
M_A2:4  
M_A2:6  
M_C1:3  
M_A2:1  
M_A2:0  
M_A2:3  
M_C0:3  
M_A2:2  
M_C0:5  
M_C1:0  
M_Q1  
M_C1:1  
M_C1:5  
S_A2:6  
S_A3:5  
S_CK1  
M_C2:3  
M_A0:1  
S_C3:0  
S_E3:6  
From Slot B  
M_E1:7  
M_A3:2  
M_A3:1  
M_E2:6  
M_E2:2  
M_E0:4  
M_E0:0  
M_C2:5  
M_C3:0  
M_C3:4  
M_C3:3  
M_A3:0  
M_C3:7  
M_C1:6  
M_CK0  
M_A2:5  
M_CK3  
M_A2:4  
M_C1:3  
M_C3:6  
M_C3:5  
M_C1:7  
M_A3:5  
M_A3:4  
M_C1:4  
169  
50  
From Slot C  
From Slot C  
From Slot B  
From Slot B  
70  
175  
177  
56  
178  
58  
59  
180  
61  
181  
188  
111  
103  
94  
85  
34  
25  
16  
7
43  
43  
161  
53  
49  
48  
76  
193  
52  
190  
71  
171  
172  
196  
174  
70  
192  
74  
73  
A1  
A0  
A13  
Strobes  
(HEX)  
DQS7  
DQS6  
DQS5  
DQS4  
DQS3  
DQS2  
DQS1  
DQS0  
DQS8  
1_DQS8  
DM8  
ERR_OUT#³  
RESET#  
TEST  
ODT0  
ODT1  
PAR_IN  
A12/BC#  
A10/AP  
RAS#  
CAS#  
WE#  
MISC1  
MISC0  
DDRCK0+/-  
All DQSx#  
DDRCK1+/-  
SA1  
Misc 2  
(OFF)  
Placeholder  
Placeholder  
S_E2:4  
184/185  
Ungrouped  
M_A1:2  
S2_D3:2  
M_A1:1  
M_A2:7  
M_A3:6  
M_A3:7  
M_C2:0  
M_C2:1  
M_C1:2  
Unprobed  
63/64  
237  
238  
117  
118  
SDA  
SA0  
SCL  
168  
167  
195  
77  
68  
Table 2 – B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. ‘ # ‘ denotes a low-true signal  
2. These signals are required for accurate acquisition and post-processing of acquired data  
3. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set  
4. The ‘M’ in front of a TLA channel denotes the Master card of the merged set  
DDR3THIN-MN-XXX  
30  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
RdA_DatHi  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
234  
233  
228  
227  
115  
114  
109  
108  
225  
224  
219  
218  
106  
105  
100  
99  
216  
215  
210  
209  
97  
96  
91  
90  
TLA  
Input  
Group  
Name  
RdA_DatLo  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
156  
155  
150  
149  
37  
36  
31  
30  
147  
146  
141  
140  
28  
27  
22  
21  
138  
137  
132  
131  
19  
18  
13  
12  
129  
128  
123  
122  
10  
9
4
3
TLA  
Input  
RD_A_DQ63  
RD_A_DQ62  
RD_A_DQ61  
RD_A_DQ60  
RD_A_DQ59  
RD_A_DQ58  
RD_A_DQ57  
RD_A_DQ56  
RD_A_DQ55  
RD_A_DQ54  
RD_A_DQ53  
RD_A_DQ52  
RD_A_DQ51  
RD_A_DQ50  
RD_A_DQ49  
RD_A_DQ48  
RD_A_DQ47  
RD_A_DQ46  
RD_A_DQ45  
RD_A_DQ44  
RD_A_DQ43  
RD_A_DQ42  
RD_A_DQ41  
RD_A_DQ40  
RD_A_DQ39  
RD_A_DQ38  
RD_A_DQ37  
RD_A_DQ36  
RD_A_DQ35  
RD_A_DQ34  
RD_A_DQ33  
RD_A_DQ32  
S_A2:0  
S_A2:1  
S_A2:5  
S_CK0  
S_A2:2  
S_A2:3  
S_A2:7  
S_A3:0  
S_A3:2  
S_A3:3  
S_A3:7  
S_A1:5  
S_A3:1  
S_A3:4  
S_A1:7  
S_A1:6  
S_A1:4  
S_A1:1  
S_A0:7  
S_A0:6  
S_A1:3  
S_A1:2  
S_A0:5  
S_A0:4  
S_A0:3  
S_A0:2  
M_C2:1  
M_C2:4  
S_A0:1  
S_A0:0  
M_C2:6  
M_C2:7  
RD_A_DQ31  
RD_A_DQ30  
RD_A_DQ29  
RD_A_DQ28  
RD_A_DQ27  
RD_A_DQ26  
RD_A_DQ25  
RD_A_DQ24  
RD_A_DQ23  
RD_A_DQ22  
RD_A_DQ21  
RD_A_DQ20  
RD_A_DQ19  
RD_A_DQ18  
RD_A_DQ17  
RD_A_DQ16  
RD_A_DQ15  
RD_A_DQ14  
RD_A_DQ13  
RD_A_DQ12  
RD_A_DQ11  
RD_A_DQ10  
RD_A_DQ9  
RD_A_DQ8  
RD_A_DQ7  
RD_A_DQ6  
RD_A_DQ5  
RD_A_DQ4  
RD_A_DQ3  
RD_A_DQ2  
RD_A_DQ1  
RD_A_DQ0  
M_A0:6  
M_A0:3  
S_C2:0  
S_C2:1  
M_A0:4  
M_A0:1  
S_C2:2  
S_C2:3  
S_C2:4  
S_C2:5  
S_C3:2  
S_C3:3  
S_C2:6  
S_C2:7  
S_C3:1  
S_C3:4  
S_C3:6  
S_C3:7  
S_E3:4  
S_E3:1  
S_C3:5  
S_E3:7  
S_E3:3  
S_E3:2  
S_E3:0  
S_E2:7  
S_E2:3  
S_E2:2  
S_Q3  
207  
206  
201  
200  
88  
87  
83  
81  
S_E2:5  
S_E2:1  
S_E2:0  
Table 3 - B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping  
Notes:  
1. All signals on this page are required for accurate post-processing of acquired data  
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged set  
3. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set  
DDR3THIN-MN-XXX  
31  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Group  
Name  
Signal  
Name  
DDR3  
Pin#  
TLA  
Input  
Group  
Name  
Signal  
Name  
DDR3  
Pin#  
TLA  
Input  
RdB_DatHi  
(Hex)  
RD_B_DQ63  
RD_B_DQ62  
RD_B_DQ61  
RD_B_DQ60  
RD_B_DQ59  
RD_B_DQ58  
RD_B_DQ57  
RD_B_DQ56  
RD_B_DQ55  
RD_B_DQ54  
RD_B_DQ53  
RD_B_DQ52  
RD_B_DQ51  
RD_B_DQ50  
RD_B_DQ49  
RD_B_DQ48  
RD_B_DQ47  
RD_B_DQ46  
RD_B_DQ45  
RD_B_DQ44  
RD_B_DQ43  
RD_B_DQ42  
RD_B_DQ41  
RD_B_DQ40  
RD_B_DQ39  
RD_B_DQ38  
RD_B_DQ37  
RD_B_DQ36  
RD_B_DQ35  
RD_B_DQ34  
RD_B_DQ33  
RD_B_DQ32  
234  
233  
228  
227  
115  
114  
109  
108  
225  
224  
219  
218  
106  
105  
100  
99  
216  
215  
210  
209  
97  
96  
91  
90  
S_A2:0^1  
S_A2:1^1  
S_A2:5^1  
S_CK0^1  
S_A2:2^1  
S_A2:3^1  
S_A2:7^1  
S_A3:0^1  
S_A3:2^1  
S_A3:3^1  
S_A3:7^1  
S_A1:5^1  
S_A3:1^1  
S_A3:4^1  
S_A1:7^1  
S_A1:6^1  
S_A1:4^1  
S_A1:1^1  
S_A0:7^1  
S_A0:6^1  
S_A1:3^1  
S_A1:2^1  
S_A0:5^1  
S_A0:4^1  
S_A0:3^1  
S_A0:2^1  
M_C2:1^1  
M_C2:4^1  
S_A0:1^1  
S_A0:0^1  
M_C2:6^1  
M_C2:7^1  
RdB_DatLo  
(Hex)  
RD_B_DQ31  
RD_B_DQ30  
RD_B_DQ29  
RD_B_DQ28  
RD_B_DQ27  
RD_B_DQ26  
RD_B_DQ25  
RD_B_DQ24  
RD_B_DQ23  
RD_B_DQ22  
RD_B_DQ21  
RD_B_DQ20  
RD_B_DQ19  
RD_B_DQ18  
RD_B_DQ17  
RD_B_DQ16  
RD_B_DQ15  
RD_B_DQ14  
RD_B_DQ13  
RD_B_DQ12  
RD_B_DQ11  
RD_B_DQ10  
RD_B_DQ9  
RD_B_DQ8  
RD_B_DQ7  
RD_B_DQ6  
RD_B_DQ5  
RD_B_DQ4  
RD_B_DQ3  
RD_B_DQ2  
RD_B_DQ1  
RD_B_DQ0  
156  
155  
150  
149  
37  
36  
31  
30  
147  
146  
141  
140  
28  
27  
22  
21  
138  
137  
132  
131  
19  
18  
13  
12  
129  
128  
123  
122  
10  
9
4
3
M_A0:6^1  
M_A0:3^1  
S_C2:0^1  
S_C2:1^1  
M_A0:4^1  
M_A0:1^1  
S_C2:2^1  
S_C2:3^1  
S_C2:4^1  
S_C2:5^1  
S_C3:2^1  
S_C3:3^1  
S_C2:6^1  
S_C2:7^1  
S_C3:1^1  
S_C3:4^1  
S_C3:6^1  
S_C3:7^1  
S_E3:4^1  
S_E3:1^1  
S_C3:5^1  
S_E3:7^1  
S_E3:3^1  
S_E3:2^1  
S_E3:0^1  
S_E2:7^1  
S_E2:3^1  
S_E2:2^1  
S_Q3^1  
207  
206  
201  
200  
88  
87  
83  
81  
S_E2:5^1  
S_E2:1^1  
S_E2:0^1  
Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. All signals on this page are required for accurate post-processing of acquired data  
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged set  
3. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set  
4. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a  
MagniVu display value  
DDR3THIN-MN-XXX  
32  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
1_RdA_DatHi  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
234  
233  
228  
227  
115  
114  
109  
108  
225  
224  
219  
218  
106  
105  
100  
99  
216  
215  
210  
209  
97  
96  
91  
90  
TLA  
Input  
Group  
Name  
1_RdA_DatLo  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
156  
155  
150  
149  
37  
36  
31  
30  
147  
146  
141  
140  
28  
27  
22  
21  
138  
137  
132  
131  
19  
18  
13  
12  
129  
128  
123  
122  
10  
9
4
3
TLA  
Input  
1_RD_A_DQ63  
1_RD_A_DQ62  
1_RD_A_DQ61  
1_RD_A_DQ60  
1_RD_A_DQ59  
1_RD_A_DQ58  
1_RD_A_DQ57  
1_RD_A_DQ56  
1_RD_A_DQ55  
1_RD_A_DQ54  
1_RD_A_DQ53  
1_RD_A_DQ52  
1_RD_A_DQ51  
1_RD_A_DQ50  
1_RD_A_DQ49  
1_RD_A_DQ48  
1_RD_A_DQ47  
1_RD_A_DQ46  
1_RD_A_DQ45  
1_RD_A_DQ44  
1_RD_A_DQ43  
1_RD_A_DQ42  
1_RD_A_DQ41  
1_RD_A_DQ40  
1_RD_A_DQ39  
1_RD_A_DQ38  
1_RD_A_DQ37  
1_RD_A_DQ36  
1_RD_A_DQ35  
1_RD_A_DQ34  
1_RD_A_DQ33  
1_RD_A_DQ32  
S2_A0:0  
S2_A0:1  
S2_A0:5  
S2_CK1  
S2_A0:2  
S2_A0:3  
S2_A0:7  
S2_A1:0  
S2_A1:2  
S2_A1:3  
S2_A1:7  
S2_D1:5  
S2_A1:1  
S2_A1:4  
S2_D1:7  
S2_D1:6  
S2_D1:4  
S2_D1:1  
S2_D0:7  
S2_D0:6  
S2_D1:3  
S2_D1:2  
S2_D0:5  
S2_D0:4  
S2_D0:3  
S2_D0:2  
S2_C2:1  
S2_C2:4  
S2_D0:1  
S2_D0:0  
S2_C2:6  
S2_C2:7  
1_RD_A_DQ31  
1_RD_A_DQ30  
1_RD_A_DQ29  
1_RD_A_DQ28  
1_RD_A_DQ27  
1_RD_A_DQ26  
1_RD_A_DQ25  
1_RD_A_DQ24  
1_RD_A_DQ23  
1_RD_A_DQ22  
1_RD_A_DQ21  
1_RD_A_DQ20  
1_RD_A_DQ19  
1_RD_A_DQ18  
1_RD_A_DQ17  
1_RD_A_DQ16  
1_RD_A_DQ15  
1_RD_A_DQ14  
1_RD_A_DQ13  
1_RD_A_DQ12  
1_RD_A_DQ11  
1_RD_A_DQ10  
1_RD_A_DQ9  
1_RD_A_DQ8  
1_RD_A_DQ7  
1_RD_A_DQ6  
1_RD_A_DQ5  
1_RD_A_DQ4  
1_RD_A_DQ3  
1_RD_A_DQ2  
1_RD_A_DQ1  
1_RD_A_DQ0  
S2_D2:6  
S2_D2:3  
S2_E2:0  
S2_E2:1  
S2_D2:4  
S2_D2:1  
S2_E2:2  
S2_E2:3  
S2_E2:4  
S2_E2:5  
S2_E3:2  
S2_E3:3  
S2_E2:6  
S2_E2:7  
S2_E3:1  
S2_E3:4  
S2_E3:6  
S2_E3:7  
S2_E1:4  
S2_E1:1  
S2_E3:5  
S2_E1:7  
S2_E1:3  
S2_E1:2  
S2_E1:0  
S2_E0:7  
S2_E0:3  
S2_E0:2  
S2_Q2  
207  
206  
201  
200  
88  
87  
83  
81  
S2_E0:5  
S2_E0:1  
S2_E0:0  
Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. These signals are acquired from the second DIMM slot  
2. All signals on this page are required for accurate post-processing of acquired data  
3. The ‘S2’ in front of a TLA channel denotes Slave card #2 of the merged set  
DDR3THIN-MN-XXX  
33  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
Signal  
Name  
DDR3  
Pin#  
TLA  
Input  
Group  
Name  
Signal  
Name  
DDR3  
Pin#  
TLA  
Input  
1_RdB_DatHi  
(Hex)  
1_RD_B_DQ63  
1_RD_B_DQ62  
1_RD_B_DQ61  
1_RD_B_DQ60  
1_RD_B_DQ59  
1_RD_B_DQ58  
1_RD_B_DQ57  
1_RD_B_DQ56  
1_RD_B_DQ55  
1_RD_B_DQ54  
1_RD_B_DQ53  
1_RD_B_DQ52  
1_RD_B_DQ51  
1_RD_B_DQ50  
1_RD_B_DQ49  
1_RD_B_DQ48  
1_RD_B_DQ47  
1_RD_B_DQ46  
1_RD_B_DQ45  
1_RD_B_DQ44  
1_RD_B_DQ43  
1_RD_B_DQ42  
1_RD_B_DQ41  
1_RD_B_DQ40  
1_RD_B_DQ39  
1_RD_B_DQ38  
1_RD_B_DQ37  
1_RD_B_DQ36  
1_RD_B_DQ35  
1_RD_B_DQ34  
1_RD_B_DQ33  
1_RD_B_DQ32  
234  
233  
228  
227  
115  
114  
109  
108  
225  
224  
219  
218  
106  
105  
100  
99  
216  
215  
210  
209  
97  
96  
91  
90  
S2_A0:0^1 1_RdB_DatLo  
S2_A0:1^1 (Hex)  
S2_A0:5^1  
S2_CK1^1  
1_RD_B_DQ31  
1_RD_B_DQ30  
1_RD_B_DQ29  
1_RD_B_DQ28  
1_RD_B_DQ27  
1_RD_B_DQ26  
1_RD_B_DQ25  
1_RD_B_DQ24  
1_RD_B_DQ23  
1_RD_B_DQ22  
1_RD_B_DQ21  
1_RD_B_DQ20  
1_RD_B_DQ19  
1_RD_B_DQ18  
1_RD_B_DQ17  
1_RD_B_DQ16  
1_RD_B_DQ15  
1_RD_B_DQ14  
1_RD_B_DQ13  
1_RD_B_DQ12  
1_RD_B_DQ11  
1_RD_B_DQ10  
1_RD_B_DQ9  
1_RD_B_DQ8  
1_RD_B_DQ7  
1_RD_B_DQ6  
1_RD_B_DQ5  
1_RD_B_DQ4  
1_RD_B_DQ3  
1_RD_B_DQ2  
1_RD_B_DQ1  
1_RD_B_DQ0  
156  
155  
150  
149  
37  
36  
31  
30  
147  
146  
141  
140  
28  
27  
22  
21  
138  
137  
132  
131  
19  
18  
13  
12  
129  
128  
123  
122  
10  
9
4
3
S2_D2:6^1  
S2_D2:3^1  
S2_E2:0^1  
S2_E2:1^1  
S2_D2:4^1  
S2_D2:1^1  
S2_E2:2^1  
S2_E2:3^1  
S2_E2:4^1  
S2_E2:5^1  
S2_E3:2^1  
S2_E3:3^1  
S2_E2:6^1  
S2_E2:7^1  
S2_E3:1^1  
S2_E3:4^1  
S2_E3:6^1  
S2_E3:7^1  
S2_E1:4^1  
S2_E1:1^1  
S2_E3:5^1  
S2_E1:7^1  
S2_E1:3^1  
S2_E1:2^1  
S2_E1:0^1  
S2_E0:7^1  
S2_E0:3^1  
S2_E0:2^1  
S2_Q2^1  
S2_A0:2^1  
S2_A0:3^1  
S2_A0:7^1  
S2_A1:0^1  
S2_A1:2^1  
S2_A1:3^1  
S2_A1:7^1  
S2_D1:5^1  
S2_A1:1^1  
S2_A1:4^1  
S2_D1:7^1  
S2_D1:6^1  
S2_D1:4^1  
S2_D1:1^1  
S2_D0:7^1  
S2_D0:6^1  
S2_D1:3^1  
S2_D1:2^1  
S2_D0:5^1  
S2_D0:4^1  
S2_D0:3^1  
S2_D0:2^1  
S2_C2:1^1  
S2_C2:4^1  
S2_D0:1^1  
S2_D0:0^1  
S2_C2:6^1  
S2_C2:7^1  
207  
206  
201  
200  
88  
87  
83  
81  
S2_E0:5^1  
S2_E0:1^1  
S2_E0:0^1  
Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. These signals are acquired from the second DIMM slot  
2. All signals on this page are required for accurate post-processing of acquired data  
3. The ‘S2’ in front of a TLA channel denotes Slave card #2 of the merged set  
4. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a  
MagniVu display value  
DDR3THIN-MN-XXX  
34  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
WrA_DatHi  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
234  
233  
228  
227  
115  
114  
109  
108  
225  
224  
219  
218  
106  
105  
100  
99  
216  
215  
210  
209  
97  
96  
91  
90  
TLA  
Input  
S_D2:0  
S_D2:1  
S_D2:5  
S_Q1  
Group  
Name  
WrA_DatLo  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
156  
155  
150  
149  
37  
36  
31  
30  
147  
146  
141  
140  
28  
27  
22  
21  
138  
137  
132  
131  
19  
18  
13  
12  
129  
128  
123  
122  
10  
9
4
3
TLA  
Input  
WR_A_DQ63  
WR_A_DQ62  
WR_A_DQ61  
WR_A_DQ60  
WR_A_DQ59  
WR_A_DQ58  
WR_A_DQ57  
WR_A_DQ56  
WR_A_DQ55  
WR_A_DQ54  
WR_A_DQ53  
WR_A_DQ52  
WR_A_DQ51  
WR_A_DQ50  
WR_A_DQ49  
WR_A_DQ48  
WR_A_DQ47  
WR_A_DQ46  
WR_A_DQ45  
WR_A_DQ44  
WR_A_DQ43  
WR_A_DQ42  
WR_A_DQ41  
WR_A_DQ40  
WR_A_DQ39  
WR_A_DQ38  
WR_A_DQ37  
WR_A_DQ36  
WR_A_DQ35  
WR_A_DQ34  
WR_A_DQ33  
WR_A_DQ32  
WR_A_DQ31  
WR_A_DQ30  
WR_A_DQ29  
WR_A_DQ28  
WR_A_DQ27  
WR_A_DQ26  
WR_A_DQ25  
WR_A_DQ24  
WR_A_DQ23  
WR_A_DQ22  
WR_A_DQ21  
WR_A_DQ20  
WR_A_DQ19  
WR_A_DQ18  
WR_A_DQ17  
WR_A_DQ16  
WR_A_DQ15  
WR_A_DQ14  
WR_A_DQ13  
WR_A_DQ12  
WR_A_DQ11  
WR_A_DQ10  
WR_A_DQ9  
WR_A_DQ8  
WR_A_DQ7  
WR_A_DQ6  
WR_A_DQ5  
WR_A_DQ4  
WR_A_DQ3  
WR_A_DQ2  
WR_A_DQ1  
WR_A_DQ0  
M_D0:6  
M_D0:3  
S_C0:0  
S_C0:1  
M_D0:4  
M_D0:1  
S_C0:2  
S_C0:3  
S_C0:4  
S_C0:5  
S_C1:2  
S_C1:3  
S_C0:6  
S_C0:7  
S_C1:1  
S_C1:4  
S_C1:6  
S_C1:7  
S_E1:4  
S_E1:1  
S_C1:5  
S_E1:7  
S_E1:3  
S_E1:2  
S_E1:0  
S_E0:7  
S_E0:3  
S_E0:2  
S_CK2  
S_E0:5  
S_E0:1  
S_E0:0  
S_D2:2  
S_D2:3  
S_D2:7  
S_D3:0  
S_D3:2  
S_D3:3  
S_D3:7  
S_D1:5  
S_D3:1  
S_D3:4  
S_D1:7  
S_D1:6  
S_D1:4  
S_D1:1  
S_D0:7  
S_D0:6  
S_D1:3  
S_D1:2  
S_D0:5  
S_D0:4  
S_D0:3  
S_D0:2  
M_C0:1  
M_C0:4  
S_D0:1  
S_D0:0  
M_C0:6  
M_C0:7  
207  
206  
201  
200  
88  
87  
83  
81  
Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. All signals on this page are required for accurate post-processing of acquired data  
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged set  
3. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set  
DDR3THIN-MN-XXX  
35  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
WrB_DatHi  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
234  
233  
228  
227  
115  
114  
109  
108  
225  
224  
219  
218  
106  
105  
100  
99  
216  
215  
210  
209  
97  
96  
91  
90  
TLA  
Input  
S_D2:0^1  
S_D2:1^1  
S_D2:5^1  
S_Q1^1  
Group  
Name  
WrB_DatLo  
(Hex)  
Signal  
Name  
DDR3  
Pin #  
156  
155  
150  
149  
37  
36  
31  
30  
147  
146  
141  
140  
28  
27  
22  
21  
138  
137  
132  
131  
19  
18  
13  
12  
129  
128  
123  
122  
10  
9
4
3
TLA  
Input  
WR_B_DQ63  
WR_B_DQ62  
WR_B_DQ61  
WR_B_DQ60  
WR_B_DQ59  
WR_B_DQ58  
WR_B_DQ57  
WR_B_DQ56  
WR_B_DQ55  
WR_B_DQ54  
WR_B_DQ53  
WR_B_DQ52  
WR_B_DQ51  
WR_B_DQ50  
WR_B_DQ49  
WR_B_DQ48  
WR_B_DQ47  
WR_B_DQ46  
WR_B_DQ45  
WR_B_DQ44  
WR_B_DQ43  
WR_B_DQ42  
WR_B_DQ41  
WR_B_DQ40  
WR_B_DQ39  
WR_B_DQ38  
WR_B_DQ37  
WR_B_DQ36  
WR_B_DQ35  
WR_B_DQ34  
WR_B_DQ32  
WR_B_DQ33  
WR_B_DQ31  
WR_B_DQ30  
WR_B_DQ29  
WR_B_DQ28  
WR_B_DQ27  
WR_B_DQ26  
WR_B_DQ25  
WR_B_DQ24  
WR_B_DQ23  
WR_B_DQ22  
WR_B_DQ21  
WR_B_DQ20  
WR_B_DQ19  
WR_B_DQ18  
WR_B_DQ17  
WR_B_DQ16  
WR_B_DQ15  
WR_B_DQ14  
WR_B_DQ13  
WR_B_DQ12  
WR_B_DQ11  
WR_B_DQ10  
WR_B_DQ9  
WR_B_DQ8  
WR_B_DQ7  
WR_B_DQ6  
WR_B_DQ5  
WR_B_DQ4  
WR_B_DQ3  
WR_B_DQ2  
WR_B_DQ1  
WR_B_DQ0  
M_D0:6^1  
M_D0:3^1  
S_C0:0^1  
S_C0:1^1  
M_D0:4^1  
M_D0:1^1  
S_C0:2^1  
S_C0:3^1  
S_C0:4^1  
S_C0:5^1  
S_C1:2^1  
S_C1:3^1  
S_C0:6^1  
S_C0:7^1  
S_C1:1v  
S_C1:4^1  
S_C1:6^1  
S_C1:7^1  
S_E1:4^1  
S_E1:1v  
S_C1:5^1  
S_E1:7^1  
S_E1:3^1  
S_E1:2^1  
S_E1:0^1  
S_E0:7^1  
S_E0:3^1  
S_E0:2^1  
S_CK2^1  
S_E0:5^1  
S_E0:1^1  
S_E0:0^1  
S_D2:2^1  
S_D2:3^1  
S_D2:7^1  
S_D3:0^1  
S_D3:2^1  
S_D3:3^1  
S_D3:7^1  
S_D1:5^1  
S_D3:1^1  
S_D3:4^1  
S_D1:7^1  
S_D1:6^1  
S_D1:4^1  
S_D1:1^1  
S_D0:7^1  
S_D0:6^1  
S_D1:3^1  
S_D1:2^1  
S_D0:5^1  
S_D0:4^1  
S_D0:3^1  
S_D0:2^1  
M_C0:1^1  
M_C0:4^1  
S_D0:1^1  
S_D0:0^1  
M_C0:6^1  
M_C0:7^1  
207  
206  
201  
200  
88  
87  
83  
81  
Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. All signals on this page are required for accurate post-processing of acquired data  
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged set  
3. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set  
4. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a  
MagniVu display value  
DDR3THIN-MN-XXX  
36  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
RdAChkBits  
(OFF)  
Signal  
Name  
RD_A_CB7  
RD_A_CB6  
RD_A_CB5  
RD_A_CB4  
RD_A_CB3  
RD_A_CB2  
RD_A_CB1  
RD_A_CB0  
RD_B_CB7  
RD_B_CB6  
RD_B_CB5  
RD_B_CB4  
RD_B_CB3  
RD_B_CB2  
DDR3  
Pin #  
165  
164  
159  
158  
46  
45  
40  
39  
165  
164  
159  
158  
46  
45  
40  
39  
165  
164  
159  
158  
46  
45  
40  
39  
230  
221  
212  
203  
152  
143  
134  
125  
TLA  
Input  
Group  
Name  
Signal  
Name  
DDR3  
Pin #  
165  
164  
159  
158  
46  
45  
40  
39  
165  
164  
159  
158  
46  
45  
40  
39  
165  
164  
159  
158  
46  
45  
40  
39  
230  
221  
212  
203  
152  
143  
134  
125  
TLA  
Input  
M_D1:5  
M_D1:4  
M_D1:0  
M_D0:7  
M_D1:6  
M_D1:3  
M_A1:5  
M_A1:4  
M_A1:0  
M_A0:7  
M_A1:6  
M_A1:3  
M_CK1  
M_A0:5  
WrAChkBits 4  
(OFF)  
WR_A_CB7  
WR_A_CB6  
WR_A_CB5  
WR_A_CB4  
WR_A_CB3  
WR_A_CB2  
WR_A_CB1  
WR_A_CB0  
WR_B_CB7  
WR_B_CB6  
WR_B_CB5  
WR_B_CB4  
WR_B_CB3  
WR_B_CB2  
WR_B_CB1  
WR_B_CB0  
1_RD_B_CB7  
1_RD_B_CB6  
1_RD_B_CB5  
1_RD_B_CB4  
1_RD_B_CB3  
1_RD_B_CB2  
1_RD_B_CB1  
1_RD_B_CB0  
B_DM7/DQS16  
B_DM6/DQS15  
B_DM5/DQS14  
B_DM4/DQS13  
B_DM3/DQS12  
B_DM2/DQS11  
B_DM1/DQS10  
B_DM0/DQS9  
M_Q0  
M_D0:5  
RdBChkBits 4  
(OFF)  
M_A1:5^1 WrBChkBits 4  
M_A1:4^1 (OFF)  
M_A1:0^1  
M_A0:7^1  
M_A1:6^1  
M_A1:3^1  
M_CK1^1  
M_A0:5^1  
S2_D3:5  
S2_D3:4  
S2_D3:0  
S2_D2:7  
S2_D3:6  
S2_D3:3  
S2_Q0  
S2_D2:5  
S_A2:4  
S_A3:6  
S_A1:0  
M_C2:0  
M_A0:2  
S_CK3  
M_D1:5^1  
M_D1:4^1  
M_D1:0^1  
M_D0:7^1  
M_D1:6^1  
M_D1:3^1  
M_Q0^1  
M_D0:5^1  
S2_D3:5^1  
S2_D3:4^1  
S2_D3:0^1  
S2_D2:7^1  
S2_D3:6^1  
S2_D3:3^1  
S2_Q0^1  
S2_D2:5^1  
S_A2:4^1  
S_A3:6^1  
S_A1:0^1  
M_C2:0^1  
M_A0:2^1  
S_CK3^1  
S_E3:5^1  
S_E2:6^1  
RD_B_CB1  
RD_B_CB0  
1_RdAChkBits  
(OFF)  
1_RD_A_CB7  
1_RD_A_CB6  
1_RD_A_CB5  
1_RD_A_CB4  
1_RD_A_CB3  
1_RD_A_CB2  
1_RD_A_CB1  
1_RD_A_CB0  
A_DM7/DQS16  
A_DM6/DQS15  
A_DM5/DQS14  
A_DM4/DQS13  
A_DM3/DQS12  
A_DM2/DQS11  
A_DM1/DQS10  
A_DM0/DQS9  
1_RdBChkBits 4  
(OFF)  
ADatMsks  
(BIN)  
BDatMsks 4  
(BIN)  
S_E3:5  
S_E2:6  
Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. ‘ # ‘ denotes a low-true signal  
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged set  
3. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set  
4. The ‘S2’ in front of a TLA channel denotes Slave card #2 of the merged set  
5. Signals in these groups are acquired using the TLA’s demux capability and will not have  
a MagniVu display value  
DDR3THIN-MN-XXX  
37  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
Control 2  
(SYM)  
Signal  
Name  
CKE1  
CKE0  
S3#  
S2#  
S1#  
S0#  
BA2  
BA1  
BA0  
A15  
A14  
DDR3  
Pin #  
169  
50  
49  
48  
76  
193  
52  
190  
71  
171  
172  
196  
174  
70  
192  
74  
73  
TLA  
Input  
Group  
Name  
Signal  
Name  
BA2  
BA1  
BA0  
A15  
A14  
A13  
A12/BC#  
A11  
A10/AP  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
DDR3  
Pin #  
52  
190  
71  
171  
172  
196  
174  
55  
TLA  
Input  
M_A3:2 Address 2  
M_A3:1 (Hex)  
S2_C2:5  
S2_C3:0  
M_C3:4  
M_A3:0  
M_C3:7  
M_C1:6  
M_CK0  
M_A2:5  
M_CK3  
M_A2:4  
M_A2:6  
M_C1:3  
M_A2:1  
M_A2:0  
M_A2:3  
M_C0:3  
M_A2:2  
M_C0:5  
M_C1:0  
M_Q1  
M_C3:3  
M_A3:0  
M_C3:7  
M_C1:6  
M_CK0  
M_A2:5  
M_CK3  
M_A2:4  
M_C1:3  
M_C3:6  
M_C3:5  
M_C1:7  
70  
175  
177  
56  
178  
58  
59  
180  
61  
A13  
A12/BC#  
A10/AP  
RAS#  
CAS#  
WE#  
Strobes  
(HEX)  
DQS7  
DQS6  
DQS5  
DQS4  
DQS3  
DQS2  
DQS1  
DQS0  
All DQSx#  
111  
103  
94  
85  
34  
25  
16  
7
S_A2:6  
S_A3:5  
S_CK1  
M_C2:3 (OFF)  
M_A0:1  
S_C3:0  
S_E3:6  
S_E2:4  
A1  
A0  
181  
188  
Placeholder  
Placeholder  
184/185  
43  
M_C1:1  
M_C1:5  
M_A3:5  
M_A3:4  
M_C1:4  
M_A1:2  
M_A1:1  
M_A2:7  
M_A3:6  
M_A3:7  
M_C2:0  
M_C2:1  
M_C1:2  
Misc 2  
MISC1  
MISC0  
DDRCK0+/-  
DQS8  
DM8  
ERR_OUT#³  
RESET#  
TEST  
ODT0  
ODT1  
PAR_IN  
Ungrouped  
161  
53  
168  
167  
195  
77  
Unprobed  
DDRCK1+/- 63/64  
SA1  
SDA  
SA0  
SCL  
237  
238  
117  
118  
68  
Table 3 – B_DDR3D_3A TLA Channel Grouping (cont’d.)  
Notes:  
1. ‘ # ‘ denotes a low-true signal  
2. These signals are required for accurate acquisition and post-processing of acquired data  
3. The ‘M’ in front of a TLA channel denotes the Master card of the merged set  
4. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set  
5. The ‘S2’ in front of a TLA channel denotes Slave card #2 of the merged set  
6. Signals in these groups are acquired using the TLA’s demux capability and will not have  
a MagniVu display value  
DDR3THIN-MN-XXX  
38  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.7 Display Groups not in Tables 1,2 or 3  
There are several groups in the List window that are not documented in the tables as these  
groups are used only by the post-processing display software. To ensure correct data display  
these groups must not be modified. These groups are:  
DataHi  
DataLo  
ChekBits  
Command  
DataMasks  
MRSAddr  
DDR3THIN-MN-XXX  
39  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
4.0 CLOCK SELECTION  
4.1 B_DDR3D_2D Clocking Selections  
There are two clocking option fields available when using the B_DDR3D_2D support package.  
These select fields permit the user to setup the TLA acquisition as follows:  
SDRAM Clocking: – Permits selecting the Clocking Mode to be used to acquire DDR3  
data. It is important to note that the selection chosen will force unused Chip Selects and  
CKE1 into inactive states. The field choices are:  
S0#; Every Rising Edge (default) – Clocks data using every rising edge of DDR  
Clock 0. Forces CKE1 low and S1-3# high. No Idle Cycle filtering is done.  
S0# & S1#; Every Rising Edge – Clocks data using every rising edge of DDR  
Clock 0. Forces S2-3# high. No Idle Cycle filtering is done.  
S0-3#; Every Rising Edge – Clocks data using every rising edge of DDR Clock  
0. No Idle Cycle filtering is done.  
S0#; Total L <=5 – utilizes Selective Clocking to reduce acquisition of Idle bus  
states. Forces CKE1 low and S1-3# high.  
S0# & S1#; Total L <=5 - utilizes Selective Clocking to reduce acquisition of  
Idle bus states. Forces S2-3# high.  
S0-3#; Total L <=5 - utilizes Selective Clocking to reduce acquisition of Idle bus  
states.  
S0#; Total L <=6  
S0# & S1#; Total L <=6  
S0-3#; Total L <=6  
.
.
.
S0#; Total L <=25  
S0# & S1#; Total L <=25  
S0-3#; Total L <=25  
The above selections reduce the number of Idle cycles stored by the acquisition  
card to provide optimum use of the acquisition memory. Data is stored whenever  
RAS# or CAS# is asserted low along with a valid Chip Select. After every  
assertion of CAS# (paired with a valid Chip Select) samples are taken during the  
next X DDR Clock cycles to ensure that all valid memory cycles have been  
acquired. The acquisition then pauses and waits for the next Command. If CAS#  
and a Chip Select are asserted during these X clock cycles the count is reset. The  
X-clock cycle value is determined by adding the maximum Burst Length of 8  
clock cycles to the selected maximum Read Latency. So for a selected Total  
DDR3THIN-MN-XXX  
40  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Latency of <= 5 cycles the support software will store a total of 13 clock cycles  
worth of data after the Read or Write Command appears on the bus.  
Refresh Cycles: – Permits choosing whether Refresh Cycles will be stored or not. The  
field choices are:  
Acquire (default) – Refresh Cycles will be stored.  
Do Not Acquire – This mode will reduce the number of Refresh cycles stored by  
the acquisition card to provide optimum use of the acquisition memory.  
NOTE: This mode is disabled when the SDRAM Clocking choice is set to a  
Every Rising Edge selection.  
4.2 B_DDR3D_2G Clocking Selections  
There is one clocking option field available when using the B_DDR3D_2G support package.  
These select fields permit the user to setup the TLA acquisition as follows:  
Active Chip Selects: – Permits selecting which of 8 possible Chip Selects are active on  
the target. The rising edge of the DDR Clock is always used to acquire data. How the  
display software interprets which Chip Selects are active will be based on this field  
setting. With 8 possible Chip Selects and 6 Clock Enable signals it is possible to support  
data acquisition from a 3 slot channel at 800. See section 3.6 for channel configuration.  
This support only allows one quad rank support in slot A (the interposer slot), or most  
combinations of single and dual rank DIMMs in the three slots.  
The “B” slot is the DIMM slot between the Interposer and the memory controller.  
The “C” slot is the slot nearest the memory controller in a three slot system.  
The field choices shown correspond to the Chip Select number defined in the channel  
map, and are as follows:  
Chip Select(s)  
C:____B:____A:___0  
Equivalent Memory DIMM configuration  
0r0r1r (default) –  
Only S0# in the Interposer slot is active; all other Chip Selects will be  
forced inactive (high) by the support package. Equivalent to one Single  
Rank DIMM.  
C:____B:____A:__10  
0r0r2r –  
S0# and S1# in the Interposer slot are active, equivalent to a Dual Rank  
DIMM.  
C:____B:____A:3210  
0r0r4r –  
S0#, S1#, S2# and S3# in the Interposer slot are active, equivalent to a  
Quad Rank DIMM.  
DDR3THIN-MN-XXX  
41  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
C:____B:_0__A:___0  
0r1r1r –  
bS0# in the slot between the Interposer and the memory controller and  
S0# in the Interposer slot are active, equivalent to two Single Rank  
DIMMs.  
C:____B:_0__A:__10  
0r1r2r –  
bS0#, S0# and S1# are active, equivalent to one Single Rank DIMM and  
one Dual Rank DIMM.  
C:____B:10__A:___0 0r2r1r –  
bS1#, bS0# and S0# are active, equivalent to a Dual Rank DIMM and a  
Single Rank DIMM.  
C:____B:10__A:__10 0r2r2r –  
bS1#, bS0#, S1# and S0# are active, equivalent to two Dual Rank  
DIMMs.  
C:_0__B:_0__A:___0 1r1r1r –  
cS0# is the slot nearest the memory control if three slot channel, bS0# is  
the slot in the middle of a three slot channel and S0# in the Interposer slot  
are active, equivalent to three Single Rank DIMMs.  
C:_0__B:_0__A:__10 1r1r2r –  
cS0#, bS0#, S0# and S1# are active, equivalent to two Single Rank  
DIMMs and one Dual Rank DIMM.  
C:_0__B:10__A:___0 1r2r1r –  
cS0#, bS1#, bS0# and S0# are active, equivalent to a Dual Rank DIMM  
and two Single Rank DIMMs.  
C:_0__B:10__A:__10 1r2r2r –  
cS0#, bS1#, bS0#, S1# and S0# are active, equivalent to a Single Rank  
DIMM, and two Dual Rank DIMMs.  
C:10__B:_0__A:___0 2r1r1r –  
cS1#, cS0#, bS0# and S0# are active, equivalent to two Single Rank  
DIMMs, and a dual rank DIMM.  
C:10__B:_0__A:__10 2r1r2r –  
cS1#, cS0#, bS0#, S0# and S1# are active, equivalent to one Single Rank  
DIMM and two Dual Rank DIMMs.  
C:10__B:10__A:___0 2r2r1r –  
cS1#, cS0#, bS1#, bS0# and S0# are active, equivalent to two Dual Rank  
DIMM and a Single Rank DIMM.  
C:10__B:10__A:__10 2r2r2r –  
cS1#, cS0#, bS1#, bS0#, S1# and S0# are active, equivalent to three Dual  
Rank DIMMs.  
DDR3THIN-MN-XXX  
42  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.3 B_DDR3D_3A Clocking Selections  
There is one clocking option field available when using the B_DDR3D_3A support package.  
This select field sets up the TLA acquisition as follows:  
SDRAM DDR CLK0 Clocking: – Permits selecting the Clocking Mode to be used to  
acquire DDR3 data. Only one choice is available:  
Every Rising Edge – As the name implies this will cause the acquisition card to  
acquire data on every Rising edge of the DDR Clock 0.  
DDR3THIN-MN-XXX  
43  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
5.0 CONFIGURING FOR READ / WRITE DATA ACQUISITION  
Prior to configuring your NEX-DDR3INTR-THIN support package it is strongly recommended  
that Appendix A (“How DDR Data is Clocked”), section 5.4 (“Selecting DDR Read Sample  
Points”) and section 5.5. (“Selecting DDR Write Sample Points”) be read. This background  
information is very helpful and facilitates proper support configuration.  
5.1 A Note About the Different Data Groups  
The NEX-DDR3INTR-THIN support software have three different areas where signal groups are  
defined to provide specific functionality. There are the MagniVu data groups (see Table 4) are  
the groups that contain raw MagniVu data. Storage data groups (see Tables 1, 2 and 3) can be  
seen in the acquisition card Setup window and contain the data stored in Main Memory which is  
used for the Listing display. Capture data groups (not defined in this manual) are the groups seen  
in the TLA’s Setup & Hold dialog box and are the groups used to capture data during each DDR  
clock cycle. The MagniVu and Capture data groups will be referred to in the following  
explanation on determining and setting the correct sample points to acquire Read and Write data.  
Please contact your local Tektronix representative for a detailed explanation of the different data  
group areas and what they mean.  
5.2 MagniVu Signals  
Because of the design of the Tektronix TLA7BB4 acquisition cards different data groups need to  
be defined for use within MagniVu. Table 4 shows the MagniVu group definitions present in the  
B_DDR3D_2D/_2G supports. Table 5 shows the MagniVu group definitions present in the  
B_DDR3D_3A support.  
DDR3THIN-MN-XXX  
44  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Group  
Name  
Data_H  
i
Signal  
Name  
DQ63  
TLA  
Input  
S_A2:0 Data_L  
o
Group  
Name  
Signal  
Name  
DQ31 M_A0:6  
TLA  
Input  
DQ62  
DQ61  
DQ60  
DQ59  
DQ58  
DQ57  
DQ56  
DQ55  
DQ54  
DQ53  
DQ52  
DQ51  
DQ50  
DQ49  
DQ48  
DQ47  
DQ46  
DQ45  
DQ44  
DQ43  
DQ42  
DQ41  
DQ40  
DQ39  
DQ38  
DQ37  
DQ36  
DQ35  
DQ34  
DQ33  
DQ32  
S_A2:1  
S_A2:5  
S_CK0  
S_A2:2  
S_A2:3  
S_A2:7  
S_A3:0  
S_A3:2  
S_A3:3  
S_A3:7  
S_A1:5  
S_A3:1  
S_A3:4  
S_A1:7  
S_A1:6  
S_A1:4  
S_A1:1  
S_A0:7  
S_A0:6  
S_A1:3  
S_A1:2  
S_A0:5  
S_A0:4  
S_A0:3  
S_A0:2  
M_C2:1  
M_C2:4  
S_A0:1  
S_A0:0  
M_C2:6  
M_C2:7  
DQ30 M_A0:3  
DQ29  
DQ28  
S_C2:0  
S_C2:1  
DQ27 M_A0:4  
DQ26 M_A0:1  
DQ25  
DQ24  
DQ23  
DQ22  
DQ21  
DQ20  
DQ19  
DQ18  
DQ17  
DQ16  
DQ15  
DQ14  
DQ13  
DQ12  
DQ11  
DQ10  
DQ9  
S_C2:2  
S_C2:3  
S_C2:4  
S_C2:5  
S_C3:2  
S_C3:3  
S_C2:6  
S_C2:7  
S_C3:1  
S_C3:4  
S_C3:6  
S_C3:7  
S_E3:4  
S_E3:1  
S_C3:5  
S_E3:7  
S_E3:3  
S_E3:2  
S_E3:0  
S_E2:7  
S_E2:3  
S_E2:2  
S_Q3  
DQ8  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ2  
DQ1  
DQ0  
S_E2:5  
S_E2:1  
S_E2:0  
Table 4 - B_DDR3D_2D/_2G TLA MagniVu Channel Grouping  
Notes:  
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair  
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair  
DDR3THIN-MN-XXX  
45  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Group  
Name  
DataByte  
7
Signal  
Name  
TLA  
Input  
Group  
Name  
Signal  
Name  
DQ31 M_A0:6  
TLA  
Input  
DQ63 S_A2:0 DataByte  
3
DQ62 S_A2:1  
DQ61 S_A2:5  
DQ30 M_A0:3  
DQ29  
DQ28  
S_C2:0  
S_C2:1  
DQ60  
S_CK0  
DQ59 S_A2:2  
DQ58 S_A2:3  
DQ57 S_A2:7  
DQ56 S_A3:0  
DQ55 S_A3:2 DataByte  
2
DQ27 M_A0:4  
DQ26 M_A0:1  
DQ25  
DQ24  
DQ23  
S_C2:2  
S_C2:3  
S_C2:4  
DataByte  
6
DQ54 S_A3:3  
DQ53 S_A3:7  
DQ52 S_A1:5  
DQ51 S_A3:1  
DQ50 S_A3:4  
DQ49 S_A1:7  
DQ48 S_A1:6  
DQ47 S_A1:4 DataByte  
1
DQ22  
DQ21  
DQ20  
DQ19  
DQ18  
DQ17  
DQ16  
DQ15  
S_C2:5  
S_C3:2  
S_C3:3  
S_C2:6  
S_C2:7  
S_C3:1  
S_C3:4  
S_C3:6  
DataByte  
5
DQ46 S_A1:1  
DQ45 S_A0:7  
DQ44 S_A0:6  
DQ43 S_A1:3  
DQ42 S_A1:2  
DQ41 S_A0:5  
DQ40 S_A0:4  
DQ39 S_A0:3 DataByte  
0
DQ14  
DQ13  
DQ12  
DQ11  
DQ10  
DQ9  
S_C3:7  
S_E3:4  
S_E3:1  
S_C3:5  
S_E3:7  
S_E3:3  
S_E3:2  
S_E3:0  
DQ8  
DQ7  
DataByte  
4
DQ38 S_A0:2  
DQ37 M_C2:1  
DQ36 M_C2:4  
DQ35 S_A0:1  
DQ34 S_A0:0  
DQ33 M_C2:6  
DQ32 M_C2:7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ2  
DQ1  
DQ0  
S_E2:7  
S_E2:3  
S_E2:2  
S_Q3  
S_E2:5  
S_E2:1  
S_E2:0  
Table 4 – B_DDR3D_2D/_2G TLA MagniVu Channel Grouping (cont’d.)  
Notes:  
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair  
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair  
DDR3THIN-MN-XXX  
46  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
CheckBit  
s
Signal  
Name  
CB7  
TLA  
Input  
M_A1:5 DataMasks  
Group  
Name  
Signal  
Name  
DM7  
TLA  
Input  
S_A2:4  
CB6  
CB5  
CB4  
CB3  
CB2  
M_A1:4  
M_A1:0  
M_A0:7  
M_A1:6  
M_A1:3  
M_CK1  
M_A0:5  
M_A1:2 Address 2  
S_A2:6  
S_A3:5  
S_CK1  
M_C2:3  
M_A0:0  
S_C3:0  
DM6  
DM5  
DM4  
DM3  
DM2  
DM1  
DM0  
BA2  
BA1  
BA0  
A15  
A14  
A13  
A12/BC#  
A11  
A10/AP  
A9  
S_A3:6  
S_A1:0  
M_C2:0  
M_A0:2  
S_CK3  
CB1  
CB0  
S_E3:5  
S_E2:6  
Strobes 2  
DQS8  
DQS7  
DQS6  
DQS5  
DQS4  
DQS3  
DQS2  
DQS1  
DQS0  
CKE1  
CKE0  
S3#  
S2#  
S1#  
S0#  
BA2  
BA1  
BA0  
A15  
A14  
A13  
M_A3:0  
M_C3:7  
M_C1:6  
M_CK0  
M_A2:5  
M_CK3  
M_A2:4  
M_A2:6  
M_C1:3  
M_A2:1  
M_A2:0  
M_A2:3  
M_C0:2  
M_A2:2  
M_C0:5  
M_C1:0  
M_Q1  
S_E3:6  
S_E2:4  
Control 2  
M_A3:2  
M_A3:1  
M_C2:5  
M_C3:0  
M_C3:4  
M_C3:3  
M_A3:0  
M_C3:7  
M_C1:6  
M_CK0  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
M_C1:1  
M_C1:5  
M_C1:2  
A0  
M_A2:5 Orphans  
M_CK3  
PAR_IN  
ERR_OUT# M_A2:7  
A12/BC# M_A2:4  
TEST  
RESET#  
ODT1  
M_A3:7  
M_A3:6  
M_C3:1  
M_C3:2  
M_A3:5  
M_A3:4  
M_C1:4  
A10/AP  
RAS#  
CAS#  
WE#  
M_C1:3  
M_C3:6  
M_C3:5  
ODT0  
M_C1:7 Misc 2,5  
MISC1  
MISC0  
DDRCK0  
Table 4 – B_DDR3D_2D/_2G (<=1333MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. ‘ # ‘ denotes a low-true signal  
2. These signals are required for accurate acquisition and post-processing of acquired data  
3. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair  
4. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair  
5. MISC1 and MISC0 are placeholders only and will not have interesting data on them  
DDR3THIN-MN-XXX  
47  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
Data_H  
i
Signal  
Name  
DQ63  
TLA  
Input  
S_A2:0 Data_L  
o
Group  
Name  
Signal  
Name  
DQ31 M_A0:6  
TLA  
Input  
DQ62  
DQ61  
DQ60  
DQ59  
DQ58  
DQ57  
DQ56  
DQ55  
DQ54  
DQ53  
DQ52  
DQ51  
DQ50  
DQ49  
DQ48  
DQ47  
DQ46  
DQ45  
DQ44  
DQ43  
DQ42  
DQ41  
DQ40  
DQ39  
DQ38  
DQ37  
DQ36  
DQ35  
DQ34  
DQ33  
DQ32  
S_A2:1  
S_A2:5  
S_CK0  
S_A2:2  
S_A2:3  
S_A2:7  
S_A3:0  
S_A3:2  
S_A3:3  
S_A3:7  
S_A1:5  
S_A3:1  
S_A3:4  
S_A1:7  
S_A1:6  
S_A1:4  
S_A1:1  
S_A0:7  
S_A0:6  
S_A1:3  
S_A1:2  
S_A0:5  
S_A0:4  
S_A0:3  
S_A0:2  
M_C2:1  
M_C2:4  
S_A0:1  
S_A0:0  
M_C2:6  
M_C2:7  
DQ30 M_A0:3  
DQ29  
DQ28  
S_C2:0  
S_C2:1  
DQ27 M_A0:4  
DQ26 M_A0:1  
DQ25  
DQ24  
DQ23  
DQ22  
DQ21  
DQ20  
DQ19  
DQ18  
DQ17  
DQ16  
DQ15  
DQ14  
DQ13  
DQ12  
DQ11  
DQ10  
DQ9  
S_C2:2  
S_C2:3  
S_C2:4  
S_C2:5  
S_C3:2  
S_C3:3  
S_C2:6  
S_C2:7  
S_C3:1  
S_C3:4  
S_C3:6  
S_C3:7  
S_E3:4  
S_E3:1  
S_C3:5  
S_E3:7  
S_E3:3  
S_E3:2  
S_E3:0  
S_E2:7  
S_E2:3  
S_E2:2  
S_Q3  
DQ8  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ2  
DQ1  
DQ0  
S_E2:5  
S_E2:1  
S_E2:0  
Table 5 - B_DDR3D_3A TLA MagniVu Channel Grouping  
Notes:  
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair  
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair  
DDR3THIN-MN-XXX  
48  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Group  
Name  
DataByte  
7
Signal  
Name  
TLA  
Input  
Group  
Name  
Signal  
Name  
DQ31 M_A0:6  
TLA  
Input  
DQ63 S_A2:0 DataByte  
3
DQ62 S_A2:1  
DQ61 S_A2:5  
DQ30 M_A0:3  
DQ29  
DQ28  
S_C2:0  
S_C2:1  
DQ60  
S_CK0  
DQ59 S_A2:2  
DQ58 S_A2:3  
DQ57 S_A2:7  
DQ56 S_A3:0  
DQ55 S_A3:2 DataByte  
2
DQ27 M_A0:4  
DQ26 M_A0:1  
DQ25  
DQ24  
DQ23  
S_C2:2  
S_C2:3  
S_C2:4  
DataByte  
6
DQ54 S_A3:3  
DQ53 S_A3:7  
DQ52 S_A1:5  
DQ51 S_A3:1  
DQ50 S_A3:4  
DQ49 S_A1:7  
DQ48 S_A1:6  
DQ47 S_A1:4 DataByte  
1
DQ22  
DQ21  
DQ20  
DQ19  
DQ18  
DQ17  
DQ16  
DQ15  
S_C2:5  
S_C3:2  
S_C3:3  
S_C2:6  
S_C2:7  
S_C3:1  
S_C3:4  
S_C3:6  
DataByte  
5
DQ46 S_A1:1  
DQ45 S_A0:7  
DQ44 S_A0:6  
DQ43 S_A1:3  
DQ42 S_A1:2  
DQ41 S_A0:5  
DQ40 S_A0:4  
DQ39 S_A0:3 DataByte  
0
DQ14  
DQ13  
DQ12  
DQ11  
DQ10  
DQ9  
S_C3:7  
S_E3:4  
S_E3:1  
S_C3:5  
S_E3:7  
S_E3:3  
S_E3:2  
S_E3:0  
DQ8  
DQ7  
DataByte  
4
DQ38 S_A0:2  
DQ37 M_C2:1  
DQ36 M_C2:4  
DQ35 S_A0:1  
DQ34 S_A0:0  
DQ33 M_C2:6  
DQ32 M_C2:7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ2  
DQ1  
DQ0  
S_E2:7  
S_E2:3  
S_E2:2  
S_Q3  
S_E2:5  
S_E2:1  
S_E2:0  
Table 5 – B_DDR3D_3A TLA MagniVu Channel Grouping (cont’d.)  
Notes:  
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair  
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair  
DDR3THIN-MN-XXX  
49  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
Signal  
Name  
TLA  
Input  
Group  
Name  
Signal  
Name  
TLA  
Input  
Data_Hi_1  
1_DQ63 S2_A0:0 Data_Lo_  
1
1_DQ31 S2_D2:6  
1_DQ62 S2_A0:1  
1_DQ61 S2_A0:5  
1_DQ60 S2_CK1  
1_DQ59 S2_A0:2  
1_DQ58 S2_A0:3  
1_DQ57 S2_A0:7  
1_DQ56 S2_A1:0  
1_DQ55 S2_A1:2  
1_DQ54 S2_A1:3  
1_DQ53 S2_A1:7  
1_DQ52 S2_D1:5  
1_DQ51 S2_A1:1  
1_DQ50 S2_A1:4  
1_DQ49 S2_D1:7  
1_DQ48 S2_D1:6  
1_DQ47 S2_D1:4  
1_DQ46 S2_D1:1  
1_DQ45 S2_D0:7  
1_DQ44 S2_D0:6  
1_DQ43 S2_D1:3  
1_DQ42 S2_D1:2  
1_DQ41 S2_D0:5  
1_DQ40 S2_D0:4  
1_DQ39 S2_D0:3  
1_DQ38 S2_D0:2  
1_DQ37 S2_C2:1  
1_DQ36 S2_C2:4  
1_DQ35 S2_D0:1  
1_DQ34 S2_D0:0  
1_DQ33 S2_C2:6  
1_DQ32 S2_C2:7  
1_DQ30  
1_DQ29  
1_DQ28  
1_DQ27  
1_DQ26  
1_DQ25  
1_DQ24  
1_DQ23  
1_DQ22  
1_DQ21  
1_DQ20  
1_DQ19  
1_DQ18  
1_DQ17  
1_DQ16  
1_DQ15  
1_DQ14  
1_DQ13  
1_DQ12  
1_DQ11  
1_DQ10  
1_DQ9  
S2_D2:3  
S2_E2:0  
S2_E2:1  
S2_D2:4  
S2_D2:1  
S2_E2:2  
S2_E2:3  
S2_E2:4  
S2_E2:5  
S2_E3:2  
S2_E3:3  
S2_E2:6  
S2_E2:7  
S2_E3:1  
S2_E3:4  
S2_E3:6  
S2_E3:7  
S2_E1:4  
S2_E1:1  
S2_E3:5  
S2_E1:7  
S2_E1:3  
S2_E1:2  
S2_E1:0  
S2_E0:7  
S2_E0:3  
S2_E0:2  
S2_Q2  
1_DQ8  
1_DQ7  
1_DQ6  
1_DQ5  
1_DQ4  
1_DQ3  
1_DQ2  
1_DQ1  
S2_E0:5  
S2_E0:1  
S2_E0:0  
1_DQ0  
Table 5 - B_DDR3D_3A TLA MagniVu Channel Grouping  
Notes:  
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair  
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair  
DDR3THIN-MN-XXX  
50  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
Signal  
Name  
TLA  
Input  
Group  
Name  
Signal  
Name  
TLA  
Input  
DataByte7_  
1
1_DQ63  
S2_A0:0 DataByte3_  
1
1_DQ31  
S2_D2:6  
1_DQ62  
1_DQ61  
1_DQ60  
1_DQ59  
1_DQ58  
1_DQ57  
1_DQ56  
1_DQ55  
S2_A0:1  
S2_A0:5  
S2_CK1  
S2_A0:2  
S2_A0:3  
S2_A0:7  
S2_A1:0  
S2_A1:2 DataByte2_  
1
1_DQ30  
1_DQ29  
1_DQ28  
1_DQ27  
1_DQ26  
1_DQ25  
1_DQ24  
1_DQ23  
S2_D2:3  
S2_E2:0  
S2_E2:1  
S2_D2:4  
S2_D2:1  
S2_E2:2  
S2_E2:3  
S2_E2:4  
DataByte6_  
1
1_DQ54  
1_DQ53  
1_DQ52  
1_DQ51  
1_DQ50  
1_DQ49  
1_DQ48  
1_DQ47  
S2_A1:3  
S2_A1:7  
S2_D1:5  
S2_A1:1  
S2_A1:4  
S2_D1:7  
S2_D1:6  
S2_D1:4 DataByte1_  
1
1_DQ22  
1_DQ21  
1_DQ20  
1_DQ19  
1_DQ18  
1_DQ17  
1_DQ16  
1_DQ15  
S2_E2:5  
S2_E3:2  
S2_E3:3  
S2_E2:6  
S2_E2:7  
S2_E3:1  
S2_E3:4  
S2_E3:6  
DataByte5_  
1
1_DQ46  
1_DQ45  
1_DQ44  
1_DQ43  
1_DQ42  
1_DQ41  
1_DQ40  
1_DQ39  
S2_D1:1  
S2_D0:7  
S2_D0:6  
S2_D1:3  
S2_D1:2  
S2_D0:5  
S2_D0:4  
S2_D0:3 DataByte0_  
1
1_DQ14  
1_DQ13  
1_DQ12  
1_DQ11  
1_DQ10  
1_DQ9  
S2_E3:7  
S2_E1:4  
S2_E1:1  
S2_E3:5  
S2_E1:7  
S2_E1:3  
S2_E1:2  
S2_E1:0  
1_DQ8  
1_DQ7  
DataByte4_  
1
1_DQ38  
1_DQ37  
1_DQ36  
1_DQ35  
1_DQ34  
1_DQ33  
1_DQ32  
S2_D0:2  
S2_C2:1  
S2_C2:4  
S2_D0:1  
S2_D0:0  
S2_C2:6  
1_DQ6  
1_DQ5  
1_DQ4  
1_DQ3  
1_DQ2  
1_DQ1  
1_DQ0  
S2_E0:7  
S2_E0:3  
S2_E0:2  
S2_Q2  
S2_E0:5  
S2_E0:1  
S2_E0:0  
S2_C2:7  
Table 5 – B_DDR3D_3A TLA MagniVu Channel Grouping (cont’d.)  
Notes:  
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair  
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair  
DDR3THIN-MN-XXX  
51  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Group  
Name  
ChkBits  
Signal  
Name  
CB7  
CB6  
CB5  
CB4  
CB3  
CB2  
CB1  
TLA  
Input  
M_A1:5 ChkBits_1  
M_A1:4  
M_A1:0  
M_A0:7  
M_A1:6  
M_A1:3  
M_CK1  
Group  
Name  
Signal  
Name  
1_CB7  
1_CB6  
1_CB5  
1_CB4  
1_CB3  
1_CB2  
1_CB1  
1_CB0  
1_DQS8  
1_DQS7  
1_DQS6  
1_DQS5  
1_DQS4  
1_DQS3  
1_DQS2  
1_DQS1  
1_DQS0  
BA2  
BA1  
BA0  
A15  
A14  
A13  
A12/BC#  
A11  
A10/AP  
A9  
A8  
TLA  
Input  
S2_D3:5  
S2_D3:4  
S2_D3:0  
S2_D2:7  
S2_D3:6  
S2_D3:3  
S2_Q0  
CB0  
M_A0:5  
S2_D2:5  
S2_D3:2  
S2_A0:6  
S2_A1:5  
S2_CK2  
S2_C2:3  
S2_D2:0  
S2_E3:0  
S2_E1:6  
S2:E0:4  
M_A3:0  
M_C3:7  
M_C1:6  
M_CK0  
M_A2:5  
M_CK3  
M_A2:4  
M_A2:6  
M_C1:3  
M_A2:1  
M_A2:0  
M_A2:3  
M_C0:2  
M_A2:2  
M_C0:5  
M_C1:0  
M_Q1  
Strobes 2  
DQS8  
DQS7  
DQS6  
DQS5  
DQS4  
DQS3  
DQS2  
DQS1  
DQS0  
DM7  
DM6  
DM5  
DM4  
DM3  
DM2  
DM1  
DM0  
CKE1  
CKE0  
S3#  
M_A1:2 Strobes_1 2  
S_A2:6  
S_A3:5  
S_CK1  
M_C2:3  
M_A0:0  
S_C3:0  
S_E3:6  
S_E2:4  
S_A2:4  
S_A3:6  
S_A1:0  
M_C2:0  
M_A0:2  
S_CK3  
DataMasks  
Address 2  
S_E3:5  
S_E2:6  
Control 2  
M_A3:2  
M_A3:1  
S2_C2:5  
S2_C3:0  
M_C3:4  
M_C3:3  
M_A3:0  
M_C3:7  
M_C1:6  
M_CK0  
M_A2:5  
S2#  
S1#  
S0#  
BA2  
BA1  
BA0  
A15  
A14  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
M_C1:1  
M_C1:5  
M_C1:2  
A13  
M_CK3 Orphans  
PAR_IN  
A12/BC# M_A2:4  
ERR_OUT# M_A2:7  
A10/AP  
RAS#  
CAS#  
WE#  
MISC1  
MISC0  
M_C1:3  
M_C3:6  
M_C3:5  
M_C1:7  
M_A3:5  
M_A3:4  
TEST  
RESET#  
ODT1  
M_A3:7  
M_A3:6  
M_C3:1  
M_C3:2  
ODT0  
Misc 2,5  
DDRCK0 M_C1:4  
Table 5 – B_DDR3D_3A (<=1333MT/s Read and Write) TLA Channel Grouping (cont’d.)  
Notes:  
1. ‘ # ‘ denotes a low-true signal  
2. These signals are required for accurate acquisition and post-processing of acquired data  
3. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair  
4. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair  
5. MISC1 and MISC0 are placeholders only and will not have interesting data on them  
DDR3THIN-MN-XXX  
52  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
5.3 Adjusting Input Thresholds for Proper Data Acquisition  
The Interposer DDR3 support was designed to work with the new Nexus Low Profile Distributed  
probes. To maximize the electrical characteristics of the acquired waveforms the probe input  
resistors values were placed at 510 ohms. This value results in a divide by ten of the signals to  
the logic analyzer when using the NEX-PRB1X-T and NEX-PRB2X-T probes. The logic  
analyzer expects a divide by 20. Since the divide value is different than the standard Tektronix  
probe the voltage swing and offset will be higher than expected, and the thresholds will be  
different. Instead of the expected 0.75 threshold of approximately 1.9V threshold will be  
required. Use of the logic analyzer output to a scope will be required to determine the exact  
threshold for the system under test.  
5.4 DDR3 and DDR3SPA  
It is strongly recommended that Nexus’ DDR3SPA (DDR3 Sample Point Analyzer) be used to  
determine the proper sample point setting necessary for accurate Read and Write data  
acquisition. Given the correct DDR bus parameters (Latency, Burst Length, etc.) SPA will  
analyze any Read and/or Write bus transactions in MagniVu memory and return suggested  
sample points. Refer to the DDR SPA documentation for more specific information on using this  
software.  
If for whatever reason DDR3SPA doesn’t appear to provide good sample point setting  
information the following sections describe how to evaluate acquired DDR3 data to determine  
the proper sample points manually.  
5.5 Selecting B_DDR3E_XX Read Data Sample Points  
For the DDR3 Read data to be properly acquired it is necessary to choose the proper sample  
points to ensure that data is acquired at the proper point in the transaction. Since valid DDR3  
Read data is straddled by the Strobes (see Figure 4) the Setup & Hold sample point must be set  
for the valid data that occurs closest to the clock edge. The appropriate clock edge for Reads is  
determined by adding the Additive Latency value to the CAS Latency value and adding one if  
Registered memory (RDIMMs) are being used, resulting in the total number of clock cycles from  
the Read Command to the first valid Read Data. (If these values are not known the technique  
described in Section 7.3 can be used to determine the necessary values with the exception of  
whether or not the memory is RDIMM or UDIMM.) In Figure 4 the total Read latency is 6  
cycles.  
The B_DDR3D_XX supports acquire two samples of valid Read data on each rising edge of the  
DDR3 clock. So to acquire both pieces of data the RdA_DatHi/Lo data groups must have their  
sample point set to that shown by Sample Pt. #1 in the Figure, and the RdB_DatHi/Lo data  
groups must have their sample point set to that shown by Sample Pt. #2.  
DDR3THIN-MN-XXX  
53  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Sample Pt. #2  
Sample Pt. #1  
Figure 4 - Read Data Latency = CAS Latency + CAS Additive Latency + RDIMM (5+0+1) = 6 cycles)  
5.6 Selecting B_DDR3D_XX Write Data Sample Points  
Unlike valid DDR Read data, valid Write data is bisected by the Strobes. Since valid DDR3  
Write data is bisected by the Strobes (see Figure 5) the Setup & Hold sample point must be set  
for the valid data that occurs closest to the clock edge. The appropriate clock edge for Writes is  
determined by counting the number of clock cycles specified by the Write Latency MRS value  
from the Write Command to the first valid Write Data. (If these values are not known the  
technique described in Section 7.3 can be used to determine them.) In Figure 5 the total Write  
latency is 6 cycles (Write Latency plus the additional one cycle delay for RDIMM memory).  
Sample Pt. #1  
Write Data  
Sample Pt. #2  
Preamble  
Figure 5 - Write Data Latency = CAS Write Latency + RDIMM (5+1) = 6 cycles  
DDR3THIN-MN-XXX  
54  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
The B_DDR3D_XX supports acquire two samples of valid Write data on each rising edge of the  
DDR3 clock. So to acquire both pieces of data the WrA_DatHi/Lo data groups must have their  
sample point set to that shown by Sample Pt. #1 in the Figure, and the WrB_DatHi/Lo data  
groups must have their sample point set to that shown by Sample Pt. #2.  
NOTE - It is important to note that because of the design of the TLA acquisition card inputs and  
the Strobe activity prior to Write data being placed on the data bus it will appear as if the Strobes  
indicate valid Write data earlier than the data is actually there (see the circle indicated as Write  
Data Preamble in Figure 5). These Write Preamble Strobe edges should NOT be used to  
determine where valid Write data is on the data bus.  
5.7 B_DDR3D_XX Support Setup  
Using the B_DDR3D_XX supports it is possible to acquire both Read and Write data by setting  
the sample point of the data groups appropriately. To adjust the Read Data group sample points  
first make an appropriate acquisition of Read data by triggering on a Read command. Then  
create a timing window display of MagniVu data and display the Data_Hi and Data_Lo 32-bit  
data groups, the individual Command group signals and the DDR3 clock that was used for the  
data acquisition (DDRCK0). A sample waveform display of MagniVu Read data is shown in  
Figure 6. To determine the sample point, locate the smallest window of valid Read data during  
the acquired burst (see Figure 6). Note that in this instance the first piece of valid data happens  
significantly after the rising edge it is associated with. In fact the initial valid data appears at the  
DDR Clock falling edge. This delay must be taken into account or data will not be aligned  
properly in the Listing display window. Note that A and B data (corresponding to ADataHi/Lo  
and BDataHi/Lo data groups) have been indicated.  
Latency  
expires  
Minimum  
S&H  
Read Command  
Valid Read  
Data Begins  
A
B
A
B
Figure 6 - Locating Minimum Valid B_DDR3D_XX Read Data Window  
DDR3THIN-MN-XXX  
55  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
B
A
Figure 7 - Measuring B_DDR3D_XX RdA_DatHi / Lo Read Data Setup & Hold  
Zoom in further to determine the Setup and Hold sample point necessary to acquire valid data at  
that point (Figure 7) and use the cursors to measure the time from the clock edge to the start of  
valid Read data. In this example the delay from edge to data is approximately -1.05ns after the  
clock edge, meaning that a suitable Setup & Hold value for the RdA_DatHi capture group would  
be -1.055ns/1.289ns. Note that the Data_Lo group is valid somewhat later than the Data_Hi  
group with its valid time starting at approximately 1.23ns after the clock edge, so the Setup &  
Hold sample point for the RdA_DatLo capture group would be set to -1.23ns/1.465ns.  
Now the sample point for the RdB_DatHi and RdB_DatLo groups must be determined (see  
Figure 8). The next valid Read data (after the cycle measured above) occurs approximately  
2.37ns after the rising edge of DDRCK0, so a suitable Setup & Hold value for the RdB_DatHi  
capture group would be –2.383ns/2.617ns. As with the A data the Data_Lo group is somewhat  
later than the Data_Hi group. The Data_Lo valid time starts at approximately -2.52ns so a  
suitable Setup & Hold value for the RdB_DatLo capture group would be -2.52ns/2.754ns.  
DDR3THIN-MN-XXX  
56  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
A
B
Figure 8 - Measuring B_DDR3D_XX RdB_DatHi / Lo Read Data Setup & Hold  
Now the sample point positions must be set for the RdA_DatHi, RdA_DatLo, RdB_DatHi and  
RdB_DatLo capture groups in the Setup window (see Figure 9). This window is found by going  
to the LA Card’s Setup window, then clicking on the More button to the right of the clock select  
field. The TLA acquisition cards require a valid data window of approximately 300ps, and this  
window can be placed to begin from 15.098ns prior to the clock edge to 7.383ns after the edge in  
roughly 20ps increments. Each 32-bit data group (RdA_DatHi, RdA_DatLo, RdB_DatHi,  
RdB_DatLo) will require its own value programmed from the measurements noted in the  
MagniVu window.  
Figure 9 - Setting B_DDR3D_XX RdA_DatHi / Lo and RdB_DatHi / Lo Sample Points  
DDR3THIN-MN-XXX  
57  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Setting the Setup & Hold values for acquiring Write data is a similar process. To determine the  
Write Data group sample points first make an appropriate acquisition of Write data by triggering  
on a Write Command. Then, as above, create a timing window display of MagniVu data and  
display the Data_Hi and Data_Lo 32-bit data groups, the individual Command group signals and  
the DDR3 clock that was used for the data acquisition (DDRCK0).  
A sample waveform display of MagniVu Write data is shown in Figure 10. To determine the  
sample point, locate the smallest window of valid Write data during the acquired burst (see  
Figure 10). Note that in this instance the first piece of valid data happens before the rising edge it  
is associated with. This shift must be taken into account or data will not be aligned properly in  
the Listing display window. Note that A and B data (corresponding to ADataHi/Lo and  
BDataHi/Lo data groups) have been indicated. Refer to section 5.6 for important information on  
properly determining the Write data sample points.  
Latency  
expires  
Minimum  
S&H  
Write Command  
A
A
B
B
Write Data  
Preamble  
Figure 10 - Locating Minimum Valid B_DDR3D_XX Write Data Window  
Zoom in further to determine the Setup and Hold sample point necessary to acquire valid data at  
that point (Figure 11) and use the cursors to measure the time from the clock edge to the start of  
valid Write data. In this example the data leads the clock edge by approximately 740ps, meaning  
that a suitable Setup & Hold value for the WrA_DatHi capture group would be 742ps/-508ps.  
Note that the Data_Lo group is valid somewhat later than the Data_Hi group with its valid time  
starting at approximately 430ps prior to the clock edge, so the Setup & Hold sample point for the  
WrA_DatLo capture group would be set to 430ps/-195ps.  
DDR3THIN-MN-XXX  
58  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
A
B
Figure 11 - Measuring B_DDR3D_XX WrA_DatHi / Lo Write Data Setup & Hold  
Now the sample point for the WrB_DatHi and WrB_DatLo groups must be determined (see  
Figure 12). The next valid Write data (after the cycle measured above) occurs approximately  
500ps after the rising edge of DDRCK0, so a suitable Setup & Hold value for the WrB_DatHi  
capture group would be -508ps/742ps. As with the A data the Data_Lo group is somewhat later  
than the Data_Hi group. The Data_Lo valid time starts at approximately -800ps so a suitable  
Setup & Hold value for the WrB_DatLo capture group would be -801ps/1.035ns.  
Figure 12 - Measuring B_DDR3D_XX WrB_DatHi / Lo Write Data Setup & Hold  
The sample point positions must now be set for the WrA_DatHi, WrA_DatLo, WrB_DatHi,  
WrB_DatLo groups in the Setup window (Figure 13). Note that if the Upper Strobes are being  
DDR3THIN-MN-XXX  
59  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
used as Data Masks then the WrtMasks group should have a Setup & Hold value that matches  
that of the Write Data groups.  
Figure 13 - Setting B_DDR3D_XX WrA_DatHi / Lo and WrB_DatHi / Lo Sample Points  
Because of the speeds of DDR3 data it may be necessary to program Setup & Hold values for  
each of the 8-bit groups that are associated with a given Strobe. This could be required if there is  
significant skew between the DDR Strobes. Figure 14 shows some of these additional data  
groups (DataByte7-0) added to the same Waveform display shown in Figure 12. Note that it is  
now possible to determine the skew between data groups and place these values into the Setup &  
Hold Window settings in the TLA Setup window (see Figure 15). Refer to Appendix F Data  
Group / Byte / Strobe Cross-Reference for details on which 8-bit groups make up a 32-bit group.  
When setting the individual Setup & Hold values it is suggested that the settings for the  
associated 32-bit group (RdA_DatHi, RdA_DatLo, RdB_DatHi, RdB_DatLo, WrA_DatHi,  
WrA_DatLo, WrB_DatHi, WrB_DatLo) be reset to “Support Package Default”. This will  
prevent the TLA from displaying warnings that conflicting values have been set for the data bits.  
The Support Package Default Setup & Hold values are the same as the TLA default values –  
117ps/117ps. It will also be necessary to program the Setup & Hold values for all of the 8-bit  
groups in the affected 32-bit group. If conflicting Setup & Hold points are programmed then the  
values will have exclamation marks beside them to denote the conflict.  
DDR3THIN-MN-XXX  
60  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Figure 14 - Viewing Individual 8-bit Read Data Groups  
Figure 15 - Setting Individual Setup & Hold Values for the 8-bit Read Data Groups  
Note: Values shown are for illustration purposes only  
DDR3THIN-MN-XXX  
61  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
5.8 Setting B_DDR3D_3A Read Data Sample Points  
The same procedure outlined above for setting Read Data sample points should be used to  
determine the sample points for Read Data from teh second DIMM slot. Set the sample points  
for the groups named RdA_DatHi_1, RdA_DatLo_1, RdB_DatHi_1 and RdB_DatLo_1.  
DDR3THIN-MN-XXX  
62  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
6.0 VIEWING DATA  
6.1 Viewing B_DDR3D_XX Data  
When using the NEX-DDR3INTR-THIN support packages the raw Address and Data groups are  
suppressed and are replaced with post-processed data in new groups. This data is displayed in  
new groups that have the support package name preceding it (i.e., B_DDR3D_XX Address,  
B_DDR3D_XX DataHi, etc.). The raw data groups are suppressed so that the display of data can  
be done in a more user-friendly fashion.  
The Command group is suppressed because its function is replaced with a column labeled  
“B_DDR3D_XX Mnemonics”. The Interposer support software includes post-processing code  
that permits masking out all invalid Read / Write and non-Command data, providing the user a  
much better overview of bus activity. Figure 16 shows the default B_DDR3D_XX display where  
all DDR3 data is displayed.  
Figure 16 - B_DDR3D_XX Listing Display  
DDR3THIN-MN-XXX  
63  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
To change the display it is necessary to bring up the window’s Properties window (perform a  
right mouse-click in the State display window) and select the Disassembly tab. This will bring up  
the configuration window shown in Figure 17.  
Figure 17 - Disassembly Properties  
There are several select fields available in this window, some of which must be set correctly for  
the post-processing software to work properly. These fields and their selections are:  
Burst Length - permits setting the burst length for Read and Write data. Valid choices  
are 4 (the default) 8, and 4/8 On-the-Fly. This value must be set properly for all valid  
Read and Write data to be displayed.  
CAS Latency (CL) - sets the delay, in clock cycles, from the Read command until the  
first piece of valid Read data is available. This value must be set properly for all valid  
Read Data to be displayed. Valid choices are 5 (default), 6, 7, 8, 9 or 10 cycles.  
CAS Additive Latency - additional latency for data cycles. This value must also be set  
properly for valid Read Data to be displayed. Valid choices are 0 (default), CL-1, or CL-  
2 cycles.  
CAS Write Latency – number of clock cycles from Write command to the first Write  
Data. This value must be set properly for all valid Write Data to be displayed. Valid  
choices are 5 (default), 6, 7, or 8 cycles.  
Registered? – must be set to reflect whether or not Registered DDR memory is used.  
Default is No. When set to Yes an additional clock cycle delay is added to CAS Latency  
and to valid Read and Write Data tagging.  
DDR3THIN-MN-XXX  
64  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
DM Signal Use - permits setting Data Mask functionality to Write Masks (default) or  
Strobes. When set to Write Mask the DM signals will be used to mask Write Data to  
show which data bytes were valid in the cycle.  
In addition to these Disassembly Properties selections, changing the settings in the Show field  
results in display changes as well:  
Hardware - (default) displays all acquired cycles  
Software - suppresses all idle or wait cycles  
Control Flow - shows Address Command and valid Read / Write data cycles  
Subroutine - shows valid Read / Write data cycles only  
Figure 18 - B_DDR3D_XX Listing Display - Control Flow  
Changing the Show field setting in the display of Figure 16 from Hardware to Control Flow  
results in the display of Figure 18 where only Row and Column Address commands and valid  
DDR3THIN-MN-XXX  
65  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
data are displayed. Note that the timestamp is updated to reflect the time between displayed  
cycles.  
6.2 Viewing Raw DDR3 Data using B_DDR3D_XX Supports  
In order to make the display of DDR3 data more user-friendly the raw data from the Address, all  
Data and other groups is suppressed in the B_DDR3D_2D Listing display. Instead the post-  
processing display software formats and reorders the data to tag and display valid DDR3  
Address, Commands and Data. In the case of the B_DDR3D_2D supports, which stores two  
Read and two Write data cycles in each TLA Sample location, the data is reordered  
chronologically in the display with the oldest data being shown on the line above the newer data.  
To see the raw data using the Interposer support package perform a right mouse click in the  
Listing window, select Add Column… then click on the group to be added. Refer to the TLA  
User’s Manual or online help for further information on added or deleting data groups.  
6.3 B_DDR3D_2A / 3A Mnemonics Description  
Table 6 gives a brief description of each of the text lines displayed in the B_DDR3D_2A / _3A  
post-processing software display.  
Mnemonic  
ACT – BANK ACTIVATE (Sx#) Bank:  
Description  
Active command – activate a row in a bank for subsequent access  
(Chip Select 0-3; Bank x)  
DESL - IGNORE COMMAND  
(E)MRS – (EXTENDED) MODE  
REGISTER SET x (Sx#)  
Deselect function – no new command  
Mode Register Set command, registers 0-3;  
(Chip Select 0-3)  
NOP - NO OPERATION (Sx#)  
No Operation command (Chip Select 0-3)  
PRE – SINGLE BANK PRECHARGE (Sx#) Precharge command (Chip Select 0-3; Bank x)  
Bank:  
PREA – PRECHARGE ALL BANK (Sx#)  
RDA – READ W/AUTO PRECHARGE  
(Sx#) Bank:  
Precharge All command (Chip Select 0-3)  
Read command with auto precharge (Chip Select 0-3; Bank x)  
RD - READ (Sx#) Bank:  
Read command – initiates a burst read access to active row  
(Chip Select 0-3; Bank x)  
READ DATA  
Valid Read data on the bus  
REF - REFRESH (Sx#)  
WRA – WRITE W/AUTO PRECHARGE  
(Sx#) Bank:  
Self Refresh command (Chip Select 0-3)  
Write command with auto precharge (Chip Select 0-3; Bank x)  
WR - WRITE (Sx~) Bank:  
Write command – initiates a burst write access to active row  
(Chip Select 0-3; Bank x)  
WRITE DATA  
Valid Write data on the bus  
ZQCL – ZQ CALIBRATION LONG (Sx#)  
ZQ Calibration Long (Chip Select 0-3)  
ZQCS – ZQ CALIBRATION SHORT (Sx#) ZQ Calibration Short (Chip Select 0-3)  
Table 6 - B_DDR3D_2A / 3A Mnemonics Definition  
6.4 B_DDR3D_2G Mnemonics Description  
DDR3THIN-MN-XXX  
66  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Table 7 gives a brief description of each of the text lines displayed in the B_DDR3D_2G post-  
processing software display.  
Mnemonic  
ACT – BANK ACTIVATE  
(Sx# / bS# / cS#) Bank:  
Description  
Active command – activate a row in a bank for subsequent access  
(Slot A, B or C; Chip Select 0-3; Bank x)  
DESL - IGNORE COMMAND  
(E)MRS – (EXTENDED) MODE  
REGISTER SET x (Sx# / bS# / cS#)  
NOP - NO OPERATION (Sx# / bS# / cS#)  
PRE – SINGLE BANK PRECHARGE  
(Sx# / bS# / cS#) Bank:  
Deselect function – no new command  
Mode Register Set command, registers 0-3;  
(Slot A, B or C; Chip Select 0-3)  
No Operation command (Slot A, B or C; Chip Select 0-3)  
Precharge command (Slot A, B or C; Chip Select 0-3; Bank x)  
PREA – PRECHARGE ALL BANK  
(Sx# / bS# / cS#)  
Precharge All command (Slot A, B or C; Chip Select 0-3)  
RDA – READ W/AUTO PRECHARGE  
(Sx# / bS# / cS#) Bank:  
RD - READ (Sx# / bS# / cS#) Bank:  
Read command with auto precharge  
(Slot A, B or C; Chip Select 0-3; Bank x)  
Read command – initiates a burst read access to active row  
(Slot A, B or C; Chip Select 0-3; Bank x)  
Valid Read data on the bus  
READ DATA  
REF - REFRESH (Sx# / bS# / cS#)  
WRA – WRITE W/AUTO PRECHARGE  
(Sx# / bS# / cS#) Bank:  
Self Refresh command (Slot A, B or C; Chip Select 0-3)  
Write command with auto precharge  
(Slot A, B or C; Chip Select 0-3; Bank x)  
Write command – initiates a burst write access to active row  
(Slot A, B or C; Chip Select 0-3; Bank x)  
Valid Write data on the bus  
WR - WRITE (Sx# / bS# / cS#) Bank:  
WRITE DATA  
ZQCL – ZQ CALIBRATION LONG  
(Sx# / bS# / cS#)  
ZQ Calibration Long (Slot A, B or C; Chip Select 0-3)  
ZQCS – ZQ CALIBRATION SHORT  
(Sx# / bS# / cS#)  
ZQ Calibration Short (Slot A, B or C; Chip Select 0-3)  
Table 7 - B_DDR3D_2G Mnemonics Definition  
6.5 Viewing Timing Data on the TLA  
By default, the TLA will display an acquisition in the Listing (State) mode. However, the same  
data can be displayed in Timing form by adding a Waveform Display window. This is done by  
clicking on the Window pull-down, selecting New Data Window, clicking on Waveform  
Window Type, then choosing the Data Source. Two valid choices are presented:  
B_DDR3D_XX and B_DDR3D_XX: MagniVu. The first will show the exact same data (same  
acquisition mode) as that shown in the Listing window, except in Waveform format. The second  
selection will show all of the channels in 8GHz MagniVu mode, so that edge relationships can  
be examined around the MagniVu trigger point. MagniVu is very useful and in some cases  
necessary to see/resolve DDR3 data. With either selection, all channels can be viewed by  
scrolling down the window. Refer to the TLA System User’s Manual for additional information  
on formatting the Waveform display.  
DDR3THIN-MN-XXX  
67  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Figure 19 - B_DDR3D_XX MagniVu Display on TLA  
DDR3THIN-MN-XXX  
68  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
7.0 HINTS & TIPS  
7.1 Symbolic Triggering on a Command using B_DDR3D_XX Supports  
A Symbol Table has been included for the Control data groups defined in each of the support  
packages. The Symbol Table for the B_DDR3D_2D / 3A supports is shown in Table 8; the  
Symbol Table for the B_DDR3D_2G support is shown in Table 9. The use of Symbol Tables  
when triggering makes it easier for the user to define a given cycle to be triggered on. Rather  
than trying to remember what signals make up the Control group, the Symbol Table has the  
appropriate bits already set for the given cycle.  
It is important to note that changing the channel definition of the Control group can result in  
incorrect symbol information being displayed.  
Symbol  
Definition  
cc ssss = x1 1110 for S0#  
cc ssss = 1x 1101 for S1#  
cc ssss = x1 1011 for S2#  
cc ssss = 1x 0111 for S3#  
x in Definition = Don’t Care  
MRS – Sx# MODE REGISTER SET  
REF – Sx# REFRESH  
PRE – Sx# SINGLE BANK PRECHARGE  
PREA – Sx# PRECHARGE ALL BANKS  
ACT – Sx# ACTIVATE BANK  
WR – Sx# WRITE  
cc ssss xxx xxx xx000  
cc ssss xxx xxx xx001  
cc ssss xxx xxx x0010  
cc ssss xxx xxx x1010  
cc ssss xxx xxx xx011  
cc ssss xxx xxx x0100  
cc ssss xxx xxx x1100  
WRA – Sx# WRITE WITH AUTO  
PRECHARGE  
RD – Sx# READ  
RDA – Sx# READ WITH AUTO  
PRECHARGE  
cc ssss xxx xxx x0101  
cc ssss xxx xxx x1101  
NOP –Sx# NO OPERATION  
DES - DEVICE DESELECT  
ZQCL – Sx# ZQ CALIBRATION LONG  
ZQCS – Sx# ZQ CALIBRATION SHORT  
cc ssss xxx xxx xx111  
cc ssss xxx xxx xxxxx  
cc ssss xxx xxx x1110  
cc ssss xxx xxx x0110  
Table 8 - B_DDR3D_2D / 3A Control Symbol Table  
Signals, left-to-right: CKE1, CKE0, S3#, S2#, S1#, S0#, BA2, BA1, BA0, A15, A14, A13,  
A12/BC#, A10/AP, RAS#, CAS#, WE#  
DDR3THIN-MN-XXX  
69  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Symbol  
Definition  
cccc ssssssss = xxxxx1 1110 for S0#  
cccc ssssssss = xxxx1x 1101 for S1#  
cccc ssssssss = xxxxx1 1011 for S2#  
cccc ssssssss = xxxx1x 0111 for S3#  
cccc ssssssss = xxxxx1 1110 for bS0#  
cccc ssssssss = xxxx1x 1101 for bS1#  
cccc ssssssss = xxxxx1 1011 for cS0#  
cccc ssssssss = xxxx1x 0111 for cS1#  
x in Definition = Don’t Care  
MRS – Sx# MODE REGISTER SET  
cccc ssssssss xxx xxx xx000  
cccc ssssssss xxx xxx xx000  
cccc ssssssss xxx xxx xx000  
cccc ssssssss xxx xxx xx001  
cccc ssssssss xxx xxx x0010  
cccc ssssssss xxx xxx x1010  
cccc ssssssss xxx xxx xx011  
cccc ssssssss xxx xxx x0100  
cccc ssssssss xxx xxx x1100  
MRS – bSx# MODE REGISTER SET  
MRS – cSx# MODE REGISTER SET  
REF – Sx# REFRESH  
PRE – Sx# SINGLE BANK PRECHARGE  
PREA – Sx# PRECHARGE ALL BANKS  
ACT – Sx# ACTIVATE BANK  
WR – Sx# WRITE  
WRA – Sx# WRITE WITH AUTO  
PRECHARGE  
RD – Sx# READ  
RDA – Sx# READ WITH AUTO  
PRECHARGE  
cccc ssssssss xxx xxx x0101  
cccc ssssssss xxx xxx x1101  
NOP –Sx# NO OPERATION  
DES - DEVICE DESELECT  
ZQCL – Sx# ZQ CALIBRATION LONG  
ZQCS – Sx# ZQ CALIBRATION SHORT  
cccc ssssssss xxx xxx xx111  
cccc ssssssss xxx xxx xxxxx  
cccc ssssssss xxx xxx x1110  
cccc ssssssss xxx xxx x0110  
Table 9 - B_DDR3D_2G Control Symbol Table  
Signals, left-to-right: cCKE1, cCKE0, bCKE1, bCKE0, CKE1, CKE0,  
cS1#, cS0#, bS1#, bS0#, S3#, S2#, S1#, S0#,  
BA2, BA1, BA0, A15, A14, A13, A12/BC#, A10/AP, RAS#, CAS#, WE#  
7.3 Capturing MRS (Mode Register Set) Cycles  
If the characteristics of the DDR target (latency, burst length) are not known it is possible to  
acquire this information using the TLA so that the post-processing Control settings can be  
properly set. This information is programmed into the DDR memory upon system boot by use of  
the MRS (Mode Register Set) command, and is required when using the NEX-DDR3INTR-  
THIN supports for the post-processing software to properly decode the acquisitions. The TLA  
trigger shown in Figure 19 can be used to acquire the MRS cycles when using either of these  
supports.  
Note that because there is no Trigger event defined in this example that it will be necessary to  
Stop the TLA acquisition manually to display the MRS data. A trigger could certainly be added  
in either (or both) of the Trigger events, but the method shown ensures that the last valid MRS  
cycles will be acquired regardless of the memory depth setting of the acquisition card.  
DDR3THIN-MN-XXX  
70  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Figure 20 - B_DDR3D_2D MRS Trigger  
In the trigger example a Storage condition has been created so that only MRS cycles will be  
stored. In testing, multiple MRS cycles were seen during the boot process, and the example  
triggers shown will ensure that all of the MRS cycles will be acquired, an example of which is  
shown in Figure 20. The last acquired MRS cycle will reflect the settings used in the DDR target  
– in this case, a CAS latency of 2 cycles with a Burst length of 8.  
Figure 21 - MRS Cycle Acquisition Disassembly  
7.4 Clock Capture quality  
The clock captured by the logic analyzer may exhibit ringing. If this ringing is such that a clock  
reference voltage can not be determined it is suggested that the capacitor on the DIMM across  
DDR3THIN-MN-XXX  
71  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
the differential pair by removed. The added capacitance of the logic analyzer compensates for  
this missing capacitor.  
7.5 Thresholds  
Analog waveforms and their associated thresholds viewed using the Tektronix Analog Mux will  
display amplitudes and thresholds that are not an exact representation of the actual analog  
waveform. The Nexus passive probes used on DDR3 NEXVu and Interposer products are  
designed to supply maximum voltage swing to the Logic analyzer to insure correct digital signal  
swing capture at the high DDR3 rates. While the Tektronix active P69xx and P68xx series of  
probe, being general purpose probes, divide the input voltage swing by 20 the passive probes  
from Nexus divide the signals by approximately 7.5. Since the divide value is different than the  
standard Tektronix probe the voltage swing and offset will be higher than expected, and the  
thresholds will be different. Instead of the expected 0.75 threshold of approximately 1.9V  
threshold will be required. This was designed specifically for DDR3 signals to allow the best  
possible capture of the digital representation of these signals. Viewing the output of the Logic  
Analyzer analog mux should be used as a tool to provide fine adjustment of the logic analyzer  
signal Vref. The threshold value determined in this manner should be used as the threshold  
setting for the Nexus DDR3 product. Please note: Only the vertical resolution is affected by the  
Nexus passive probes.  
DDR3THIN-MN-XXX  
72  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
APPENDIX A – How DDR Data is Clocked  
A.1 Background  
Demultiplexing means that the TLA’s Logic Analyzer card can have one data probe connected to  
the target yet store incoming data in two or four separate data sections of the card. For instance,  
the A3 data section (8-bits) can be connected to the target and data can be stored in the A3  
section and the D3 section. Using the equivalent of 4X demux (by utilizing both the cross-point  
switch and prime memory capabilities of the acquisition card), connections made to the A3  
channels permit data to be stored in the A3, A3B (prime channels), D3 and D3B sections. A very  
useful side benefit of using demux is that, since only one set of TLA data channels has to be  
connected, only one probe load is added to the target, even though data is stored in two or four  
different locations of the acquisition card.  
A.2 DDR Acquisition - General  
All of the above is background necessary to understand how the TLA is able to acquire data at  
rates that initially look too fast. The speeds of DDR3 (1066 MT/s) require different setups to  
enable proper data acquisition. In addition, instead of trying to use the 8 Data Strobes to acquire  
data our solution uses CLK0 of the DDR SDRAM Clocks and all data acquisition is adjusted in  
relation to the clock edges. The 8 Data Strobes cannot be easily used to acquire data as some  
TLA configurations only support 4 Clock Inputs. Also, the Strobes cannot be used to acquire  
Address and Command information.  
DDR3THIN-MN-XXX  
73  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
A.3 B_DDR3D_2D / 2G / 3A Data Acquisition  
These supports requires two (2) merged 136-channel with 1.4G state option TLA7BB4  
acquisition cards used in a TLA7XX logic analyzer. Data is acquired using the rising edge of the  
DDR clock. A_Data information is earlier (older) data than the information stored in B_Data.  
Different Sample Points must be set for each of the four 32-bit Data groups, and, if necessary,  
sample points can be set for any of the 8-bit data groups or for individual data bits.  
Clock  
Rd  
Read  
Rb  
Ra  
Rc  
Re  
RdA-S&H  
RdB-S&H  
Write  
Wa  
Wb  
Wc  
Wd  
We  
WrA-S&H  
WrB-S&H  
DDR3THIN-MN-XXX  
74  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
APPENDIX B - Considerations  
B.1 NEX-DDR3INTR-THIN Bus Loading  
It must be noted that the NEX-DDR3INTR-THIN Interposer is designed to minimal effect on the  
user’s circuit. The acquired signals are sampled at top edge connector, and then passed through  
isolation resistors to the probe. There will be an effective 600 ohm load on all probed signals.  
The B_DDR3D_3A support will use two Interposers and will double probe all signal. Thus the  
DC load will be near 300 ohms. The DDR3 Interposer has been tested via detailed simulations,  
and by actual in circuit testing.  
B.2 DIMM connector location for best quality signal capture  
An interposer is subject to reflected noise and the quality of the acquisitions should improve if  
the Interposer is in the furthest slot away from the memory controller. If the memory channel  
contains two DIMM slots and only one will be used, the slot used must be the furthest away from  
the memory controller.  
B.3 TLA7BB4 Module to module skew  
At print time Tektronix had not yet specified the module to module skew that will be displayed  
in MagniVu, and timing modes. This skew is around 300ps. It is expected that in future releases  
Tektronix will remove this skew. Contact Tektronix for updates.  
DDR3THIN-MN-XXX  
75  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
APPENDIX C – 240-pin DDR3 DIMM Pinout  
Front Side (left 1-60)  
X64  
Back Side (right 121-180  
Front Side (left 61-120)  
X64  
Back Side (right 181-240)  
X64  
Pin  
#
X72  
Pin  
#
X64  
X72  
X72  
X72  
ECC  
Non-  
Parity  
VREF  
VSS  
Pin #  
Non-  
Parity  
A2  
Pin #  
Non-  
Parity  
A1  
ECC  
Non-Parity  
ECC  
ECC  
1
2
3
4
VREF  
VSS  
121  
122  
123  
124  
VSS  
DQ4  
DQ5  
VSS  
VSS  
DQ4  
DQ5  
VSS  
61  
62  
63  
64  
A2  
181  
182  
183  
184  
A1  
VDD  
CK1  
CK1#  
VDD  
CK1  
CK1#  
VDD  
VDD  
CK0  
VDD  
VDD  
CK0  
DQ0  
DQ1  
DQ0  
DQ1  
DM0  
DQS9  
NC  
DQS9#  
VSS  
DM0  
DQS9  
NC  
DQS9#  
VSS  
5
VSS  
VSS  
125  
65  
VDD  
VDD  
VDD  
VDD  
185  
CK0#  
VDD  
CK0#  
VDD  
6
7
8
DQS0#  
DQS0  
VSS  
DQS0#  
DQS0  
VSS  
126  
127  
128  
66  
67  
68  
186  
187  
188  
VREF  
NC  
Par_In  
VDD  
A10/AP  
BA0  
VREF  
NC  
Par_In  
VDD  
A10/AP  
BA0  
TEST/NC TEST/NC  
DQ6  
DQ6  
A0  
A0  
9
DQ2  
DQ3  
VSS  
DQ8  
DQ9  
DQ2  
DQ3  
VSS  
DQ8  
DQ9  
129  
130  
131  
132  
133  
DQ7  
VSS  
DQ12  
DQ13  
VSS  
DQ7  
VSS  
DQ12  
DQ13  
VSS  
69  
70  
71  
72  
73  
189  
190  
191  
192  
193  
VDD  
BA1  
VDD  
RAS#  
S0#  
VDD  
BA1  
VDD  
RAS#  
S0#  
10  
11  
12  
13  
VDD  
WE#  
VDD  
WE#  
DM1  
DQS10  
NC  
DQS10#  
VSS  
DM1  
DQS10  
NC  
DQS10#  
VSS  
14  
VSS  
VSS  
134  
74  
CAS#  
VDD  
CAS#  
VDD  
194  
VDD  
VDD  
15  
16  
17  
18  
19  
DQS1#  
DQS1  
VSS  
DQS1#  
DQS1  
VSS  
135  
136  
137  
138  
139  
75  
76  
77  
78  
79  
195  
196  
197  
198  
199  
ODT0  
A13  
ODT0  
A13  
S1#  
S1#  
RSVD  
ODT1  
VDD  
RSVD  
Spd3  
VSS  
DQ32  
DQ33  
RSVD  
ODT1  
VDD  
RSVD  
SPD#  
VSS  
DQ14  
DQ15  
VSS  
DQ14  
DQ15  
VSS  
VDD  
Free  
VDD  
Free  
DQ10  
DQ11  
DQ10  
DQ11  
VSS  
VSS  
20  
21  
22  
VSS  
DQ16  
DQ17  
VSS  
DQ16  
DQ17  
140  
141  
142  
DQ20  
DQ21  
VSS  
DQ20  
DQ21  
VSS  
80  
81  
82  
200  
201  
202  
DQ36  
DQ37  
VSS  
DQ36  
DQ37  
VSS  
DQ32  
DQ33  
DML2,  
DQS11  
DQS11#  
VSS  
DQ22  
DQ23  
VSS  
DQ28  
DQ29  
VSS  
DML2  
DQS11  
DQS11#  
VSS  
DQ22  
DQ23  
VSS  
DQ28  
DQ29  
VSS  
DM4  
DM4  
23  
VSS  
VSS  
143  
83  
VSS  
VSS  
203  
DQS13  
DQS13#  
VSS  
DQ38  
DQ39  
VSS  
DQ44  
DQ45  
VSS  
DQS13  
DQS13#  
VSS  
DQ38  
DQ39  
VSS  
DQ44  
DQ45  
VSS  
24  
25  
26  
27  
28  
29  
30  
31  
DQS2#  
DQS2  
VSS  
DQ18  
DQ19  
VSS  
DQS2#  
DQS2  
VSS  
DQ18  
DQ19  
VSS  
144  
145  
146  
147  
148  
149  
150  
151  
84  
85  
86  
87  
88  
89  
90  
91  
DQS4#  
DQS4  
VSS  
DQ34  
DQ35  
VSS  
DQS4#  
DQS4  
VSS  
DQ34  
DQ35  
VSS  
204  
205  
206  
207  
208  
209  
210  
211  
DQ24  
DQ25  
DQ24  
DQ25  
DQ40  
DQ41  
DQ40  
DQ41  
DM3  
DM3  
DM5  
DM5  
32  
VSS  
VSS  
152  
92  
VSS  
VSS  
212  
DQS12  
DQS12#  
VSS  
DQ30  
DQ31  
VSS  
NC  
NC  
VSS  
DQS12  
DQS12#  
VSS  
DQ30  
DQ31  
VSS  
CB4  
CB5  
VSS  
DQS14  
DQS14#  
VSS  
DQ46  
DQ47  
VSS  
DQ52  
DQ53  
VSS  
DQS14  
DQS14#  
VSS  
DQ46  
DQ47  
VSS  
DQ52  
DQ53  
VSS  
33  
34  
35  
36  
37  
38  
39  
40  
DQS3#  
DQS3  
VSS  
DQ26  
DQ27  
VSS  
DQS3#  
DQS3  
VSS  
DQ26  
DQ27  
VSS  
153  
154  
155  
156  
157  
158  
159  
160  
93  
94  
95  
96  
97  
98  
99  
100  
DQS5#  
DQS5  
VSS  
DQ42  
DQ43  
VSS  
DQS5#  
DQS5  
VSS  
DQ42  
DQ43  
VSS  
213  
214  
215  
216  
217  
218  
219  
220  
NC  
NC  
CB0  
CB1  
DQ48  
DQ49  
DQ48  
DQ49  
DDR3THIN-MN-XXX  
76  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
APPENDIX C - 240-pin DDR3 DIMM Pinout (cont’d.)  
Front Side (left 1-60)  
X64  
Back Side (right 121-180  
Front Side (left 61-120)  
X64  
Back Side (right 181-240)  
X64  
Pin  
#
X72  
Pin  
#
X64  
X72  
Pin  
#
X72  
Pin  
X72  
Non-  
Non-  
Non-  
ECC  
Non-Parity  
ECC  
ECC  
#
ECC  
Parity  
Parity  
Parity  
DM8  
DQS17  
DQS17#  
VSS  
NC  
NC  
VSS  
Test  
Free  
DM8  
DQS17  
DQS17#  
VSS  
CB6  
CB7  
VSS  
Test  
Free  
DM6  
DQS15  
DQS15#  
VSS  
DQ54  
DQ55  
VSS  
DQ60  
DQ61  
VSS  
DM6  
DQS15  
DQS15#  
VSS  
DQ54  
DQ55  
VSS  
DQ60  
DQ61  
VSS  
41  
VSS  
VSS  
161  
101  
VSS  
VSS  
221  
42  
43  
44  
45  
46  
47  
48  
DQS8#  
DQS8  
VSS  
NC  
NC  
VSS  
Free  
DQS8#  
DQS8  
VSS  
CB2  
CB3  
162  
163  
164  
165  
166  
167  
168  
102  
103  
104  
105  
106  
107  
108  
109  
DQS6#  
DQS6  
VSS  
DQ50  
DQ51  
VSS  
DQS6#  
DQS6  
VSS  
DQ50  
DQ51  
VSS  
222  
223  
224  
225  
226  
227  
228  
229  
VSS  
Free  
DQ56  
DQ57  
DQ56  
DQ57  
KEY  
KEY  
DM7  
DM7  
49  
RESET#  
RESET#  
169  
CKE1  
CKE1  
110  
VSS  
VSS  
230  
DQS16  
DQS16#  
VSS  
DQS16  
DQS16#  
VSS  
50  
51  
52  
CKE0  
VDD  
BA2  
NC  
ERR-OUT#  
VDD  
A11  
A7  
VDD  
A5  
CKE0  
VDD  
BA2  
NC  
ERR-OUT#  
VDD  
A11  
A7  
VDD  
A5  
170  
171  
172  
VDD  
A15  
A14  
VDD  
A15  
A14  
111  
112  
113  
DQS7#  
DQS7  
VSS  
DQS7#  
DQS7  
VSS  
231  
232  
233  
DQ62  
DQ62  
53  
173  
VDD  
VDD  
114  
DQ58  
DQ58  
234  
DQ63  
DQ63  
54  
55  
56  
57  
58  
59  
60  
174  
175  
176  
177  
178  
179  
180  
A12  
A9  
VDD  
A8  
A6  
VDD  
A3  
A12  
A9  
VDD  
A8  
A6  
VDD  
A3  
115  
116  
117  
118  
119  
120  
DQ59  
VSS  
SA0  
SLC  
SA2  
VTT  
DQ59  
VSS  
SA0  
SLC  
SA2  
VTT  
235  
236  
237  
238  
239  
240  
VSS  
VSS  
VDDSPD VDDSPD  
SA1  
SDA  
VSS  
VTT  
SA1  
SDA  
VSS  
VTT  
A4  
VDD  
A4  
VDD  
DDR3THIN-MN-XXX  
77  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX D –Data Flow Through the Probes (coax cable to channel)  
Data flow  
Master C3/2/1/0  
Master A1/0 D1/0  
Master A3/2 D3/2  
Slave1 C3/2/1/0  
Slave1 E3/2/1/0  
Slave1 A3/2 D3/2  
Slave1 A1/0 D1/0  
Plastic Housing  
that plugs into  
TLA 7BB4  
Samtec Connectors  
plug together at this  
point  
J15-x Coax on top  
J16-x Coax on  
J15-1 edge  
Master A3/2 &  
J16-1 edge  
Slave1 A3/2 & A1/0  
Interposer  
Slave1 C3/2 & E3/2  
Master  
DDR3THIN-MN-XXX  
78  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
APPENDIX D - Data Flow Through the Probes (cont’d.)  
Coax wire  
PIN  
M_C  
Channel  
M_A3/2 A1/0  
Channel  
S_A3/2 A1/0  
Channel  
S_C3/2 E3/2  
Channel  
J16-2  
J16-5  
J16-8  
J16-11  
J16-14  
J16-17  
J16-4  
C2:0  
C2:5  
C3:3  
C1:5  
C1:0  
C0:3  
C2:4  
C3:2  
C3:7  
C1:1  
C0:6  
C2:1  
CLK3  
C3:6  
C1:4  
C0:7  
C0:2  
C2:2  
C2:7  
C3:4  
C1:6  
Q1  
C0:1  
C2:6  
C3:1  
C1:7  
C1:2  
C0:4  
C2:3  
C3:0  
C3:5  
C1:3  
C0:5  
C0:0  
A0:0  
A0:5  
A1:3  
A3:5  
A3:0  
A2:3  
A0:4  
A1:2  
A1:7  
A3:1  
A2:6  
A0:1  
CLK1  
A1:6  
A3:4  
A2:7  
A2:2  
A0:2  
A0:7  
A1:4  
A3:6  
CLK0  
A2:1  
A0:6  
A1:1  
A3:7  
A3:2  
A2:4  
A0:3  
A1:0  
A1:5  
A3:3  
A2:5  
A2:0  
A0:0  
A0:5  
A1:3  
A3:5  
A3:0  
A2:3  
A0:4  
A1:2  
A1:7  
A3:1  
A2:6  
A0:1  
CLK1  
A1:6  
A3:4  
A2:7  
A2:2  
A0:2  
A0:7  
A1:4  
A3:6  
CLK0  
A2:1  
A0:6  
A1:1  
A3:7  
A3:2  
A2:4  
A0:3  
A1:0  
A1:5  
A3:3  
A2:5  
A2:0  
E2:0  
E2:5  
E3:3  
C3:5  
C3:0  
C2:3  
E2:4  
E3:2  
E3:7  
C3:1  
C2:6  
E2:1  
Q3  
E3:6  
C3:4  
C2:7  
C2:2  
E2:2  
E2:7  
E3:4  
C3:6  
CLK3  
C2:1  
E2:6  
E3:1  
C3:7  
C3:2  
C2:4  
E2:3  
E3:0  
E3:5  
C3:3  
C2:5  
C2:0  
J16-7  
J16-10  
J16-13  
J16-16  
J16-3  
J16-6  
J16-9  
J16-12  
J16-15  
J16-18  
J15-18  
J15-15  
J15-12  
J15-9  
J15-6  
J15-3  
J15-16  
J15-13  
J15-10  
J15-7  
J15-4  
J15-17  
J15-14  
J15-11  
J15-8  
J15-5  
J15-2  
DDR3THIN-MN-XXX  
79  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX E – B_DDR3D_2D Support Pinout, DIMM Slot 0  
Samtec  
Pin  
Coax  
Pin  
TLA  
Channe  
l
DDR3  
Signal  
Samte  
c
Pin  
Coax  
Pin  
TLA  
Channe  
l
DDR3  
Signal  
15  
29  
25  
28  
24  
21  
19  
20  
16  
12  
10  
11  
9
6
4
5
3
46  
32  
36  
33  
37  
40  
J15-6  
J15-10  
J15-9  
J16-11  
J16-12  
J15-8  
CK1  
A1:7  
A1:6  
A1:5  
A1:4  
A1:3  
A1:2  
A1:1  
A1:0  
A0:7  
A0:6  
A0:5  
A0:4  
A0:3  
A0:2  
A0:1  
A0:0  
CK0  
A3:7  
A3:6  
A3:5  
A3:4  
A3:3  
CB1  
NC  
CB3  
CB7  
CB6  
46  
32  
36  
33  
37  
40  
42  
41  
45  
49  
51  
50  
52  
55  
57  
56  
58  
15  
29  
25  
28  
24  
21  
J16-6  
J16-10  
J16-9  
J15-11  
J15-12  
J16-8  
CK3+  
C3:7  
C3:6  
C3:5  
C3:4  
C3:3  
C3:2  
C3:1  
C3:0  
C2:7  
C2:6  
C2:5  
C2:4  
C2:3  
C2:2  
C2:1  
C2:0  
Q1+  
C1:7  
C1:6  
C1:5  
C1:4  
C1:3  
A13  
BA1  
RAS#  
CAS#  
S1#  
CB2  
S0#  
J15-7  
DQS8  
DM8  
CB5  
CB4  
DQ31  
CB0  
DQ27  
DQ30  
DM3  
DQ26  
DQS3  
A15  
TEST  
RESET#  
NC  
J16-7  
ODT0  
ODT1  
S2#  
DQ32  
DQ33  
S3#  
DQ36  
DQS4  
NC  
DQ37  
DM4  
A2  
WE#  
BA0  
A0  
CK0  
A10  
J16-13  
J16-14  
J16-15  
J16-16  
J15-5  
J15-13  
J15-14  
J15-15  
J15-16  
J16-5  
J15-4  
J16-4  
J16-17  
J16-18  
J15-3  
J15-2  
J16-6  
J16-10  
J16-9  
J15-11  
J15-12  
J16-8  
J15-17  
J15-18  
J16-3  
J16-2  
J15-6  
J15-10  
J15-9  
J16-11  
J16-12  
J15-8  
NC  
NC  
PAR_I  
N
A1  
42  
41  
45  
J16-7  
J15-13  
J15-14  
A3:2  
A3:1  
A3:0  
CKE1  
CKE0  
BA2  
ERR_OUT  
#
19  
20  
16  
J15-7  
J16-13  
J16-14  
C1:2  
C1:1  
C1:0  
A3  
49  
51  
50  
52  
55  
57  
56  
58  
J15-15  
J15-16  
J16-5  
A2:7  
A2:6  
A2:5  
A2:4  
A2:3  
A2:2  
A2:1  
A2:0  
12  
10  
11  
9
6
4
J16-15  
J16-16  
J15-5  
C0:7  
C0:6  
C0:5  
C0:4  
C0:3  
C0:2  
C0:1  
C0:0  
NC  
NC  
A4  
NC  
A6  
NC  
NC  
NC  
A11  
A14  
A12  
A7  
A5  
A9  
A8  
J16-4  
J15-4  
J15-17  
J15-18  
J16-3  
J16-17  
J16-18  
J15-3  
5
3
J16-2  
J15-2  
2X Probe Connection used with  
B_DDR3D_2D software  
M_A3/2 A1/0  
1X Probe Connection used with  
B_DDR3D_2D software  
M_C3/2 C1/0  
DDR3THIN-MN-XXX  
80  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
APPENDIX E – B_DDR3D_2D Support Pinout, DIMM Slot 0 (Cont’d.)  
Coax  
Pin  
TLA  
Channel Signal  
DDR3  
Coax  
Pin  
TLA  
Channel Signal  
DDR3  
Samtec  
Pin  
Samtec  
Pin  
15  
29  
25  
28  
24  
21  
19  
20  
16  
12  
10  
11  
9
J15-6  
J15-10  
J15-9  
J16-11  
J16-12  
J15-8  
CK1  
A1:7  
A1:6  
A1:5  
A1:4  
A1:3  
A1:2  
A1:1  
A1:0  
A0:7  
A0:6  
A0:5  
A0:4  
A0:3  
A0:2  
A0:1  
A0:0  
CK0  
A3:7  
A3:6  
A3:5  
A3:4  
A3:3  
A3:2  
A3:1  
A3:0  
A2:7  
A2:6  
A2:5  
A2:4  
A2:3  
A2:2  
A2:1  
A2:0  
DQS5  
DQ49  
DQ48  
DQ52  
DQ47  
DQ43  
DQ42  
DQ46  
DM5  
DQ45  
DQ44  
DQ41  
DQ40  
DQ39  
DQ38  
DQ35  
DQ34  
DQ60  
DQ53  
DM6  
DQS6  
DQ50  
DQ54  
DQ55  
DQ51  
DQ56  
DQ57  
DQS7  
DQ61  
DM7  
46  
32  
36  
33  
37  
40  
42  
41  
45  
49  
51  
50  
52  
55  
57  
56  
58  
15  
29  
25  
28  
24  
21  
19  
20  
16  
12  
10  
11  
9
J15-6  
J15-10  
J15-9  
J16-11  
J16-12  
J15-8  
Q3  
DQ3  
DQ10  
DQS1  
DM1  
DQ13  
DQ9  
DQ8  
DQ12  
DQ7  
DQ6  
DM0  
DQ2  
DQS0  
DQ5  
DQ4  
E3:7  
E3:6  
E3:5  
E3:4  
E3:3  
E3:2  
E3:1  
E3:0  
E2:7  
E2:6  
E2:5  
E2:4  
E2:3  
E2:2  
E2:1  
E2:0  
CK3  
C3:7  
C3:6  
C3:5  
C3:4  
C3:3  
C3:2  
C3:1  
C3:0  
C2:7  
C2:6  
C2:5  
C2:4  
C2:3  
C2:2  
C2:1  
C2:0  
J15-7  
J15-7  
J16-13  
J16-14  
J16-15  
J16-16  
J15-5  
J16-13  
J16-14  
J16-15  
J16-16  
J15-5  
J15-4  
J15-4  
6
4
5
3
J16-17  
J16-18  
J15-3  
J15-2  
J16-6  
J16-10  
J16-9  
J15-11  
J15-12  
J16-8  
J16-17  
J16-18  
J15-3  
J15-2  
J16-6  
J16-10  
J16-9  
J15-11  
J15-12  
J16-8  
DQ1  
DQ0  
46  
32  
36  
33  
37  
40  
42  
41  
45  
49  
51  
50  
52  
55  
57  
56  
58  
DM2  
DQ14  
DQ15  
DQ11  
DQ16  
DQ20  
DQ21  
DQ17  
DQS2  
DQ18  
DQ19  
DQ22  
DQ23  
DQ24  
DQ25  
DQ28  
DQ29  
J16-7  
J16-7  
J15-13  
J15-14  
J15-15  
J15-16  
J16-5  
J15-13  
J15-14  
J15-15  
J15-16  
J16-5  
J16-4  
J16-4  
J15-17  
J15-18  
J16-3  
DQ58  
DQ59  
DQ62  
DQ63  
6
4
5
3
J15-17  
J15-18  
J16-3  
J16-2  
J16-2  
2X Probe Connection used with  
B_DDR3D_2D software  
S_A3/2 A1/0  
2X Probe Connection used with  
B_DDR3D_2D software  
S_C3/2 E3/2  
DDR3THIN-MN-XXX  
81  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX F – B_DDR3_2G Support Pinout, DIMM Slot 0 Auxiliary Signals  
Samte  
c Pin  
Coax  
Pin  
TLA  
Channe  
l
DDR3  
Signal  
46  
32  
36  
J16-6  
J16-10  
J16-9  
NC  
NC  
NC  
E3:7  
E3:6  
cCLKE1  
LEAD-6  
cCLKE0  
LEAD-5  
NC  
33  
J15-11  
E3:5  
37  
40  
42  
41  
45  
49  
J15-12  
J16-8  
J16-7  
J15-13  
J15-14  
J15-15  
E3:4  
E3:3  
E3:2  
E3:1  
E3:0  
E2:7  
NC  
LEAD-4  
LEAD-3  
NC  
cS1#  
LEAD-2  
NC  
51  
50  
52  
55  
J15-16  
J16-5  
J16-4  
E2:6  
E2:5  
E2:4  
E2:3  
NC  
NC  
J15-17  
cS0#  
LEAD-1  
NC  
57  
56  
58  
J15-18  
J16-3  
J16-2  
E2:2  
E2:1  
E2:0  
NC  
bCLKE1  
LEAD-  
10  
15  
J15-6  
Q2  
bCLKE0  
LEAD-7  
LEAD-8  
NC  
NC  
NC  
LEAD-9  
NC  
29  
25  
28  
24  
21  
19  
20  
16  
12  
10  
11  
J15-10  
J15-9  
J16-11  
J16-12  
J15-8  
E1:7  
E1:6  
E1:5  
E1:4  
E1:3  
E1:2  
E1:1  
E1:0  
E0:7  
E0:6  
E0:5  
J15-7  
J16-13  
J16-14  
J16-15  
J16-16  
J15-5  
NC  
NC  
NC  
NC  
bS1#  
LEAD-  
11  
NC  
NC  
9
6
4
5
J15-4  
J16-17  
J16-18  
J15-3  
E0:4  
E0:3  
E0:2  
E0:1  
NC  
bS0#  
LEAD-  
12  
3
J15-2  
E0:0  
Optional Flying Lead Probe Connection used with  
B_DDR3D_2G software  
M_E3/2 E1/0  
DDR3THIN-MN-XXX  
82  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
DDR3THIN-MN-XXX  
83  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX G – B_DDR3D_3A Support Pinout, DIMM Slot 1  
Samte  
c Pin  
Coax  
Pin  
TLA  
Channe  
l
DDR3  
Signal  
Samte  
c
Pin  
Coax  
Pin  
TLA  
Channe  
l
DDR3  
Signal  
15  
29  
25  
28  
24  
21  
19  
20  
16  
12  
10  
11  
9
6
4
5
3
46  
32  
36  
33  
37  
40  
42  
41  
45  
J15-6  
J15-10  
J15-9  
J16-11  
J16-12  
J15-8  
Q0+  
D3:7  
D3:6  
D3:5  
D3:4  
D3:3  
D3:2  
D3:1  
D3:0  
D2:7  
D2:6  
D2:5  
D2:4  
D2:3  
D2:2  
D2:1  
D2:0  
CK0+  
A3:7  
A3:6  
A3:5  
A3:4  
A3:3  
A3:2  
A3:1  
A3:0  
CB1  
NC  
46  
32  
36  
33  
37  
40  
42  
41  
45  
49  
51  
50  
52  
55  
57  
56  
58  
15  
29  
25  
28  
24  
21  
19  
20  
16  
J16-6  
J16-10  
J16-9  
J15-11  
J15-12  
J16-8  
CK3+  
C3:7  
C3:6  
C3:5  
C3:4  
C3:3  
C3:2  
C3:1  
C3:0  
C2:7  
C2:6  
C2:5  
C2:4  
C2:3  
C2:2  
C2:1  
C2:0  
Q1+  
C1:7  
C1:6  
C1:5  
C1:4  
C1:3  
C1:2  
C1:1  
C1:0  
A13  
BA1  
RAS#  
CAS#  
S1#  
CB3  
CB7  
CB6  
CB2  
DQS8  
DM8  
CB5  
CB4  
DQ31  
CB0  
DQ27  
DQ30  
DM3  
DQ26  
DQS3  
A15  
S0#  
J15-7  
J16-7  
ODT0  
ODT1  
S2#  
DQ32  
DQ33  
S3#  
DQ36  
DQS4  
NC  
DQ37  
DM4  
A2  
WE#  
BA0  
A0  
CK0  
A10  
J16-13  
J16-14  
J16-15  
J16-16  
J15-5  
J15-13  
J15-14  
J15-15  
J15-16  
J16-5  
J15-4  
J16-4  
J16-17  
J16-18  
J15-3  
J15-2  
J16-6  
J16-10  
J16-9  
J15-11  
J15-12  
J16-8  
J16-7  
J15-13  
J15-14  
J15-17  
J15-18  
J16-3  
J16-2  
J15-6  
J15-10  
J15-9  
J16-11  
J16-12  
J15-8  
J15-7  
J16-13  
J16-14  
TEST  
RESET#  
NC  
NC  
NC  
CKE1  
CKE0  
BA2  
ERR_OUT  
#
PAR_IN  
A1  
A3  
49  
51  
50  
52  
55  
57  
56  
58  
J15-15  
J15-16  
J16-5  
A2:7  
A2:6  
A2:5  
A2:4  
A2:3  
A2:2  
A2:1  
A2:0  
12  
10  
11  
9
6
4
J16-15  
J16-16  
J15-5  
C0:7  
C0:6  
C0:5  
C0:4  
C0:3  
C0:2  
C0:1  
C0:0  
NC  
NC  
A4  
NC  
A6  
NC  
NC  
NC  
A11  
A14  
A12  
A7  
A5  
A9  
A8  
J16-4  
J15-4  
J15-17  
J15-18  
J16-3  
J16-17  
J16-18  
J15-3  
5
3
J16-2  
J15-2  
2X Probe Connection used with  
B_DDR3D_2D software  
M_A3/2 A1/0  
1X Probe Connection used with  
B_DDR3D_2D software  
M_C3/2 C1/0  
(S2_A3/2 D3/2 Logic Analyzer Probe)  
(S2_C3/2/1/0 Logic Analyzer Probe)  
DDR3THIN-MN-XXX  
84  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
APPENDIX G – B_DDR3D_3A Support Pinout, DIMM Slot 1 (cont’d.)  
Samtec  
Pin  
Coax  
Pin  
TLA  
Channe  
l
DDR  
Samte  
c
Pin  
Coax  
Pin  
TLA  
Channe  
l
DDR  
3
Signa  
l
3
Signa  
l
15  
29  
25  
28  
24  
21  
19  
20  
16  
12  
10  
11  
9
J15-6  
J15-10  
J15-9  
J16-11  
J16-12  
J15-8  
CK2+  
D1:7  
D1:6  
D1:5  
D1:4  
D1:3  
D1:2  
D1:1  
D1:0  
D0:7  
D0:6  
D0:5  
D0:4  
D0:3  
D0:2  
D0:1  
D0:0  
CK1+  
A1:7  
A1:6  
A1:5  
A1:4  
A1:3  
A1:2  
A1:1  
A1:0  
A0:7  
A0:6  
A0:5  
A0:4  
A0:3  
A0:2  
A0:1  
A0:0  
DQS5  
DQ49  
DQ48  
DQ52  
DQ47  
DQ43  
DQ42  
DQ46  
DM5  
DQ45  
DQ44  
DQ41  
DQ40  
DQ39  
DQ38  
DQ35  
DQ34  
DQ60  
DQ53  
DM6  
DQS6  
DQ50  
DQ54  
DQ55  
DQ51  
DQ56  
DQ57  
DQS7  
DQ61  
DM7  
15  
29  
25  
28  
24  
21  
19  
20  
16  
12  
10  
11  
9
J15-6  
J15-10  
J15-9  
J16-11  
J16-12  
J15-8  
Q2+  
E1:7  
E1:6  
E1:5  
E1:4  
E1:3  
E1:2  
E1:1  
E1:0  
E0:7  
E0:6  
E0:5  
E0:4  
E0:3  
E0:2  
E0:1  
E0:0  
Q3+  
E3:7  
E3:6  
E3:5  
E3:4  
E3:3  
E3:2  
E3:1  
E3:0  
E2:7  
E2:6  
E2:5  
E2:4  
E2:3  
E2:2  
E2:1  
E2:0  
DQ3  
DQ10  
DQS1  
DM1  
DQ13  
DQ9  
DQ8  
DQ12  
DQ7  
DQ6  
DM0  
DQ2  
DQS0  
DQ5  
DQ4  
J15-7  
J15-7  
J16-13  
J16-14  
J16-15  
J16-16  
J15-5  
J16-13  
J16-14  
J16-15  
J16-16  
J15-5  
J15-4  
J15-4  
6
4
5
3
J16-17  
J16-18  
J15-3  
J15-2  
J16-6  
J16-10  
J16-9  
J15-11  
J15-12  
J16-8  
6
4
5
3
J16-17  
J16-18  
J15-3  
J15-2  
J16-6  
J16-10  
J16-9  
J15-11  
J15-12  
J16-8  
DQ1  
DQ0  
46  
32  
36  
33  
37  
40  
42  
41  
45  
49  
51  
50  
52  
55  
57  
56  
58  
46  
32  
36  
33  
37  
40  
42  
41  
45  
49  
51  
50  
52  
55  
57  
56  
58  
DM2  
DQ14  
DQ15  
DQ11  
DQ16  
DQ20  
DQ21  
DQ17  
DQS2  
DQ18  
DQ19  
DQ22  
DQ23  
DQ24  
DQ25  
DQ28  
DQ29  
J16-7  
J16-7  
J15-13  
J15-14  
J15-15  
J15-16  
J16-5  
J15-13  
J15-14  
J15-15  
J15-16  
J16-5  
J16-4  
J16-4  
J15-17  
J15-18  
J16-3  
DQ58  
DQ59  
DQ62  
DQ63  
J15-17  
J15-18  
J16-3  
J16-2  
J16-2  
2X Probe Connection used with  
B_DDR3D_2D software  
2X Probe Connection used with  
B_DDR3D_2D software  
S_A3/2 A1/0  
S_C3/2 E3/2  
(S2_A1/0 D1/0 Logic Analyzer Probe)  
(S2_E3/2/1/0 Logic Analyzer Probe)  
DDR3THIN-MN-XXX  
85  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX H – Data Group / Data Byte / Strobe Cross-Reference  
32-bit Data Group 8-bit Data Group Strobe  
Data Bits  
RdADatHi  
RdADatLo  
WrADatHi  
WrADatLo  
RdBDatHi  
RdBDatLo  
WrBDatHi  
WrBDatLo  
RdADatB7  
RdADatB6  
RdADatB5  
RdADatB4  
RdADatB3  
RdADatB2  
RdADatB1  
RdADatB0  
WrADatB7  
WrADatB6  
WrADatB5  
WrADatB4  
WrADatB3  
WrADatB2  
WrADatB1  
WrADatB0  
RdBDatB7  
RdBDatB6  
RdBDatB5  
RdBDatB4  
RdBDatB3  
RdBDatB2  
RdBDatB1  
RdBDatB0  
WrBDatB7  
WrBDatB6  
WrBDatB5  
WrBDatB4  
WrBDatB3  
WrBDatB2  
WrBDatB1  
WrBDatB0  
DQS7  
DQS6  
DQS5  
DQS4  
DQS3  
DQS2  
DQS1  
DQS0  
DQS7  
DQS6  
DQS5  
DQS4  
DQS3  
DQS2  
DQS1  
DQS0  
DQS7  
DQS6  
DQS5  
DQS4  
DQS3  
DQS2  
DQS1  
DQS0  
DQS7  
DQS6  
DQS5  
DQS4  
DQS3  
DQS2  
DQS1  
DQS0  
63,62,61,60,59,58,57,56  
55,54,53,52,51,50,49,48  
47,46,45,44,43,42,41,40  
39,38,37,36,35,34,33,32  
31,30,29,28,27,26,25,24  
23,22,21,20,19,18,17,16  
15,14,13,12,11,10,9,8  
7,6,5,4,3,2,1,0  
63,62,61,60,59,58,57,56  
55,54,53,52,51,50,49,48  
47,46,45,44,43,42,41,40  
39,38,37,36,35,34,33,32  
31,30,29,28,27,26,25,24  
23,22,21,20,19,18,17,16  
15,14,13,12,11,10,9,8  
7,6,5,4,3,2,1,0  
63,62,61,60,59,58,57,56  
55,54,53,52,51,50,49,48  
47,46,45,44,43,42,41,40  
39,38,37,36,35,34,33,32  
31,30,29,28,27,26,25,24  
23,22,21,20,19,18,17,16  
15,14,13,12,11,10,9,8  
7,6,5,4,3,2,1,0  
63,62,61,60,59,58,57,56  
55,54,53,52,51,50,49,48  
47,46,45,44,43,42,41,40  
39,38,37,36,35,34,33,32  
31,30,29,28,27,26,25,24  
23,22,21,20,19,18,17,16  
15,14,13,12,11,10,9,8  
7,6,5,4,3,2,1,0  
B_DDR3D_XX Groups/Bytes/Strobes Cross Reference  
DDR3THIN-MN-XXX  
86  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
APPENDIX I – NEX-DDR3INTR-THIN Silkscreen  
Front Silk-screen  
DDR3THIN-MN-XXX  
87  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
APPENDIX J – Keep out area  
DDR3THIN-MN-XXX  
88  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
APPENDIX K – Simulation Model  
Double this if you are using two Interposers on the same memory channel  
DDR3THIN-MN-XXX  
89  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
APPENDIX L - References  
JEDEC PC3-6400/PC3-8500-10660 DDR3 SDRAM Unbuffered DIMM Design Specification  
Revision 0.1 March 20, 2006.  
Tektronix TLA7000 Series Installation Manual  
Tek part number 071-1747-03  
Tektronix TLA7000 Series Technical Reference Manual  
Tektronix part number 071-1764-00  
Nexus Low Profile Distributed Probe Manual—  
Part number LowProfileProbes-MN-XXX  
JEDEC DDR3 SDRAM Standard  
JESD79-3 June 2007  
DDR3THIN-MN-XXX  
90  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
APPENDIX M - Support  
About Nexus Technology, Inc.  
Established in 1991, Nexus Technology, Inc. is dedicated to developing, marketing, and  
supporting Bus Analysis applications for Tektronix Logic Analyzers.  
We can be reached at:  
Nexus Technology, Inc.  
P.O. Box 6575  
Nashua, NH 03063  
TEL: 877-595-8116  
FAX: 877-595-8118  
Web site: http://www.nexustechnology.com  
Support Contact Information  
Technical Support  
General Information [email protected]  
Quote Requests [email protected]  
We will try to respond within one business day.  
If Problems Are Found  
Document the problem and e-mail the information to us. If at all possible please forward  
a Saved System Setup (with acquired data) that shows the problem. Please do not send a  
text listing alone as that does not contain enough data for analysis. To prevent corruption  
during the mailing process it is strongly suggested that the Setup be zipped before  
transmission.  
DDR3THIN-MN-XXX  
91  
Doc. Rev. 1.11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 

Miele Dishwasher G 4270 User Manual
Miller Electric Saw MCS 13H User Manual
Milwaukee Power Hammer 5316 20 User Manual
Moxa Technologies Switch EDS 518A Series User Manual
MTX Audio Car Amplifier TA2301 User Manual
NEC Server EXP320A User Manual
NHT Speaker Evolution System User Manual
Onkyo Speaker System ED 901 User Manual
Outlaw Audio Stereo Amplifier 200 M Block User Manual
Panasonic Laptop Docking Station FZVEBG11U User Manual